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Abstract

We obtain a duality between the category of locally unital finite MTL-algebras
and the category of finite labeled trees. In addition we prove that certain poset
products of MTL-algebras are in fact, sheaves of MTL-chains over Alexandrov
spaces. Finally we give a concrete description for the studied poset products in
terms of direct products and ordinal sums of finite MTL-algebras.

Introduction

In the literature there are several dualities for categories of residuated structures involving
the use of categories of labeled trees. In [6], it is proved that the category of MV-algebras
with finite spectrum is dual to the category of labeled root systems. Later, in [2], and [7],
it is proved independently, that the category of finite BL-algebras, is dual to the category
of finite labeled trees. The techniques employed in those papers have a combinatorial
character. These facts allow to establish a precise description of the category of finite
labeled trees.

In [14], Jipsen introduces the construction of poset products for algebras as a gen-
eralization for the dual of poset sum, introduced in [12] by Jipsen and Montagna for
residuated lattices. The poset product was used originally to prove decomposition theo-
rems for several kinds of ordered structures. In particular, in [3], Montagna and Busaniche
studied the poset product of BL-algebras to obtain representation theorems in terms of
poset products of MV-algebras and product algebras.

The theory of representation by sheaves has been used as a tool for developing de-
composition results in terms of subdirect products. For the case of MV-algebras, see [§],
for Heyting algebras see [5]. More recently, in [4] a representation theorem for integral
rigs is given by using topos theoretic tools.

In [9] Esteva and Godo introduced MTL-logic as the basic fuzzy logic of left-continuous
t-norms. Furthermore, a new class of algebras was defined, the variety of MTL-algebras.
This variety constitutes an equivalent algebraic semantics for MTL-logic. MTL-algebras
are essentially integral commutative residuated lattices with bottom satisfying the pre-
linearity equation:

(x—=y)Vy—x) =1



The main result of this work is a duality between the categories of locally unital finite
MTL-algebras (see Definition 3) and the category of finite labeled trees (see Section 3).
Such a duality is obtained by the extensive study of certain poset products of MTL-
chains. Additionally, it is shown that the studied poset products of MTL-chains are
indeed sheaves over Alexandrov spaces. Of independent interest, it turns out to be the
description of the aforementioned poset products in terms of ordinal sums and direct
products. The reader is assumed to be familiar with results of sheaf theory as presented
in [15].

This paper is divided as follows. Section 1 is devoted to present the basic contents
that are necessary to understand this work. In Section 2, we characterize the finite
archimedean MTL-chains in terms of their nontrivial idempotent elements. In Section
3, we show that there exist a functor from the category of finite MTL-algebras to the
category of finite labeled forests. We take advantage of the intimate relation between
idempotent elements and filters, that is given for the case of finite MTL-algebras. In
Section 4, we study the forest products of MTL-chains. We prove that such construction
is, in fact, a sheaf over an Alexandrov space whose fibers are MTL-chains. In Section 5
we use the results obtained in Section 4 in order to establish a functor from the category
of finite labeled forest to the category of finite MTL-algebras. We also bring a duality
theorem between the category of locally unital finite MTL-algebras and finite labeled
forest. Finally, we present a description of the forest product of finite MTL-algebras in
terms of ordinal sums and direct products of finite MTL-algebras.

1 Preliminaries

The aim of the following section is to give a brief survey about the background in MTL-
algebras required to read this work. We present some known definitions and some particu-
lar constructions for prelinear semihoops that naturally can be extended to MTL-algebras.

We write Set to denote the category whose objects are sets and their morphisms are
set functions.

A prelinear semihoop is an algebra A = (A,-,— A, V, 1) of type (2,2,2,2,0) such
that (A, A, V) is lattice with 1 as greatest element, (A, -, 1) is a commutative monoid and
for every x,y, 2z € A the following conditions hold:

(residuation) ry<zifandonlyifz <y — z
(prelinearity) (x—=y)V(y—z)=1

Equivalently, a prelinear semihoop is an integral prelinear commutative residuated

lattice.

Remark 1. Notice that in every prelinear semihoop A, the following equations hold:
Lavy=(z—=y) =y Ay —2z)—>2),
2.xhy=(z-(x—=y) V- (y— ).

