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Abstract 

Depending on the time of development of a crop temperature below 0 ° C can cause 

damage to the plant, altering its development and subsequent yield. Since frosts are 

identified from the minimum air temperature, the objective of this research paper is to 

generate forecast -(predictive) models at 1, 3 and 5 days of the minimum daily 

temperature (Tmin) for Bahía Blanca city. Non-linear numerical models are generated 

using artificial neural networks and geometric models of finite elements. Six 

independent variables are used: temperature and dew point temperature at 

meteorological shelter level, relative humidity, cloudiness observed above the station, 

wind speed and direction measured at 10 m altitude. Data have been obtained 

between May and September from 1956 to 2015. Once the available data had been 
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analysed, this period was reduced to 2007-2015. For the selection of the most suitable 

model, the correlation coefficient of Pearson (R), the determination coefficient (R2) and 

the Mean Absolute Error (MAE) are evaluated. The results of the study determine that 

the geometric model of finite elements with 4 variables, over 9 years (2007-2015) and 

separated by the season of the year is the one that presents better adjustment in the 

forecast of Tmin with up to 5 days of anticipation.  

 

1. Introduction   

The southeastern region of South America, comprising part of central-eastern 

Argentina, Uruguay and southern Brazil, frequently suffers from cold air incursions. 

These appear as cold fronts coming from the southwest of the continent, which 

associated to polar sea air mass, can give rise to extreme events and frosts in the 

period from autumn to spring. Several studies in the field have addressed extreme cold 

events (e.g. Rusticucci and Barrucand, 2004; Fernández Long and Müller, 2006; 

Cavalcanti et al. 2013; Müller et al., 2017) and frost in the east center of Argentina, 

productive region par excellence (Müller, et al., 2003; Müller, et al., 2005; Müller, 2007, 

2010; Müller and Berri, 2012). These incursions generate great damage to local crops 

(Repetto, Vergara & Casagrande, 2014).This is why, in order to avoid damage, it is 

necessary to foresee it. In this case, mathematical models are one of the tools 

available to farmers for decision-making (Fernández Long, et 2015)  

The importance of minimum temperature forecast lies in the fact that through this 

variable frost can be predicted. It should be noted that frost damage can have a drastic 

effect on the crop, either for the entire plant or for a small part of the plant tissue. In 

addition, it implies a reduction on the yield or depreciation of the quality of the product 

(Food and Agriculture Organization of the United Nations, FAO, 2010). This depends 

on the time of frost occurrence, its intensity, its duration and the phenological state of 
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the plants. Considering the time of occurrence, frosts are classified into autumn, winter, 

spring and summer. Frosts are frequent in winter, but they also occur in autumn and 

spring. Autumn frosts are known as early frosts and spring frosts as late frosts. That is 

why the time when frost occurs, that is the date of first frost (FPH) and date of last frost 

(FUH), are of fundamental importance in the programming of the agricultural calendar 

(Fernández Long and Barnatán, 2013). This is because, small differences in the time of 

occurrence of a frost surprises the plants at different times of their development and 

may cause damage of different magnitude or not cause any damage. The FPH series 

is conformed as the first Julian day in which a frost is registered, as long as the same 

occurs before the Julian day 196 (July 15), otherwise, in that particular year the event 

will not have occurred. Similarly, the FUH series is defined as the last Julian day in 

which a frost is recorded, as long as it occurs after day 196; and, as in the previous 

series, the non-occurrence of the event is possible (Fernández Long and Barnatán, 

2013). 

Therefore, the short and medium term forecasts of the risk of frost are of paramount 

importance because the accuracy of the results and the timing of the frost forecast will 

depend on the time margin that the farmer will have to avoid frost of their products. 

Some of the options horticulturists have to mitigate frost damage of their crops are 

active protection methods: stoves, fans, helicopters, sprinklers, surface irrigation, foam 

insulation and combinations of methods. All methods and combinations are 

implemented during the night of frost occurrence to mitigate the effects of sub-zero 

temperatures (FAO, 2010). For this reason, having a frost forecast several days in 

advance makes it possible to take decisions about the application of frost control 

methods. In this way it is possible to minimize possible economic losses in crops and 

improve productivity. 

In the scientific literature, there are several methods that analyse  frost forecast, 

starting from the minimum temperature. Among them, Blennow and Persson (1998) 
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use linear models. The authors analyzed the spatial variations of the air temperature in 

an area of southern Sweden in summer nights and from the independent variables: sky 

vision factor, altitude, relative relief and presence of peat soils. In this case, the 

objective was to generate a map with areas prone to low temperatures within a total 

area of 7.2 km2. Subsequently, numerous studies have been carried out to predict the 

minimum temperature from neural networks, for example, Abdel-Aal (2004), Ramyaa 

(2004), Poonnoy, et al. (2007), Jain, et al. (2006), Sallis, et al. (2009), Smith, et al. 

