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Highlights 

 

 Mechanistic models are limited by the need to have appropriate assumption about the 

phenomena 

 Hybrid model learns unknown phenomena in flexibly and in an un-biased manner 

from data, using neural network. 

 Subsequently, they show 2-3 times higher accuracy compared to industrial benchmark 

in interpolation and extrapolation  

 Errors made by hybrid model are close to the analytical errors made in target 

quantification 

 Tailored hybrid models generate representations for the underlying principles 

 

Abstract 

The biopharmaceutical industries are continuously faced with the pressure to reduce the 

development costs and accelerate development time scales. The traditional approach of 

heuristic-based or platform process-based optimization is soon getting obsolete, and more 

generalized tools for process development and optimization are required to keep pace with 

the emerging trends. Thus, advanced model-based methods that can reduce the can ensure 

accelerated development of robust processes with minimal experiments are necessary. 

Though mechanistic models for chromatography are quite popular, their success is limited by 

the need to have accurate knowledge of adsorption isotherms and mass transfer kinetics. As 

an alternative, in this work, a hybrid modeling approach is proposed. Thereby, the 

chromatographic unit behavior is learned by a combination of neural network and 

mechanistic model while fitting suitable experimental breakthrough curves. Since this 

approach does not require identifying suitable mechanistic assumptions for all the 

phenomena, it can be developed with lower effort. Thus, allowing the scientists to 

concentrate their focus on process development. The performance of the hybrid model is 

compared with the mechanistic Lumped kinetic Model for in-silico data and experiments 

conducted on a system of industrial relevance. The flexibility of the hybrid modeling 

approach results in about three times higher accuracies compared to Lumped Kinetic Model. 

This is validated for five different isotherm models used to simulate data, with the hybrid 

model showing about two to three times lower prediction errors in all the cases. Not only in 

prediction, but we could also show that the hybrid model is more robust in extrapolating 

                  



 3 

across process conditions with about three times lower error than the LKM. Additionally, it 

could be demonstrated that an appropriately tailored formulation of the hybrid model can be 

used to generate representations for the underlying principles such as adsorption equilibria 

and mass transfer kinetics.   

Keywords: Hybrid Models, Chromatography, Capture, Artificial Neural Network 

 

 

 

 

 

 

 

 

 

1. Introduction 

The progress in molecular engineering and upstream processing (USP) [1] has respectively 

led to increased diversity of therapeutic formats and the titers. Subsequently, downstream 

processing (DSP) is currently the bottleneck of biomanufacturing [2]. DSP is dominated by 

chromatographic processes [3,4] whose development is still not sufficiently efficient or 

streamlined [5]. Most process development relies on heuristics and platform processes, which 

are suitable only for a limited range of biologics, such as the widely investigated monoclonal 

antibodies (mAbs) [6]. A more generalized procedure for chromatographic process 

development is required to keep pace with the advancements in molecular and USP 

technologies.  Due to the lacking of a-priori knowledge about the process and product, 

experimental approaches are required to characterize the system [6]. Trial-and-error and 

investigating all variables one by one are inefficient methods and, thus, attention towards 

high throughput screening systems and experimental design is increasing [7–12].  

In this context, mathematical models can immensely reduce the number of experiments to be 

performed and can strategically guide process development and optimization [13][6], 

resulting in accelerated development time scales and robust processes. Furthermore, 

mathematical models are promising tools to support scale-up [14] as well as operation in the 

manufacturing phase. In combination with UV or Raman sensors, they can be used to 

monitor breakthrough [15], resin aging [16], and in advanced control schemes [17–19]. In 
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this regard, the ability to predict the chromatographic behavior of proteins is highly desirable 

[20]. Thus, currently, the field is faced with challenges to build robust modeling methods that 

can later be used for several process applications such as optimization, monitoring, control 

and maintenance.  

In general, modeling approaches can be grouped into two types of approaches: (i) Data-

Driven (or Empirical) modeling approaches that are purely based on data, and (ii) 

Mechanistic modeling approaches that are based on understanding of the underlying 

phenomena. For chromatographic processes, empirical modeling approaches such as Design 

of Experiments (DoE), Response Surface Methodology (RSM) [21,22], supervised machine 

learning [23–26], and reinforcement learning [27] have been used for optimization. 

Additionally, empirical or data-driven modeling approaches have been used to model product 

recovery [28], retention time [29], and also for Quantitative Structure-Activity Relationship 

Modeling (QSAR) [30,31] for chromatographic processes. However, given the well-

established process understanding, mechanistic modeling of bio-chromatography is 

predominant and has currently reached a remarkable maturity level [12,32]. These 

approaches are highly attractive in terms of its ability to model dynamic and spatial profiles 

and extrapolation capabilities which makes it an ideal tool for process development or 

optimization [13,33–39], monitoring [15], and advanced control [17–19].  