In order to prove 1., we write z = ((x — y) = y) A ((y — x) — x). Then, from
zr wy) <yady >z < lwegetx < (x -y —wyadzx < (y > ) > =z,
respectively. Thus, we can conclude x < z. In a similar way, we obtain y < z. Let us
assume x,y < c¢. By monotonicity of the residual, we obtain (x — y) » y < (x = y) — ¢
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and (y — z) - = < (y — x) — c. Since in every commutative residuated lattice,
(Viervi) = 2 = Nie; (s = ) (c.f. [19]), using prelinearity we get

z2<((z—=y)mc)AN((y—=2)—c)=(r—=y)Vy—zx) 2c=1—-c=c

On the other hand, for proving 2., we write w = (z - (x — y)) V (v - (y — x)).
Recall that, since x - (x — y) < zxz-1 ==z andy-(y — =) < z, we get w < x.
Similarly, we deduce that w < y. If we assume that ¢ < x,y; by monotonicity of the
product, we get that ¢+ (z — y) < z-(xr = y) andc-(y = x) < y-(y = x). Hence,
(c-(z—=y)Vic-(y—=2z)=c ((r =>y)V(y—2) <w. Since, by prelinearity, the
leftmost term of this inequality is ¢, we get that ¢ < w.

A prelinear semihoop A is a bounded if (A, A,V,1) has a least element 0. An MTL-
algebra is a bounded prelinear semihoop, hence, MTL-algebras are bounded prelinear
integral commutative residuated lattices, as usually defined [9, 11, 17]. An MTL-algebra
A is an MTL-chain if it is totally ordered. Recall that any MTL-algebra is a subdirect
product of MTL-chains (Corollary 4.4 of [13]), so MTL-algebras have distributive lattice
reducts. Let 1 and 2 be the MTL-chains of one and two elements, respectively. For the
rest of this paper we will refer to 1 as the trivial MTL-chain.

It is known that the class of MTL-algebras is a variety. We write MT L for the cat-
egory of MTL-algebras and MTL-homomorphisms. In particular MTL-homomorphisms
preserve 0.

Let I = (1,<) be a totally ordered set and F = {A,;};c; a family of semihoops. Let
us assume that the members of F share (up to isomorphism) the same neutral element;
ie., for every i # j, A; N A; = {1}. The ordinal sum of the family F, is the structure
D, Ai whose universe is | J,.; A; and whose operations are defined as:

-y, if x,y€ A

Ty=1< v, if xeA;, andye A; — {1}, withi> j,
x, if zeA;—{1}, andy € A4;, withi < 7,
r—y, if x,y€ A
rT—=y=1< Y, if xe€A;, andy € A;, withi > j,
1, if e A, —{1}, andy € A4;, withi <,

where the subindex i denotes the application of operations in A;.

Moreover, if I has a minimum L, A; is a totally ordered semihoop for every 7 € I and
A, is bounded then €, ; A; becomes an MTL-chain.

Let M be an MTL-algebra. A submultiplicative monoid F' of M is called a filter if it
is an up-set with respect to the order of M. In particular, for every x € F', we write (x)
for the filter generated by x; i.e.,

() ={a € M | 2" < a, for some n € N}.

For any filter F' of M, we can define a binary relation ~g, on M by a ~p b if and
only ifa - b€ Fand b — a € F. A straightforward verification shows that ~g is a
congruence on M. It is well known that there is a bijective correspondence between filters
and congruences on MTL-algebras (c.f. [17]), so we write M/F to denote the quotient



M/~p. For every a € M, we write [a]p for the equivalence class of a in M/F. If the
context is clear, we simply write [a]. Let h : A — B be an MTL-morphism and S C A.
As usual, we write h|g to denote the restriction of h to S. Recall that (Section 3 of
[4]) the canonical homomorphism h : M — M/F has the universal property of forcing
all the elements of M to be 1; i.e., for every MTL-algebra B and every MTL-morphism
f: M — B such that f(a) = 1 for every a € F, there exists a unique MTL-morphism
g : M/F — B making the diagram below

M- M/F
|

g
NG Y

B

commute. A filter F' of M is prime if 0 ¢ F and x Vy € F entails x € F or y € F, for
every x,y € M. The set of prime filters of an MTL-algebra M ordered by inclusion is
called the spectrum and is denoted by Spec(M).