(2009). In this type of models, meteorological variables such as air temperature, 

relative humidity, wind speed, precipitation, rain and solar radiation are used as input 

variables. Ustaoglu, et al., (2008) compare three neural network models and a multiple 

linear regression model to predict mean, maximum and minimum daily temperatures in 

the Marmara region (Turkey), using 15 years of data (1989-2003). The same authors 

compare the predictions obtained with a multiple linear regression model with those of 

the neural network methods. The three neural network models and the multiple linear 

regression model used by the authors provide satisfactory predictions. Kaur and Singh 

(2011)  evaluate the application of neural networks to study the minimum temperature 

in the city of Chandigarh, India. The results show that the minimum temperature can be 

predicted with reasonable accuracy using the artificial neural network. Robinson and 

Mort (1997) conclude that the ability of a neural network to predict the minimum 

temperature varies with the structure used. Ghielmi and Eccel (2006) compare 

traditional models of minimum temperature estimation with neural networks, obtaining 

better results with the latter. They conclude that the temperature at sunset is the most 

important predictor, followed by extreme temperatures and relative humidity. Ovando, 

et al., (2005)  develop models based on backpropagation neural networks to predict the 

occurrence of frost at Rio Cuarto station, Córdoba, Argentina. They demonstrated the 

good performance and general efficacy of this methodology in the estimation of frosts.  
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In this work, predictive models of the minimum temperature that are applicable to a 

region of high horti-floriculture production located in the south of Buenos Aires province 

are generated . For this purpose, non-linear numerical models based on neural 

networks have been used applying computational software developed in Matlab 

program environment and using some Toolbox libraries (Neural Network Toolbox). In 

geometric models of finite elements, the methodologies developed by Navarro-

González and Villacampa (2012, 2013, 2016)  were used.  Generated models help the 

elaboration of a minimum temperature forecast through its correlation with other 

observed meteorological variables. The tool obtained will provide a new methodology 

for the prediction of frost in the area studied. It is expected to provide a method of 

short-term minimum temperature forecasting resulting from the use of a limited number 

of variables. This would demand less computational requirement. In future instances 

the methodology would be evaluated in other regions adapting the model to local 

characteristics. 

2. Methodology   

   

2.1. Study region   

The study region is located in the southwest of Buenos Aires province (Argentina), in 

the city of Bahía Blanca (figure 1) with coordinates 38ºS; 62ºW. The region is 

characterized by its great agricultural production being one of the main in the world. Its 

climate is temperate with average annual temperature between 14º C and 20º C. The 

rains provide a sub-humid or transitional character with an average of 584.6 mm 

annually. According to the Horti-floriculture Census of Buenos Aires province (2005) 

the horticultural belt of the city of Bahía Blanca has a productive sector composed by 

around 46 horti-floriculture exploitations that occupy 663,400 ha, of which 177,145 ha 

are dedicated exclusively to horti-floriculture production. These farms produce 2448 

tons per harvest, of which 174,675 ha are produced in the field, that is to say, without a 
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cover to protect them from weather inclemency. Vegetables are classified according to 

whether they are winter or summer vegetables, according to the thermal requirements 

for their development. In general, species grown in summer are usually damaged by 

frost, although the degree of damage will be different according to the sensitivity of 

each crop.  

 

Figure 1: Buenos Aires Province (Source: preparation and digitization Formiga and Gárriz, 2008) 

Data base 

The historical data observed at the National Weather Service (SMN) meteorological 

station of the Bahía Blanca AERO station were used to conduct the research. The 

series of temperature, dew point temperature, relative humidity, cloudiness and wind 

speed and direction of this station satisfy the quality control requirements established in 

Chapter 9 of the World Meteorological Organization's Guide to Hydrological Practices 

(WMO, 2009). The period in which experimental data were obtained is 1956-2015 (60 

years), considering the months in which frost occurs mostly, that is, from May to 

September. However, since the climatic changes produced within this time period are  
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large (Fernandez Long and Barnatan, 2013), it has been considered that the last 9 

years (2007-2015) of information are more suitable for temperature prediction today. 

When analyzing the temporal evolution of the period with frosts from 1997 to 2015, it is 

observed that in Bahía Blanca there have been 4 years with late frosts after October 1. 

In other words, in a period of 19 years there is a probability of occurrence equal to or 

greater than 21%. With respect to the early frosts, it is observed that they have 

occurred in 5 occasions, which supposes a probability of occurrence of 26% or more 

(CIAg, Agroclimatic Information Center, 2015). According to this, the analysis is 

developed for the autumn (March, April, May), winter (June, July, August) and spring 

(September, October, November) seasons. In this way it is expected to verify the 

functionality of the model and evaluate its ability to identify early and late frosts.  

The daily time series of the variables analyzed were created by organizing the 

information supplied.  The robustness and reliability of the database is fundamental 

when applying statistical analyses. In order to make a database reliable, it is necessary 

to: (i) have a sufficient number of data, (ii) have good accuracy in the data, and to clean 

up dubious or erroneous data.  The percentage of periods without sufficient data was 

considered irrelevant. In the period 1956-2015 it was only 5%, the series being 

complete between 1997 and 2015.  In accordance with the objective of generating 

short-term predictions, three time horizons were studied (1, 3 and 5 days), so that the 

modelling methodologies considered in this research are applied to each one, which is 

described in the next section.  

2.2. Method 

 

The methodology applied for the forecast of the Tmin in Bahía Blanca has been the 

generation of numerical models through the use of artificial neural networks and 

geometric models of finite elements. Linear models were previously generated and 

rejected because of their poor results, with indexes of explanation of the experimental 
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data smaller than 30 %. However, the existence of multicollinearity between the 

predicting variables has been analyzed using the SPSS program, through the study of 

the variance inflation factor and condition number. If, in addition, the variables are 

typified, there is clearly a multicollinearity problem for the 5-day forecast. Also, an 

analysis of the bivariate correlations has been carried out, resulting in: a) relative 

humidity presents a strong significant correlation with the variables: temperature, dew 

temperature and wind direction; b) the same occurs with wind direction. Therefore, 

these two variables, humidity and wind direction, are eliminated. The analysis of 

multicollinearity is carried out again and it is deduced from the results that there is no 

problem of multicollinearity for any of the forecast cases with the four variables. That is, 

with the variables- temperature, dew temperature, wind speed and cloudiness- the 

existence of multicollinearity is not possible in the three cases analyzed: 1 day, 3 days 

and 5 days.  

