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In the framework of the Nambu—Jona-Lasino (NJL) model, we study the effect of an intense external
uniform magnetic field on neutral and charged pion masses and decay form factors. In particular, the
treatment of charged pions is carried out on the basis of the Ritus eigenfunction approach to magnetized
relativistic systems. Our analysis shows that in the presence of the magnetic field three and four
nonvanishing pion-to-vacuum hadronic form factors can be obtained for the case of the neutral and charged
pions, respectively. As expected, it is seen that for nonzero magnetic field the z° meson can still be treated
as a pseudo Nambu-Goldstone boson, and consequently the corresponding form factors are shown to

satisfy various chiral relations. For definite parametrizations of the model, numerical results for z° and 7™
masses and decay constants are obtained and compared with previous calculations given in the literature.
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I. INTRODUCTION

In recent years a significant effort has been devoted to the
study of the properties of strongly interacting matter under
the influence of strong magnetic fields (see e.g., [1-3] and
references therein). This is mostly motivated by the
realization that large magnetic fields might play an impor-
tant role in the physics of the early Universe [4], in the
analysis of high energy noncentral heavy ion collisions [5],
and in the description of physical systems such as mag-
netars [6]. From the theoretical point of view, addressing
this subject requires one to deal with quantum chromody-
namics (QCD) in nonperturbative regimes. Therefore,
existing analyses are based either in the predictions of
effective models or in the results obtained through lattice
QCD (LQCD) calculations. In this work we focus on the
effect of an intense external magnetic field on z meson
properties. This issue has been studied in the last years
following various theoretical approaches for low energy
QCD, such as Nambu-Jona-Lasinio (NJL)-like models
[7-18], quark-meson models [19,20], chiral perturbation
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theory (ChPT) [21-23], path integral Hamiltonians [24,25],
effective chiral confinement Lagrangian approach (ECCL)
[26,27], QCD sum rules (SRQCD) [28], etc. In addition,
results for the light meson spectrum in the presence of
background magnetic fields have been recently obtained
from LQCD calculations [29-33].

In the framework of the NJL model, mesons are usually
described as quantum fluctuations in the random phase
approximation (RPA) [34-36], i.e., they are introduced via
the summation of an infinite number of quark loops. In the
presence of a magnetic field B, the calculation of these
loops requires some care due to the appearance of
Schwinger phases [37] associated with quark propagators.
For the neutral pion these phases cancel out, and as a
consequence the usual momentum basis can be used to
diagonalize the corresponding polarization function [7—11].
On the other hand, for charged pions the Schwinger phases
do not cancel, leading to a breakdown of translational
invariance that prevents one from proceeding as in the z°
case. In this situation, some existing calculations [12,15]
just neglect Schwinger phases, considering only the trans-
lational invariant part of the quark propagators. Recently
[16], a method was proposed in order to fully take into
account the translational-breaking effects introduced by the
Schwinger phases in the calculation of charged meson
masses within the RPA. This method, based on the Ritus
eigenfunction approach [38] to magnetized relativistic
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systems, allows one to diagonalize the charged pion
polarization function for the obtention of the corresponding
meson masses. In addition, the analysis in Ref. [16]
considers a regularization procedure in which only the
vacuum contributions to different quantities at zero external
magnetic field are regularized. This scheme, that goes
under the name of “magnetic field independent regulari-
zation” (MFIR), has been shown to provide more reliable
predictions in comparison with other regularization meth-
ods often used in the literature [39].

The scope of the present work is to consider the
approach introduced in Ref. [16] for the study of pion
masses, extending the calculations to other properties of
neutral and charged pions. In particular, we concentrate
in the analysis of the form factors associated with the
pion-to-vacuum matrix elements of the vector and axial
vector hadronic currents. For the case of the 7%, some
works [7-13,20-22,26,27] have already considered
the B dependence of the decay constant ff:.}”, which
corresponds to the time component of the axial vector
current matrix element. For charged pions, the effect of
the magnetic field has been analyzed in the context of
ChPT [22], ECCL approach [26], SRQCD [28] and,
quite recently, through LQCD calculations [40]. An
interesting observation made in Ref. [8] states that,
due to the explicit breaking of rotational invariance
caused by the magnetic field, one can define two dif-
ferent decay constants. One of them is associated with

the direction parallel to B (and to the time direction) and

the other with the spatial directions perpendicular to B.
A further relevant statement has been pointed out in
Ref. [40]. In that work it is noted that the presence of
the background magnetic field opens the possibility of a
nonzero charged pion-to-vacuum transition via the
vector piece of the electroweak current. This implies
the existence of a further decay constant associated with
the pion-to-vacuum matrix element of the vector current.
Furthermore, in a recent work [41] we have shown that
(i) the pion-to-vacuum matrix element of the vector
current can be nonvanishing even in the case of the
neutral pion, and (ii) for the charged pions there are in
general not two but three nonvanishing axial decay
constants. The aim of the present paper is to study the
behavior of all these form factors as functions of the
magnetic field in the context of the NJL model within
the MFIR regularization scheme.

This work is organized as follows. In Sec. II we
introduce the theoretical formalism used to obtain the
different quantities we are interested in. Chiral limit
relations are addressed in Sec. III. Then, in Sec. IV
we present and discuss our numerical results, while in
Sec. V we provide a summary of our work, together with
our main conclusions. We also include Appendixes A and
B to quote some technical details of our calculations.

II. THEORETICAL FORMALISM

A. Mean field properties and pion masses

We start by considering the Euclidean Lagrangian
density for the NJL two-flavor model in the presence of
an electromagnetic field. One has

L =g (=iPp + mo)y = Gl(py)* + (Fiysty)],

r=(5) v

where 7; are the Pauli matrices and m, is the current quark
mass, which is assumed to be equal for u and d quarks. The
interaction between the fermions and the electromagnetic
field A, is driven by the covariant derivative

D, =0, —iQA,. (2)

where O = diag(q,. g,), with ¢, = 2e/3 and ¢, = —e/3,
e being the proton electric charge. We will consider the
particular case of an homogenous stationary magnetic field
B along the positive 3-axis. Let us choose the Landau
gauge, in which A, =0, A= (0, Bx;,0).

Since we are interested in studying meson properties, it is
convenient to bosonize the fermionic theory, introducing
scalar 6(x) and pseudoscalar 7(x) fields and integrating out
the fermion fields. The bosonized Euclidean action can be
written as [35]

Spos = — logdet D + %/ d*x[o(x)o(x) + 7(x) - Z(x)],
(3)

with

Dy = 8Y (x = x)[=ip + mg + o(x) + iysT - Z(x)],  (4)

where a direct product to an identity matrix in color space is
understood.

