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In the framework of the Nambu–Jona-Lasino (NJL) model, we study the effect of an intense external
uniform magnetic field on neutral and charged pion masses and decay form factors. In particular, the
treatment of charged pions is carried out on the basis of the Ritus eigenfunction approach to magnetized
relativistic systems. Our analysis shows that in the presence of the magnetic field three and four
nonvanishing pion-to-vacuum hadronic form factors can be obtained for the case of the neutral and charged
pions, respectively. As expected, it is seen that for nonzero magnetic field the π0 meson can still be treated
as a pseudo Nambu-Goldstone boson, and consequently the corresponding form factors are shown to
satisfy various chiral relations. For definite parametrizations of the model, numerical results for π0 and π�

masses and decay constants are obtained and compared with previous calculations given in the literature.
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I. INTRODUCTION

In recent years a significant effort has been devoted to the
study of the properties of strongly interacting matter under
the influence of strong magnetic fields (see e.g., [1–3] and
references therein). This is mostly motivated by the
realization that large magnetic fields might play an impor-
tant role in the physics of the early Universe [4], in the
analysis of high energy noncentral heavy ion collisions [5],
and in the description of physical systems such as mag-
netars [6]. From the theoretical point of view, addressing
this subject requires one to deal with quantum chromody-
namics (QCD) in nonperturbative regimes. Therefore,
existing analyses are based either in the predictions of
effective models or in the results obtained through lattice
QCD (LQCD) calculations. In this work we focus on the
effect of an intense external magnetic field on π meson
properties. This issue has been studied in the last years
following various theoretical approaches for low energy
QCD, such as Nambu-Jona-Lasinio (NJL)-like models
[7–18], quark-meson models [19,20], chiral perturbation

theory (ChPT) [21–23], path integral Hamiltonians [24,25],
effective chiral confinement Lagrangian approach (ECCL)
[26,27], QCD sum rules (SRQCD) [28], etc. In addition,
results for the light meson spectrum in the presence of
background magnetic fields have been recently obtained
from LQCD calculations [29–33].
In the framework of the NJL model, mesons are usually

described as quantum fluctuations in the random phase
approximation (RPA) [34–36], i.e., they are introduced via
the summation of an infinite number of quark loops. In the
presence of a magnetic field B⃗, the calculation of these
loops requires some care due to the appearance of
Schwinger phases [37] associated with quark propagators.
For the neutral pion these phases cancel out, and as a
consequence the usual momentum basis can be used to
diagonalize the corresponding polarization function [7–11].
On the other hand, for charged pions the Schwinger phases
do not cancel, leading to a breakdown of translational
invariance that prevents one from proceeding as in the π0

case. In this situation, some existing calculations [12,15]
just neglect Schwinger phases, considering only the trans-
lational invariant part of the quark propagators. Recently
[16], a method was proposed in order to fully take into
account the translational-breaking effects introduced by the
Schwinger phases in the calculation of charged meson
masses within the RPA. This method, based on the Ritus
eigenfunction approach [38] to magnetized relativistic
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systems, allows one to diagonalize the charged pion
polarization function for the obtention of the corresponding
meson masses. In addition, the analysis in Ref. [16]
considers a regularization procedure in which only the
vacuum contributions to different quantities at zero external
magnetic field are regularized. This scheme, that goes
under the name of “magnetic field independent regulari-
zation” (MFIR), has been shown to provide more reliable
predictions in comparison with other regularization meth-
ods often used in the literature [39].
The scope of the present work is to consider the

approach introduced in Ref. [16] for the study of pion
masses, extending the calculations to other properties of
neutral and charged pions. In particular, we concentrate
in the analysis of the form factors associated with the
pion-to-vacuum matrix elements of the vector and axial
vector hadronic currents. For the case of the π0, some
works [7–13,20–22,26,27] have already considered

the B dependence of the decay constant fðA1Þ
π0

, which
corresponds to the time component of the axial vector
current matrix element. For charged pions, the effect of
the magnetic field has been analyzed in the context of
ChPT [22], ECCL approach [26], SRQCD [28] and,
quite recently, through LQCD calculations [40]. An
interesting observation made in Ref. [8] states that,
due to the explicit breaking of rotational invariance
caused by the magnetic field, one can define two dif-
ferent decay constants. One of them is associated with
the direction parallel to B⃗ (and to the time direction) and
the other with the spatial directions perpendicular to B⃗.
A further relevant statement has been pointed out in
Ref. [40]. In that work it is noted that the presence of
the background magnetic field opens the possibility of a
nonzero charged pion-to-vacuum transition via the
vector piece of the electroweak current. This implies
the existence of a further decay constant associated with
the pion-to-vacuum matrix element of the vector current.
Furthermore, in a recent work [41] we have shown that
(i) the pion-to-vacuum matrix element of the vector
current can be nonvanishing even in the case of the
neutral pion, and (ii) for the charged pions there are in
general not two but three nonvanishing axial decay
constants. The aim of the present paper is to study the
behavior of all these form factors as functions of the
magnetic field in the context of the NJL model within
the MFIR regularization scheme.
This work is organized as follows. In Sec. II we

introduce the theoretical formalism used to obtain the
different quantities we are interested in. Chiral limit
relations are addressed in Sec. III. Then, in Sec. IV
we present and discuss our numerical results, while in
Sec. V we provide a summary of our work, together with
our main conclusions. We also include Appendixes A and
B to quote some technical details of our calculations.

II. THEORETICAL FORMALISM

A. Mean field properties and pion masses

We start by considering the Euclidean Lagrangian
density for the NJL two-flavor model in the presence of
an electromagnetic field. One has

L ¼ ψ̄ð−i=Dþm0Þψ −G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ�;

ψ ¼
�
ψu

ψd

�
; ð1Þ

where τi are the Pauli matrices and m0 is the current quark
mass, which is assumed to be equal for u and d quarks. The
interaction between the fermions and the electromagnetic
field Aμ is driven by the covariant derivative

Dμ ¼ ∂μ − iQ̂Aμ; ð2Þ

where Q̂ ¼ diagðqu; qdÞ, with qu ¼ 2e=3 and qd ¼ −e=3,
e being the proton electric charge. We will consider the
particular case of an homogenous stationary magnetic field
B⃗ along the positive 3-axis. Let us choose the Landau

gauge, in which A4 ¼ 0, A⃗ ¼ ð0; Bx1; 0Þ.
Since we are interested in studying meson properties, it is

convenient to bosonize the fermionic theory, introducing
scalar σðxÞ and pseudoscalar π⃗ðxÞ fields and integrating out
the fermion fields. The bosonized Euclidean action can be
written as [35]

Sbos ¼ − log detDþ 1

4G

Z
d4x½σðxÞσðxÞ þ π⃗ðxÞ · π⃗ðxÞ�;

ð3Þ

with

Dx;x0 ¼ δð4Þðx − x0Þ½−i=Dþm0 þ σðxÞ þ iγ5τ⃗ · π⃗ðxÞ�; ð4Þ

where a direct product to an identity matrix in color space is
understood.
We proceed by expanding the bosonized action in

powers of the fluctuations δσðxÞ and δπiðxÞ around the
corresponding mean field (MF) values. As usual, we
assume that the field σðxÞ has a nontrivial translational
invariant mean field value σ̄, while the vacuum expectation
values of pseudoscalar fields are zero. Thus we write

Dx;x0 ¼ DMF
x;x0 þ δDx;x0 : ð5Þ

The MF piece is flavor diagonal. It can be written as

DMF
x;x0 ¼ diagðDMF;u

x;x0 ;DMF;d
x;x0 Þ; ð6Þ

where
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DMF;f
x;x0 ¼ δð4Þðx − x0Þð−i=∂ − qfBx1γ2 þm0 þ σ̄Þ: ð7Þ

On the other hand, the second term on the right-hand side of
Eq. (5) is given by

δDx;x0 ¼ δð4Þðx − x0Þ

×

�
δσðxÞ þ iγ5δπ0ðxÞ

ffiffiffi
2

p
iγ5δπþðxÞffiffiffi

2
p

iγ5δπ−ðxÞ δσðxÞ − iγ5δπ0ðxÞ

�
;

ð8Þ

where π� ¼ ðπ1 ∓ iπ2Þ=
ffiffiffi
2

p
. Replacing in the bosonized

effective action and expanding in powers of the meson
fluctuations around the MF values, we get

Sbos ¼ SMF
bos þ Squadbos þ…: ð9Þ

Here, the mean field action per unit volume reads

SMF
bos

Vð4Þ ¼
σ̄2

4G
−

Nc

Vð4Þ
X
f¼u;d

Z
d4xd4x0trD ln ðSMF;f

x;x0 Þ−1; ð10Þ

where trD stands for the trace in Dirac space. The quadratic
contribution is given by