The numerical models have been generated with 4 and 6 predictive variables to 

analyze if the best numerical models are those that use variables without 

multicollinearity problems. 

The predicted or independent variable is the daily minimum temperature. The predictor 

variables are 6 in a first analysis: temperature and dew point temperature at 

meteorological shelter level, relative humidity, cloudiness observed in the season and 

wind speed and direction measured at 10 m altitude. The measurement of the variables 

is made based on the indications of the WMO 2009. The selected period is May to 

September 1956 to 2015 with the 6 variables mentioned. The analysis is repeated 

using 4 predictor variables (temperature, dew point temperature, wind intensity and 

cloudiness), considering not only the May-September period, but also the different 

seasons of the year separately: autumn (March-May), winter (June-August) and spring 

(September-November) based on information from a reduced period of 9 years (2007-

2015). The aim is to evaluate the performance of the models using a smaller amount of 

information, and at the same time extending the analysis to those months of greater 
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susceptibility for the crops. The selection of these variables is due to the fact that they 

are easy to obtain and are measured at surface weather stations. The dependent 

variable is a daily value while the predictors or independent variables correspond to 

each of the four main hours of the day (03, 09, 15 and 21 local time).  

2.3. Nonlinear Numerical Models 

For the generation of non-linear numerical models in the period indicated, 9899 data 

corresponding to the period 2007 - 2015 have been used. A percentage of this 

information is used to validate the model, which varies according to whether it is 

generated to the neural network models, or the geometric models of finite elements. 

a) Artificial Neural Nets, ANN 

 

Initially, models of artificial neural networks (ANN) were generated to predict the 

minimum temperature with 1, 3 and 5 days of anticipation and with 6 predictor 

variables. Experimental data are randomly divided into three groups: i) data for training 

(75%), ii) data for validation (10%) and iii) data for testing (15%). The neural network is 

a one hidden layer in which the number of neurons is selected to avoid over-

parameterization of the model. For this purpose, various information parameters are 

used and 50 models have been generated: the average of the R values of the 50 

models, the average of the R2 values of the 50 models and the error. 

Neural network models are analyzed for both 4 and 6 predictive variables. 

To select the best neural network studies for different architectures with a number of 

neurons in the hidden layer given by powers of, 2n, from 1 to 128 have been realized.  
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Figure 2: Neural network architecture with 1 hidden layer 

For any architecture with 1 hidden layer, 50 models are generated, subsequently 

calculating the average of R y R2. The best neural network architectures are 

architectures that have between 1 and 20 neurons in the hidden layer. Models are also 

generated with 4 independent/predictor variables and 9 years (2007 - 2015), avoiding 

multicollinearity, but the models obtained are not good for forecasting the minimum 

temperature 1, 3 and 5 days in advance. Models are also generated with 4 

independent/predictor variables, avoiding multicollinearity and in the same period of 

time, but the results are not good for the minimum temperature prediction with 1, 3 and 

5 days in advance. Only the results for 5 days in advance are included to compare with 

the results obtained when applying geometric models of finite elements (Navarro-

González and Villacampa, 2012, 2013, 2016), analyzing the periods of May-

September, autumn, winter and spring. Since the test and validation results do not 

present significant differences, only the training results are presented for each of the 

forecasts made. 

Once the sample is randomly divided  into three parts, the Multilayer Percepton method 

is applied to determine the minimum temperature forecasts Tmin at 1, 3 and 5 days. In 

the ANNs developed in this work, three layers are defined: i) an input layer whose 
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neurons are the predictor variables used (6 and 4) ii) a hidden layer, whose number of 

neurons in the hidden layer (HN) is determined through a coarse binary search with 

HN= 2, 4, 8, 16, 32, 64, 128. (Later, performing a finer search to find the optimal 

number of neurons will be necessary), and iii) finally, an output layer corresponding to 

the dependent variable, i.e. the minimum temperature, Tmin.  

A Matlab code program has been generated using some libraries of the Toolbox 

(Neural Network Toolbox) that allows to automatically obtain families of models for 

each one of the analyzed architectures. With the information obtained from the 

generated models, the network architecture is selected, based on the best results of 

the following averages R, R2 and the lowest values for the maximum and minimum 

errors; defined as the difference between the average of R and its maximum and 

minimum values respectively. 

b) Geometric model of Finite Elements 

In order to obtain numerical models, the methodologies based on the generation of 

geometric models of finite elements developed in Navarro-Gonzalez F. J. and 

Villacampa, Y. 2012, 2013, and 2016, have been applied.  

The starting point is an experimental dataset {(𝑥[𝑘]
1 , 𝑥[𝑘]

2 , 𝑥[𝑘]
3 , … . . , 𝑥[𝑘]

𝑑 , 𝑦[𝑘])}
𝑘=1,2,….,𝑝

 

corresponding to some standardized variables (�⃗�, 𝑦) = (𝑥1, … , 𝑥𝑑 , 𝑦) ∈ 𝛺 × ℝ =

[0,1]𝑑+1 ⊂ ℝ𝑑+1 where there exists a functional relationship of the type 𝑦 =

𝑓(𝑥1, … , 𝑥𝑑). The geometric model of finite elements is defined dividing 𝛺 in elements, 

and defining in each element some points named nodes where the model is obtained. 