2 Finite archimedean MTL-chains

In this section we give a characterization of the finite archimedean MTL-chains in terms
of their nontrivial idempotent elements. In addition we prove that every morphism of
finite archimedean MTL-chains is injective.

A totally ordered MTL-algebra is said to be archimedean if for every = < y < 1, there
exists n € N such that y" < x.

Lemma 1. Let M be an MTL-chain. If there is an a € M such that for every n € N,
a"tt < a™, then M is infinite.

Proposition 2. A finite MTL-chain M is archimedean if and only if M = 2 or M does
not have nontrivial idempotent elements.

Proof. If M = 2 the proof is trivial. If M # 2 and does not have nontrivial idempotents,
we may assume that there exists some a € M such that 0 < a < 1. Since M is finite,
by Lemma 1, there exists n € N such that "™ = a™. If a” > 0, (a")?> = a", and hence,
M has a nontrivial idempotent, in contradiction with the fact that M does not have
nontrivial idempotents. Hence, there exists n € N such that o™ = 0. Now, for b < a in
M, we have that a™ < b, from where we can conclude that M is archimedean. Conversely,
let us assume that M is archimedean but there exists an idempotent element a # 0, 1.
Hence, a" = a for every n € N. If b < a (for example, if b = 0), we have that for every
n € N, b < a < a", contradicting the archimedeanity of M. In consequence, no such
idempotent can exist. O

Corollary 3. For any finite nontrivial MTL-chain M, the following are equivalent:
1. M is archimedean,
1. M 1s simple, and

11. M does not have nontrivial idempotent elements.
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In [11] Hor¢ik and Montagna gave an equational characterization for the archimedean
MTL-chains.

Lemma 4 (Lemma 6.6). Let M be an MTL-chain. Then, M is archimedean if and only
if for every a,b € M,
((a—=b) —=b*<aVhb.

The last part of this section is devoted to obtain a description of the morphisms
between finite archimedean MTL-chains. Let f : A — B be a morphism of finite MTL-
chains. As usual, we write K for the kernel of f; i.e.,

Kp={ve Al f(z)=1}

Lemma 5. Let f : A — B be a morphism of MTL-algebras. Then f is injective if and
only if f(x) =1 implies x = 1.

Proof. Let f be an injective morphism of MTL-algebras, then f(z) = 1 = f(1) implies
x = 1. On the one hand, let us assume that f(z) = 1 implies x = 1. If f(a) = f(b) then
f(a) < f(b) and f(b) < f(a), thus by general properties of the residual it follows that
fla) = f(b) =1 and f(b) = f(a) =1so f(a—b) =1and f(b - a) = 1. From the
assumption we get that a - b=1and b —+a =1, thus a < b and b < a. Hence, a = b
so f is injective. O

Lemma 6. Let f : A — B be a morphism of finite MTL-chains. If A is archimedean
then B =1 or f is injective.

Proof. Since A is archimedean, by (i) of Corollary 3 we get that if is also simple so
Ky = Aor Kf = {1}. In the first case, we get that f(a) = 1 for every a € A, so in
particular f(0) =0 =1, hence B = 1. In the second case, it follows that f(a) = 1 implies
a =1, so by Lemma 5 f is injective. n

Corollary 7. Let f: A — B be a morphism of finite MTL-chains. If A is archimedean
and B # 1 then f(x) =0 implies x = 0.

Proof. Suppose that there exists a € A such that f(a) = 0 but a # 0. Since A is
archimedean, by Lemma 6, we get that f is injective so, from

we obtain that a = a®. On the other hand, since f(a) # 1, again from Lemma 6, we get
that a # 1 and consequently 0 < a < 1. So A possesses a nontrivial idempotent which
by (iii) of Corollary 3 is absurd. O

Remark 2. Observe that every morphism of MTL-algebras between finite archimedean
MTL-chains is injective. Let f : A — B be a morphism of finite archimedean MTL-
chains. Since A is archimedean, from Lemma 6 it follows that f is injective or B = 1,
but B is archimedean by assumption so, from Proposition 2, it follows that B cannot be
trivial, hence f must be injective.