Mechanistic modeling of chromatographic processes includes models of varying complexity 

[12,40,41]. These range from rigorous Generalized rate model (GRM) [12,32,35,40–43] to 

lesser complex ones such as the pore model and the Lumped Kinetic Model (LKM), with the 

equilibrium dispersive model being the simplest variant [5,20,43]. The type of model chosen 

usually depends on the target application. The challenge with mechanistic models is to 

identify the exact underlying physicochemical phenomena and postulate suitable 

mathematical formulation to represent them in the models. To gain this understanding 

requires significant professional expertise combined with experimental observations (both of 

which require effort and time to obtain). Further, once general model structures have been 

identified, the involved parameters must be evaluated, whose number typically increases with 

model complexity. The most reliable approach is to evaluate them independently through 

dedicated experimental investigations, which requires additional experimental effort and 

time. A simpler alternative is to postulate assumptions about suitable equilibrium and 

transport models and estimate the corresponding parameter values by fitting experimentally 

observable quantities such as the elution or breakthrough curves for chromatography. 

However, the so obtained models and the correspondingly estimated parameters may not 
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reflect the actual thermodynamic and transport properties [20]. For instance, if the models 

postulated for describing the mass transfer kinetics and the isotherm differ significantly from 

the real ones, the overall chromatographic models may have trouble fitting the experimental 

data and extrapolating to different process conditions. Thus, approaches are needed that can 

provide a robust and accurate model with minimal experimental effort, and simultaneously 

assist in finding the correct assumptions about the system during the process development 

phase. Additionally, for industrial application, it is required that the modeling framework is 

generalizable that can be quickly adapted to various systems and products based on data. 

In this work, a hybrid modeling approach to chromatographic processes is proposed. Herein 

no assumptions are made about the adsorption isotherm, the inter- or intraphase transport 

kinetics. Instead, a neural network (NN) is used to learn the relationship directly while fitting 

data. However, the convection and axial diffusion of liquid phase concentration is still 

modeled like in mechanistic models (such as lumped kinetic model). Previously, a 

combination of mechanistic model and NN has been used for other applications. For instance, 

Wang et al (2017) [44] estimated mechanistic model parameters from experimental 

chromatograms using NNs. On the other hand, in Pirrung et al (2017) [24], NNs were used as 

a surrogate model to the mechanistic model to facilitate the optimization of the order and the 

number of different chromatographic units to be used. However, in Creasy et al 2015 [20], a 

similar approach to this work was suggested, but using interpolation techniques for batch 

adsorption data to learn about the adsorption isotherm model. On the other hand, in this work, 

a novel formulation of hybrid modeling is presented wherein the liquid phase concentration is 

modeled like in a typical lumped kinetic model while the dynamics of the solid phase is 

learned using a NN. In particular, two different ways of formulating such a hybrid model (c.f. 

Section 2.2.2) are discussed.   

The proposed approach can be applied to any type of chromatography. However, we selected 

the capture process to demonstrate the development and performance of hybrid models 

trained on breakthrough (BT) profiles. Protein A resins used in capture processes make up for 

a considerable share of the total capital cost of the production facilities [45,46]. Efforts in 

various directions are being made to reduce this cost. Thereby efficient modeling strategies 

would be of immense help to accelerate the selection, development, and optimization. In this 

work, firstly, the performance of the hybrid model is compared to that of the mechanistic 

LKM using an in-silico dataset generated based on a Langmuir adsorption isotherm. The 

advantage of hybrid models in extrapolation and thus for process optimization and design is 
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illustrated. Further, the ability of hybrid models to accurately predict BT runs generated with 

different underlying isotherms is demonstrated and compared to the LKM. Finally, the use of 

hybrid models for a capture system of industrial relevance is discussed based on the 

corresponding experimental observations. 

2. Materials and Methods 

2.1  Dataset 

The application of hybrid modeling is demonstrated for two case studies: one in-silico based 

on a simulated dataset and the other corresponding to an industrial protein-A chromatography 

process. 

2.1.1 Data Organization 

Data from breakthrough (BT) runs, which is the concentration of the protein measured at the 

column outlet in time, is used for modeling. The process or operating conditions (referred to 

as “factors” in DoE) are essentially the variables set by design and that stay constant 

throughout the process operation. The operating conditions varied in the different BT runs 

include the flowrate (Q) and inlet or feed concentration (Cin). The column parameters like the 

diameter and length of the column are kept fixed. The first row of Figure 1A and 1B tabulates 

the column and particle dimensions used to obtain data for the in-silico and experimental 

case, respectively. These include the cross-section area of the column (Acol), length of the 

column (Lcol), and particle diameter (dp). 

2.1.2 In-silico Dataset 

In order to test the different properties of the hybrid model such as the extrapolation 

capability, the ability to predict internal column profiles, and the flexibility to cope with 

different isotherms, artificial data is generated in-silico using a variation of the shrinking core 

model developed by Steinebach et al [18]. This is a pore model that considers a moving front 

inside the beads, separating the solid phase into a fully saturated shell and an empty core. The 

change in shell size has an impact on the mass transfer rate. Besides the liquid concentration 

and the pore concentration, the model includes two different solid phase concentrations. This 

accounts for two binding sites in the protein A chain, with the second one being accessible 

only after the first one is occupied. While the original formulation of the model in [18] uses 

the Langmuir isotherm, modifications have been made to include various empirical 

isotherms.  The in-silico model was implemented using MATLAB 2019b, and a detailed 

description of the model is presented in the supporting information file. White noise with a 

2% standard deviation is imposed on the simulated BT profiles to account for the 

measurement errors. To this aim, a draw is made from the normal distribution with a standard 
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deviation of 2% of the true variable value (simulated liquid phase outlet concentration at the 

given time). The thus obtained value is added to the true simulated value to obtain noisy 

measurements.   