The complexity of the geometric model, c, is defined as the number of subintervals in 

which each segment  0,1  is divided. So, the initial domain  0,1
n
 is divided into a set of  

nc  hypercubics elements. Once the geometric model in a hypercube has been defined, 

the model is obtained by solving an optimization problem. 
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By applying these, geometric models of finite elements have been generated with 

complexities of 30, 50, 70 and 90 to forecast the Tmin 1, 3 and 5 forecast days. Initially, 

using the 6 predictive variables and in the period from May to September for years 

1956 to 2015. Since the results with complexity 50 do not show significant differences 

with respect to those obtained with 30, only the results obtained with 30, 70 and 90 are 

presented. In addition, for the model to better represent the current evolution of the 

minimum temperature, a shorter period of time comprising the last 9 years of the series 

(2007 - 2015), is considered. In this case it is the models for 5 days forecast and using 

the 6 variables described above that obtain a good prediction. The same types of 

models are generated with the 4 selected predictor variables, where the 9-year series 

is then divided into the autumn, winter and spring periods generating models for 1, 3 

and 5 days forecast with 6 variables. Since the best results are for 5 days forecast, the 

models are generated again reducing the number of variables to 4. For each analysis, 

the data have been randomly divided into 80% for model training and 20% for model 

validation. The results for each model are analyzed using overlapping scatter plots, 

consisting of overlapping pairs of x-y variables, each pair being distinguished by 

different colours or shapes, and scatter plots in analyses with 9 years of data. In all 

cases the results obtained with the validation data reflect similar trends to those 

developed with the model, so they are not shown. 

On the other hand, the percentage of model successes is analyzed when the Tmin is 

less than 0 °C (frost). It is carried out for 5-day forecasts with 9 years of data with 4 and 

6 variables in the period from May to September and with 4 variables in the periods 

autumn, winter and spring. 

3. Results and discussion 

In this section we present the results obtained for the 1, 3 and 5 day Tmin forecast 

obtained with neural networks and geometric models of finite elements. As it was 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

previously commented linear models were generated but the results are not presented 

because the models are not good, which indicates that there is no linear relationship 

between the variables. 

 

 

3.1. Neural networks 

Table 1 shows the comparison of the average of R and R2 of the 50 models generated 

for any neural network architecture in training and for 1 forecast day with 6 variables. 

The best result is with 16 neurons, since of all, it is the architecture with the highest R 

and smaller difference between the extreme values and the average. 

Table 1.  Training. 1 forecast day. 6 variables. 1956-2015 

 

R 
Training Neurons 

1 2 4 8 16 32 64 128 

Average 0,579 0,636 0,674 0,684 0,688 0,689 0,693 0,697 

Maximum 0,587 0,676 0,683 0,689 0,693 0,696 0,700 0,703 

Minimum 0,573 0,586 0,591 0,670 0,683 0,623 0,688 0,689 
Max error 0,007 0,040 0,009 0,005 0,005 0,007 0,007 0,007 
Min error 0,006 0,050 0,083 0,014 0,005 0,066 0,005 0,007 

Average 
R2  0,335 0,405 0,454 0,467 0,473 0,475 0,481 0,485 

 

Figure 3 shows the averages of 50 R and R2 after 50 iterations of training for 

architectures from 1 to 20 neurons, used to model the data corresponding to 1-day 

forecasting and 6 variables. 
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Figure 3 Training Neural from 1 to 20. 6 variables. 1956-2015 

Table 2 shows the average R and maximum and minimum errors of the 50 runs of the 

training model for any architecture. It is evident that from 7 or 8 neurons the results are 

similar. The average and the maximum and minimum errors show that architecture of 

11 neurons in a hidden layer would be sufficient. 

Table 2. Average, maximum, minimum and dispersion of R.  Neural Training from 1 to 20; 6 variables. 956 

- 2015 

 

R 
Training Neurons 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Avera
ge 

0,5
79 

0,6
36 

0,6
68 

0,6
74 

0,6
78 

0,6
81 

0,6
82 

0,6
84 

0,6
83 

0,6
85 

0,6
86 

0,6
86 

0,6
86 

0,6
87 

0,6
88 

0,6
88 

0,6
88 

0,6
88 

0,6
89 

0,6
88 

Maxi
mum 

0,5
87 

0,6
76 

0,6
81 

0,6
83 

0,6
84 

0,6
87 

0,6
88 

0,6
89 

0,6
91 

0,6
9 

0,6
91 

0,6
91 

0,6
92 

0,6
92 

0,6
93 

0,6
93 

0,6
93 

0,6
94 

0,6
93 

0,6
92 

Minim
um 

0,5
73 

0,5
86 

0,5
86 

0,5
91 

0,6
65 

0,6
67 

0,6
69 

0,6
7 

0,6
68 

0,6
7 

0,6
81 

0,6
81 

0,6
8 

0,6
81 

0,6
82 

0,6
83 

0,6
84 

0,6
8 

0,6
77 

0,6
79 

Max 
error 

0,0
07 

0,0
4 

0,0
13 

0,0
09 

0,0
06 

0,0
06 

0,0
06 

0,0
05 

0,0
08 

0,0
05 

0,0
05 

0,0
04 

0,0
05 

0,0
05 

0,0
06 

0,0
05 

0,0
05 

0,0
05 

0,0
05 

0,0
04 

Min 
error 

0,0
06 

0,0
5 

0,0
81 

0,0
83 

0,0
14 

0,0
15 

0,0
13 

0,0
14 

0,0
15 

0,0
15 

0,0
05 

0,0
05 

0,0
07 

0,0
06 

0,0
06 

0,0
05 

0,0
05 

0,0
08 

0,0
12 

0,0
09 

Disper
sion  

0,0
13 

0,0
9 

0,0
95 

0,0
92 

0,0
19 

0,0
2 

0,0
19 

0,0
19 

0,0
23 

0,0
2 

0,0
1 

0,0
09 

0,0
12 

0,0
11 

0,0
11 

0,0
1 

0,0
1 

0,0
14 

0,0
17 

0,0
13 
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On the other hand, the results obtained for the test and the validation cases are similar 

to those of training considering the architecture of 11 neurons. In the case of Test R 

=0,683 and R2 =0,46649 . The results of the validation are R =0,6833 and  R2 =0,4669. 

