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Abstract This chapter is focused on the tectonic evolution of the North Patagonian
Andes comprised between 38° and 40°S. Field recognition of main structures
allowed establishing a structural control for the main sedimentary packages that
coexisted with Andean development. These structures affect Miocene strata at the
eastern deformational front, indicating a last stage of development, although
cooling ages suggest a Mid to Late Cretaceous exhumation of the Paleozoic
basement exposed at the westernmost sector. Synextensional deposits of late
Oligocene age imply an interruption of Andean constructional mechanisms at these
latitudes. Finally, seismic tomographies at these latitudes show an area of relatively
low seismic velocities in the orogenic front area, separated from the arc front zone.
Computed elastic thicknesses from gravity data show a good correlation with these
areas with abnormal heat flow associated with retroarc stretching and magmatic
emplacement in the last 5–2 Ma.

Keywords North Patagonian Andes � Late Oligocene and Pliocene to Quaternary
retroarc extension

M.E. Ramos (&) � A. Folguera � L. Fennell � V.A. Ramos
Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales,
Instituto de Estudios Andinos “Don Pablo Groeber” UBA-CONICET, Buenos Aires,
Argentina
e-mail: miguelestebanramos@hotmail.com

M. Giménez
Instituto Geofísico y Sismológico Ing. Volponi, Universidad Nacional de San Juan,
Ruta 12-Km17, San Juan, Argentina

M. Giménez
Consejo Nacional de Investigaciones Cientifícas y Técnicas (CONICET),
Buenos Aires, Argentina

© Springer International Publishing Switzerland 2016
A. Folguera et al. (eds.), Growth of the Southern Andes,
Springer Earth System Sciences, DOI 10.1007/978-3-319-23060-3_7

133

andresfolguera2@yahoo.com.ar



1 Introduction

The transitional zone from the arc to the western retroarc at the Villarrica-Lanín
volcanoes latitudes is considered a key area to recognize the main constructional
stages that shaped the North Patagonian Andes and their mechanisms (Fig. 1). This
area has been recently related to a tearing of the Nazca Plate as suggested by a
strong segmentation of the subducted slab (Fig. 2) (Pesicek et al. 2012). Based on
this work, around 5 Ma ago at *39–40°S a steeper nearly vertical subduction zone
was replaced by a *30°E subduction zone that led to the present configuration
(Bohm et al. 2002; Lüth et al. 2004).

This segment has few structural and tectonic analyses due to a difficult access, a
rather homogeneous stratigraphy and no hydrocarbon interest. This chapter ana-
lyzes depocenter geometry through field and gravimetric data that were incorpo-
rated into the fold and thrust belt. Additionally, it gives general constraints about
timing of inversion of those depocenters into the orogenic wedge over the
Argentinian slope of the Andes. The retroarc zone at these latitudes is characterized
by the superposition of different sedimentary prisms, corresponding to the Late
Triassic, late Oligocene–early Miocene, late Miocene, and Quaternary basins.
Understanding the geometry of these basins and their relation to the Andean for-
mation are the main objectives of this chapter.

Fig. 1 Simplified geological map between the 39° and 41°S with the main structures of the
western-intra and back-arc zones. The A–A´ line shows the structural profile depicted in Fig. 2a.
Color dots indicate available Cenozoic ages for the intra- and retroarc volcanic rocks
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2 Geological Setting

North Patagonian Andean evolution is initially linked to the subduction of the
Farallón (previously to 26 Ma) and then the Nazca plates (Cande and Leslie 1986).
During the Paleogene, the Farallón Plate subducted obliquely northward, up to its
breakup into the Cocos and Nazca Plates (Pardo-Casas and Molnar 1987). This
provoked the present relative convergence velocity of 8 cm/a in the N78ºE direction
(Somoza 1998). This mild obliquity of the convergence since 26 Ma was associated
with a certain degree of strain partitioning of the upper plate, with a major dextral
strike-slip N-trending fault zone, known as the Liquiñe-Ofqui Fault system (Fig. 1)
that runs through the axial North Patagonian Andes for over 1000 km from 39º 30′
to 47°S (Hervé 1976; Forsythe and Nelson 1985; Cembrano and Lara 2009;
Thomson 2002).