We proceed by expanding the bosonized action in
powers of the fluctuations do(x) and &z;(x) around the
corresponding mean field (MF) values. As usual, we
assume that the field o(x) has a nontrivial translational
invariant mean field value &, while the vacuum expectation
values of pseudoscalar fields are zero. Thus we write

Dx,x’ = Dz/,[)}:’ + épx,x" (5)
The MF piece is flavor diagonal. It can be written as
DME = diag(DY'L", DM), (6)

where
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DM = 6@ (x = X) (=i — q;Bx\ys + my + ). (7)

On the other hand, the second term on the right-hand side of
Eq. (5) is given by
6D, = W (x —x')

o <5U(x) + iys0my(x)

V2iysém(x) )
V2iysén(x) ’

60(x) — iysomo(x)
(8)
+_

where 7+ = (7, F in,)/V/2. Replacing in the bosonized
effective action and expanding in powers of the meson
fluctuations around the MF values, we get

Sbos - Sbos + Squad T (9)

bos

Here, the mean field action per unit volume reads

SMF —2
v?is _4G V@ Z / dxd*x'rp In (Sy5)) ™, (10)

where trj, stands for the trace in Dirac space. The quadratic
contribution is given by

suad — Z / d*xd*x' M (x

Mo'rrﬂ

" {1 5@ (x -

G x’)—JM(x,x’)}éM(x’), (11)

where
ME, MF,
= N> trplSyy ysS0 vs),
f

J o (x,x") = 2N trp, [SMF/ d}’ssz/li “ysl,
‘]7[+ ()C,X/) = 2thrD[SMF MYSSMF dyS] (12)

while the expression for J; is obtained from that of J 0 just
replacing both ys matrices for unit matrices. In these
expressions we have introduced the mean field quark

propagators Si’,ljf — (DMES

x.x'
explicit form can be written in different ways [2,3]. For

)=, As is well known, their

convenience we take the form in which S Iis given by a
product of a phase factor and a translatlonal invariant

function, namely

GMES _

e eitbf(x,x’)/eip(x—x’)g.;’ (13)
P

where @ (x,x") = q;B(x; +x})(x, —x5)/2 is the so-

called Schwinger phase. We have introduced here the

shorthand notation

d4
/ = / P (14)
P (27)
We express S",f, in the Schwinger form [2,3]

¥ - A " drexpl—e(z. p)]

_Pury
cosh?(zB;) |

(15)

where we have used the following definitions. The
“perpendicular” and “paralle]” gamma matrices are col-
lected in vectors y; = (7y,7,) and y| = (y3,74). Similarly,
p1 = (p1,p2) and p| = (p3, p4). Note that in our con-
vention {y,.y,} = —28,,. The quark effective mass M is
given by M = m + 6, and we have used the notation s, =
sign(q,B) and B; = |q,B|. Finally, we have defined

X [(M = pyy))(1 +issy o tanh(zB)) —

tanh(zB)

(z, :M2 2
¢j(7 ) +PH + TBf

Pl (16)

Notice that the integral in Eq. (15) is divergent and has to be
properly regularized, as we discuss below.

Replacing the above expression for the quark propagator
in Eq. (10) and minimizing with respect to M we obtain the
gap equation

M = my+4GMN I, (17)

where [ is a divergent integral. To regularize it we use here
the magnetic field independent regularization scheme
[42,43]. That is, we subtract from / the unregulated integral
in the B = 0 limit, /z_, and then we add it in a regulated

(reg)

form I,~;. Thus, we have

Jlee) — Ig:éo) 4 J(mag) (18)

where 1(M38) is a finite, magnetic field dependent contri-
bution given by

. 1 w exp(—tM?)
J(mag) _ @Z[J drT [tB coth(zB;) — 1]
f

1
1 — (1 —2xf> lnx‘f] s

(19)

In27z
X f 2X f

M InC(x;)
- 8x° 7

with xf = M2/ (2By). On the other hand, the regulated

piece I does depend on the regularization prescription.
Choosmg the standard procedure in which one introduces a
3D momentum cutoff A, we get the well-known result [35]
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1 M
=— A\/A2+M2+M21n<—>].
27° A+ VAT + M

(20)

For the reader’s convenience, in what remains of this
subsection we review the procedure followed in Ref. [16] to
determine the pion masses. We start by the simpler case
of the neutral pion z°. In this case the contributions of
Schwinger phases associated to the quark propagators
cancel out. Therefore, the polarization function depends
only on the difference x —x' (i.e., it is translational
invariant), which leads to the conservation of z° momen-
tum. If we take now the Fourier transform of z° fields to
|

the momentum basis, the corresponding transform of the
polarization function will be diagonal in ¢, ¢’ momentum
space. Thus, the z° contribution to the quadratic action in
the momentum basis can be written as

a1 1
S =3 qézro(—q) 56~ I lalap)|on(a), (21)
where

T (g7 C]ﬁ) = NcZ/ (27)*6") (v — f])trD(Sj;WsS'{f}’s),
f p,v

(22)

with p* = p £ v/2. Replacing Eq. (15) into Eq. (22) and
using the results in Appendixes A and B one finds

L) N, 0 ! 2 2
JﬂO(QLaQH):“__ﬂ_zzf:Bf 0 dz A dy exp{—z[M +)’(1_)’)q”]}

2

X exp {-‘é—iyf(y, z)] { {w Fioy(l- y)qﬁ] coth(2B;)

B[4
12
sinh”(zB/) B,
where
sinh(zyB/) sinh[(1 — y)zB/|
ri(v.z) = L Lo (4

sinh(zBy)

As usual, here we have used the changes of variables
t=yz and 7 = (1 —y)z, = and 7’ being the integration
parameters associated with the quark propagators as in
Eq. (15).

As done at the MF level, we regularize the integral in
Eq. (23) using the MFIR scheme. That is, we subtract the
corresponding unregulated contribution in the B = 0 limit,
given by

Jnn-ola®) =55 [ " [ dvexp (=2l 4 3(1-)0?)
X [Mzw%—y(l—y)f], (25)

and add it in a regularized form J f;;?lo(qz). The regularized

polarization function is then given by
159G a1) = 1550 (?) + 15 (@ qh). (26)

where Ji?ag)(

q1.47) = Jo(q1.q}) = Jap=o(al + qf). To
get J™8) (¢2) we use the 3D momentum cutoff scheme, as
in the case of the gap equation. One has in this way

rs00:2)] b (23)

[
159 (g?) = 2N + P (g?)), (27)

where I, is given by Eq. (20), while

SR -
’ 4 Jo /N H M4 y(1-y)g

VM? +y(1-y)¢
A+ A+ M+ y(1 = y)g?