According to this, to model the minimum temperature forecast 1 day in advance, the 

best architecture of neural network corresponds to 11 neurons in the hidden layer. 

However, since the results of the determination coefficient are very low, the use of this 

model is discarded. 

Tables 3 and 4 present the averages of R for the 50 models generated for any 

architecture of the type 2n, in the case of training and for the 3 and 5-day forecast 

respectively. The maximum and minimum values of R and their differences with 

respect to the average (maximum and minimum error) are determined. For the 3-day 

forecast/prediction it is observed that between 16 and 32 neurons there is a significant 

difference in R, from 0,29 to 0,68. Further from 32, the increase in neurons does not 

represent a substantial change in the R outcome. The results for 32 neurons are similar 

in test ( R =0,6827 y R2 =0,469 ) and validation (R =0,679 y R2 =0,461) 

The 5-day forecast shows a variation between 16 and 32 neurons, i.e., to find an R 

close to 0,7 it is necessary to use 32 neurons in the hidden layer. Results for test and 

validation are similar to training. In the test case R =0,6797 and R2 =0,462; whereas in 

the validation R =0,688  and R2 =0,473 As these results are insufficient to use the 

model in forecasting, a more in-depth analysis is not continued. 

 

Table 3 Training using powers of 2 for 3 days and 6 variables. 1956 - 2015 

 

R 
Training Neurons 

1 2 4 8 16 32 64 128 

Average 0,258 0,270 0,286 0,292 0,297 0,689 0,693 0,697 
Maximum 0,264 0,291 0,297 0,299 0,307 0,696 0,700 0,703 

Minimum 0,251 0,253 0,257 0,270 0,286 0,623 0,688 0,689 
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Max error 0,007 0,021 0,011 0,008 0,010 0,007 0,007 0,007 

Min error 0,007 0,017 0,029 0,022 0,011 0,066 0,005 0,007 
 

 

Table 4 Training using powers of 2 for 5 days and 6. 1956 - 2015 

 

R 
Training Neurons 

1 2 4 8 16 32 64 128 

Average 0,171 0,175 0,184 0,193 0,201 0,689 0,693 0,697 
Maximum 0,177 0,188 0,200 0,206 0,213 0,696 0,700 0,703 

Minimum 0,165 0,164 0,170 0,172 0,179 0,623 0,688 0,689 
Max error 0,006 0,013 0,015 0,012 0,013 0,007 0,007 0,007 

Min error 0,006 0,011 0,015 0,022 0,022 0,066 0,005 0,007 

 

 

Table 5 below shows the results of the models obtained for the 5-day forecast with 4 

variables; temperature, dew point temperature, wind speed and cloudiness in the 9 

years between 2007 and 2015.  Specifically, the results of the R average and its 

maximum and minimum values of 50 models for each 2n architecture are shown for the 

forecast made using data from May to September for training., The values of R and R2 

do not exceed 0,5 of 0,25 respectively, being similar in training, test and validation. In 

addition, more than 16 neurons are needed in a hidden layer to reach this value. The 

analysis carried out for one or 3 days and those obtained separating data in seasons 

(autumn, winter and spring) show similar results to those presented here, in no case 

exceeding an R of 0,47. 

 

 

Table 5 Training using powers of 2 for 5 days and 4 variables. 2007 - 2015 
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R 
Training Neurons 

1 2 4 8 16 32 64 128 

Average 0,457 0,458 0,465 0,470 0,476 0,483 0,493 0,505 
Maximum 0,466 0,473 0,477 0,483 0,487 0,495 0,509 0,523 

Minimum 0,446 0,443 0,451 0,460 0,465 0,466 0,471 0,468 

Max error 0,010 0,015 0,012 0,013 0,011 0,012 0,016 0,017 

Min error 0,010 0,015 0,014 0,010 0,012 0,016 0,022 0,038 

Dispersion  0,020 0,03 0,026 0,024 0,023 0,028 0,038 0,055 
 

The results obtained in the analysis using neural networks, both with 6 and with 4 

predictor variables, show that with this methodology a good prediction is not achieved 

in more than 50% of the cases. 

In other words, this methodology does not yield results good enough to be applied to 

the prediction of Tmin, unlike the results obtained by other authors such as Ustaoglu et 

al. (2008), Kaur and Singh (2011), Robinson and Mort (1997), Ghielmi and Eccel 

(2006), Ovando, et al. (2005) and Bocco et al. (2007), who obtained good results in the 

prediction of Tmin or frost with neural networks. In all the studies analyzed the sample 

was small and corresponding to short periods of time. The absence of satisfactory 

results in the present study compared with those obtained by other researchers could 

have as explanation the higher complexity of working with data comprising periods of 

time of 60 and 9 years. It should also be noted that, since the study areas are different 

the independent variables necessary for their study may also be different. 