Nine BT runs (BTC #1 – BTC #9) are simulated following a three-level full factorial design 

with the flowrate (Q) and the inlet concentration (Cin) as factors (c.f. Figure1A, 

“Calibration”). Four additional BT runs are each simulated inside and outside of the 

experimental domain to test the interpolation (c.f. Figure 1A, “Test Interpolation”) and 

extrapolation (c.f. Figure 1A, “Test Extrapolation”) capabilities of the models, respectively. 

The extrapolation is performed 25% outside the training domain. In the same table, the 

duration of the BT run (texp) and the sample collection (tsamp) is also reported.  

2.1.3 Experimental Dataset 

The implementation and performance of the hybrid modeling framework are also 

demonstrated for a set of experimental data reported by Feidl et al. [15]. In these 

experiments, a monoclonal antibody (mAb) solution is loaded to a column containing protein 

A resin until breakthrough. The outlet stream is collected, and the mAb concentration is 

measured using HPLC, with the standard deviation of the analytical method being 0.007 

mg/ml. The details of the experimental procedure and analytics can be found in the original 

literature [15]. Data of 15 BT curves are available with flowrates, Q being varied between 0.5 

to 1.5 mL/min and mAb inlet concentration, Cin varied between 0.3 to 0.6 mg/mL as shown 

in Figure 1B. Nine (BTC #1 – BTC #9) out of the 15 experiments were performed following 

a three-level full factorial design for flowrates and inlet concentrations. The first six of these 

BT runs (BTC #1 – BTC #6) correspond to lower and upper boundaries of Cin, and all the 

three levels for Q are used for model training (Figure 1B, “Calibration”). While the other 

three BT runs (BTC #7 – BTC#9) corresponding to the center point of Cin, spanning all the 

three levels of Q, are used for model testing (Figure 1B, “Test Interpolation”). The remaining 

six experiments (BTC #10 – BTC #15), used to evaluate the model, were performed in a 

different column, but with flow rate and inlet concentration inside the training space (Figure 

1B, “Test Extrapolation”). In the same table, the duration of the BT run (texp) and the sample 

collection (tsamp) is also reported.  

2.2  Methodology 

In this work, all computations have been performed using MATLAB R2019b. Both datasets 

are divided into two parts: (1) the calibration set used to develop the model and (2) an 

independent test set used to assess the performance of the calibrated models. It is here 

noteworthy that in BT runs, only the concentration of protein in the liquid phase at the outlet 
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is available at different times. Thus, the minimization of errors observed in the outlet liquid 

phase concentration is used as the objective function. Further, the model performance is 

evaluated based on root mean squared error in prediction (RMSEP) of the outlet protein 

concentration in the liquid phase. For the in-silico dataset, nine BT runs are used to calibrate 

(Figure 1A, “Calibration”) the model, and four BT runs are used as the test set for 

interpolation (Figure 1A, “Test Interpolation”) and extrapolation (Figure 1A, “Test 

Extrapolation”) each. For the industrial experimental case, six BT runs are used to calibrate 

the model (Figure 1B, “Calibration”), and three runs performed in the same column are used 

to test the model (Figure 1B, “Test Interpolation”). Additionally, six experiments performed 

in a different column are used to test the model performance in extrapolation (Figure 1B, 

“Test Extrapolation”). Two variants of the hybrid model are considered in this work:  the 

Lumped-Hybrid (referred to as the “Lumped-Hybrid”) and the Mass Transfer Isotherm-

Hybrid (referred to as “MTI- Hybrid”) as described in Section 2.2.2. The performance of the 

hybrid model is compared to that of a mechanistic Lumped Kinetic Model, from here on 

referred to as LKM. LKM is probably the most commonly used mechanistic model for liquid 

chromatography [47] as it requires a relatively limited effort to be developed while 

maintaining a reasonable  predictive power.  Hence LKM was chosen as the comparison 

benchmark for this work. The modeling procedure of LKM and hybrid models is described in 

the following section and summarized schematically in Figure 2A.  

2.2.1 Lumped Kinetic Model (LKM) 

The LKM is a modeling approach for chromatography well-established in the literature. It 

considers two phases where the protein can be located: a mobile liquid phase and a stationary 

solid phase. For the 1-dimensional model (considering no radial dispersion), the mass 

balances of the two phases are: 

  

  
    

  

  
   

   

   
 
   

 

  

  
         (1) 

  

  
   ( 

   )            (2) 

where   is the time and   is the space coordinate along the column axis; C and q are the 

protein concentrations in the liquid and solid phase, respectively,   is the bed porosity,   is 

the interstitial velocity and Dl is the axial diffusivity. A detailed description of the LKM is 

reported in literature [15] and is summarized in the SI. There are in total seven model 

parameters in the LKM that is estimated from the fitting of BT runs: A, , three parameters 

from the empirical relationship of mass transfer coefficient (kmax, S1, S2) and two parameters 

from the isotherm model (H, qsat). Bayesian Optimization solver, based on the in-built 
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function bayesopt (), is used to estimate the parameters (A, ,   ,    , H,     ,     ) of the 

LKM model (c.f. Figure 2A). The routine ode15s () is used to solve the system of ordinary 

differential equations, obtained by discretizing the original PDEs in space. To avoid local 

minima in the objective function, ten models with ten random initializations is performed. 