+1In

(28)

Choosing the frame in which the z° meson is at rest, its
mass can be obtained by solving the equation

% ~J5¥(0,-m2,) = 0. (29)

Let us now discuss the case of charged pions. For
definiteness we consider the z~ meson, although a
similar analysis, leading to the same expression for the
B-dependent mass, can be carried out for the z. As in
the case of the 7z, we start by replacing Eq. (13) in the

expression of the corresponding polarization function in
Eq. (12). We get

Jo(x, %) = 2NC/ trD(S’ZWSS}yS)
pv

X ei(bd(x,x’)eid)u(x’,x)eiv(x—x’)’ (30)
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where once again we define p* = p 4 v/2. Contrary to the
7Y case, here the Schwinger phases do not cancel, due to
their different quark flavors. Therefore, this polarization
function is not translational invariant, and consequently
it will not become diagonal when transformed to the
momentum basis. Therefore, we expand the charged pion

field as

where D, (x) are the cylindrical parabolic functions. We

have used the definitions N, = (4zB,)"/*/v/k! and p, =

V2B,x; —s.+/2/B.q,, where B, =|q,+B| = |eB| and
s+ = sign(q,+B), with ¢+ = +(q, — q,) = te. For the
z~ one has
s _ INPspoy (s g Voo, (34
e =3 L0 3G 0 ~ oy )omy (34
q.q
where

Sg = (2m)*S1wd(qy — 45)8(q3 — 45)8(q4 — q})  (35)

and

(32) 2Nc/ trD +Y5Sp yS]/d4xd4x/ei‘Dd(x,xl)
pv
The functions F7 (x) are given by x e ®ul¥ ) =) Fo (x) 7 (X'). (36)
q
F3(x) = Nyelletantas) D (p, ), (33) Integrating over x’' in Eq. (36) one obtains
|
8ﬂ'N i(q.x X < Cu

J;EI — /d4x[|: )* (g5 +q) )/ (27[) 5 )(UH C]ﬁ)th[SZH’SSp-YS]

x Npe"' =)D, (1/2B, X} —5_v/2/B.g5)|. X =y 425_(

The integrals over the loop momenta p and v can be evaluated using the results in Appendixes A and B. It can be shown that
the polarization function is diagonal in the chosen basis. One has

—b'))/B N (37)

Jow = / d*xF ()" - (e, T, (x) = 8y - (K, T), (38)

where I = (2k + 1)B, + g, and

Nc 00 1
2/ dz/ dy exp[-zM?* — zy(1 — y)(I1> -
7= Jo 0

ak

kﬂ{[w#—y(l— DI = 2k 18, (1= 1

L(-R)1-8)

a o

Jﬂ_ (k’ Hz) =

(2k + 1)B,)]

[a_ + (a_ — o )k] } (39)

|

contribution to the polarization function has to be carried
out once the latter has been written in terms of the squared
canonical momentum II%, as in Eq. (39). Thus, the
regularized z~ polarization function is given by

Here we have introduced the definitions 7, = tanh(B,yz),
la = tanh[Bd(l - y)Z] and oy = (Bdtu + Butd + Betutd)/
(B,B,). For the n*, one can show that J:(k,I1?) =
J - (k, T1%).

As in the case of the neutral pion, the polarization
function in Eq. (39) turns out to be divergent and has to be
regularized. Once again, this can be done within the MFIR
scheme. However, due to quantization in the 1-2 plane this
requires some care, viz. the subtraction of the B =0

JED (kIP) = JU% (IP) + T (k,112),  (40)

where
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N . 0 1 1
T (k, 112) = 2—”21 dZA dyexp[—zM? — zy(1 - y)HZJ{ [MZ o= y(1 = y)[? = (2k +1)B,]

aL

ak ak!
X |: k1 (1 - tutd) CXp[Zy(l _y)(2k+ I)Be] _E:| +ak+2 (1
+

1 —2)(1 - B)fa_ + (a_ —a,)K]

explay(1 =)+ DB = |2 =3(1 =)+ D |. (@)

The integrand in Eq. (41) is well behaved in the limit
z — 0. Hence, this magnetic field-dependent contribution
is finite. On the other hand, the expression for the
subtracted B = 0 piece is the same as in the 7° case,
Eq. (25), replacing g*> — I1°. Therefore, using 3D cutoff

regularization, the function J f:;?i o in Eq. (40) will be given

by Eq. (27).

Given the regularized polarization function, we can now
derive an equation for the z~ meson pole mass in the
presence of the magnetic field. To do this, let us first
consider a pointlike pion. For such a particle, in Euclidean
space, the two-point function will vanish (i.e., the propa-
gator will have a pole) when

I’ = —m2-, (42)

or, equivalently, qﬁ = —[m2- + (2k + 1)eB], for a given
value of k. Therefore, in our framework the charged pion

pole mass can be obtained for each Landau level k by
solving the equation

1 (reg) 2.y —

Te I (k,—mz-) = 0. (43)
While for a pointlike pion m,- is a B-independent quantity
(the #~ mass in vacuum), in the present model—which
takes into account the internal quark structure of the pion—
this pole mass turns out to depend on the magnetic field.
Instead of dealing with this quantity, it has become
customary in the literature to define the z~ “magnetic
field-dependent mass” as the lowest quantum-mechanically
allowed energy of the z~ meson, namely

E,-(eB) = \Jm2- + 2k + 1)eB + ¢l ox0

= \/m2- + eB (44)

(see e.g., Ref. [33]). Notice that this “mass” is magnetic
field dependent even for a pointlike particle. In fact, owing
to zero-point motion in the 1-2 plane, even for k = 0 the
charged pion cannot be at rest in the presence of the
magnetic field.

B. Pion field redefinition and quark-meson
coupling constants

As usual, the pion field wave function has to be
redefined. In the absence of an external magnetic field
we have 7(q) = Z,l/zﬁ(q), where Z, is usually called the
“wave function renormalization constant.” It is defined by
fixing the residue of the two-point function at the pion pole.
One has

77 = g2 = _ajn(qz)
z qq (96]2

, (45)

R

q

where J,(g?) is the polarization function. Then, in the
vicinity of the pole, the action reads

st 3 [ oR-a)la? + md)oR(). (46)

As expected, the energy dispersion relation is isotropic in
this context.

We consider now the situation in which the external
magnetic field is present. For the neutral pion, as shown in
Eq. (23), the polarization function J f:oeg) (47 . q7) depends in
a different way on perpendicular and parallel components
of g. We expand the action in Eq. (21) around the pion pole
(g, =0, qﬁ = —m?,), factorize out the parallel derivative,

and redefine the pion field according to 7°(q) = Z ﬁ/ *72(q).
This leads to

ua 1 ~ ~
53 3 [ B (-aluadt + af + mloa). (@7
q

where we have defined

(reg)
ZW] = ——dJﬂoz 2 0 = g_o2
a el T
d J(roeg) 7
A — Cowk ==L 48
L dgt | 41=0 =z, #
q) = —Mp

Denoting M, (y) = [M? — y(1 —y)mio}l/z and M) (y) =
[A% + M(y)?]'/?, from Egs. (23)-(28) we obtain
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Ay(1 =y)m

2 B
R =

tanh(zBf)

and

M(y)

— oodz/dg_zMO() 1=
2M(y)* M (y 3} zf:/o g y1-7)

+l_i} (49)

2 sinh?(zBy)

_ 4r? 1 A
Z0 N, _2/0 ¥ {MM >+IH(A+MA(y)