 

3.2. Geometric Model of Finite Elements 

 

The results obtained applying the methodologies developed in Navarro-Gonzalez F. J. 

and Villacampa, Y. 2012, 2013, and 2016 to generate numerical models are presented 

below. The number of independent variables considered and the complexity of the 

model affect  the computational complexity. In addition, by the characteristics of the 
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algorithm, a great value in complexity leads to overfitting. However, the methodology 

Navarro-Gonzalez F. J. and Villacampa, Y. 2016 presents an improvement in 

computational complexity with respect to  previous researches. Therefore, increased 

complexity does not necessarily imply an improvement in the model. In order to select 

the best complexity, other parameters must be taken into account, such as R2, MAE, 

MSE and  RMSE 

Table 6 shows the results of the geometric model of finite elements for the forecast with 

1, 3 and 5 days of anticipation and with complexity 30, 70 and 90. With 1 day of 

anticipation, for a complexity of 30 the adjustment shows an R2 of 0,52 and an MAE of 

2,63. With the complexity of 70 the values are 0, 8 for R2 and 1,36 for MAE, and for 

complexity 90 the R2 is 0,90 with a MAE of 0,92. According to these data, the best 

results are obtained with the complexity of 90, given that the R2 increases, explaining 

90% of the data and decreases the MAE. For the 3-day forecast, complexity model 30 

shows an R2 of 0, 26 and a MAE of 3, 31. With complexity 70 the R2 is 0, 74 and the 

MAE decreases to 1, 78. The best results are found with a complexity of 90, with an R2 

of 0, 85 and a MAE of 1, 20. In the analysis of the models for the 5-day forecast we find 

results similar to the previous ones: the best results are obtained with a complexity of 

90, with an R2 of 0, 84 and a MAE of 1, 22. On the other hand, with complexity 70 the 

R2 is 0, 73 with a MAE of 1, 81 and with 30 in R2 it is 0, 22 with a MAE of 3, 37. 

Table 6. R2 with complexities 30.70 y 90 for 1, 3 y 5 days of prediction. 6 variables 1956 – 2015. May- 

September 

 

Forecast 1 day  Complexity 30  Complexity 70  Complexity 90  

R2 0,52 0,83 0,90 

Mean absolute error. MAE 2,63 1,36 0,92 

Mean square error.MSE 10,797 3,848 2,24 

Root Mean square error, 
RMSE 3,286 1,962 1,496 
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Forecast 3 days  Complexity 30  Complexity 70  Complexity 90  

R2 0,26 0,74 0,83 

Mean absolute error 3,3 1,77 1,20 

Mean square error.MSE 16,646 6,25 3,58 

Root Mean square error, 
RMSE 4,08 2,5 1,89 

  

  
  

Forecast 5 days  Complexity 30  Complexity 70  Complexity 90  

R2 0,23 0,7 0,81 

Absolute error variance  3,36 1,81 1,22 

Mean square error.MSE 17,29 6,62 3,81 

Root Mean square error, 
RMSE 4,16 2,57 1,2 

 

Figure 4 a, b and c shows the relationship between observed and modeled data 

and the complexity of the model. 
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Figure 4a  Dispersion diagram of observed Tmin and the one obtained with the model. Complexity 30, 70 

and 90. 1, forecast days, 6 variables. 1956 – 2015. 
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Figure 4b Dispersion diagram of observed Tmin and the one obtained with the model. Complexity 30, 70 

and 90. 3, forecast days, 6 variables. 1956 – 2015. 
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Figure 4c Dispersion diagram of observed Tmin and the one obtained with the model. Complexity 30, 70 

and 90. 5, forecast days, 6 variables. 1956 – 2015. 
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For all the analyses carried out, it is observed that the models that use less complexity 

(30) tend to forecast the average value of the minimum temperature, especially when 

the forecast is made earlier (3 and 5 days). This is illustrated by the horizontally 

elongated "point cloud" as a constant straight line equal to a value close to the average 

of the minimum temperature of Bahía Blanca. Models tend to always predict these 

values close to the mean, except for a few extreme values. As the complexity of the 

model increases (90), the forecast improves. Figure 4 (scatter plot) shows the data 

observed as opposed to those predicted, with the best models being those whose data 

coincide with the straight line. 

3.3. Tmin prediction with 9 year series (2007 - 2015) 

Since when all the data of the series are included, the execution time of the model is 

greater than 1 day, the aim is to decrease this time obtaining similar results in R2 and 

MAE. Table 7 shows the 5-day forecast made in the months of May to September, with 

6 predictor or independent variables with a series of 9 years of data. Initially, one 

begins with a complexity of 70 and obtains an R2 of 0, 78 and a MAE of 1, 96; with 90 

0, 86 of R2 and 1, 52 of MAE and with complexity of 110 one reaches the best result 

with a R2 of 0, 9 and a MAE of 1, 16. In models with 4 predictor variables, the results 

obtained show the need to increase complexity to 120 in order to obtain results similar 

to the previous analyses. With complexity of 70 the R2 is 0, 61 and the MAE 2, 78; with 

100 nodes 0. 8 of R2 and 1, 87 of MAE and with 120 the best result is reached with an 

R2 of 0, 87 and a MAE of 1, 41. 