Squadbos ¼ 1

2

X
M¼σ;π0;π�

Z
d4xd4x0δMðxÞ�

×

�
1

2G
δð4Þðx − x0Þ − JMðx; x0Þ

�
δMðx0Þ; ð11Þ

where

Jπ0ðx; x0Þ ¼ Nc

X
f

trD½SMF;f
x;x0 γ5S

MF;f
x0;x γ5�;

Jπ−ðx; x0Þ ¼ 2NctrD½SMF;d
x;x0 γ5S

MF;u
x0;x γ5�;

Jπþðx; x0Þ ¼ 2NctrD½SMF;u
x;x0 γ5S

MF;d
x0;x γ5�; ð12Þ

while the expression for Jσ is obtained from that of Jπ0 just
replacing both γ5 matrices for unit matrices. In these
expressions we have introduced the mean field quark
propagators SMF;f

x;x0 ¼ ðDMF;f
x;x0 Þ−1. As is well known, their

explicit form can be written in different ways [2,3]. For
convenience we take the form in which SMF;f

x;x0 is given by a
product of a phase factor and a translational invariant
function, namely

SMF;f
x;x0 ¼ eiΦfðx;x0Þ

Z
p
eipðx−x0ÞS̃fp; ð13Þ

where Φfðx; x0Þ ¼ qfBðx1 þ x01Þðx2 − x02Þ=2 is the so-
called Schwinger phase. We have introduced here the
shorthand notation

Z
p
≡
Z

d4p
ð2πÞ4 : ð14Þ

We express S̃fp in the Schwinger form [2,3]

S̃fp ¼
Z

∞

0

dτ exp½−τϕfðτ; pÞ�

×
�
ðM −pkγkÞð1þ isfγ1γ2 tanhðτBfÞÞ−

p⊥γ⊥
cosh2ðτBfÞ

�
;

ð15Þ

where we have used the following definitions. The
“perpendicular” and “parallel” gamma matrices are col-
lected in vectors γ⊥ ¼ ðγ1; γ2Þ and γk ¼ ðγ3; γ4Þ. Similarly,
p⊥ ¼ ðp1; p2Þ and pk ¼ ðp3; p4Þ. Note that in our con-
vention fγμ; γνg ¼ −2δμν. The quark effective mass M is
given byM ¼ m0 þ σ̄, and we have used the notation sf ¼
signðqfBÞ and Bf ¼ jqfBj. Finally, we have defined

ϕfðτ; pÞ ¼ M2 þ p2
k þ

tanhðτBfÞ
τBf

p2⊥: ð16Þ

Notice that the integral in Eq. (15) is divergent and has to be
properly regularized, as we discuss below.
Replacing the above expression for the quark propagator

in Eq. (10) and minimizing with respect toM we obtain the
gap equation

M ¼ m0 þ 4GMNcI; ð17Þ

where I is a divergent integral. To regularize it we use here
the magnetic field independent regularization scheme
[42,43]. That is, we subtract from I the unregulated integral
in the B ¼ 0 limit, IB¼0, and then we add it in a regulated

form IðregÞB¼0 . Thus, we have

IðregÞ ¼ IðregÞB¼0 þ IðmagÞ; ð18Þ

where IðmagÞ is a finite, magnetic field dependent contri-
bution given by

IðmagÞ ¼ 1

8π2
X
f

Z
∞

0

dτ
expð−τM2Þ

τ2
½τBf cothðτBfÞ − 1�

¼ M2

8π2
X
f

�
lnΓðxfÞ

xf
−
ln 2π
2xf

þ 1 −
�
1 −

1

2xf

�
ln xf

�
;

ð19Þ

with xf ¼ M2=ð2BfÞ. On the other hand, the regulated

piece IðregÞB¼0 does depend on the regularization prescription.
Choosing the standard procedure in which one introduces a
3D momentum cutoff Λ, we get the well-known result [35]
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IðregÞB¼0 ¼ I1

≡ 1

2π2

�
Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
þM2 ln

�
M

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2

p
��

:

ð20Þ

For the reader’s convenience, in what remains of this
subsection we review the procedure followed in Ref. [16] to
determine the pion masses. We start by the simpler case
of the neutral pion π0. In this case the contributions of
Schwinger phases associated to the quark propagators
cancel out. Therefore, the polarization function depends
only on the difference x − x0 (i.e., it is translational
invariant), which leads to the conservation of π0 momen-
tum. If we take now the Fourier transform of π0 fields to

the momentum basis, the corresponding transform of the
polarization function will be diagonal in q, q0 momentum
space. Thus, the π0 contribution to the quadratic action in
the momentum basis can be written as

Squad
π0

¼ 1

2

Z
q
δπ0ð−qÞ

�
1

2G
− Jπ0ðq2⊥; q2kÞ

�
δπ0ðqÞ; ð21Þ

where

Jπ0ðq2⊥; q2kÞ ¼ Nc

X
f

Z
p;v

ð2πÞ4δð4Þðv− qÞtrDðS̃fpþγ5S̃
f
p−γ5Þ;

ð22Þ
with p� ¼ p� v=2. Replacing Eq. (15) into Eq. (22) and
using the results in Appendixes A and B one finds

Jπ0ðq2⊥; q2kÞ ¼
Nc

4π2
X
f

Bf

Z
∞

0

dz
Z

1

0

dy expf−z½M2 þ yð1 − yÞq2k�g

× exp
�
−
q2⊥
Bf

γfðy; zÞ
���

M2 þ 1

z
− yð1 − yÞq2k

�
cothðzBfÞ

þ Bf

sinh2ðzBfÞ
�
1 −

q2⊥
Bf

γfðy; zÞ
��

; ð23Þ

where

γfðy; zÞ ¼
sinhðzyBfÞ sinh½ð1 − yÞzBf�

sinhðzBfÞ
: ð24Þ

As usual, here we have used the changes of variables
τ ¼ yz and τ0 ¼ ð1 − yÞz, τ and τ0 being the integration
parameters associated with the quark propagators as in
Eq. (15).
As done at the MF level, we regularize the integral in

Eq. (23) using the MFIR scheme. That is, we subtract the
corresponding unregulated contribution in the B ¼ 0 limit,
given by

Jπ;B¼0ðq2Þ ¼
Nc

2π2

Z
∞

0

dz
z

Z
1

0

dy expf−z½M2 þ yð1− yÞq2�g

×

�
M2 þ 2

z
− yð1− yÞq2

�
; ð25Þ

and add it in a regularized form JðregÞπ;B¼0ðq2Þ. The regularized
polarization function is then given by

JðregÞ
π0

ðq2⊥; q2kÞ ¼ JðregÞπ;B¼0ðq2Þ þ JðmagÞ
π0

ðq2⊥; q2kÞ; ð26Þ

where JðmagÞ
π0

ðq2⊥; q2kÞ ¼ Jπ0ðq2⊥; q2kÞ − Jπ;B¼0ðq2⊥ þ q2kÞ. To
get JðregÞπ;B¼0ðq2Þ we use the 3D momentum cutoff scheme, as
in the case of the gap equation. One has in this way

JðregÞπ;B¼0ðq2Þ ¼ 2Nc½I1 þ q2I2ðq2Þ�; ð27Þ

where I1 is given by Eq. (20), while

I2ðq2Þ ¼
1

4π2

Z
1

0

dy

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þM2 þ yð1 − yÞq2
p

þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ yð1 − yÞq2

p
Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þM2 þ yð1 − yÞq2

p
�
: ð28Þ

Choosing the frame in which the π0 meson is at rest, its
mass can be obtained by solving the equation

1

2G
− JðregÞ

π0
ð0;−m2

π0
Þ ¼ 0: ð29Þ

Let us now discuss the case of charged pions. For
definiteness we consider the π− meson, although a
similar analysis, leading to the same expression for the
B-dependent mass, can be carried out for the πþ. As in
the case of the π0, we start by replacing Eq. (13) in the
expression of the corresponding polarization function in
Eq. (12). We get

Jπ−ðx; x0Þ ¼ 2Nc

Z
pv

trDðS̃dpþγ5S̃
u
p−γ5Þ

× eiΦdðx;x0ÞeiΦuðx0;xÞeivðx−x0Þ; ð30Þ
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where once again we define p� ¼ p� v=2. Contrary to the
π0 case, here the Schwinger phases do not cancel, due to
their different quark flavors. Therefore, this polarization
function is not translational invariant, and consequently
it will not become diagonal when transformed to the
momentum basis. Therefore, we expand the charged pion
field as

π−ðxÞ ¼
XZ
q̄

F−
q̄ ðxÞπ−q̄ ; ð31Þ

where we have used the shorthand notation

q̄≡ ðq̆; q4Þ; q̆≡ ðk; q2; q3Þ;
XZ
q̄

≡ 1

2π

X∞
k¼0

Z
q2q3q4

:

ð32Þ

The functions F �̄
q ðxÞ are given by

F �̄
q ðxÞ ¼ Nkeiðq2x2þq3x3þq4x4ÞDkðρ�Þ; ð33Þ

where DkðxÞ are the cylindrical parabolic functions. We
have used the definitions Nk ¼ ð4πBeÞ1=4=

ffiffiffiffi
k!