The model with the least root mean squared error (RMSE) in calibration (RMSEC) is chosen 

and investigated with respect to its prediction error on the test set (RMSEP).  

2.2.2 Hybrid Model 

The LKM assumes a Langmuir isotherm model for adsorption, a linear driving force, and an 

empirical relationship to estimate the mass-transfer coefficient. Like any other mechanistic 

model, the LKM performs as good as the underlying assumption: an error in the assumptions 

(e.g., the mass transfer rate and the adsorption isotherm model) as well as in the simplified 

representation of the complex physicochemical system would hamper its performance. 

Besides reducing its extrapolation capabilities, this would also limit the model flexibility 

needed to capture the real behavior of the process. Thus, in the Lumped-Hybrid approach, the 

overall adsorption kinetics has been freed from all these assumptions. Subsequently, the 

right-hand-side of the equation modeling the solid phase concentration (Eq (2)) is substituted 

by a NN depending on both   and C as follows:   

  

  
    ( (   )   (   ))                    (11) 

where the different variables indicate the same quantities as in LKM. On the other hand, 

equation modeling the liquid phase (Eq (1)) remains the same as in the LKM. Note that for 

protein chromatography the interphase mass transfer resistance is typically located inside the 

porous particle, i.e., related to the intraparticle transport, which is independent of the linear 

velocity or flowrate. Accordingly, the NN trained in this work does not account for a 

dependency on the liquid flowrate, Q. However, for other relevant chromatographic 

processes involving small molecules, appropriate NNs including functionality with respect to 

Q in addition to q and C should be considered.   

As indicated in Eq (11), the NN is a function of    and   at a given point in space and time. 

In order to choose the optimal NN structure, hyperparameter tuning using grid search is 

performed [48]. SI Table 3 tabulates the optimal NN structure identified for the different 

cases demonstrated in this work. Similar to the numerical solution of the LKM, the solution 

of the Lumped-Hybrid approach involves solving an optimization problem while iteratively 

integrating a system of PDEs (c.f. Figure 2A). Essentially, a non-linear parameter 

optimization problem is solved to obtain the optimal weights that minimize the difference 
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between the measured BT profile and the model predicted ones. The difference is that, in the 

LKM, the parameters of the mechanistic model are optimized, while in the Lumped-Hybrid 

model, the NN weights are optimized. The routine ode15s() is used to solve the system of 

PDEs discretized in space while fmincon() is used for the optimization of  ,  and the NN 

weights. Similar to the LKM approach, multiple shooting with 10 random initializations are 

performed to avoid local convergence. The model with the least RMSEC is selected, and its 

performance on the test set is evaluated using RMSEP.  

Besides the Lumped-Hybrid, an alternative formulation of the hybrid model is developed to 

enable the understanding of mass transfer kinetics and adsorption equilibria. This approach 

still assumes a linear driving force like the LKM, but the adsorption isotherm and the mass 

transfer kinetics are now described by two independent NN as follows:  

 

  

  
      ( (   ))    [      ( (   ))     (   )]                 (12) 

 

In this model, referred to as MTI-Hybrid, while the NN for the mass transfer term (    ) 

depends on the solid phase concentration ( ), the NN for the adsorption isotherm (     ) 

depends on the liquid phase concentration ( ). Figure 2B shows a visual representation of 

both the hybrid model formulations developed in this work.  

Unlike the Lumped-Hybrid model where the NN weights are randomly initialized, a different 

approach is used for initializing the weights of the two networks in the MTI-Hybrid. This is 

for two reasons: (1) avoid instabilities in optimization since the first network depends on a 

variable ( ) that is not measured and hence not considered in the calculation of the objective 

function during the fitting procedure; (2) there can be multiple combinations of the      and 

      terms that can fit equally well the BT curves but might not be physically meaningful. 

Thus, we first estimate the adjustable parameters of the LKM by fitting the BT runs. Next, we 

use the empirical relationship for mass transfer (c.f. Eq (SI 26)), with the so obtained values 

of the adjustable parameters, to generate data for tuning the      . Similarly, the fitted 

Langmuir isotherm model (c.f. Eq (SI 27)) is used to generate the data for tuning the      . 

The two NNs,      and      , are trained preliminarily on the data generated using the 

aforementioned procedure. The optimal weights thus identified are used to initialize the NNs 

in the MTI-Hybrid model framework. Subsequently, the MTI-Hybrid model is calibrated like 

the Lumped-Hybrid model by solving an optimization problem while iteratively integrating a 

system of PDEs. Same routines as the Lumped-Hybrid approach, ode15s() and fmincon() are 
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used to solve the system of discretized PDEs and optimization, respectively. Additionally, the 

optimal NN structure is obtained through hyperparameter optimization using grid search [48]. 