 

Table 7. R2 for 5 prediction days, 2007 – 2015.With 6 and 4 variables, May - September 
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Forecast 5 days  

6 variables Complexity 30  Complexity 70  Complexity 90  

R2 0,78 0,86 0,90 

Mean absolute error 1,96 1,52 1,16 

Mean square error.MSE 6,86 4,57 3,06 

Root Mean square error, RMSE 2,61 2,13 1,75 

        

4 variables Complexity 30  Complexity 70  Complexity 90  

R2 0,61 0,80 0,87 

Absolute error variance  2,78 1,87 1,41 

Mean square error.MSE 13,2 6,95 4,43 

Root Mean square error, RMSE 3,64 2,63 2,1 

 

 

Figure 5 shows that with 6 variables the dispersion is greater with complexities of 70 

and 90 that is to say that the greatest correlation between the observed and the 

predicted data is obtained with a complexity of 110. With 4 variables, the dispersion 

found is greater with less complexity and the best correlation between the observed 

and the estimated data is obtained with the greatest complexity analyzed, 120. 
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Figure 5. Scatter plot of Tmin. 5 days. 6 and 4 variables 

Table 8 presents the analysis performed by dividing the data from the 9-year series into 

three periods: autumn, winter and spring with 6 variables for 1 forecast day. With both 

70 and 90 complexity, R2 is reached at 0,99 in autumn. In winter a R2 of 0,97 with 70 

and 0,98 with 90 is obtained and in spring 0,98 with 70 and 0,99 with 90. For 3 and 5 

days of anticipation, the results are similar to those obtained for the forecast with 1 day 

of anticipation. There is a good adjustment with R2 ranging from 0,96 to  0,99 with 70 

and 90 for the three seasons. The higher values of R2 in winter may be due to the 

nature of the data, given that the dispersion of minimum temperatures is lower in the 

winter season. 

 

Table 8. R2 for 1, 3 y 5 prediction days, 2007 – 2015.With 6 variables and autumn, winter and spring. 
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Forecast 1 day  
Com
p. 70  

Com
p. 90  Forecast 3 days  

Com
p. 70  

Com
p. 90  Forecast 5 days  

Com
p. 70  

Com
p. 90  

Autumn 
  

Autumn 
  

Autumn 
 

  

R2 0,990 0,99 R2 0,985 0,992 R2 0,983 0,991 

Mean absolute 
error. MAE 0,19 0,10 

Mean absolute 
error. MAE 0,25 0,13 

Mean absolute 
error. MAE 0,26 0,14 

Mean square 
error.MSE 0,27 0,143 

Mean square 
error.MSE 0,4 0,2 

Mean square 
error.MSE 0,47 0,25 

Root Mean 
square error, 
RMSE 0,52 0,38 

Root Mean 
square error, 
RMSE 0,64 0,45 

Root Mean 
square error, 
RMSE 0,69 0,5 

  
  

  
  

  
 

  

Winter     Winter     Winter     

R2 0,978 0,989 R2 0,97 0,983 R2 0,972 0,986 

Mean absolute 
error. MAE 0,26 0,14 

Mean absolute 
error. MAE 0,33 0,18 

Mean absolute 
error. MAE 0,32 0,17 

Mean square 
error.MSE 0,42 0,21 

Mean square 
error.MSE 0,65 0,33 

Mean square 
error.MSE 0,58 0,27 

Root Mean 
square error, 
RMSE 0,65 0,46 

Root Mean 
square error, 
RMSE 0,81 0,58 

Root Mean 
square error, 
RMSE 0,76 0,52 

  
  

  
  

  
 

  

Spring     Spring     Spring     

R2 0,985 0,995 R2 0,983 0,993 R2 0,980 0,992 

Mean absolute 
error. MAE 0,24 0,11 

Mean absolute 
error. MAE 0,30 0,13 

Mean absolute 
error. MAE 0,31 0,13 

Mean square 
error.MSE 0,32 0,11 

Mean square 
error.MSE 0,42 0,145 

Mean square 
error.MSE 0,48 0,17 

Root Mean 
square error, 
RMSE 0,57 0,33 

Root Mean 
square error, 
RMSE 0,65 0,38 

Root Mean 
square error, 
RMSE 0,69 0,41 

 

 

 

Figures 6,7 and 8 show the scatter diagrams, therefore, the good correlation between 

the real and predictive data, for the three stations with both complexities. 
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Figure 6. Dispersion diagram of observed Tmin and the one obtained with the model. 70 and 90 

complexity. 1, 3 and 5 prediction days. 6 variables. Autumn. 
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Figure 7. Dispersion diagram of observed Tmin and the one obtained with the model. 70 and 90 

complexity. 1, 3 and 5 prediction days. 6 variables. Spring 
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Figure 8. Dispersion diagram of observed Tmin and the one obtained with the model. 70 and 90 

complexity. 1, 3 and 5 prediction days. 6 variables. Winter. 
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When generating models with 4 variables, for 5 forecast days it is necessary to 

increase the complexity (table 9) to obtain R2 values similar to those obtained with 6 

variables. Although with complexity 70 in the three seasons the value obtained for R2 is 

around 0,8 ; it is with 120 when it reaches 0,96 in autumn and spring and 0,93 in 

winter, decreasing in the same way the MAE. 