p
and ρ� ¼ffiffiffiffiffiffiffiffi

2Be
p

x1 − s�
ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2, where Be ¼ jqπ�Bj ¼ jeBj and

s� ¼ signðqπ�BÞ, with qπ� ¼ �ðqu − qdÞ ¼ �e. For the
π− one has

Squadπ− ¼ 1

2

XZ
q̄0;q̄

ðδπ−q̄ Þ�
�

1

2G
δ̂q̄q̄0 − J−q̄q̄0

�
δπ−q̄0 ; ð34Þ

where

δ̂q̄q̄0 ¼ ð2πÞ4δkk0δðq2 − q02Þδðq3 − q03Þδðq4 − q04Þ ð35Þ

and

J−q̄q̄0 ¼ 2Nc

Z
pv

trD½S̃dpþγ5S̃
u
p−γ5�

Z
d4xd4x0eiΦdðx;x0Þ

× eiΦuðx0;xÞeivðx−x0ÞF−
q̄ ðxÞ�F−

q̄0 ðx0Þ: ð36Þ

Integrating over x0 in Eq. (36) one obtains

J−q̄q̄0 ¼
8πNc

Be

Z
d4xF−

q̄ ðxÞ�eiðq
0
2
x2þq0kxkÞ

Z
pv
ð2πÞ2δð2Þðvk − q0kÞtrD½S̃dpþγ5S̃

u
p−γ5�

× Nk0eiv1ðx1−x
0
1
ÞDk0 ð

ffiffiffiffiffiffiffiffi
2Be

p
x01 − s−

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q02Þjx01¼−x1þ2s−ðq02−v2Þ=Be

: ð37Þ

The integrals over the loop momenta p and v can be evaluated using the results in Appendixes A and B. It can be shown that
the polarization function is diagonal in the chosen basis. One has

J−q̄q̄0 ¼
Z

d4xF−
q̄ ðxÞ�Jπ−ðk;Π2ÞF−

q̄0 ðxÞ ¼ δ̂q̄q̄0Jπ−ðk;Π2Þ; ð38Þ

where Π2 ¼ ð2kþ 1ÞBe þ q2k, and

Jπ−ðk;Π2Þ ¼ Nc

2π2

Z
∞

0

dz
Z

1

0

dy exp½−zM2 − zyð1 − yÞðΠ2 − ð2kþ 1ÞBeÞ�

×
αk−
αkþ1
þ

��
M2 þ 1

z
− yð1 − yÞðΠ2 − ð2kþ 1ÞBeÞ

�
ð1 − tutdÞ

þ ð1 − t2uÞð1 − t2dÞ
αþα−

½α− þ ðα− − αþÞk�
�
: ð39Þ

Here we have introduced the definitions tu ¼ tanhðBuyzÞ,
td ¼ tanh½Bdð1 − yÞz� and α� ¼ ðBdtu þ Butd � BetutdÞ=
ðBuBdÞ. For the πþ, one can show that Jπþðk;Π2Þ ¼
Jπ−ðk;Π2Þ.
As in the case of the neutral pion, the polarization

function in Eq. (39) turns out to be divergent and has to be
regularized. Once again, this can be done within the MFIR
scheme. However, due to quantization in the 1–2 plane this
requires some care, viz. the subtraction of the B ¼ 0

contribution to the polarization function has to be carried
out once the latter has been written in terms of the squared
canonical momentum Π2, as in Eq. (39). Thus, the
regularized π− polarization function is given by

JðregÞπ− ðk;Π2Þ ¼ JðregÞπ;B¼0ðΠ2Þ þ JðmagÞ
π− ðk;Π2Þ; ð40Þ

where
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JðmagÞ
π− ðk;Π2Þ ¼ Nc

2π2

Z
∞

0

dz
Z

1

0

dy exp½−zM2 − zyð1 − yÞΠ2�
��

M2 þ 1

z
− yð1 − yÞ½Π2 − ð2kþ 1ÞBe�

�

×
�
αk−
αkþ1
þ

ð1 − tutdÞ exp½zyð1 − yÞð2kþ 1ÞBe� −
1

z

�
þ αk−1−

αkþ2
þ

ð1 − t2uÞð1 − t2dÞ½α− þ ðα− − αþÞk�

× exp½zyð1 − yÞð2kþ 1ÞBe� −
1

z

�
1

z
− yð1 − yÞð2kþ 1ÞBe

��
: ð41Þ

The integrand in Eq. (41) is well behaved in the limit
z → 0. Hence, this magnetic field-dependent contribution
is finite. On the other hand, the expression for the
subtracted B ¼ 0 piece is the same as in the π0 case,
Eq. (25), replacing q2 → Π2. Therefore, using 3D cutoff

regularization, the function JðregÞπ;B¼0 in Eq. (40) will be given
by Eq. (27).
Given the regularized polarization function, we can now

derive an equation for the π− meson pole mass in the
presence of the magnetic field. To do this, let us first
consider a pointlike pion. For such a particle, in Euclidean
space, the two-point function will vanish (i.e., the propa-
gator will have a pole) when

Π2 ¼ −m2
π− ; ð42Þ

or, equivalently, q2k ¼ −½m2
π− þ ð2kþ 1ÞeB�, for a given

value of k. Therefore, in our framework the charged pion
pole mass can be obtained for each Landau level k by
solving the equation

1

2G
− JðregÞπ− ðk;−m2

π−Þ ¼ 0: ð43Þ

While for a pointlike pion mπ− is a B-independent quantity
(the π− mass in vacuum), in the present model—which
takes into account the internal quark structure of the pion—
this pole mass turns out to depend on the magnetic field.
Instead of dealing with this quantity, it has become
customary in the literature to define the π− “magnetic
field-dependent mass” as the lowest quantum-mechanically
allowed energy of the π− meson, namely

Eπ−ðeBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π− þ ð2kþ 1ÞeBþ q23

q
jq3¼0;k¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π− þ eB
q

ð44Þ

(see e.g., Ref. [33]). Notice that this “mass” is magnetic
field dependent even for a pointlike particle. In fact, owing
to zero-point motion in the 1–2 plane, even for k ¼ 0 the
charged pion cannot be at rest in the presence of the
magnetic field.

B. Pion field redefinition and quark-meson
coupling constants

As usual, the pion field wave function has to be
redefined. In the absence of an external magnetic field
we have π⃗ðqÞ ¼ Z1=2

π
˜π⃗ðqÞ, where Zπ is usually called the

“wave function renormalization constant.” It is defined by
fixing the residue of the two-point function at the pion pole.
One has

Z−1
π ¼ g−2πqq ¼ −

∂Jπðq2Þ
∂q2

				
q2¼−m2

π

; ð45Þ

where Jπðq2Þ is the polarization function. Then, in the
vicinity of the pole, the action reads

Squadπ ≃
1

2

Z
δ ˜π⃗ð−qÞðq2 þm2

πÞδ ˜π⃗ðqÞ: ð46Þ

As expected, the energy dispersion relation is isotropic in
this context.
We consider now the situation in which the external

magnetic field is present. For the neutral pion, as shown in
Eq. (23), the polarization function JðregÞ

π0
ðq2⊥; q2kÞ depends in

a different way on perpendicular and parallel components
of q. We expand the action in Eq. (21) around the pion pole
(q⊥ ¼ 0, q2k ¼ −m2

π0
), factorize out the parallel derivative,

and redefine the pion field according to π0ðqÞ ¼ Z1=2
k π̃0ðqÞ.

This leads to

Squad
π0

≃
1

2

Z
q
δπ̃0ð−qÞ½u2

π0
q2⊥ þ q2k þm2

π0
�δπ̃0ðqÞ; ð47Þ

where we have defined

Z−1
k ¼ −

dJðregÞ
π0

dq2k

				 q2⊥ ¼ 0
q2k¼−m2

π0

≡ g−2
π0qq;

Z−1⊥ ¼ −
dJðregÞ

π0

dq2⊥

				 q2⊥ ¼ 0
q2k ¼ −m2

π0

; u2
π0

¼ Zk
Z⊥

: ð48Þ

Denoting M0ðyÞ ¼ ½M2 − yð1 − yÞm2
π0
�1=2 and MΛ

0 ðyÞ ¼
½Λ2 þM0ðyÞ2�1=2, from Eqs. (23)–(28) we obtain
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Z−1
k