3. Results and Discussion 

3.1 Hybrid model validation: In-silico data generated using Langmuir adsorption 

isotherm 

As mentioned above, the performances of the Lumped-Hybrid model and LKM are first 

discussed, with reference to an in-silico dataset generated using the shrinking core model (as 

described in Section 2.1.2) with a Langmuir adsorption isotherm. The models are trained on 

nine BT runs simulated using the process conditions indicated as “Calibration” in Figure 1A. 

Subsequently, the performance of the models is tested on BT runs simulated using process 

conditions that fall inside the training region indicated as “Test Interpolation” in Figure 1A. 

In Figure 3A, the predictions of the Lumped-Hybrid model and LKM are compared with the 

in-silico observed values for the “Test Interpolation” conditions. The Lumped-Hybrid model 

predictions lie very close to the diagonal, indicating good agreement with the in-silico 

observed data. There is no bias in the predictions made by the Lumped-Hybrid model, while 

this is observed for the LKM. It overpredicts at low concentration and underpredicts at higher 

concentration. This can be confirmed from Figure 3B, which compares the prediction of the 

Lumped-Hybrid model and LKM for an exemplary BT run from the “Test Interpolation” set. 

Here the LKM predictions rise earlier and attain saturation later, while the Lumped-Hybrid 

model predictions follow better the actual BT.  

Additionally, the predictions made by the Lumped-Hybrid model do not vary much across 

the diagonal (Figure 3A), indicating they are very close to the measurement error. 

Quantitatively, the overall RMSEP averaged across all BT runs in the “Test Interpolation” 

set, and all sampling time points are 0.065 mg/mL and 0.0196 mg/mL for the LKM and 

Lumped-Hybrid model, respectively. The RMSEP of the Lumped-Hybrid model is very close 

to the average added noise of about 0.015 mg/mL, which marks the realistic prediction limit 

of a model. The three times higher RMSEP of the LKM reflects the qualitative observations 

made earlier. The LKM is not capable of capturing the effects imposed by the more detailed 

model, i.e., the shrinking core model, used to generate the data.  

The LKM considers two phases for the protein inside the column: the moving liquid phase 

and the stationary solid phase inside the beads (where the protein binds to the binding sites). 

In contrast, the more complex shrinking core model additionally includes the liquid phase 

inside the pores of the beads. It also differentiates between two types of binding sites in the 

solid phase. In addition to that, the shrinking core model considers the effect of the coverage 
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of the binding sites from the external radius of the beads to its center, on the protein diffusion 

inside the pores (thus giving the name of “shrinking core”). As a result, the LKM may 

perform well in describing a single BT run, but the mathematical structure imposed by the 

mechanistic assumptions is not flexible enough to capture the different diffusive and binding 

phenomena of the shrinking core model across the entire training set. Thus, the optimizer can 

only find a parameterization that is a compromise among the different BT curves. The hybrid 

model, on the other hand, learns an aggregate behavior of the effects imposed by the 

shrinking core model using the flexibility of the NN, even with the same number of 

differential equations as the LKM.  

Further, Figure 3 C compares the internal column profiles predicted by the LKM and the 

Lumped-Hybrid model with the actual simulated column profiles for different times. It is 

worth highlighting that both the LKM and the Lumped-Hybrid model are trained only on the 

outlet concentration and not on the internal column profiles. It can be observed that the 

Lumped-Hybrid model outperforms the LKM in predicting the internal adsorption fronts at 

all time points, except for t = 15 min, where both LKM and Lumped-Hybrid models deviate 

from the actual internal profile. Similarly, as for the BT curves, the LKM overpredicts low 

concentrations and underpredicts higher concentrations, thus underestimating the steepness of 

the fronts. On the other hand, the Lumped-Hybrid model predictions closely follow the actual 

adsorption front except for the initial time point. Accurate prediction of the internal column 

profiles is crucial, for instance, for control applications. This is because, during the capture 

step, the column must be loaded to its maximum capacity (avoiding any breakthrough) to 

maximize the resin utilization without a drop in the yield. Thus, having a correct description 

of the internal loading is mandatory. This is particularly important in the case of continuous 

multicolumn units, like Capture SMB or Partial Countercurrent Columns systems (PCC) [32], 

where the final state of a column in a given phase of the process cycle represents the initial 

state in the following one.  

 

3.2 Potential of Hybrid model in Extrapolation 

Since the hybrid model exploits the synergy between mechanistic models and data-driven 

models, they are considered to be particularly reliable in extrapolations, for example, 

illustrated for upstream cell culture processes by Narayanan et al [49]. In the following, we 

investigate the performance of the same LKM and Lumped-Hybrid model trained in section 

3.1 in predicting the observed BT runs corresponding to a combination of flowrate (Q) and 
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inlet concentration (Cin) that fall outside of the training in-silico dataset (c.f. Figure 1A, “Test 

Extrapolation”).  

It is seen that for low Q and high Cin (Figure 4A), both LKM and Lumped-Hybrid BT profile 

raises a bit earlier than the observed curve. However, the Lumped-Hybrid model correctly 

predicts the steepness and attainment of breakthrough coherent with the observed curve. In 

contrast, the LKM predicts a less steep BT profile, thus, underestimating the higher 

concentrations and attaining the breakthrough later than observed. It is further noted that also 

for the other three conditions (Figure 4B through 4D), LKM fails to capture the appropriate 

steepness of the BT curve. Additionally, for low Cin (Figure 4C and 4D), the LKM predicts a 

rise in the outlet concentration much earlier than observed and, though it achieves the 

saturation concentration at a similar time for low flowrate (Figure 4C), there is a significant 

mismatch in the rest of the BT profile. On the contrary, the Lumped-Hybrid model is capable 

of predicting the entire BT profile consistent with the observed profile with minimal 

deviation. 