) _ A —y)Mf,H

_Z/ dz/ dye=Moly {—yf(y,z) <ztanh1(zBf) JrSinhZz]-ZBf)>

+ [M? + y(1 = y)m2] [y(l -y) -

where y (v, z) was defined in Eq. (24). It is seen that, owing
to the pion internal structure, the energy dispersion relation
is anisotropic in the presence of an external magnetic field.
Namely, as already stated in Ref. [8], one has

E% = —q% = u2qt + 3 + m2. (51)

The direct comparison of our results for the renormalization
constants with those quoted in Ref. [8] is not possible due
to the fact that different regularization procedures were
followed in each case (we use the MFIR scheme, while in
Ref. [8] an ultraviolet cutoff is introduced). However, we
have found some discrepancies between both results when
comparing the corresponding unregularized expressions.
We will come back to this point in Sec. IV.

|

M_(y)

7r(y.2) }

tanh(zBf)

+3y(1 —y)}’ (50)

Z

For charged pions, the momentum in the plane
perpendicular to the external magnetic field is quantized
in Landau levels k. The energy dispersion relation reads in
this case

E: = —q¢; = (2k+1)B, + ¢5 + m>-. (52)

The redefined (negative) charged pion field is given by

T —Zl/2 —, where

(reg) 2
71— _Yr (KIT) —g2..  (53)
dIT? Pe—m? a4
Explicitly, denoting M_(y) = [M? — y(1 — y)m2-]'/? and

MA(y) = [A? + M_(y)*]"/2, from Eq. (41) we find

272 1 A
zZH: :—/ dy[ +In <
N, M2 (y) A+ M2(y)

/ dz/ dy e=M-0V zy(1 - ){{MZ—i—y(l—y)(m}Z+(2k+1)Be>+%}

_ Ny(1 - y)mg- }
2M_(y)*M2(y)?

4

11
X 1 — t,t,) eIy k+1)B, —}——{—— 1- 2k+1Be}
- e HE v e
(Zk_l
=B = o+ (0 - a k|e0neen L (54)
ot

The definitions of ¢,, ; and a.. have been given above, see
text below Eq. (39).

C. Pion-to-vacuum vector and axial vector
amplitudes and weak decay constants

In order to obtain pion-to-vacuum vector and axial vector
amplitudes, we have to “gauge” the effective action by
introducing a set of vector and axial vector gauge fields,

Wy “(x) and Wi“(x), respectively. This is done by per-
forming the replacement

YuOu = 7,0,

2 Z TSWE(x (55)

C=V,A

where F/‘j =y, and Fﬁ = y,¥s- Once this extended gauged
effective action is built, the corresponding pion-to-vacuum

054014-7



COPPOLA, DUMM, NOGUERA, and SCOCCOLA

PHYS. REV. D 100, 054014 (2019)

amplitudes are obtained as the derivative of this action with
respect to W5 “(x) and the redefined meson fields, evalu-
ated at Wf‘“(x) =0 (here C=V, A and a=1, 2, 3).
Therefore, the relevant terms in the action are those linear in
the pion and gauge fields. This piece of the action can be
written as

Sew =D > / d*xd*x Wy ™" (x) Fi? (x, x') 827 ('),

C=V,Ac=0,£
(56)

where WS = (WS F iWs?)/v2, W5 = WS, while
the functions FE"(x,x ) are defined as

FEO(x, x)

(S rsSvi el (57)

Fi™(x.x') = =iN trp[SYysSYTE] (58)

FSH(x,x') = —iN. trp [S)TE’”ySSy’i’dl"ﬂ . (59)

1. Neutral pion amplitudes and form factors

As in the analysis of the z° mass, we expand the neutral
pion field in Eq. (56) in the Fourier basis. Then, pion-to-
vacuum amplitudes read

Hy o(x.G) = 5 (Ol ()T oy (x) |7°())

B 08
957 (q)OWS" (x)

= —Zﬁ/z/d“x’ei")‘/F,(,:’O(x,x’). (60)

| =

Using Eqgs. (13) and (57), and taking into account that in
this case the Schwinger phases cancel out, after integrating
over x' we get

=\ /2 iN. ..
HY ((x.3) = u/ SC el > /p y(zﬂ)45<4>(q_v>

f
X trp [Sﬁmsgﬁ-l“ﬂ, (61)

where, as in previous subsections, we have defined

pt=p+ov/2
For convenience, we consider the linear combinations

Hﬁec( .q) =H2 (x, ‘I)+€H3c(x q).

H(fc()@@ = H?, (x.q) + leHz c(x q) (62)

where ¢ = £1. Using the relations in Appendixes A and B,
after some calculation we obtain

. s8] 1
Hy(x.4) = —GQF‘f'qx;Sf /0 dz A dyF(y.z),
H(x,4) =0, (63)

and

Hﬁ;( _ _lqe quZ/ dZ/ dyfo y Z COth(ZBf)
Hy 5.3 = —igiewy [Taz [Taoir
7

y cosh[(Z); - 1)zBy]

) 64
sinh(zB/) (64)
where we have defined qj = qs + €43, 41 = q, + i€qy,
and
Foy.z) = ﬁ/z 1\; j;/l Bfe_Z[MZJr}'(I_Y)qWe—Vf(.v,Z)qi/Bf‘

T

(65)

Now, following the notation of Ref. [41], we define the
neutral pion decay form factors by

HY(x,§) = —igie f5"),

€ - e iaxr (Al A2 A3
H(J)_’A(xvCI):_qu_eq [f( )_efi.o )_fi.o >],
H)'%,(x.§) = —eqj e ) (66)

(note that we are working in Euclidean space; therefore, the
relations H, = iH° and ¢, = ig° need to be considered
when comparing with the expressions in Ref. [41]). In this
way, for an on-shell pion in its rest frame, i.e., taking
q, = im,0,4, the axial decay constants are given by

(A1) 1/2N M d / d —zMy(y
fa = 872 Z / ¢ e tanh(zBf)

N.M
=z ZZBf/ dZ/ dy M0y (v, 2),

(67)

while the vector decay constant reads
N M
f(o = ]/2 Zszf/ dz/ dye= ML)’ (68)

where M(y) = [M* —y(1 —y)m%]"/? and ys(y.2) is
defined in Eq. (24). It is seen that f](:éz) vanishes, as
indicated from the general analysis in Ref. [41]. Thus,
we find that in the presence of the external magnetic field
there are in general two axial and one vector nonvanishing
form factors for the neutral pion. Notice that in the chosen
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frame both H(i , and H)¢ 1.4 are zero, hence f ) will not
contribute to the amplitudes.
It can be easily seen that f 0 ) and fz(r‘o/) are finite and

vanish in the B — 0 limit. On the contrary, the expression
for ffgl) in Eq. (67) is divergent. It can be regularized in the

context of the MFIR scheme, i.e., subtracting the corre-
sponding divergent contribution in the B = 0 limit and

A3)

adding it in a regularized form, f . Oe 50" One has

FlteE = gl g, (69)
where
n M
Fln-me) l/zN ZBf/ dz/ dyeMoly
1 1
8 [tanh(zBf) _E]' (70)