 

Table 9. R2 for 5 prediction days 2007 – 2015. 4 variables. Autumn, winter and spring 

 

Forecast 5 days        

Autumn 
Complexity 

70  
Complexity 

100  
Complexity 

120  

R2 0,860 0,94 0,96 

Mean absolute error. MAE 1,4 1,10 1,10 

Mean square error.MSE 4,27 2,26 2,26 
Root Mean square error, 
RMSE 2,1 1,5 1,5 

  

  
  

Winter 
Complexity 

70  
Complexity 

100  
Complexity 

120  

R2 0,77 0,9 0,93 

Mean absolute error. MAE 1,43 0,81 0,59 

Mean square error.MSE 4,4 1,96 1,29 
Root Mean square error, 
RMSE 2,1 1,4 1,14 

  

  
  

Spring 
Complexity 

70  
Complexity 

100  
Complexity 

120  

R2 0,8 0,92 0,96 

Mean absolute error. MAE 1,55 0,79 0,58 

Mean square error.MSE 4,84 1,60 0,90 
Root Mean square error, 
RMSE 2,2 1,26 0,95 
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As in previous models, figure 9 indicates how the correlation between real and 

estimated values increases when complexity increases. At the end of the analysis 

carried out with geometric models of finite elements it is observed that, for the best 

results, the model overestimates the Tmin for its lowest values and underestimates them 

for the highest values in the different periods analyzed. According to this, if the model 

forecasts frost (T min ≤ 0) there is a high probability of success; however when the 

model does not forecast frost, this can occur in many cases. 
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Figure 9. Dispersion diagram of observed T min and the one obtained with the model, complexity 70 100 

and 120. 5 precision days. 4 variables. Autumn, winter and spring. 
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Table 10 presents a summary of the results in frost prediction, considering also the 

number of cases when at least agrometeorological frost (Tmin ≤ 3°C) is predicted, for 

the model with 6 variables and the 4-variable model with grouped data and by season. 

Table 10. 6 variables model. 4 variables model (May to September, Autumn, Winter, Spring) 

 

  

Predicted 
meteorological 

frost 
Tmin<=0ºC 

Tmin abs 
average error 

Tmin max. 
error 

Predicted 
agrometeorological 

frost Tmin<=3ºC 

Frost 

Observed cases: 
1123           6 

variables                                     
(May - September) 

Cases: 712 (63.4 
%) 

0.9 ºC  6.7 ºC Cases: 1056 (94 %) 

Observed cases: 
1123                        4 

variables                             
(May - September) 

Cases: 493 (44 
%) 

1.4 ºC 7.3 ºC Cases: 954 (85 %) 

Observed cases: 172                               
4 variables                                
(Autumn) 

Cases: 130 (75.6 
%) 

 0.4 ºC 2.7 ºC Cases: 165 (96 %) 

Observed cases: 880                              
4 variables                                    

(Winter) 

Cases: 750 (85.5 
%) 

 2.13 ºC 6.02 ºC Cases: 35 (93 %) 

Observed cases: 96                              
4 variables                      

(Spring) 

Cases: 60 (62.5 
%) 

0.5 ºC 3.3 ºC Cases: 92 (96 %) 

 

According to these results and the analyses presented so far, the best models are 

those performed with 4 variables per station because it reaches R2 values of about 

0,95 and there is a high percentage of success of the model to predict frost. 

4. Conclusions 

The research developed focuses on the Tmin of the city of Bahía Blanca, Buenos Aires 

province, with the objective of forecasting through this variable the occurrence of frost 
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in the short term. The purpose of the study is based on the fact that Bahía Blanca is 

surrounded by a horticultural belt where species susceptible to frost are cultivated. For 

that reason, with the implementation of a simple method that allows alerting the 

occurrence of the above mentioned events with some days of anticipation,   a tool that 

helps in the decision making is offered. In this way, producers would benefit from 

having valuable information that would allow them to improve their profits by making a 

more effective and timely protection of their crops. 

From the exhaustive analysis carried out, we can affirm the existence of methodologies 

that applied according to the particularities of each region, can be of valuable help for 

the short term forecast of the Tmin and therefore of frosts, based on observations of 

meteorological variables of surface mainly. The particular advantage of the proposed 

methods is that they require a limited number of observed local meteorological 

variables, which can be used without too much computational time. For the selected 

station, Bahía Blanca, the optimal methodology is the one developed in Navarro-

Gonzalez and Villacampa (2012, 2013, 2016), applying geometric models of finite 

elements. 

From the studies carried out for the prediction of Tmin it is concluded that: 

Numerical models of finite elements improve the prediction of neural networks. When 

analyzing the whole time series (1956-2015) with the 6 variables and complexities of 

90, for the 1 day forecast success is achieved in 90% of the cases, and for 3 and 5 

days the success is in 84% of the cases. When the analysis is performed with the time 

series of 9 years and 6 variables for the 3 forecast periods for each of the three 

seasons of the year (autumn, winter and spring) a R2 of  0,98 is reached with 90 

complexity. For 4 variables, in the forecast obtained for 5 days in advance, it is 

necessary to increase the complexity of the model to 120, to obtain R2 greater than  0,9 

in the three seasons. Therefore, it is the 120 complexity model that provides the best 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

results because it serves for the forecast in the 3 seasons of the year. In all the cases 

analyzed, the data obtained with the validation confirms the trend found with the model. 

This trend shows an increase in R2 when complexity increases and the EAM 

decreases. Of the independent variables necessary for its prediction, temperature, dew 

point temperature, wind speed and cloudiness are necessary. In order to obtain 

experimental data, it is considered that a period of 9 years is sufficient for the proposed 

objective.  

In future research it is proposed to analyze the methodology of geometric models of 

finite elements with 4 variables, in a period of time of 10 years and in other cities. In 

this way it will be possible to conclude if the numerical models carried out in this 

research are the best to study this phenomenon in other regions.   
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Highlights 

Predictive model for crop temperature by modeling of surface meteorological 
variables. 
Minimize possible economic losses in crops and improve productivity. 
Tool for predicting of frost useful for horticultural producers. 
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