4π2

Nc
¼ −2

Z
1

0

dy

�
Λ

MΛ
0 ðyÞ

þ ln

�
M0ðyÞ

ΛþMΛ
0 ðyÞ

�
−

Λ3yð1 − yÞm2
π0

2M0ðyÞ2MΛ
0 ðyÞ3

�
−
X
f

Z
∞

0

dz
Z

1

0

dye−zM0ðyÞ2yð1 − yÞ

×

��
M2 þ yð1 − yÞm2

π0
þ 2

z

��
1 −

zBf

tanhðzBfÞ
�
þ 1

z
−

zB2
f

sinh2ðzBfÞ
�

ð49Þ

and

Z−1⊥
4π2

Nc
¼ −2

Z
1

0

dy

�
Λ

MΛ
0 ðyÞ

þ ln

�
M0ðyÞ

ΛþMΛ
0 ðyÞ

�
−

Λ3yð1 − yÞm2
π0

2M0ðyÞ2MΛ
0 ðyÞ3

�

−
X
f

Z
∞

0

dz
Z

1

0

dye−zM0ðyÞ2
�
−γfðy; zÞ

�
1

z tanhðzBfÞ
þ 2Bf

sinh2ðzBfÞ
�

þ ½M2 þ yð1 − yÞm2
π0
�
�
yð1 − yÞ − γfðy; zÞ

tanhðzBfÞ
�
þ 3yð1 − yÞ

z

�
; ð50Þ

where γfðy; zÞwas defined in Eq. (24). It is seen that, owing
to the pion internal structure, the energy dispersion relation
is anisotropic in the presence of an external magnetic field.
Namely, as already stated in Ref. [8], one has

E2
π0
¼ −q24 ¼ u2

π0
q2⊥ þ q23 þm2

π0
: ð51Þ

The direct comparison of our results for the renormalization
constants with those quoted in Ref. [8] is not possible due
to the fact that different regularization procedures were
followed in each case (we use the MFIR scheme, while in
Ref. [8] an ultraviolet cutoff is introduced). However, we
have found some discrepancies between both results when
comparing the corresponding unregularized expressions.
We will come back to this point in Sec. IV.

For charged pions, the momentum in the plane
perpendicular to the external magnetic field is quantized
in Landau levels k. The energy dispersion relation reads in
this case

E2
π− ¼ −q24 ¼ ð2kþ 1ÞBe þ q23 þm2

π− : ð52Þ

The redefined (negative) charged pion field is given by
π−q̄ ¼ Z1=2

π− π̃−q̄ , where

Z−1
π− ¼ −

dJðregÞπ− ðk;Π2Þ
dΠ2

				
Π2¼−m2

π−

≡ g−2π−qq: ð53Þ

Explicitly, denoting M−ðyÞ ¼ ½M2 − yð1 − yÞm2
π− �1=2 and

MΛ
−ðyÞ ¼ ½Λ2 þM−ðyÞ2�1=2, from Eq. (41) we find

Z−1
π−

2π2

Nc
¼ −

Z
1

0

dy

�
Λ

MΛ
−ðyÞ

þ ln

�
M−ðyÞ

ΛþMΛ
−ðyÞ

�
−

Λ3yð1 − yÞm2
π−

2M−ðyÞ2MΛ
−ðyÞ3

�

þ
Z

∞

0

dz
Z

1

0

dy e−zM−ðyÞ2zyð1 − yÞ
��

M2 þ yð1 − yÞðm2
π− þ ð2kþ 1ÞBeÞ þ

2

z

�

×

�
αk−
αkþ1
þ

ð1 − tutdÞezyð1−yÞð2kþ1ÞBe −
1

z

�
−
1

z

�
1

z
− yð1 − yÞð2kþ 1ÞBe

�

þ αk−1−

αkþ2
þ

ð1 − t2uÞð1 − t2dÞ½α− þ ðα− − αþÞk
�
ezyð1−yÞð2kþ1ÞBe

�
: ð54Þ

The definitions of tu, td and α� have been given above, see
text below Eq. (39).

C. Pion-to-vacuum vector and axial vector
amplitudes and weak decay constants

In order to obtain pion-to-vacuum vector and axial vector
amplitudes, we have to “gauge” the effective action by
introducing a set of vector and axial vector gauge fields,

WV;a
μ ðxÞ and WA;a

μ ðxÞ, respectively. This is done by per-
forming the replacement

γμ∂μ → γμ∂μ − i
τa

2

X
C¼V;A

ΓC
μW

C;a
μ ðxÞ; ð55Þ

where ΓV
μ ¼ γμ and ΓA

μ ¼ γμγ5. Once this extended gauged
effective action is built, the corresponding pion-to-vacuum
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amplitudes are obtained as the derivative of this action with
respect to WC;a

μ ðxÞ and the redefined meson fields, evalu-
ated at WC;a

μ ðxÞ ¼ 0 (here C ¼ V, A and a ¼ 1, 2, 3).
Therefore, the relevant terms in the action are those linear in
the pion and gauge fields. This piece of the action can be
written as

SπW ¼
X

C¼V;A

X
σ¼0;�

Z
d4xd4x0WC;−σ

μ ðxÞFC;σ
μ ðx; x0Þδπσðx0Þ;

ð56Þ

where WC;�
μ ¼ ðWC;1

μ ∓ iWC;2
μ Þ= ffiffiffi

2
p

, WC;0
μ ≡WC;3

μ , while
the functions FC;σ

μ ðx; x0Þ are defined as

FC;0
μ ðx; x0Þ ¼ −

iNc

2

X
f

trD½SMF;f
x;x0 γ5S

MF;f
x0;x ΓC

μ �; ð57Þ

FC;−
μ ðx; x0Þ ¼ −iNctrD½SMF;d

x;x0 γ5S
MF;u
x0;x ΓC

μ �; ð58Þ

FC;þ
μ ðx; x0Þ ¼ −iNctrD½SMF;u

x;x0 γ5S
MF;d
x0;x ΓC

μ �: ð59Þ

1. Neutral pion amplitudes and form factors

As in the analysis of the π0 mass, we expand the neutral
pion field in Eq. (56) in the Fourier basis. Then, pion-to-
vacuum amplitudes read

H0
μ;Cðx; q⃗Þ ¼

1

2
h0jψ̄ðxÞΓC

μ τ
3ψðxÞjπ̃0ðq⃗Þi

¼ −
∂SπW

∂δπ̃0ðqÞ∂WC;0
μ ðxÞ

¼ −Z1=2
k

Z
d4x0eiqx0FC;0

μ ðx; x0Þ: ð60Þ

Using Eqs. (13) and (57), and taking into account that in
this case the Schwinger phases cancel out, after integrating
over x0 we get

H0
μ;Cðx; q⃗Þ ¼ Z1=2

k
iNc

2
eiqx

X
f

Z
pv
ð2πÞ4δð4Þðq − vÞ

× trD½S̃fpþγ5S̃
f
p−ΓC

μ �; ð61Þ

where, as in previous subsections, we have defined
p� ¼ p� v=2.
For convenience, we consider the linear combinations

H0;ϵ
k;Cðx; q⃗Þ ¼ H0

4;Cðx; q⃗Þ þ ϵH0
3;Cðx; q⃗Þ;

H0;ϵ
⊥;Cðx; q⃗Þ ¼ H0

1;Cðx; q⃗Þ þ iϵH0
2;Cðx; q⃗Þ; ð62Þ

where ϵ ¼ �1. Using the relations in Appendixes A and B,
after some calculation we obtain

H0;ϵ
k;Vðx; q⃗Þ ¼ −ϵq−ϵk eiqx

X
f

sf

Z
∞

0

dz
Z

1

0

dyF 0ðy; zÞ;

H0;ϵ
⊥;Vðx; q⃗Þ ¼ 0; ð63Þ

and

H0;ϵ
k;Aðx; q⃗Þ ¼ −iqϵke

iqx
X
f

Z
∞

0

dz
Z

1

0

dyF 0ðy; zÞ cothðzBfÞ;

H0;ϵ
⊥;Aðx; q⃗Þ ¼ −iqϵ⊥eiqx

X
f

Z
∞

0

dz
Z

1

0

dyF 0ðy; zÞ

×
cosh½ð2y − 1ÞzBf�

sinhðzBfÞ
; ð64Þ

where we have defined qϵk ¼ q4 þ ϵq3, qϵ⊥ ¼ q1 þ iϵq2,

and

F 0ðy; zÞ ¼ Z1=2
k

NcM
8π2

Bfe
−z½M2þyð1−yÞq2k�e−γfðy;zÞq2⊥=Bf :

ð65Þ
Now, following the notation of Ref. [41], we define the
neutral pion decay form factors by

H0;ϵ
k;Aðx; q⃗Þ ¼ −iqϵke

iqxfðA1Þ
π0

;

H0;ϵ
⊥;Aðx; q⃗Þ ¼ −iqϵ⊥eiqx½fðA1Þπ0

− ϵfðA2Þ
π0

− fðA3Þ
π0

�;
H0;ϵ

k;Vðx; q⃗Þ ¼ −ϵq−ϵk eiqxfðVÞ
π0

ð66Þ
(note that we are working in Euclidean space; therefore, the
relations H4 ¼ iH0 and q4 ¼ iq0 need to be considered
when comparing with the expressions in Ref. [41]). In this
way, for an on-shell pion in its rest frame, i.e., taking
qμ ¼ imπδμ4, the axial decay constants are given by

fðA1Þ
π0

¼ Z1=2
k

NcM
8π2

X
f

Z
∞

0

dz
Z

1

0

dy e−zM0ðyÞ2 Bf

tanhðzBfÞ
;

fðA2Þ
π0

¼ 0;

fðA3Þ
π0

¼ Z1=2
k

NcM
8π2

X
f

2Bf

Z
∞

0

dz
Z

1

0

dy e−zM0ðyÞ2γfðy; zÞ;