The divergent B = 0 piece,

N.M
frp=0=2 71[/2 / /—e_ZMO , (71

can be regularized using a 3D momentum cutoff scheme, as
done in the previous subsections. One has in this way

158 = =27,* N MI,(-m?,). (72)

where I, is given by Eq. (28). Note that we do not take the
B — 0 limit in Z; (strictly, one should first regularize the
form factor and then redefine the pion wave function).
Finally, we find it convenient to define “parallel” and
A and fiﬁ”

according to

“perpendicular” ax1al decay constants S

given in terms of f () and f”(J

f<f0‘||> _ f(/gl),(reg) f<f0u> _ f(/gl),(reg) _ f(ff). (73)
Our expressions for the 7° decay constants, taken before
any regularization scheme is applied, can be compared with
those obtained in Ref. [8]. Although, as mentioned in the
previous subsection, we have found some discrepancies in

6\/_q‘€[F

HYy(x ) =0,

Hyy(x.q) =

the results for the renormalization constants, it can be

checked that the ratios fi/zH) /9r04q and ffgl) /Gr04q are in

agreement with those quoted in Ref. [8], once different
notations have been properly compatibilized.

2. Charged pion amplitudes and form factors

As in the case of the polarization functions, we expand
the charged pion fields using Eq. (31). Since the charged
decay constants are real and equal for both charged pions
(we use the conventions in Ref. [41]), it is sufficient to
consider the 7~ hadronic amplitudes

S
o Poaw
0575 0W;; ™ (x)

_Vaz\? / By () FE(x. ), (74)

where ¢ and ¢ are defined as in Eq. (32), with
qs = iE, = i\/m2 + (2k + 1)eB + ¢3. From Egs. (13)
and (58) we have

Hy o (x, ) = OWpT w2 (q)) =

Hieln @) = VAN ZY [ o ()it
X/ ei”(x_x/)trb[%Js%-ﬂﬂ- (75)
pv

For convenience, as in the 7° case we concentrate on the
linear combinations H " IC “and H, s c’ which are defined in a

similar way as in Eq. (62). The expression in Eq. (75) can
be worked out integrating first over x’. This leads to

4zN, . .
H;,c(x’ q) = i\/ENcZ,l,@%e’qzxze’quxu

e

X / trD{SZ+}/5SZ—Fg]|vH:qul'1/‘l(X1—X1)
puL

X Dk( \% 2Bex/l + 2/Beq2)|x’1:—x1+2(v2—q2)/35’
(76)

where for definiteness we have taken B > 0. The relevant
integrals over p and v, can be calculated using the
expressions for the traces quoted in Appendix A and the
relations in Appendix B. After some algebra one arrives at

1/2/ dz/ dyF~(z.y, qH)(t — 1),

o0 1
H_,ﬁ(x,é)z—i\@qﬁ[F;(X)Zip/ dZ/ dyF~(2,y. q7) (1 = t,14),
H74(x.8) = eV2y/B,(2k + 1 + €)F7, . (x ‘/2/ dz/ dyF- zyq||)< >(1+€[)(1+€td)’ (77)
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where

NM ot _peyioy))
F(z,y, qH) yp a’jfle I, (78)
and 1, t; and a, are defined as in the text below Eq. (39).
We have also introduced the shorthand notation g + ¢ =
(k+ €. 4293, qa)-
As in the case of the neutral pion, we follow the notation
of Ref. [41], defining the charged pion decay constants by

Hio(x.q) = —eﬁfﬁmmﬁ (%),
Hi(x,q) = =iV g7 (x )
J_A(x ‘1)*6\/_[ + f;z fz(;p)]

B,(2k +1+e€)F7 . (x) (79)

where qﬁ = ¢4 + €q5. From Egs. (77) and (79) we obtain
1/2 00 1 _ 5
_Zn" dz dyf (Z’y7 _Eﬂ_)(l _[utd)’
0 0

— 22 [T a [ ayF- E2
=2 | dz |y (z.y.—E%-)

e (L)1) = 2 (1= 1)1 = 1),

o0 1
B =z / dz / dyF~(z.y, —E%)[l ~ luld
0 0
a a
— =+t )1 +1) == (1=t)(1=1t,)].
1) 1) = (=) (1= 1)
0 1
1 =2 ["a: [ tyF B -1, (0
0 0

Note that the form factors have a dependence on k and B,
that has been omitted to abbreviate the notation. In the
B — 0 limit we have Z,- — Z, and ffﬁl) = f =0, Which
is given by Eq. (71). Meanwhile, fg,éz), fffp) and fﬁr‘—/)
finite and vanish in the limit B — 0. Therefore, as expected,
both neutral and charged pion weak form factors tend to the
usual pion decay constant in the absence of the exter-
nal field.

Once again, the expression for ff,él) in Eq. (80) is
divergent and needs to be regularized. Using a 3D cutoff
within the MFIR scheme, the regularized expression reads

1),(re re, (ma;
e e I (81)

where

ma N.M
fS[Al)( g) _ 71[/2 > dz/ dye™ M_(
1

X |: k+1 (1 tutd)ezy( )@ADE, __:| ’ (82)
aL Z

with M_(y) = [M? = y(1 — y)m2-]'/2, and

272N MI,(-m2-), (83)

with 1,(q?) given by Eq. (28).

As in the case of the neutral pion, we find it convenient to
introduce parallel and perpendicular z~ axial decay form
factors. Thus, we define one parallel and two perpendicular
decay constants, according to

A Al),(re Al J(re, A3
FA = pantee o fAR) Ao g fA2) A
(84)

It is worth noticing that if the pion lies on the lowest
Landau level, ie., k=0, from Eq. (79) one has
H (x,4) =0, hence in that case the z~ weak decay

amplitude will not depend on f,,AL_ [in fact stn'ctly

speaking, for k =0 one cannot determine f,, ) from
Egs. (77) and (79)].
The #t decay constants can be obtained following a

similar procedure. As stated in Ref. [41], one can check that
£ = £ Wwhere i = V, Al, A2, A3. We recall that the

a

above expressions correspond to the case B > 0. By
changing B — —B one can see that

Y k.B) =~ (k.-B),

fEk.B) = {2 (k. -B). j=1.2.3. (85)

ITII. CHIRAL LIMIT RELATIONS

It is interesting to discuss the relations satisfied by the
quantities studied in the previous section in the chiral limit,
i.e., for my — 0. First, it should be stressed that even in the
presence of an external magnetic field, the neutral pion
remains being a pseudo-Nambu-Goldstone (NG) boson.
This can be shown by taking into account the polariza-

tion function J'5¥ (43.4%) evaluated at ¢} = g% =0
After integration by parts it is seen that Jf;lag) (0,0) =

2N 1M where (M) is given by Eq. (19). Hence, from
Egs. (18), (20) and (27) one gets

J%5(0,0) = 2N 100, (86)

Now, taking into account this result together with the
(regularized) gap equation (17), in the chiral limit one gets
J%5¥(0.0)y, = 1/(2G), which implies 0 4, = 0. In this
way, associated chiral relations are expected to hold even
for nonzero B.