3 Finite labeled forests

It is a well known fact that if M is a BL-algebra, then, its dual spectrum is a forest. (c.f.
Proposition 6 of [19] ). Such relation has been used to establish functorial correspondences
before (c.f. [2]) between BL-algebras and certain kind of labeled forests'. Motivated by
these ideas, in this part we show that there exists a functor from the category of finite
MTL-algebras to the category of finite labeled forests. To do so, we will take advantage
of the intimate relation between idempotent elements and filters that is given for the
case of finite MTL-algebras. This particular condition allows to describe the spectrum
of a finite MTL-algebra in terms of its join-irreducible idempotent elements, as well as
characterize the quotients that produce archimedean MTL-chains.
A forest is a poset X such that for every a € X the set

la={reX |z <a}

is a totally ordered subset of X.
This definition is motivated by the following result whose proof is similar to the dual
of Proposition 6 of [19].

Lemma 8. Let M be a (finite) MTL-algebra. Then Spec(M ) is a (finite) forest.

A tree is a forest with a least element. A p-morphism is a morphism of posets
f X — Y satisfying the following property: given z € X and y € Y such that
y < f(x) there exists z € X such that z <z and f(z) =y. Let fMTL be the algebraic
category of finite MTL-algebras. We write fa MT L for the algebraic category of finite
archimedean MTL-algebras and faMT Lc for the full subcategory of finite archimedean
MTL-chains. Let & be the skeleton of faMT Lc. A labeled forest is a function { : F — &,
such that F is a forest and the collection of archimedean MTL-chains {l(7) };ep (up to
isomorphism) shares the same neutral element 1. Consider two labeled forests [ : F — &
and m : G — &. A morphism [ — m is a pair (p,F) such that ¢ : F — G is a
p-morphism and F = {f, }.er is a family of injective morphisms f, : (mo ¢)(z) — I(z)
of MTL-algebras.

Let (¢, F) : 1 = m and (¢,G) : m — n be two morphism between labeled forests. We
define the composition (¢, F)(¢,G) : Il — n as the pair (p, M), where M is the family
whose elements are the MTL-morphisms f,g,(2) : n(¢¥¢)(x) = l(z) for every x € F. We
will call fLF the category of finite labeled forests and its morphisms. The details of
checking that fLF is a category are left to the reader.

Let M be an MTL-algebra. We write Z(M) for the poset of idempotent elements of
M;ie.,

I(M):={zx e M|2*=z}

Lemma 9. In any MTL-algebra M, the following are equivalent,
i. a € Z(M), and
ii. (a) = Ta

!Actually in [2] the authors use the name weighted instead of labeled.




Proof. Let us assume that (a) = fa. Since a® € (a) then a® € Ta, so a < a*. Finally,
from the integrality of M we conclude that a®> < a. Therefore a> = a. The reverse
direction follows directly from the definition. m

Corollary 10. Let M be a finite MTL-algebra and FF C M a filter in M. There exists a
unique a € Z(M) such that F' = Ta.

Proof. Since M is finite, every filter ¥ C M is principal, so by Lemma 9, F' = Ta for
some a € Z(M). If there exists a’ € Z(M) such that ta = Td’, thena < ¢’ and @’ < a. O

Let M be a finite MTL-algebra. From Corollary 10, it follows that there is a bijection
between Z(M) and the filters of M. Let J(Z(M)) be the subposet of join-irreducible
elements of Z(M). A direct application of Birkhoff’s duality produces the following
result.

Corollary 11. Let M be a finite MTL-algebra and P € Spec(M). Then, there exists a
unique e € J(Z(M)) such that P = Te.

Corollary 12. Let M be a finite MTL-algebra. The posets Spec(M )% and J(Z(M)) are
isomorphic.