ð67Þ
while the vector decay constant reads

fðVÞ
π0

¼ Z1=2
k

NcM
8π2

X
f

sfBf

Z
∞

0

dz
Z

1

0

dye−zM0ðyÞ2 ; ð68Þ

where M0ðyÞ ¼ ½M2 − yð1 − yÞm2
π0
�1=2 and γfðy; zÞ is

defined in Eq. (24). It is seen that fðA2Þ
π0

vanishes, as
indicated from the general analysis in Ref. [41]. Thus,
we find that in the presence of the external magnetic field
there are in general two axial and one vector nonvanishing
form factors for the neutral pion. Notice that in the chosen
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frame both H0;ϵ
⊥;V and H0;ϵ

⊥;A are zero, hence fðA3Þ
π0

will not
contribute to the amplitudes.
It can be easily seen that fðA3Þ

π0
and fðVÞ

π0
are finite and

vanish in the B → 0 limit. On the contrary, the expression

for fðA1Þ
π0

in Eq. (67) is divergent. It can be regularized in the
context of the MFIR scheme, i.e., subtracting the corre-
sponding divergent contribution in the B ¼ 0 limit and

adding it in a regularized form, fðregÞ
π0;B¼0

. One has

fðA1Þ;ðregÞ
π0

¼ fðregÞ
π0;B¼0

þ fðA1Þ;ðmagÞ
π0

; ð69Þ

where

fðA1Þ;ðmagÞ
π0

¼ Z1=2
k

NcM
8π2

X
f

Bf

Z
∞

0

dz
Z

1

0

dye−zM0ðyÞ2

×

�
1

tanhðzBfÞ
−

1

zBf

�
: ð70Þ

The divergent B ¼ 0 piece,

fπ;B¼0 ¼ Z1=2
π

NcM
4π2

Z
∞

0

dz
Z

1

0

dx
z
e−zM0ðyÞ2 ; ð71Þ

can be regularized using a 3D momentum cutoff scheme, as
done in the previous subsections. One has in this way

fðregÞ
π0;B¼0

¼ −2Z1=2
k NcMI2ð−m2

π0
Þ; ð72Þ

where I2 is given by Eq. (28). Note that we do not take the
B → 0 limit in Zk (strictly, one should first regularize the
form factor and then redefine the pion wave function).
Finally, we find it convenient to define “parallel” and

“perpendicular” axial decay constants fðAkÞ
π0

and fðA⊥Þ
π0

,

given in terms of fðA1Þ;ðregÞ
π0

and fðA3Þ
π0

according to

fðAkÞ
π0

¼ fðA1Þ;ðregÞ
π0

; fðA⊥Þ
π0

¼ fðA1Þ;ðregÞ
π0

− fðA3Þ
π0

: ð73Þ

Our expressions for the π0 decay constants, taken before
any regularization scheme is applied, can be compared with
those obtained in Ref. [8]. Although, as mentioned in the
previous subsection, we have found some discrepancies in

the results for the renormalization constants, it can be

checked that the ratios fðAkÞ
π0

=gπ0qq and fðA⊥Þ
π0

=gπ0qq are in
agreement with those quoted in Ref. [8], once different
notations have been properly compatibilized.

2. Charged pion amplitudes and form factors

As in the case of the polarization functions, we expand
the charged pion fields using Eq. (31). Since the charged
decay constants are real and equal for both charged pions
(we use the conventions in Ref. [41]), it is sufficient to
consider the π− hadronic amplitudes

H−
μ;Cðx; q̆Þ ¼ h0jψ̄ΓC

μ τ
þψ jπ̃−ðq̆Þi ¼ −

ffiffiffi
2

p ∂SπW
∂δπ̃−q̄∂WC;þ

μ ðxÞ

¼ −
ffiffiffi
2

p
Z1=2
π−

Z
x0
F−
q̄ ðx0ÞFC;−

μ ðx; x0Þ; ð74Þ

where q̄ and q̆ are defined as in Eq. (32), with
q4 ¼ iEπ− ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π− þ ð2kþ 1ÞeBþ q23
p

. From Eqs. (13)
and (58) we have

H−
μ;Cðx; q̆Þ ¼ i

ffiffiffi
2

p
NcZ

1=2
π−

Z
d4x0F−

q̄ ðx0Þei½Φdðx;x0ÞþΦuðx0;xÞ�

×
Z
pv

eivðx−x0ÞtrD½S̃dpþγ5S̃
u
p−ΓC

μ �: ð75Þ

For convenience, as in the π0 case we concentrate on the
linear combinations H−;ϵ

k;C and H−;ϵ
⊥;C, which are defined in a

similar way as in Eq. (62). The expression in Eq. (75) can
be worked out integrating first over x0. This leads to

H−
μ;Cðx; q̆Þ ¼ i

ffiffiffi
2

p
NcZ

1=2
π−

4πNk

Be
eiq2x2eiqkxk

×
Z
pv⊥

trD½S̃dpþγ5S̃
u
p−ΓC

μ �jvk¼qke
iv1ðx1−x01Þ

×Dkð
ffiffiffiffiffiffiffiffi
2Be

p
x01þ

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2Þjx0

1
¼−x1þ2ðv2−q2Þ=Be

;

ð76Þ
where for definiteness we have taken B > 0. The relevant
integrals over p and v⊥ can be calculated using the
expressions for the traces quoted in Appendix A and the
relations in Appendix B. After some algebra one arrives at

H−;ϵ
k;Vðx; q̆Þ ¼ −ϵ

ffiffiffi
2

p
q−ϵk F−

q̄ ðxÞZ1=2
π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y; q2kÞðtu − tdÞ;

H−;ϵ
⊥;Vðx; q̆Þ ¼ 0;

H−;ϵ
k;Aðx; q̆Þ ¼ −i

ffiffiffi
2

p
qϵkF

−
q̄ ðxÞZ1=2

π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y; q2kÞð1 − tutdÞ;

H−;ϵ
⊥;Aðx; q̆Þ ¼ ϵ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beð2kþ 1þ ϵÞ

p
F−
q̄þϵðxÞZ1=2

π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y; q2kÞ
�
α−
αþ

�
ϵ

ð1þ ϵtuÞð1þ ϵtdÞ; ð77Þ
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where

F−ðz; y; q2kÞ ¼
NcM
4π2

αk−
αkþ1
þ

e−z½M
2þyð1−yÞq2k�; ð78Þ

and tu, td and α� are defined as in the text below Eq. (39).
We have also introduced the shorthand notation q̄þ ϵ ¼
ðkþ ϵ; q2; q3; q4Þ.
As in the case of the neutral pion, we follow the notation

of Ref. [41], defining the charged pion decay constants by

H−;ϵ
k;Vðx; q̆Þ ¼ −ϵ

ffiffiffi
2

p
fðVÞπ− q−ϵk F−

q̄ ðxÞ;
H−;ϵ

k;Aðx; q̆Þ ¼ −i
ffiffiffi
2

p
fðA1Þπ− qϵkF

−
q̄ ðxÞ;

H−;ϵ
⊥;Aðx; q̆Þ ¼ ϵ

ffiffiffi
2

p
½fðA1Þπ− þ ϵfðA2Þπ− − fðA3Þπ− �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Beð2kþ 1þ ϵÞ

p
F−
q̄þϵðxÞ ð79Þ

where qϵk ¼ q4 þ ϵq3. From Eqs. (77) and (79) we obtain

fðA1Þπ− ¼ Z1=2
π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y;−E2
π−Þð1 − tutdÞ;

fðA2Þπ− ¼ Z1=2
π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y;−E2
π−Þ

×

�
α−
2αþ

ð1þ tuÞð1þ tdÞ −
αþ
2α−

ð1 − tuÞð1 − tdÞ
�
;

fðA3Þπ− ¼ Z1=2
π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y;−E2
π−Þ

�
1 − tutd

−
α−
2αþ

ð1þ tuÞð1þ tdÞ −
αþ
2α−

ð1 − tuÞð1 − tdÞ
�
;

fðVÞπ− ¼ Z1=2
π−

Z
∞

0

dz
Z

1

0

dyF−ðz; y;−E2
π−Þðtu − tdÞ: ð80Þ

Note that the form factors have a dependence on k and Be
that has been omitted to abbreviate the notation. In the