From the expressions for the renormalization constants,
Egs. (49) and (50), and the axial form factors, Eq. (67), it is
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seen that the parallel and perpendicular axial decay con-
stants for the 7° meson introduced in Eq. (73) satisfy the
generalized Goldberger-Treiman relations

gl 0V = M, + O(m,), (87)

gﬂoqqffgL) = M,ZTO’ChMch + O(’"iﬁ) (88)
Thus, in the chiral limit one has

(al) _ (All)
f;z ch /r chf;r .ch’ (89)
In fact, this equation can be readily obtained from a general
effective low energy action for NG bosons in the presence
of a magnetic field; see e.g., Ref. [44]. Making use of
Eq. (87), together with the gap equation, one obtains the
generalized Gell-Mann-Oakes-Renner relation
(Al my ~
(mof o) = =5 (It dd)g,.  (90)
where we have taken into account that in our model

the averaged quark condensate satisfies (itu + dd)/2 =
—My,/ (ZG) —I— (’)(mo) Note that a similar relation can be

found for f 0. h using Eq. (89).
Itis also 1nterestmg to consider the expression for f 0 Jin

the chiral limit. From Egs. (68) and (87) it is seen that for
mqy — 0 one has

(V) eB

flr(’.ch fﬂA ||Ch (9 1 )

It is worth noticing that this result can be obtained from
the anomalous Wess-Zumino-Witten (WZW) effective
Lagrangian [45]. The WZW term that couples a neutral
pion to an electromagnetic field and a vector field W,Y’3 is
given by

iN_.e

V.3
Wﬂoeﬂmﬁaﬂw,, Faﬁ’ (92)

LWZW';z"AWV =

where €4153 = 1. If one identiﬁes the constant f, in this
effective Lagrangian with f , and the electromagnetic
field tensor with the external magnetic field (Fj, =
—F,; = B), taking into account the definitions in
Eq. (66) one arrives at the chiral relation in Eq. (91).

In the case of charged pions, the presence of an external
magnetic field leads to the explicit breakdown of chiral
symmetry and, in general, z7& cannot be identified with NG
bosons. However, chiral relations should be recovered in
the limit of low eB. In particular, the coupling of charged
pions to the magnetic field and an external vector current
arising from the WZW Lagrangian has the same form of

Eq. (92), taking the i = 1, 2 isospin components of the
fields 7' and W',

IV. NUMERICAL RESULTS

To obtain some numerical results for the different pion
properties one has to fix the model parametrization. Here,
as done in Ref. [16], we take the parameter set m, =
5.66 MeV, A =613.4MeV and GA? =2.250, which
(for vanishing external field) corresponds to an effective
mass M = 350 MeV and a quark-antiquark condensate
(ff)o = (—243.3 MeV)>. This parametrization, denoted
as set I, properly reproduces the empirical values of the
pion mass and decay constant in vacuum, namely m, =
138 MeV and f, = 92.4 MeV. It also provides a very good
agreement with the results from lattice QCD quoted in
Ref. [29] for the normalized average condensate AX(B)
[16]. To test the sensitivity of our results to the model
parametrization we have also considered two alternative
parameter sets, denoted as set II and set III, which also
reproduce the phenomenological values of m, and f, in
vacuum, and lead to effective masses M = 320 and
380 MeV, respectively.

A. Neutral pion

In Fig. 1 we show our numerical results for the quantities
associated with the neutral pion as functions of eB. Solid
lines correspond to the results from set I, while the limits of
the grey band correspond to those from set I (dashed lines)
and set III (dotted lines). We observe that the qualitative
behavior of all calculated quantities remains basically
unaffected by changes in the model parameters within
phenomenologically reasonable limits. The results for the
pion mass, shown in Fig. 1(a), have already been given in
Ref. [16], and are included here just for completeness. It is
seen that the mass shows a slight decrease with eB, which is
also in agreement with the analysis in Refs. [9,10]. Some
lattice simulations using Wilson fermions [33] seem to
favor a somewhat larger decrease of m o as the magnetic
field increases. In these simulations, however, a heavy pion
with mass m,(0) = 415 MeV in vacuum has been con-
sidered. It is interesting to note that in the framework of
NJL-like models some enhancement of the decrease can be
obtained either by assuming a magnetic field dependent
coupling constant [10] or by considering nonlocal inter-
actions [13].

In Fig. 1(b) we plot the coupling constant g,0,, and the
directional refraction index u,, given by Egs. (48) and
(49). We observe that g,0,, shows some enhancement if B
is increased. On the other hand, u, decreases monoto-
nously with eB, remaining always lower than one. These
results are consistent with those obtained in Refs. [46,47].
It should be also noticed that u,0 is basically insensitive to
the parametrization. In fact, it is kept almost unchanged if
one takes mq — 0, which implies that for nonzero B neutral

054014-11



COPPOLA, DUMM, NOGUERA, and SCOCCOLA

PHYS. REV. D 100, 054014 (2019)

0.15 [ T T T T T T T T
~
(0]
O,
0.10L \ ] \ ] \ ] \ ]
0.20 T T T T T T T T
=
(0]
O,
005 f O(A“ ]
r T
P S —
0.0 0.2 0.4 06 0.8
eB [GeV?]

FIG. 1.
(dashed lines) and set III (dotted lines).

pions move at a speed lower than the speed of light even in
the chiral limit. We notice that, on the contrary, in Ref. [8] it
is found that u, > 1. It is unclear to us whether this
different behavior is due to the already mentioned discrep-
ancies in the expressions for the renormalization constants
or to the different procedures chosen for the regularization.

Our results for the neutral axial decay constants are
shown in Fig. 1(c). Starting from a common value at B = 0,

it is seen that while fi(ﬁH) gets enhanced for increasing eB,

ff:gl) gets reduced. In both cases the B dependence is
stronger than for the other quantities discussed previously.

Note that our results indicate that fi:ou) < fiﬁll)
considered values of eB, which differs from the result in
Ref. [8]. This seems to be related to the fact that, as stated,

in that paper u_, > 1 is obtained. Finally, in Fig. 1(d) we

for all

show the behavior of f 7(:0/) as a function of eB. It is seen that,
starting from O at eB = 0, the vector decay constant grows
with eB, reaching a value comparable to the average of the
axial decay constants fi(ﬁ”) and fif,u) at eB ~ 1 GeV>.

It is interesting to notice that the numerical results given
above (which have been obtained from parametrization sets

1.0

1 —
015 ]
f O(V)

010

005 = ]

ookl L
00 02 04

eB [GeV7]

1
0.6 0.8 1.0

Neutral pion properties as functions of eB. Solid lines correspond to set I, while the limits of the gray bands correspond to set I

leading to m o = 138 MeV at B = 0) satisfy quite well the
chiral limit relations in Egs. (87)—(91). In fact, it is found
that all these relations are satisfied at a level of less than 1%
for all considered values of eB.