The North Patagonian Andes can be divided into a series of morphostructural
systems (Figs. 2, 3) (Diraison et al. 1998; García Morabito and Ramos 2012;
Giacosa et al. 2005). These systems exhumed a variety of units that range from the
Paleozoic, characterized by plutonic and metamorphic rocks (see Thomson and
Hervé 2002, for a synthesis) to Cenozoic volcano-sedimentary rocks (Jordan et al.
2001; Radic et al. 2002). In an offshore forearc position between *38 and 40ºS, the
Valdivia basin (González 1989) has concentrated subsidence in Cretaceous,
Eocene, and Miocene times (Fig. 1). To the east, the Coastal Cordillera was
interpreted as a Late Carboniferous accretionary prism intruded by Neopaleozoic
plutonic rocks (Munizaga et al. 1988; Thomson and Hervé 2002) that extend along
the Chilean coast. The eastern sector of this Coastal Cordillera is partly covered by
Miocene volcanic and sedimentary units (Vergara and Munizaga 1974) corre-
sponding to a series of depocenters such as the Osorno and Llanquihue basins
(Fig. 1). These have been gathered in the Central Depression, corresponding to a
1000-km-long low zone located in the forearc region (Lavenu and Cembrano 1999).
These depocenters are exhumed along the Liquiñe-Ofqui Fault system in the eastern
limit of the Central Depression, where they are incorporated in the North
Patagonian Andes.

The drainage divide area corresponding to the political boundary between
Argentina and Chile is constituted by the Patagonian Andes (Fig. 1). A series of
stratovolcanoes rises over this structural relief up to 1500 m, among which the
Villarrica, Quetrupillán, and Lanín are the most prominent. These volcanic centers
are aligned together with monogenic Quaternary volcanic fields through NE and
W–NW structures (Lavenu and Cembrano 1999; Lara 2004). Here, the Paleozoic
basement is exposed at the eastern-frontal sector by a series of thrusts and back-
thrusts (Turner 1965; García Morabito and Ramos 2012). Cretaceous plutonic rocks
are exposed in batholiths (Pankhurst et al. 1992, 1999) exhumed by structures
mainly rooted at the Chilean slope. In this magmatic suite, the Liquiñe-Ofqui Fault
system controlled the emplacement of younger Miocene plutons that are along the
axial part of the Patagonian Andes (Fig. 2a) (Munizaga et al. 1988; Hervé 1976,
1984; Hervé et al. 1979).
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North of 39ºS, these rocks are covered by the late Oligocene to early Miocene
Cura Mallín Basin composed of volcanic and volcaniclastic rocks locally
interfingered with lacustrine and delta deposits (Suárez and Emparan 1995, 1997).
This is an intra-arc basin formed during the late Oligocene–early Miocene— ex-
tensional stage that affected vast portions of the North Patagonian Andes (Suárez
and Emparan 1995; Muñoz et al. 2000; Jordan et al. 2001; Burns et al. 2006;
Melnick et al. 2006; Radic et al. 2002; Radic 2010). The Cura Mallín Basin is
composed of a series of diachronous depocenters that span from 27 to 16 Ma along
the axial zone and western Andean slope (Suárez and Emparan 1997; Radic et al.
2002; Burns et al. 2006). Locally, over the eastern Andean slope, Franzese et al.
(2011) described a relatively contemporaneous Aluminé depocenter, composed of