Overall, it can be concluded that the Lumped-Hybrid model is superior in extrapolation 

compared to the LKM for all four cases, as also indicated by the corresponding average 

RMSEPs of 0.044 mg/mL (Lumped-Hybrid) and 0.102 mg/mL (LKM). Additionally, when 

extrapolating 50% outside the training domain, the RMSEP by the Lumped-Hybrid model is 

0.066 mg/mL, which is comparable to the RMSEP of LKM in interpolation. However, for 

this case, the RMSEP made by LKM is 0.158 mg/mL (c.f. SI Figure 1). This highlights the 

robustness and accuracy of the hybrid modeling approach in extrapolating across process 

conditions which is extremely important to guide decision making in process development 

and control in process operation. 

3.3 Performance of Hybrid model for unknown adsorption isotherms 

A distinct advantage of the proposed Lumped-Hybrid modeling approach over mechanistic 

models is that it does not require to formulate any hypothesis about the physicochemical 

mechanisms involved in the process. In this section, it is discussed with reference to the 

adsorption equilibria which can be described through different model adsorption isotherms.  

For this, we compare the Lumped-Hybrid model against the LKM for BT runs generated in-

silico, as discussed in section 2.1.2, but using different underlying adsorption isotherms: 

Langmuir-Freundlich (LF), Temkin (TM), Toth (TH), and Bi Langmuir (BL), to generate 

different training and test datasets using the same process condition reported in Figure 1A 

("Calibration” and "Test Interpolation”). It is to be noted that since the real adsorption 

isotherm is not known a-priori, the LKM is formulated based on the common practice of 
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using the Langmuir adsorption isotherm. On the other hand, no such assumptions are to be 

made for the Lumped-Hybrid model, which is flexible to learn from the data observed.  

From Figure 5, it can be observed that the Lumped-Hybrid model provides a better 

representation of the data, similar to the case of the Langmuir isotherm discussed above, 

independently of the adsorption isotherm used to generate the reference data. In particular, 

the LKM presents a significant systematic deviation from the diagonal in the observed versus 

predicted plot for all isotherms (Figure 5, the plot in the upper left corner). For LF, TM, and 

TH (Figure 5A through C), the LKM overpredicts the low and underpredicts the high 

concentration values. However, for the BL case, LKM overpredicts very low and high 

concentrations while it underpredicts the intermediate concentrations (Figure 5D). These 

behaviors are reflected in the BT profiles shown in Figure 5 for an exemplary experiment 

from the “Test Interpolation” set (Figure 1A). Similar to the Langmuir isotherm case, the 

LKM is unable to capture the actual steepness of the BT profiles and underestimates the 

steepness strongly for the LF case and considerably for the BT runs generated using the TM 

and TH isotherms. For the BL-based BT run, the LKM fails to get the shape of the curve.  

In contrast, the Lumped-Hybrid model is capable of reliably modeling and predicting the BT 

curves generated using different underlying adsorption isotherms, owing to the flexibility 

offered by the NN that allows it to learn from the observed BT experiments. In Figure 5, it is 

seen that the observed versus predicted plots do not exhibit any systematic bias nor large 

variances. This is also reflected in the exemplary BT profiles of the test experiment for the 

different isotherms. This results for the Lumped-Hybrid model in a RMSEP of 0.0189 

mg/mL, 0.0173 mg/mL, 0.0216 mg/mL and 0.0188 mg/mL for the LF, TM, TH and BL 

isotherm, respectively. Whereas the corresponding RMSEP values for the LKM are about 

two to three times higher: 0.0765 mg/mL, 0.0303 mg/mL, 0.0458 mg/mL and 0.0354 mg/mL 

for the LF, TM, TH and BL, respectively. Similar to the Langmuir isotherm discussed in 

Section 3.1, the RMSEP of the Lumped-Hybrid model is very close to the measurement 

noise, which marks the realistic prediction limit of a model. This remarkable performance of 

the Lumped-Hybrid model indicates the potential of such an approach in the case of complex 

systems, with various components that may follow different adsorption equilibria, possibly 

competing with each other, as in the case of bio-chromatography.  

 

3.4 Hybrid model to suggest plausible underlying isotherm 

An advanced potential of hybrid modeling, besides the presented predictive power, is to use 

this approach to generate some insights about the underlying physicochemical phenomena, 
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such as the adsorption equilibria. For this, alternative approaches to the Lumped-Hybrid 

model discussed above, such as the MTI-Hybrid approach mentioned in Section 2.2.3, should 

be considered.  Here, independent NNs are used to learn about adsorption equilibria as well 

as mass transfer kinetics. Following the training procedure described in section 2.2.3, MTI-

Hybrid models are trained on the BT profiles generated by the in-silico model using different 

isotherms for “Calibration” conditions (Figure 1A). In other words, the same datasets used in 

sections 3.1 and 3.3 to train the Lumped-Hybrid model are now used to train the MTI-Hybrid 

model. The       (c.f. Eq 12, and Figure 2B) network learnt as part of the MTI-Hybrid 

model training can then be used to generate data from which the adsorption equilibrium can 

be recovered. This is illustrated in Figure 6 where the isotherms learnt by the MTI-Hybrid 

model are compared to the original isotherms used in the in-silico model, in terms of the 

normalized solid phase concentration,  = 
  

    
  as a function of the equilibrium liquid phase 

concentration, c. 