To conclude this subsection, in Fig. 2 we show a
comparison between our results for the axial decay
constants, normalized to the value at B =0, and the
results obtained in Refs. [13,20]. Those works are based
on a nonlocal NJL model (nINJL), dashed-dotted line in
the figure, and on the functional renormalization group
approach to the quark-meson model (rgQMM), red

squares, respectively. We see that in the case of ff;‘”)
our results are somewhat below those obtained within the
rgQMM. This is likely to be correlated with the fact that in
that approach the z° mass shows a stronger decrease as the
magnetic field increases. A similar trend is found for
ff;gl), although in this case the difference with the
rgQMM calculation of Ref. [20] is somewhat smaller. It
should be mentioned that additional calculations for fiﬁll)
have been carried out using ChPT [22] and within the
effective chiral confinement Lagrangian approach [27].
The latter shows a behavior similar to that of the nINJL
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FIG. 2. Neutral pion decay constants as functions of ¢B for
various models.

model considered in Ref. [13], while ChPT results,
trustable for values of the magnetic field up to say
eB ~0.1 GeV?, are found to be in reasonable agreement
with our curves.
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FIG. 3.

to set II (dashed lines) and set III (dotted lines).

1.0

B. Charged pions

In Fig. 3 we show our numerical results for the quantities
associated with charged pions, in the lowest Landau level
(LLL), as functions of eB. As in the previous subsection,
solid lines indicate the results for parameter set I, while the
limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines). From the figure it is observed
that, as in the case of the 7, the qualitative behavior of
all calculated quantities is not significantly affected by
changes in the model parametrization within the considered
limits. In Fig. 3(a) we quote the results for the magnetic
field-dependent charged pion mass, see Eq. (44), which
have already been presented in Ref. [16]. They are included
here just for completeness. As discussed in Ref. [16], our
results are in fair agreement with those obtained from
LQCD [33], once the current quark mass is increased so
that m,+(B = 0) matches the value of the pion mass
considered in lattice calculations. In Fig. 3(b) we quote
the curves corresponding to the coupling constant g,-,, as a
function of eB. It can be seen that they are quite similar
to those obtained for the neutral pion in Fig. 1(b). The
behavior of the axial decay constants is shown in Fig. 3(c).

We choose to plot £ (also denoted as £4"*8)y and the

0.20 T T T T T T T T
015 ]
00|

005 ' ]

ool L
0.0 0.2 04

1
0.6 0.8 1.0

eB [GeV7]

Charged pion decay properties as functions of eB. Solid lines correspond to set I, while the limits of the gray bands correspond
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combination f,(;}lﬂ = ff,él)’“eg) + f,(ﬁz) — f£ﬁ3), since, as
discussed in Sec. II, if the pion lies on the LLL these are the
only relevant form factors for the evaluation of the matrix
elements of the axial current. From the figure it is observed

that f fﬁm shows a slight growth with eB, lower than that of

fiﬁH) [see Fig. 1(c)]. On the other hand, ff,ébr) exhibits a
strong increase with eB, reaching a magnitude of about
180 MeV for eB = 1 GeV?. Finally, in Fig. 3(d) we plot

fg,‘f) as a function of the magnetic field. Its behavior is
similar to that of ff:o/), shown in Fig. 1(d).
In the framework of lattice QCD, some results for fiéll)

and ff,‘—/) in the presence of an external magnetic field have
been presented recently [40]. Although errors are still
relatively large, it can be seen that beyond the first lattice

data points ff,éll) shows an overall increase with the
magnetic field, in qualitative agreement with our results.
On the other hand, a continuum extrapolation seems to

indicate that f’ f,ém starts out with a negative slope, which
differs from the case of ff:é”). We find this result difficult to
understand, since the decay constants of charged and

neutral pions should behave similarly [22] for very small
values of eB. In addition, in Ref. [28] the magnetic field

dependence of f,(,/iH) has been analyzed in the context of
QCD sum rules. In comparison with our results, their
analysis shows a steeper enhancement with B, leading to

fE,éH) ~0.17 GeV for eB = 1 GeV?>. In any case, it should
be stressed that our results show that, as expected, the
Goldberger-Treiman and Gell-Mann-Oakes-Renner rela-
tions for charged pions [i.e., the equivalent to Eqs. (87)
and (90), obtained for neutral mesons] are violated for
eB 2 m2, for both fAV and F44).

To conclude, let us make an additional comment on the
magnetic field dependences of the decay constants. In the
chiral limit, it can be seen that for low values of eB

the difference f,(ﬁz) - fﬁ,’i” is given by

(A2) (A3) eB TeB
fulR = (1— +...). (93)
T T Al U 5w,

On the other hand, in the case of f 5[‘-/), for low values of the
magnetic field a relation similar to Eq. (91) is expected
to be satisfied in the chiral limit. From our numerical
calculations we find quite remarkable that relations of the
same form, i.e.,

FUD _ a3 eB < | 7eB> (94)

T g2\ 4sm2
and
eB
1 = g2 fAl’ (55)
=] 7

are in fact approximately valid also for large external
magnetic fields. Indeed, although in the presence of the
magnetic field the z~ cannot be considered a pseudo-

Goldstone boson, we find that f 5;32) - fffw and f,(,‘f) can be
approximated by the expressions in Eqgs. (94) and (95)
within 15% and 10% accuracy, respectively, for values of
eB up to 1 GeV?. It would be interesting to verify if
equivalent relations also arise within other theoretical
approaches to low energy hadron physics.

V. SUMMARY AND CONCLUSIONS

In this work we have considered the approach introduced
in Ref. [16] for the study of pion masses, extending the
calculations to other properties of neutral and charged
pions. Such an approach is based on the usage of the
Nambu-Jona-Lasinio effective model for low energy QCD
dynamics, in which pions are treated as quantum fluctua-
tions in the random phase approximation. While for the 7°
one can take the usual momentum basis to diagonalize the
corresponding polarization functions, this is not possible in
the case of charged pions, due to the presence of non-
vanishing contributions from Schwinger phases. Therefore,
to diagonalize the charged pion polarization function we
use a method based on the Ritus eigenfunction approach to
magnetized relativistic systems. Since the NJL model is not
renormalizable, the calculation of observables requires an
appropriate regularization scheme in order to deal with
ultraviolet divergences. Here, we have used the magnetic
field independent regularization procedure, in which only
divergent vacuum contributions to quantities at zero exter-
nal magnetic field are regularized. This scheme has been
shown to provide more reliable predictions in comparison
with other regularization methods often used in the liter-
ature [39]. Within the framework just described, we have
concentrated in particular on the analysis of the quark-
meson coupling constants, the neutral pion directional
refraction index u,0, and the form factors associated with
pion-to-vacuum matrix elements of the vector and axial
vector hadronic currents.