Fig. 2 a Lithospheric cross section across the southern Andes at 39–40°S (see Fig. 1 -A to A´- for
location in map view). Lower crustal geometry is based on the density model of Tašárová (2007).
Crustal and interplate seismicity are based on Dzierma et al. (2012). Superimposed tomography
contours of Pesicek et al. (2012) were interpreted as a detached subducted slab at *5–3 Ma.
Forearc structure is based on González (1989), while retroarc structure is based on data of this
work. b Balanced cross section on the eastern slope of the Andes from the drainage divide area to
the foreland zone across Junín de los Andes town. Note three distinctive areas, two where the
basement is exposed, and an intermediate where it is covered by Cenozoic sections. Basement
depth beneath main sedimentary depocenters was calculated from a gravity model. Note two
opposite verging structural systems interfering at Junín de los Andes longitude
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thick clastic deposits derived from the erosion of the crystalline basement, volcanic,
volcaniclastic, and epiclastic rocks.

The Collón Cura Basin, to the east of the Patagonian Andes, separates an area of
inverted Paleogene depocenters from the North Patagonian Precordillera. The
Collón Cura Formation, the main unit filling this basin, was dated by Mazzoni and
Benvenuto (1990) in the Río Collón Curá in 15–11 Ma. These are tuffs, ignimbrites,
and reworked fluvial deposits, included in the Chimehuín Formation that aggluti-
nates the Collón Cura Formation and the overlying Río Negro Formation of
Pliocene age (Turner 1965; Cucchi and Leanza 2005). Spalletti and Dalla Salda
(1996) had interpreted this basin as a pull-apart depocenter, based on its geometry
and some sedimentary considerations. Contrastingly, Ramos and Cortés (1984)

Fig. 3 Seismic velocity structure of the retroarc area at 39–40°S. a Vp anomalies at 10 km in
depth; b Vs anomalies at 10 km in depth; d Vp/Vs anomalies at 10 km in depth (Dzierma et al.
2012). Note the spatial correlation that exists between arc and retroarc volcanic centers and related
lava fields and seismic low-velocity zones. In particular, note a low-velocity anomaly associated
with the volcanic arc particularly pronounced beneath the Villarrica, Quetrupillán, and Lanín
Volcanoes. c Elastic thicknesses (Te) computed from gravity data that show lower values at the
sites of low Vp and Vs
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showed that these sedimentary sections were formed by synorogenic deposits,
related to the eastward migration of the orogenic front. Similarly, Giacosa et al.
(2005) proposed a foreland basin for the origin of these sedimentary successions.
More recently, Ramos et al. (2011), García Morabito et al. (2011), and García
Morabito and Ramos (2012) described at these latitudes progressive unconformities
in the wedge top of the fold and thrust belt, associated with Neogene contractional
structures.

An isolated depocenter north of the Collón Cura Basin accommodates a suc-
cession of late Oligocene to Miocene rocks. The volcanic rocks of the Auca Pan
Formation (Turner 1965, 1973) constitute the dominant exposures of this structural
depression, described as the Auca Pan depocenter. These magmatic rocks of the
Auca Pan Formation were dated in 29.6 ± 1.2 Ma (K/Ar age, Ramos et al. 2014).

To the east, the North Patagonian Precordillera system is divided into two
particular sectors; a western part where mainly Neogene deposits are openly folded
and an eastern sector where Triassic depocenters are partly inverted (Franzese and
Spalletti 2001; García Morabito et al. 2011; D’Elia et al. 2012). This system has
been described as a thick-skinned west-vergent structural belt (García Morabito
et al. 2011) that is segmented by NE and W–NW extensional faults that are
selectively inverted (D’Elia et al. 2012). The inverted Sañicó depocenter is the
southernmost expression of the Precordillera. Its volcano-sedimentary filling cor-
responds to the Late Triassic Precuyano and Early Jurassic Cuyano cycles
(Gulisano et al. 1984; Gulisano 1993) that constitute the syn-rift constituted during
the Pangea breakup at these latitudes.