It can be observed that the MTI-Hybrid model is capable of capturing most of the trends of 

the isotherms in terms of slope and curvature. A considerable deviation is found only for the 

Bi-Langmuir case. However, for all cases, the RMSEP of the MTI-Hybrid model is 

comparable to that of the Lumped-Hybrid model (c.f., SI Table 3). It is worth noting that the 

in-silico data simulator, the shrinking core model, considers two adsorption sites in the solid 

phase, while the MTI-Hybrid only has one. Thus, the model has to describe the adsorption 

phenomena of two sites which are different (since the second site is hindered by the binding 

on first site). In addition to that, the in-silico model considers the diffusion of the protein 

inside the resin pores. In contrast, the MTI-Hybrid model only uses the bulk liquid and the 

mean solid concentration values, which can be challenging if the intra-particular gradients are 

important. These mismatches between the model and the simulator give rise to differences in 

the learned isotherm. It is here crucial to point out that the MTI-Hybrid model is not trained 

on the adsorption equilibrium data but on the BT experiments, which makes the learning of 

the isotherm even more difficult since it has to be indirectly done while fitting the BT 

profiles. Despite this, the MTI-Hybrid was able to generate a good approximation of the 

actual isotherm used in the in-silico model. One could think of using this approach to 

generate new mechanistic hypotheses about the system and support the development of 

mechanistic models. 

3.5 An industrially relevant set of experimental data  
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In the previous sections, in-silico data are used since these provided the possibility to test 

different properties of the hybrid model such as the extrapolation capability, the ability to 

predict internal column profiles, and the flexibility to cope with different isotherms, which 

would be impossible to study with a true experimental system. In this section, we investigate 

the performance of hybrid modeling using a set of experimental data of industrial relevance. 

The LKM and Lumped-Hybrid models are trained on six BT runs indicated as the 

“Calibration” set in Figure1B.  The performance of the LKM and the Lumped-Hybrid model 

are compared for the interpolation data set (c.f., Figure 1B, “Test Interpolation”), where the 

experimental BTs were performed with process conditions that lie inside the training design 

space and in particular using the same column. The obtained results are shown in Figures 7A 

and 7B for the LKM and the Lumped-Hybrid model. It is seen that the LKM underpredicts 

the lower concentration and overpredicts the higher concentration values for two out of the 

three BT curves, while for the other, it slightly overpredicts the saturation concertation. The 

Lumped-Hybrid model, on the other hand, predicts well all the three BT curves 

demonstrating no systematic bias or large variances. Quantitatively, the average RMSEP of 

the Lumped-Hybrid model is 0.0072 mg/mL, which is considerably lower than the RMSEP 

of LKM that is around 0.009 mg/mL.  

Finally, the LKM and the Lumped-Hybrid model predictions are compared, in Figures 7C 

and 7D, respectively, with the experimental BT curves measured in a different column. 

Therefore, this corresponds to an extrapolation test, although the operating conditions are still 

chosen within the design space used for training, as indicated in Figure 1B “Text 

Extrapolation”. It can be observed that for BTC-14, 15 in Figure 7D, the Lumped-Hybrid 

model can predict the BT profile accurately, while the LKM (Figure 7C) predicts an earlier 

breakthrough. For BTC-10,11, and 12, the Lumped-Hybrid model predicts an earlier raise, 

although it manages to get the final breakthrough point and the overall shape appropriately, 

and the BTC predictions appear to be shifted along the time-axis. LKM, on the other hand, 

also predicts an early rise but is not able to predict neither the shape of the experimental BT 

profile nor the BT time and concentration. For BTC-13, both the Lumped-Hybrid model and 

LKM show an offset from the actual experimental profile. Thus summarizing, while the 

Lumped-Hybrid model presents only a translational offset along the time axis and predicts 

the shape of the BT curve correctly, the LKM predicts a different shape overall for the 

experimental BT curve. It is worth recalling that the experiments considered here were 

conducted in a different column than the one used in the training of the models and, in 

particular, in the evaluation of the bed porosity parameter, . This could be a plausible 
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explanation for the observed translation along the time axis, although to a different extent, in 

both models. 

4. Conclusion and Summary 

Developing proper chromatographic models is a complex process. This involves the 

definition the selection and the validation of proper mechanistic equations to describe for 

instance the adsorption process and the diffusion to and into the particles. In addition to this, 

obtaining reliable estimates of the mechanistic model parameters is often quite tedious and 

requires multiple and specific experimental techniques. Such effort clearly increases with 

increasing model and process complexity. For this reason, in industrial applications, the 

Lumped Kinetic Models (LKM) is often used as a reasonable compromise between model 

complexity and reliability. Despite their widespread use, assumptions must be laid to obtain a 

suitable set of equations that describes adsorption equilibria and mass transfer kinetics. This 

restricts the performance of the models to be only as good as the imposed assumptions.  