Proof. Let ¢ : J(Z(M)) — Spec(M) be the mapping defined as ¢(e) = te. From
Corollary 11, it follows that ¢ is bijective. The proofs of the antimonotonicity of ¢ and
o~ ! are straightforward. O
Lemma 13. Let M be a MTL-algebra (not necessarily finite) and P be a prime filter of
M. If F is a proper filter of M such that P C F', then F' is prime.

Proof. Let us assume that x Vy € F. Since 1 € P, from prelinearity we obtain that
(x = y)V(y — ) € P, so, since P is prime, we get that z — y € Pory — x € P.
Suppose © — y € P, then v — y € F. By Remark 1, it follows that x Vy < (z — y) — v,
thus, since I is an up-set, we get (x — y) — y € F. Finally, since F' is a multiplicative
submonoid, from (x — y)((z — y) — y) < y we conclude y € F. In a similar way we
can deduce that z € F'. This concludes the proof. O

Corollary 14. Let M be a finite MTL-algebra and x € Z(M) such that x # 0. If there
exists some k € J(Z(M)) such that x < k then x is join-irreducible.

Proof. Let © € Z(M) with x # 0. If there exists some k € J(Z(M)) such that x < k,
then Tk C tz. From Corollaries 10 and 11 we get that Tx is a proper filter and Tk is a
prime filter of M, respectively. The result follows from applying Lemma 13 together with
Corollary 11. O]

Remark 3. It is well known that the congruence lattice of a finite residuated lattice is
dually isomorphic to the lattice of central negative idempotents (Corollary 3.8 of [13]),
so the join-irreducible idempotents in a finite MTL-algebra correspond to meet-irreducible
congruences. It follows that M /Te is subdirectly irreducible for any e € J(Z(M)), hence
a chain.

We write m(M) for the minimal elements of J(Z(M)).



Lemma 15. Let M be a finite MTL-algebra and e € J(Z(M)). Then, there exists a
unique k € J(Z(M)) U {0} such that k < e, where < denotes the covering relation in
posets.

Proof. Let e € J(Z(M)), then either e € m(M) or e ¢ m(M). In the first case, the
result follows, since 0 < e. In the second case, by Lemma 8 and Corollary 11 we get that
leNJ(Z(M)) is a finite chain. If we consider k as the coatom of the latter chain, the
result holds. O

Let e € J(Z(M)). In the following, we will write a. to denote the join-irreducible
element associated to e in Lemma 15%. Note that a, = 0 if and only if e € m(M).

Lemma 16. Let M be a finite MTL-algebra and e € J(Z(M)). Then M /Te is archimedean
if and only if e € m(M).

Proof. Notice that M/fe is simple if and only if Te corresponds to a maximal proper
meet-irreducible congruence, which is the case if and only if e € m(M). Hence, by the
Corollary 3, the result follows. O

Remark 4. Let M be a finite MTL-algebra and FF C M a filter. Let us check that
(F,V, A, 1,x) is a finite MTL-algebra such that Op = x. By definition of F, (F,-, 1) is
a commutative monoid so, if a,b € F then ab € F. The integrality of M implies that
a<b—aandb<a—b, sosince F is an up-set of M then for every a,b € F', we get
that a — b,b — a € F. Similarly, since ab < a A'b, by applying the last argument we get
that a Nb € F. The proof for aNV b € F is the same. Finally, due to Corollary 10 there
exists a unique x € T(M) such that F' = Tx, which is equivalent to saying that © = Op.

Lemma 17. Let M be a finite MTL-algebra, then (Ta.)/(Te) is an archimedean MTL-
chain for every e € J(Z(M)).

Proof. Recall that by Remark 4 and Lemma 15, we get that fa. is a finite MTL-algebra
whose least element is a.. Since a. < e, it follows that fe is a proper filter of Ta. with
e € m(fae). Therefore, from Lemma 16 we get that fa./Te is an archimedean MTL-
chain. =

Let M and N be finite MTL-algebras and f : M — N a morphism of MTL-algebras.
It is a known fact (c.f. [16]) that the assignments M +— Spec(M) and f +— Spec(f) = f71,
determines a contravariant functor Spec : fMTL — fCoh from the category of finite
MTL-algebras into the category of finite coherent (or spectral) spaces.