3 Upper Crustal Structure

A structural transect has been performed across the North Patagonian Andes and the
North Patagonian Precordillera region identifying and analyzing in detail the fol-
lowing domains (Fig. 2b): (i) a western sector formed by east-verging thrusts and
limited amounts of backthrusts that exhume the Paleozoic basement. This sector has
thick-skinned faults that to the east determine a basement wedge. The eastward
boundary of this system is the Piedras Paradas fault, which uplifts the basement
over the late Oligocene Auca Pan Formation. (ii) To the east, a system with a
shallower decollement is associated with folds with characteristic short wavelength
amplitude that to the east become more open. The geometry determined of the main
depocenters is concordant with the described surficial faults interpreted as inverted
normal faults that bound the main sedimentary thicknesses. This intermediate sector
shows a series of halfgraben features limited to the east by a deeper east-verging
N-thrust near the Junín de los Andes valley. (iii) The eastern system is dominated
by west-verging thick-skinned faults that characterize the North Patagonian
Precordillera. The westernmost fault through this system is the Media Luna fault
that determines a triangular zone together with the previous east-verging fault array
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with a decollement inferred at 15 km depth. The easternmost structures exhume the
Sañicó depocenter exposing Late Triassic syn-rift sections.

This section was constrained by gravity data that allowed computing sedimen-
tary infills at the intermediate region from the gravity density model identifying
sections up to 3000 m in thickness. Calculated sedimentary depocenter geometries
were introduced in the structural section, where 700 m corresponds to the maximum
thickness of the Auca Pan Formation and 500 m for the Chimehuín Formation
(Cucchi and Leanza 2005). An additional, not outcropping, sedimentary section
needs to be added in depth that is considered corresponding to Mesozoic deposits
buried beneath Cenozoic piles based on their direct exposure on the eastern ana-
lyzed zone (Fig. 2b).

4 Lower Crustal Structure

Dzierma et al. (2012) calculated Vp and Vs anomalies as deviations from a 1D
background velocity model, shown in a series of horizontal sections at 10, 30, and
50 km deep, respectively. Along these, a low velocity anomaly at lower crustal and
upper mantle levels is particularly pronounced beneath the Villarrica, Quetrupillán
and Lanín Volcanoes. These authors regarded this to either an expression of a melt
reservoir from which these volcanoes are fed or to a reduced mantle wedge density
due to volatile addition from a highly serpentinizated subducted slab. This area lies
at the crossing point between the Liquiñe-Ofqui Fault system and the extrapolation
of the Valdivia fracture zone in the Nazca plate that are considered natural paths for
fluids coming from the subducted slab.

Elastic thicknesses (Te) computed from gravity data show low values in an
elongated area parallel to the Andean front, east of the Lanín volcano (Ramos et al.
2014). Te values at the arc front are relatively higher than in the described
anomalous area, which is not consistent with Vp and Vs anomalies determined by
Dzierma et al. (2012). However, seismic data are mostly missing at the southeast
studied area, enabling direct comparison between both datasets. Finally, around the
Lanín volcano area, there seems to be a consistency between low Vp and Vs values
and low elastic thicknesses (Fig. 3).

5 Discussion

The fold and thrust belt between 39º and 40ºS is dominated by the inversion of
previous normal faults that produced in the western analyzed area east-verging
structures and in the east west-vergent faults that exposed the Neopaleozoic base-
ment. These two systems interfere at the central part where younger successions of
late Oligocene to Miocene age are differentially preserved. In the eastern section,
Triassic–Jurassic extension affected the present foreland area concentrated in the
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Sañicó and the Piedra del Aguila depocenters and the series of eastern depocenters
that constitute the Huincul system. In the western section, the Auca Pan depocenter
concentrates the Oligocene to early Miocene sedimentary record that could have a
Triassic section beneath, as it is inferred from gravity data.