B → 0 limit we have Zπ− → Zπ and fðA1Þπ− → fπ;B¼0, which

is given by Eq. (71). Meanwhile, fðA2Þπ− , fðA3Þπ− and fðVÞπ− are
finite and vanish in the limit B → 0. Therefore, as expected,
both neutral and charged pion weak form factors tend to the
usual pion decay constant in the absence of the exter-
nal field.
Once again, the expression for fðA1Þπ− in Eq. (80) is

divergent and needs to be regularized. Using a 3D cutoff
within the MFIR scheme, the regularized expression reads

fðA1Þ;ðregÞπ− ¼ fðregÞπ−;B¼0 þ fðA1Þ;ðmagÞ
π− ; ð81Þ

where

fðA1Þ;ðmagÞ
π− ¼ Z1=2

π−
NcM
4π2

Z
∞

0

dz
Z

1

0

dye−zM−ðyÞ2

×

�
αk−
αkþ1
þ

ð1 − tutdÞezyð1−yÞð2kþ1ÞBe −
1

z

�
; ð82Þ

with M−ðyÞ ¼ ½M2 − yð1 − yÞm2
π− �1=2, and

fðregÞπ−;B¼0 ¼ −2Z1=2
π− NcMI2ð−m2

π−Þ; ð83Þ

with I2ðq2Þ given by Eq. (28).
As in the case of the neutral pion, we find it convenient to

introduce parallel and perpendicular π− axial decay form
factors. Thus, we define one parallel and two perpendicular
decay constants, according to

fðAkÞπ− ¼ fðA1Þ;ðregÞπ− ; fðA⊥�Þ
π− ¼ fðA1Þ;ðregÞπ− � fðA2Þπ− − fðA3Þπ− :

ð84Þ

It is worth noticing that if the pion lies on the lowest
Landau level, i.e., k ¼ 0, from Eq. (79) one has
H−;−

⊥;Aðx; q̆Þ ¼ 0, hence in that case the π− weak decay

amplitude will not depend on fðA⊥−Þ
π− [in fact, strictly

speaking, for k ¼ 0 one cannot determine fðA⊥−Þ
π− from

Eqs. (77) and (79)].
The πþ decay constants can be obtained following a

similar procedure. As stated in Ref. [41], one can check that

fðiÞπþ ¼ fðiÞπ− , where i ¼ V, A1, A2, A3. We recall that the
above expressions correspond to the case B > 0. By
changing B → −B one can see that

fðVÞ
π� ðk; BÞ ¼ −fðVÞ

π� ðk;−BÞ;
fðAjÞ
π� ðk; BÞ ¼ fðAjÞ

π� ðk;−BÞ; j ¼ 1; 2; 3: ð85Þ

III. CHIRAL LIMIT RELATIONS

It is interesting to discuss the relations satisfied by the
quantities studied in the previous section in the chiral limit,
i.e., for m0 → 0. First, it should be stressed that even in the
presence of an external magnetic field, the neutral pion
remains being a pseudo-Nambu-Goldstone (NG) boson.
This can be shown by taking into account the polariza-

tion function JðregÞ
π0

ðq2k; q2⊥Þ evaluated at q2k ¼ q2⊥ ¼ 0.

After integration by parts it is seen that JðmagÞ
π0

ð0; 0Þ ¼
2NcIðmagÞ, where IðmagÞ is given by Eq. (19). Hence, from
Eqs. (18), (20) and (27) one gets

JðregÞ
π0

ð0; 0Þ ¼ 2NcIðregÞ: ð86Þ

Now, taking into account this result together with the
(regularized) gap equation (17), in the chiral limit one gets

JðregÞ
π0

ð0; 0Þch ¼ 1=ð2GÞ, which implies mπ0;ch ¼ 0. In this
way, associated chiral relations are expected to hold even
for nonzero B.
From the expressions for the renormalization constants,

Eqs. (49) and (50), and the axial form factors, Eq. (67), it is
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seen that the parallel and perpendicular axial decay con-
stants for the π0 meson introduced in Eq. (73) satisfy the
generalized Goldberger-Treiman relations

gπ0qqf
ðAkÞ
π0

¼ Mch þOðm2
π0
Þ; ð87Þ

gπ0qqf
ðA⊥Þ
π0

¼ u2
π0;chMch þOðm2

π0
Þ: ð88Þ

Thus, in the chiral limit one has

fðA⊥Þ
π0;ch

¼ u2
π0;chf

ðAkÞ
π0;ch

: ð89Þ

In fact, this equation can be readily obtained from a general
effective low energy action for NG bosons in the presence
of a magnetic field; see e.g., Ref. [44]. Making use of
Eq. (87), together with the gap equation, one obtains the
generalized Gell-Mann-Oakes-Renner relation

ðm2
π0
fðAkÞ
π0;ch

Þ2 ¼ −
m0

2
hūuþ d̄dich; ð90Þ

where we have taken into account that in our model
the averaged quark condensate satisfies hūuþ d̄di=2 ¼
−Mch=ð2GÞ þOðm0Þ. Note that a similar relation can be

found for fðA⊥Þ
π0;ch using Eq. (89).

It is also interesting to consider the expression for fðVÞ
π0

in
the chiral limit. From Eqs. (68) and (87) it is seen that for
m0 → 0 one has

fðVÞ
π0;ch

¼ eB

8π2fðAkÞ
π0;ch

: ð91Þ

It is worth noticing that this result can be obtained from
the anomalous Wess-Zumino-Witten (WZW) effective
Lagrangian [45]. The WZW term that couples a neutral
pion to an electromagnetic field and a vector field WV;3

μ is
given by

LWZW jπ0AWV ¼ iNce
48π2fπ

π0ϵμναβ∂μW
V;3
ν Fαβ; ð92Þ

where ϵ4123 ¼ 1. If one identifies the constant fπ in this

effective Lagrangian with fðAkÞ
π0

, and the electromagnetic
field tensor with the external magnetic field (F12 ¼
−F21 ¼ B), taking into account the definitions in
Eq. (66) one arrives at the chiral relation in Eq. (91).
In the case of charged pions, the presence of an external

magnetic field leads to the explicit breakdown of chiral
symmetry and, in general, π� cannot be identified with NG
bosons. However, chiral relations should be recovered in
the limit of low eB. In particular, the coupling of charged
pions to the magnetic field and an external vector current
arising from the WZW Lagrangian has the same form of

Eq. (92), taking the i ¼ 1, 2 isospin components of the
fields πi and WV;i

ν .

IV. NUMERICAL RESULTS

To obtain some numerical results for the different pion
properties one has to fix the model parametrization. Here,
as done in Ref. [16], we take the parameter set m0 ¼
5.66 MeV, Λ ¼ 613.4 MeV and GΛ2 ¼ 2.250, which
(for vanishing external field) corresponds to an effective
mass M ¼ 350 MeV and a quark-antiquark condensate
hf̄fi0 ¼ ð−243.3 MeVÞ3. This parametrization, denoted
as set I, properly reproduces the empirical values of the
pion mass and decay constant in vacuum, namely mπ ¼
138 MeV and fπ ¼ 92.4 MeV. It also provides a very good
agreement with the results from lattice QCD quoted in
Ref. [29] for the normalized average condensate ΔΣ̄ðBÞ
[16]. To test the sensitivity of our results to the model
parametrization we have also considered two alternative
parameter sets, denoted as set II and set III, which also
reproduce the phenomenological values of mπ and fπ in
vacuum, and lead to effective masses M ¼ 320 and
380 MeV, respectively.

A. Neutral pion

In Fig. 1 we show our numerical results for the quantities
associated with the neutral pion as functions of eB. Solid
lines correspond to the results from set I, while the limits of
the grey band correspond to those from set II (dashed lines)
and set III (dotted lines). We observe that the qualitative
behavior of all calculated quantities remains basically
unaffected by changes in the model parameters within
phenomenologically reasonable limits. The results for the
pion mass, shown in Fig. 1(a), have already been given in
Ref. [16], and are included here just for completeness. It is
seen that the mass shows a slight decrease with eB, which is
also in agreement with the analysis in Refs. [9,10]. Some
lattice simulations using Wilson fermions [33] seem to
favor a somewhat larger decrease of mπ0 as the magnetic
field increases. In these simulations, however, a heavy pion
with mass mπð0Þ ¼ 415 MeV in vacuum has been con-
sidered. It is interesting to note that in the framework of
NJL-like models some enhancement of the decrease can be
obtained either by assuming a magnetic field dependent
coupling constant [10] or by considering nonlocal inter-
actions [13].
In Fig. 1(b) we plot the coupling constant gπ0qq and the

directional refraction index uπ0 , given by Eqs. (48) and
(49). We observe that gπ0qq shows some enhancement if B
is increased. On the other hand, uπ0 decreases monoto-
nously with eB, remaining always lower than one. These
results are consistent with those obtained in Refs. [46,47].
It should be also noticed that uπ0 is basically insensitive to
the parametrization. In fact, it is kept almost unchanged if
one takesm0 → 0, which implies that for nonzero B neutral
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pions move at a speed lower than the speed of light even in
the chiral limit. We notice that, on the contrary, in Ref. [8] it
is found that uπ0 > 1. It is unclear to us whether this
different behavior is due to the already mentioned discrep-
ancies in the expressions for the renormalization constants
or to the different procedures chosen for the regularization.
Our results for the neutral axial decay constants are

shown in Fig. 1(c). Starting from a common value at B ¼ 0,

it is seen that while fðAkÞ
π0

gets enhanced for increasing eB,

fðA⊥Þ
π0

gets reduced. In both cases the B dependence is
stronger than for the other quantities discussed previously.