In the case of the neutral pion we find that while the
coupling constant g,o,, shows some enhancement if the
external magnetic field is increased, u,0 decreases monoto-
nously with eB, remaining always lower than one. We have
checked that u,0 is kept almost unchanged if one takes
mq — 0, which implies that, contrary to the result obtained
in Ref. [8], for nonzero B neutral pions move at a speed
lower than the speed of light even in the chiral limit.
Concerning the study of pion-to-vacuum amplitudes, in
agreement with previous analyses [7,20,41,44] we find that
for the z°, in the presence of the external magnetic field,
there are in general two axial nonvanishing form factors,

namely ff;:H) and ff;gl). Moreover, as discussed in
Ref. [41], the vector hadronic current is also found to be

nonvanishing, and an additional vector form factor fg) can
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be defined. We have verified that in the chiral limit these
quantities satisfy some relations. In fact, apart from the
well-known generalized Goldberger-Treiman and Gell-

Mann-Oakes-Renner equations for fi(;ow) (see e.g.,
Ref. [21]), we show that in that limit the relations fi;u) =

ulf o Al and fi = eB/(87*f ) (410 hold. The first of these
equations follows from the expressions quoted in Ref. [§]
and can also be derived in the context of ChPT. On the other
hand, the second one can be related to the anomalous Wess-
Zumino-Witten effective lagrangian, and—to the best of
our knowledge—has not been previously stated in the
literature. Our numerical results for the neutral axial decay
constants indicate that, starting from a common value at

B =0, f](;gH) gets enhanced for increasing eB, while ff:gl)

gets reduced. We see that in the case of f fr’:”) our results are
somewhat below those obtained in Refs. [13,20]. This is
likely to be correlated with the fact that in those approaches
the 7° mass shows a stronger decrease as the magnetic field

increases. A similar trend is found for ff?,l), although in
this case the difference with the calculation of Ref. [20] is
somewhat smaller. It is interesting to notice that the
numerical results for the form factors, obtained for model
parameters leading to a physical B = 0 pion mass, satisfy
chiral limit relations in Egs. (87)—(91) quite well (that is,
within 1% for all considered values of eB).

For the charged pions we find that the B dependence of
the corresponding quark-meson coupling constant is quite
similar to the one found in the case of the z°. Concerning
the axial form factors, we see that while in general three
decay constants can be defined [13], only two linear

combinations of them, f ,@D and f ,(,élH, are physically
relevant for charged pions in their lowest energy state. As in
the case of the z°, we find that there is also a vector form

factor ff,‘-/)

results indicate that while f,,A

that can be nonvanishing [13,40]. Our numerical

shows a rather slight growth

with the magnetic field (somewhat lower than that of f A”

(AL+)
f,, exhibits a stronger increase with eB, reachmg a

magnitude of about 180 MeV for eB = 1 GeV?. Finally, it
is seen that for eB <1 GeV? the decay constants for the
charged pion satisfy approximate relations that are equiv-
alent to those obtained in the chiral limit for low values of
the magnetic field.
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APPENDIX A: DIRAC TRACES

In this appendix we provide the explicit form of the Dirac
traces that appear in the calculation of the pion two-point
functions and the pion-to-vacuum matrix elements. In all
cases we use the Schwinger form of the propagators, with
S‘-; given by Eq. (15). As in the main text, we separate the
four-vectors into parallel and perpendicular two-vectors,
e.g., p1 = (p1,p2)s P| = (P3. P4)-

The traces appearing in the two-point functions can be
written as

trD[SfLySS,, ¥s) /oo dr/oo dr
0 0

X exXp [_T¢f1 (z, P+) - T’¢f2(7/7 P_)]Tsa
(A1)
where
tr
¢f[<T’p ) M2+pH +Lpf2’ (A2)
TBf
with #; = tanh(zB;). Writing p* =p+v/2, from
Eq. (15) one has
i
Ts = 4{<M2 + pﬁ _Z> (L4 sp,57,20,07)
ra-gya-ra (- @

where #; = tanh(7'By,). Similarly, for the traces appearing

in the analysis of the pion-to-vacuum matrix elements we
write

trp (37753216 = / dr / Y ar
0 0
X eXp [_T¢f] (T’ p+> - T/¢f2 (T/’ p_)]Tlg
(A4)

Taking into account the linear combinations relevant for our
calculations, we find

T|‘|/€ TX -I— (:'TV = —4iM(7)3 - €1}4)(Sfll’fl + sztlfz),
(AS)

T =T} + eT4 = —4M(vy + ev3) (1 + 57,571, 1),
(A6)

T =TV 4+ €Ty =0, (A7)
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Tfie =T +¢€iT) = —4M{(p1 +€ip))[(1 — tj%l)(l + esht}vz) -(1- tzfz)(l —esptr)]

+ = (v, + €ivy)[(1 — tjzcl)(l +espty )+ (1= t}zz)(l —esy, tf])]}. (A8)

| =

APPENDIX B: INTEGRALS OVER INTERNAL MOMENTA

The integrals in Egs. (37) and (76) can be performed using the properties of the cylindrical parabolic functions Dy (x).
We need to calculate

I, :/ e~ (1,p+)e_f/(/lfz(r'_p_)eivl(xl—x’])Dk(\/Exll + /Z/Beqlz)Tﬂm (Bl)
pvy

where T, stands for the functions T, Tﬁ’e and TS in Appendix A.

The integrals over p| can be easily obtained from the relations

1 _.ab 2
—a(py+v)/2)° g=b(p=v) /27 — ____~ _ ,7awY)
e e e El
/p 4r(a + b)
v 1 b
2 _ U\ —a(py+oy/2)? p=b(py=v) /2 — 1- a 2 _#hbvﬁ B2
/p (p| 4>e ‘ 4r(a +b)* atb )¢ ' (B2)

These expressions can be also applied for the integrals over p . For the case of Ti’e we also need

1 (a - b) ab_,2
; —a v, /2 =b(p.—v,/2)> _ ; —A2y
PL(pl + €lp2)e (prtv1/2)*=b(p1-v1/2)" — _§<1}1 + €ly2)me at+b” L, (BS)

On the other hand, the integrals over v, can be obtained taking into account the following useful relations. Defining

Dy(x1,q2,v1) = Di(\/2B X + 2/3e42)€iv'<xl_xl')|x/,:—x|+2(1;z—q2)/36, (B4)
one has
. B, (1-yB,)"
Dy(xp, g, vy e =2¢ LTIy (B, 2/B.q»),
AL i (X1, g, v )eTTL 47 (1 £ 7B, k( x; +v/2/B.q»)
iev2B* (1 —yB,\ ke k(1-0)/2
1)) Di(x1, g2, 01 )€ = ¢ Dy,.(\/2B, 2/B.q),
[L(Uﬁfwz) k(X1 g2, v )eT" i <1+73e> (1+7B.)(1—erB,) e ( X1+ V2/B.q)

B: (1-yB,)"!

(= B+ 200D/ 3Box, + V2B, )

2 2
/ULDk(xvaZvUL)e i
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