Let ¢ar be the isomorphism between J(Z(M)) and Spec(M ) of Proposition 12.

Lemma 18. Let M and N be finite MTL-algebras and f : M — N an MTL-algebra
morphism. There exists a unique p-morphism f* : J(Z(N)) — J(Z(M)) making the
following diagram

J(IZ(N) L= T@z(Mm))

on| Jo

Spec(N) P Spec(M)

commute.

2The element a, is also noted as e, in [10].



Proof. Since ), is an isomorphism, we get that f* = ¢,/ spec(f)pn. Observe that
this map is defined as f*(e) = min S, where S, = f~'(te) N J(Z(M)). In order to
check the monotonicity, let ¢ < g in J(Z(N)), then tg C te, thus f~*(1g) C f~(Te)
so Tf*(g) C 1f*(e). Thereby, f*(e) € f*(g). It only remains to check that f* is a p-
morphism. To do so, let g € J(Z(N)) and e € J(Z(M)) such that g < f*(e). Since

J(Z(N)) is finite, we can consider m = min S, with
S={keTJ@IN) k<e g< (k)

We will prove that f*(m) = g. Let € Z(N) be such that g < z. Since e < f(g), it
follows that f(x) # 0. Consider Tmf(z). Since mf(x) < m, by Corollary 14 we get that
mf(x) € J(Z(M)). Let us very that g < f*(mf(x)) by checking f~*(tmf(z)) C tg. If
be f~H(tmf(x)), then mf(x) < f(b) and hence m < f(x) — f(b) = f(x — b). Therefore
r — b€ f~Y(tm). By construction of m, we have that g < f*(m), so f~(tm) C tg.
Consequently, ¢ < = — b. Since ¢ < z, we obtain that ¢ < xz(x — b) < b. Hence,
mf(xz) = m, because mf(x) € S. Finally, since mf(z) = m < f(x), it follows that
z € f~Y(tm). Thus Tz C f~!(tm) and since z < g, we obtain that g C f~'(1m). Then
we conclude that f*(m) < g. This concludes the proof.

[

Let M be a finite MTL-algebra and consider the function
Iy : TJZ(M)) — 6

defined as [y (e) = Ta./Te. Since from Lemma 8 we know that J(Z(M)) is a finite forest,
{3 1s a finite labeled forest.

Let F be a finite forest and X C F. We write Min(X) for the minimal elements of
X.

Lemma 19. Let f: X — Y be a p-morphism. If v € Min(X) then f(x) € Min(Y).

Proof. Let us assume x € Min(X), and suppose that there exists y € Y such that
y < f(z). Since f is a p-morphism, there exists z € X, with z < x such that y = f(z).
Since y # f(x), then z # z, so x ¢ Min(X). This fact is absurd by assumption. O

Lemma 20. Let M and N be finite MTL-algebras and f : M — N an MTL-algebra
morphism. Then, for every e € J(Z(N)), f determines a morphism f, : Tag(e) = Tae
such that there exists a unique MTL-algebra morphism f. : Tag)/Tf*(e) = Tac/Te
making the diagram

fe
Tapey ——=Tae

| |

Taf*(e)/Tf* (6) T Tae/Te
commute.

Proof. Let e € J(Z(N)). Then e ¢ m(N) or e € m(N). In the first case, it follows that
a. > Oy and thus, ta, C N. Since a. < e and f* is monotone then f*(a.) < f*(e). Since



ape) < f*(e), [*(ae) < ap-(). Thereby, tas) C 1f*(ac). Let us define f, : tay() —
Ta. as

7( ) = { CJ:(:C)’ iigf*(e)
e = Ufx(e)
From Lemma 18, we get that 1f*(a.) = f~'(fa.) and f. is a well defined MTL-morphism.
Let us consider ay) < f*(e) < =z, then, f.(ap()) < f.(f*(e)) < f.(x) since f, is
monotone. By definition of f, we obtain that a. < f(f*(e)) < f(z). Then, applying
Lemma 18, we get that e < f(f*(e)), so we can conclude that e < f(z). This means that
[f.(x)] = [1] in Ta./Te. Hence, by the universal property of quotients in M7 L, there
exists a unique MTL-morphism f, : Ta ) /Tf*(e) = Ta./Te making the diagram above
commutes.