Note that our results indicate that fðA⊥Þ
π0

< fðAkÞ
π0

for all
considered values of eB, which differs from the result in
Ref. [8]. This seems to be related to the fact that, as stated,
in that paper uπ0 > 1 is obtained. Finally, in Fig. 1(d) we

show the behavior of fðVÞ
π0

as a function of eB. It is seen that,
starting from 0 at eB ¼ 0, the vector decay constant grows
with eB, reaching a value comparable to the average of the

axial decay constants fðAkÞ
π0

and fðA⊥Þ
π0

at eB ∼ 1 GeV2.
It is interesting to notice that the numerical results given

above (which have been obtained from parametrization sets

leading to mπ0 ¼ 138 MeV at B ¼ 0) satisfy quite well the
chiral limit relations in Eqs. (87)–(91). In fact, it is found
that all these relations are satisfied at a level of less than 1%
for all considered values of eB.
To conclude this subsection, in Fig. 2 we show a

comparison between our results for the axial decay
constants, normalized to the value at B ¼ 0, and the
results obtained in Refs. [13,20]. Those works are based
on a nonlocal NJL model (nlNJL), dashed-dotted line in
the figure, and on the functional renormalization group
approach to the quark-meson model (rgQMM), red

squares, respectively. We see that in the case of fðAkÞ
π0

our results are somewhat below those obtained within the
rgQMM. This is likely to be correlated with the fact that in
that approach the π0 mass shows a stronger decrease as the
magnetic field increases. A similar trend is found for

fðA⊥Þ
π0

, although in this case the difference with the
rgQMM calculation of Ref. [20] is somewhat smaller. It

should be mentioned that additional calculations for fðAkÞ
π0

have been carried out using ChPT [22] and within the
effective chiral confinement Lagrangian approach [27].
The latter shows a behavior similar to that of the nlNJL

(a) (b)

(c) (d)

FIG. 1. Neutral pion properties as functions of eB. Solid lines correspond to set I, while the limits of the gray bands correspond to set II
(dashed lines) and set III (dotted lines).
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model considered in Ref. [13], while ChPT results,
trustable for values of the magnetic field up to say
eB ∼ 0.1 GeV2, are found to be in reasonable agreement
with our curves.

B. Charged pions

In Fig. 3 we show our numerical results for the quantities
associated with charged pions, in the lowest Landau level
(LLL), as functions of eB. As in the previous subsection,
solid lines indicate the results for parameter set I, while the
limits of the gray bands correspond to set II (dashed lines)
and set III (dotted lines). From the figure it is observed
that, as in the case of the π0, the qualitative behavior of
all calculated quantities is not significantly affected by
changes in the model parametrization within the considered
limits. In Fig. 3(a) we quote the results for the magnetic
field-dependent charged pion mass, see Eq. (44), which
have already been presented in Ref. [16]. They are included
here just for completeness. As discussed in Ref. [16], our
results are in fair agreement with those obtained from
LQCD [33], once the current quark mass is increased so
that mπþðB ¼ 0Þ matches the value of the pion mass
considered in lattice calculations. In Fig. 3(b) we quote
the curves corresponding to the coupling constant gπ−qq as a
function of eB. It can be seen that they are quite similar
to those obtained for the neutral pion in Fig. 1(b). The
behavior of the axial decay constants is shown in Fig. 3(c).

We choose to plot fðAkÞπ− (also denoted as fðA1Þ;ðregÞπ− ) and the

(a) (b)

(c) (d)

FIG. 3. Charged pion decay properties as functions of eB. Solid lines correspond to set I, while the limits of the gray bands correspond
to set II (dashed lines) and set III (dotted lines).

FIG. 2. Neutral pion decay constants as functions of eB for
various models.
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combination fðA⊥þÞ
π− ¼ fðA1Þ;ðregÞπ− þ fðA2Þπ− − fðA3Þπ− , since, as

discussed in Sec. II, if the pion lies on the LLL these are the
only relevant form factors for the evaluation of the matrix
elements of the axial current. From the figure it is observed

that fðAkÞπ− shows a slight growth with eB, lower than that of

fðAkÞ
π0

[see Fig. 1(c)]. On the other hand, fðA⊥þÞ
π− exhibits a

strong increase with eB, reaching a magnitude of about
180 MeV for eB ¼ 1 GeV2. Finally, in Fig. 3(d) we plot

fðVÞπ− as a function of the magnetic field. Its behavior is

similar to that of fðVÞ
π0

, shown in Fig. 1(d).
In the framework of lattice QCD, some results for fðAkÞπ−

and fðVÞπ− in the presence of an external magnetic field have
been presented recently [40]. Although errors are still
relatively large, it can be seen that beyond the first lattice

data points fðAkÞπ− shows an overall increase with the
magnetic field, in qualitative agreement with our results.
On the other hand, a continuum extrapolation seems to

indicate that fðAjjÞπ− starts out with a negative slope, which

differs from the case of fðAkÞ
π0

. We find this result difficult to
understand, since the decay constants of charged and
neutral pions should behave similarly [22] for very small
values of eB. In addition, in Ref. [28] the magnetic field

dependence of fðAkÞπ− has been analyzed in the context of
QCD sum rules. In comparison with our results, their
analysis shows a steeper enhancement with B, leading to

fðAkÞπ− ∼ 0.17 GeV for eB ¼ 1 GeV2. In any case, it should
be stressed that our results show that, as expected, the
Goldberger-Treiman and Gell-Mann-Oakes-Renner rela-
tions for charged pions [i.e., the equivalent to Eqs. (87)
and (90), obtained for neutral mesons] are violated for

eB≳m2
π , for both fðAkÞπ− and fðA⊥þÞ

π− .
To conclude, let us make an additional comment on the

magnetic field dependences of the decay constants. In the
chiral limit, it can be seen that for low values of eB

the difference fðA2Þπ− − fðA3Þπ− is given by

fðA2Þπ−;ch − fðA3Þπ−;ch ¼
eB

8π2fðAkÞπ−;ch

�
1 −

7eB
45M2

ch

þ…

�
: ð93Þ

On the other hand, in the case of fðVÞπ− , for low values of the
magnetic field a relation similar to Eq. (91) is expected
to be satisfied in the chiral limit. From our numerical
calculations we find quite remarkable that relations of the
same form, i.e.,

fðA2Þπ− − fðA3Þπ− ¼ eB

8π2fðAkÞπ−

�
1 −

7eB
45M2

�
ð94Þ

and

fðVÞπ− ¼ eB

8π2fðAkÞπ−
; ð95Þ

are in fact approximately valid also for large external
magnetic fields. Indeed, although in the presence of the
magnetic field the π− cannot be considered a pseudo-

Goldstone boson, we find that fðA2Þπ− − fðA3Þπ− and fðVÞπ− can be
approximated by the expressions in Eqs. (94) and (95)
within 15% and 10% accuracy, respectively, for values of
eB up to 1 GeV2. It would be interesting to verify if
equivalent relations also arise within other theoretical
approaches to low energy hadron physics.

V. SUMMARY AND CONCLUSIONS

In this work we have considered the approach introduced
in Ref. [16] for the study of pion masses, extending the
calculations to other properties of neutral and charged
pions. Such an approach is based on the usage of the
Nambu-Jona-Lasinio effective model for low energy QCD
dynamics, in which pions are treated as quantum fluctua-
tions in the random phase approximation. While for the π0

one can take the usual momentum basis to diagonalize the
corresponding polarization functions, this is not possible in
the case of charged pions, due to the presence of non-
vanishing contributions from Schwinger phases. Therefore,
to diagonalize the charged pion polarization function we
use a method based on the Ritus eigenfunction approach to
magnetized relativistic systems. Since the NJL model is not
renormalizable, the calculation of observables requires an
appropriate regularization scheme in order to deal with
ultraviolet divergences. Here, we have used the magnetic
field independent regularization procedure, in which only
divergent vacuum contributions to quantities at zero exter-
nal magnetic field are regularized. This scheme has been
shown to provide more reliable predictions in comparison
with other regularization methods often used in the liter-
ature [39]. Within the framework just described, we have
concentrated in particular on the analysis of the quark-
meson coupling constants, the neutral pion directional
refraction index uπ0 , and the form factors associated with
pion-to-vacuum matrix elements of the vector and axial
vector hadronic currents.
In the case of the neutral pion we find that while the

coupling constant gπ0qq shows some enhancement if the
external magnetic field is increased, uπ0 decreases monoto-
nously with eB, remaining always lower than one. We have
checked that uπ0 is kept almost unchanged if one takes
m0 → 0, which implies that, contrary to the result obtained
in Ref. [8], for nonzero B neutral pions move at a speed
lower than the speed of light even in the chiral limit.
Concerning the study of pion-to-vacuum amplitudes, in
agreement with previous analyses [7,20,41,44] we find that
for the π0, in the presence of the external magnetic field,
there are in general two axial nonvanishing form factors,

namely fðAkÞ
π0

and fðA⊥Þ
π0

. Moreover, as discussed in
Ref. [41], the vector hadronic current is also found to be

nonvanishing, and an additional vector form factor fðVÞ
π0

can
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be defined. We have verified that in the chiral limit these
quantities satisfy some relations. In fact, apart from the
well-known generalized Goldberger-Treiman and Gell-