Contractional deformation is thought to have acted in two different stages,
beginning in the Late Cretaceous (Fig. 4), as it is indicated by available cooling
K/Ar ages in Neopaleozoic rocks (García Morabito and Ramos 2011). This de-
formational stage affected the whole Andes at these latitudes, from the Coastal
Cordillera, through the Patagonian Andes and the North Patagonian Precordillera
(Burns et al. 2006; García Morabito and Ramos 2012; Thomson 2002). Coetaneous
to this process, the arc expanded from the western Chilean Andean slope to the
retroarc zone (Ramos and Folguera 2005). This eastern volcanic front rested over
the Argentinean side of the Andes until the early Eocene (Llambías and Rapela
1984, 1989; Franchini et al. 2003), when it retracted to the west (Fig. 4). After this,
late Oligocene to early Miocene extensional Auca Pan (≤29 Ma)–Rancahue
(≤26 Ma)–Cura Mallín (≤17 Ma) series of depocenters were developed at the
western retroarc area with a volcanic front located over the Chilean Andean side
(Suárez and Emparan 1995; Jordan et al. 2001; Radic et al. 2002; Franzese et al.
2011; García Morabito and Ramos 2012). These sections have been emplaced
under low-pressure conditions associated with a normal crust as it is indicated by
geochemical data (Ramos et al. 2014, and see references therein).

A second contractional event affected the area in late Miocene times, reactivating
the Patagonian Andean and the North Patagonian Precordilleran systems. This is
evidenced by deformation affecting late Miocene sedimentary sections. During this
time, the arc retracted at the intra-arc Liquiñe-Ofqui fault system (Fig. 4).

Pliocene to Quaternary times is characterized by important volumes of basaltic
plateaus that were emplaced at the retroarc area (Fig. 4). Low Vp and Vs anomalies
would indicate a heated middle crust partly coincident with computed low elastic
thicknesses.

As indicated, seismic tomographies allow inferring the presence of a subducted
steeper older slab beneath the present subduction zone (Figs. 2, 4) (Pesicek et al.
2012). This has been considered an evidence of a slab tearing associated with the
steepening of the subduction zone at these latitudes some 5–3 Ma ago (Fig. 4). This
is potentially related to the upwelling of hot asthenospheric mantle, and thermal
anomalies in the middle crust described by Dzierma et al. (2012), related low Te
values, and retroarc volcanic eruptions.

Expansions and narrowings of the volcanic arc at the studied latitudes showed to
be contemporaneous to the described contractional and extensional stages; while
the subduction of the Valdivia transform fault and the strong tearing that the Nazca
plate exhibits would explain the present seismic velocity structure of the crust.
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Fig. 4 Schematic block
diagrams summarizing the
evolution of the North
Patagonian Andes since the
latest Cretaceous to Pliocene–
Quaternary times nearby the
40ºS (see text for further
details)
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6 Conclusions

The present chapter exemplifies how the North Patagonian Andes are characterized
by a long and complex deformational history. Three different sectors have been
described with characteristic behaviors. These sectors have been uplifted by the
inversion of previous extensional structures from the Triassic–Jurassic and the
Oligocene times. During this evolution, two main extensional periods occurred, first
during the Triassic–Jurassic associated with Pangea breakup and then during
Oligocene times. Contractional stages have taken place during the Late Cretaceous
and the upper Miocene, respectively, affecting vast proportions of the fold and
thrust belt. The first stage is determined at these latitudes mainly from K/Ar ages,
interpreted as cooling ages, while the youngest by the age of sedimentary and
volcanic sections deformed at the Andean front.

Recently, released seismic tomographies show the present geometry of the
subduction system at these latitudes where slab detachment processes are described.
This slab detachment would have given place to the injection of an asthenospheric
inflow under this segment of the North Patagonian Andes. Thermal conditions
revealed by low Vp and Vs velocities and Te values, together with the occurrence
of less than 5 My mafic rocks at the retroarc zone, could be linked to this particular
environment.

Oscillations of the subducted slab through time inferred by the arc behavior
coincide with the deformational regimes that affected the North Patagonian Andes.
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