To overcome this issue, in this work, a novel hybrid modeling approach for chromatographic 

processes is presented. This model is not intended as a more accurate version of the proposed 

mechanistic models available in the literature, but as a technique which can account for 

model complexity without the need of model assumptions and specific experimental 

procedures to estimate physical parameters. In our hybrid model, the features of the process 

are learnt in an unbiased way by the machine learning part of the model. In this context, the 

comparison with a LKM make sense as hybrid models are supposed to replace simple 

models, like LKM, especially in the industrial environment, where models are simply used to 

support process development and optimization.  

The performance and potential of the hybrid models are investigated on: (i) in-silico data 

generated using a detailed shrinking core model and (ii) an experimental dataset generated in 

a system of industrial relevance. The error in prediction for the hybrid model was around 0.02 

mg/mL for the in-silico data set, which is close to the 2% Gaussian noise imposed, and 

0.0072 mg/mL for the experimental data set, which is close to the reported 0.007 mg/mL 

experimental error of the analytical HPLC. This indicates that the performance of hybrid 

model marks the realistic predictive limit of the model that can be developed using this data. 

The hybrid model outperformed the LKM in the predictive accuracy by about two to three 

times for the five different isotherms tested in this work, namely, Langmuir, Langmuir-

Freundlich, Temkin, Toth and Bi-Langmuir. While the LKM showed systematic biases and 

higher variance, the hybrid models had lower bias and variance in all cases. Additionally, the 

hybrid models also presented a higher accuracy and robustness in extrapolation along the 
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process conditions resulting in three times lower error in prediction than the LKM. The 

conclusion reached for the in-silico dataset has been confirmed using an experimental data set 

referring to a system of industrial relevance.  

An important additional result of this study is that, through an alternative formulation of the 

hybrid models (i.e., the MTI-Hybrid) it is possible to derive quantitative information about 

the mathematical structure of the models describing the underlying adsorption equilibrium 

and mass transfer kinetics from breakthrough experiments. Subsequently, this information 

could be used to support the improvement of mechanistic models.  

Overall, we have shown that hybrid models exhibit the predictive capabilities and robustness 

required to model the dynamics of chromatographic processes. These models can be used for 

process optimization, monitoring, control and even to improve process understanding. For the 

purpose of real-time monitoring and control, such models can also be coupled with 

spectroscopic measurements via Extended Kalman filters as discussed in our recent work for 

upstream processes [50]. It is also evident that results similar to those obtained in this work in 

the context of protein A capture processes are expected for other chromatographic processes 

based on different stationary phases.  

A limitation of the hybrid model in the current form is the time required for training the 

model, that involves solving iteratively a system of discretized ODEs for each optimization 

call. To circumvent this drawback, alternative numerical methods could be considered for 

model training. 
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Figure Legends 

Figure 1: Process conditions in the BT runs together with indication of the column and 

particle dimension (Column Parameter), experimental time (texp) and sampling time 

(tsamp) for in-silico (A) and experimental dataset (B).  
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Figure 2: (A) Generalized schematic representation of the modeling framework 

workflow for training LKM and hybrid model (B) Schematic visualization of the two 

hybrid model formulations: Lumped-Hybrid and MTI-Hybrid. It is noted that the NN 

architecture represented here is an illustration and does not indicate the optimal NN 

structure used in the hybrid models. 

 

Figure 3: (A) In silico observed concentration values against the predictions by LKM 

and Lumped-Hybrid model for the test set, “Test Interpolation” (c.f. Figure 1A). (B) 

Comparison of LKM and Lumped-Hybrid model predictions demonstrated using an 
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exemplary BT run from the “Test Interpolation” set (c.f. Figure 1A). (C) Concentration 

profiles inside the column at different instances of time as predicted by the LKM and 

Lumped-Hybrid model compared against the in-silico profile inside the column. 

 

Figure 4: Comparison of the BT runs predicted by the LKM and Lumped-Hybrid 

model with the in-silico extrapolation data set, “Test Extrapolation”, in Figure 1A.  
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Figure 5: Comparison of the performance of Lumped-Hybrid model and LKM in 

predicting in-silico BT experiments generated using different underlying adsorption 

isotherms: (A) Langmuir- Freundlich, (B) Temkin, (C) Toth and (D) Bi Langmuir for 

process condition indicated in Figure 1A “Test Interpolation”. Parity plots are shown in 

the upper left corner of each figure where the x-axis indicates the observed 

concentrations and the y-axis represent the model predicted concentrations. 
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Figure 6: Comparison of the adsorption isotherms simulated by the MTI-Hybrid model 

and the original ones used in generating the in-silico BT runs. 
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Figure 7: (A, B) Comparison of LKM and Lumped-Hybrid model predictions with 

experimental BT curves for the “Test Interpolation (Same Col.)” in Figure 1B.  (C, D) 

Same comparison for the “Test Extrapolation (Different Col.)” in Figure 1B. In the 

upper left corner of each figure is shown the corresponding parity plots where the x-

axis indicates the observed concentrations and the y-axis represent the model predicted 

concentrations 
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