Mann-Oakes-Renner equations for fðAkÞ
π0

(see e.g.,

Ref. [21]), we show that in that limit the relations fðA⊥Þ
π0

¼
u2
π0
fðAkÞ
π0

and fðVÞ
π0

¼ eB=ð8π2fðAkÞ
π0

Þ hold. The first of these
equations follows from the expressions quoted in Ref. [8]
and can also be derived in the context of ChPT. On the other
hand, the second one can be related to the anomalous Wess-
Zumino-Witten effective lagrangian, and—to the best of
our knowledge—has not been previously stated in the
literature. Our numerical results for the neutral axial decay
constants indicate that, starting from a common value at

B ¼ 0, fðAkÞ
π0

gets enhanced for increasing eB, while fðA⊥Þ
π0

gets reduced. We see that in the case of fðAkÞ
π0

our results are
somewhat below those obtained in Refs. [13,20]. This is
likely to be correlated with the fact that in those approaches
the π0 mass shows a stronger decrease as the magnetic field

increases. A similar trend is found for fðA⊥Þ
π0

, although in
this case the difference with the calculation of Ref. [20] is
somewhat smaller. It is interesting to notice that the
numerical results for the form factors, obtained for model
parameters leading to a physical B ¼ 0 pion mass, satisfy
chiral limit relations in Eqs. (87)–(91) quite well (that is,
within 1% for all considered values of eB).
For the charged pions we find that the B dependence of

the corresponding quark-meson coupling constant is quite
similar to the one found in the case of the π0. Concerning
the axial form factors, we see that while in general three
decay constants can be defined [13], only two linear

combinations of them, fðAkÞπ− and fðA⊥þÞ
π− , are physically

relevant for charged pions in their lowest energy state. As in
the case of the π0, we find that there is also a vector form

factor fðVÞπ− that can be nonvanishing [13,40]. Our numerical

results indicate that while fðAkÞπ− shows a rather slight growth

with the magnetic field (somewhat lower than that of fðAkÞ
π0

),

fðA⊥þÞ
π− exhibits a stronger increase with eB, reaching a

magnitude of about 180 MeV for eB ¼ 1 GeV2. Finally, it
is seen that for eB≲ 1 GeV2 the decay constants for the
charged pion satisfy approximate relations that are equiv-
alent to those obtained in the chiral limit for low values of
the magnetic field.
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APPENDIX A: DIRAC TRACES

In this appendix we provide the explicit form of the Dirac
traces that appear in the calculation of the pion two-point
functions and the pion-to-vacuum matrix elements. In all
cases we use the Schwinger form of the propagators, with
S̃fp given by Eq. (15). As in the main text, we separate the
four-vectors into parallel and perpendicular two-vectors,
e.g., p⊥ ¼ ðp1; p2Þ, pk ¼ ðp3; p4Þ.
The traces appearing in the two-point functions can be

written as

trD½S̃f1pþγ5S̃
f2
p−γ5� ¼

Z
∞

0

dτ
Z

∞

0

dτ0

× exp ½−τϕf1ðτ; pþÞ − τ0ϕf2ðτ0; p−Þ�T5;

ðA1Þ
where

ϕfiðτ; p�Þ ¼ M2 þ p�
k
2 þ tfi

τBf
p�⊥2; ðA2Þ

with tfi ¼ tanhðτBfiÞ. Writing p� ¼ p� v=2, from
Eq. (15) one has

T5 ¼ 4

��
M2 þ p2

k −
v2k
4

�
ð1þ sf1sf2tf1t

0
f2
Þ

þ ð1 − t2f1Þð1 − t0f2
2Þ
�
p2⊥ −

v2⊥
4

��
; ðA3Þ

where t0fi ¼ tanhðτ0BfiÞ. Similarly, for the traces appearing
in the analysis of the pion-to-vacuum matrix elements we
write

trD½S̃f1pþγ5S̃
f2
p−ΓC

μ � ¼
Z

∞

0

dτ
Z

∞

0

dτ0

× exp ½−τϕf1ðτ; pþÞ− τ0ϕf2ðτ0; p−Þ�TC
μ :

ðA4Þ
Taking into account the linear combinations relevant for our
calculations, we find

TV;ϵ
k ¼ TV

4 þ ϵTV
3 ¼ −4iMðv3 − ϵv4Þðsf1tf1 þ sf2t

0
f2
Þ;
ðA5Þ

TA;ϵ
k ¼ TA

4 þ ϵTA
3 ¼ −4Mðv4 þ ϵv3Þð1þ sf1sf2tf1t

0
f2
Þ;
ðA6Þ

TV;ϵ
⊥ ¼ TV

1 þ ϵiTV
2 ¼ 0; ðA7Þ
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TA;ϵ
⊥ ¼ TA

1 þ ϵiTA
2 ¼ −4M

�
ðp1 þ ϵip2Þ½ð1 − t2f1Þð1þ ϵsf2t

0
f2
Þ − ð1 − t2f2Þð1 − ϵsf1tf1Þ�

þ 1

2
ðv1 þ ϵiv2Þ½ð1 − t2f1Þð1þ ϵsf2t

0
f2
Þ þ ð1 − t0f2

2Þð1 − ϵsf1tf1Þ�
�
: ðA8Þ

APPENDIX B: INTEGRALS OVER INTERNAL MOMENTA

The integrals in Eqs. (37) and (76) can be performed using the properties of the cylindrical parabolic functions DkðxÞ.
We need to calculate

Iλ ¼
Z
pv⊥

e−τϕf1
ðτ;pþÞe−τ

0ϕf2
ðτ0;p−Þeiv1ðx1−x01ÞDkð

ffiffiffiffiffiffiffiffi
2Be

p
x01 þ

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q02ÞTλ; ðB1Þ

where Tλ stands for the functions T5, T
C;ϵ
k and TC;ϵ

⊥ in Appendix A.

The integrals over pk can be easily obtained from the relations

Z
pk
e−aðpkþvk=2Þ2e−bðpk−vk=2Þ2 ¼ 1

4πðaþ bÞ e
− ab
aþbv

2
k ;

Z
pk

�
p2
k −

v2k
4

�
e−aðpkþvk=2Þ2e−bðpk−vk=2Þ2 ¼ 1

4πðaþ bÞ2
�
1 −

ab
aþ b

v2k

�
e−

ab
aþbv

2
k : ðB2Þ

These expressions can be also applied for the integrals over p⊥. For the case of TA;ϵ
⊥ we also need

Z
p⊥
ðp1 þ ϵip2Þe−aðp⊥þv⊥=2Þ2−bðp⊥−v⊥=2Þ2 ¼ −

1

8π
ðv1 þ ϵiv2Þ

ða − bÞ
ðaþ bÞ2 e

− ab
aþbv

2⊥ : ðB3Þ

On the other hand, the integrals over v⊥ can be obtained taking into account the following useful relations. Defining

Dkðx1; q2; v⊥Þ ¼ Dkð
ffiffiffiffiffiffiffiffi
2Be

p
x01 þ

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2Þeiv1ðx1−x01Þjx0

1
¼−x1þ2ðv2−q2Þ=Be

; ðB4Þ

one has

Z
v⊥

Dkðx1; q2; v⊥Þe−γv2⊥ ¼ Be

4π

ð1 − γBeÞk
ð1þ γBeÞkþ1

Dkð
ffiffiffiffiffiffiffiffi
2Be

p
x1 þ

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2Þ;

Z
v⊥
ðv1 þ ϵiv2ÞDkðx1; q2; v⊥Þe−γv2⊥ ¼ iϵ

ffiffiffi
2

p
B3=2
e

4π

�
1 − γBe

1þ γBe

�
kþϵ kð1−ϵÞ=2

ð1þ γBeÞð1 − ϵγBeÞ
Dkþϵð

ffiffiffiffiffiffiffiffi
2Be

p
x1 þ

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2Þ;

Z
v⊥

v2⊥Dkðx1; q2; v⊥Þe−γv2⊥ ¼ B2
e

4π

ð1 − γBeÞk−1
ð1þ γBeÞkþ2

ð1 − γBe þ 2kÞDkð
ffiffiffiffiffiffiffiffi
2Be

p
x1 þ

ffiffiffiffiffiffiffiffiffiffi
2=Be

p
q2Þ: ðB5Þ
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