Finally, if e € m(N), we get that a. = Oy and Ta, = N. Since f* is a p-morphism, due
to Lemma 19, f*(e) € m(M), a-) = Oy and consequently, tas) = M. Let f, = f.
The proof of [f.(x)] = [1] in ta./te is similar to the given for first case. The rest of the

proof follows from the universal property of quotients in MT L.
]

Let f M — N be an MTL-morphism between finite MTL-algebras and F; :=
{fe}teea(z(vy) be the family of MTL-morphisms obtained in Lemma 20.

Corollary 21. Let M and N be finite MTL-algebras and f : M — N an MTL-algebra
morphism. Then the pair (f*, Fy) is a morphism between the labeled forests Iy and I

Theorem 22. The assignments M +— Iy and f — (f*, Fy) define a contravariant functor
G: fMTL— fLF.

Proof. Let f : M — N and g : N — O be morphisms in fMTL and consider the
diagram

Spec(O >S”““” o) 2 Spec(M)

J(Z(0)) —= J(Z(N)) ?J(I(M))

associated to the composition gf : M — O. Since Spec is contravariant,

(9.)" = eat Spec(gf)eo = (a) Spec(flen) (e Spec(g)po) = f*g" (1)

If ©dy; denotes the identity map of the MTL-algebra M, a straightforward calculation
proves that (idy)* = idgzuy). Conversely, let e € J(Z(0)). We will verify that
(9f)e = Gefgr(e)- From (1), we conclude that agpye) = apgre)- U T > agp(e),
then z > ay«(4+(c)). By the monotonicity of f and Lemma 18, we obtain that ag) <
fagg+e)) < f(x). Hence ag-(y < f(x). In a similar way, by the monotonicity of g and
using agam Lemma 18, we get that a. < (gf)(x). Therefore, for every x € Taf)«(e) it
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follows that (gf).(z) = ? +(e)(w). Finally, from Lemma 20, we obtain that g.fg() =
(gf)e- So, for every e € j(I( )) the diagram below

(9f)e

Ta(gf)*(e) - Tag*(e) —Ta.

l | |

Tagpye)/T(gf) (e )—>Tag (/19" (e) ——=Tac/Te
\—/

(9f)e

commutes. Therefore (¢*f*, F) = ((gf)*, Fgr), where Fyp = {(9f)e}ecrz0) and F =

{9efo (e) Yeca(z(0)). Hence G(gf) = Q(f)g(g). From the definition of G it easﬂy follows
that g(sz) = idg(M). ]

4 Forest Product of MTL-algebras

In this section we introduce the notion of forest product. It is simply a shorthand for a
poset product as defined in [3] when restricted to posets which are forests. For the sake
of completeness, we recall the necessary definition.

Definition 1. Let F = (F,<) be a forest and let {M;};cr a collection of MTL-chains

such that, up to isomorphism, they all share the same neutral element 1. If (UZeF MZ)F
denotes the set of functions h : F' — |J,cp M; such that h(i) € M; for all i € F, the
forest product @),y M; is the algebra M defined as follows:

(1) The elements of M are the h € (UleFM)F such that, for all i € F if h(i) # 0;
then for all j <, h(j) =

(2) The monoid operation and the lattice operations are defined pointwise.

(8) The residual is defined as follows:

h(i) = g(4), if for allj <1, h(j) <; g(j)
(h— g)(i) =

0; otherwise
where the subindex i denotes the application of operations and of order in M;.
The following result is a slight modification of Theorem 3.5.4 in [3].
Lemma 23. The forest product of MTL-chains is an MTL-algebra.

In the following if we refer to a collection {M; };ep of MTL-chains indexed by a forest
F we always will assume that it satisfies the conditions of Definition 1.

Lemma 24. Let F be a forest and {M;}icr a collection of MTL-chains. The following
are equivalent:

11



1. h€Qcp M,
2. For everyi < jin F, h(j) =0, or h(i) =1,
3. For alli € Fif h(i) # 1 then for all i < j, h(j) = 0;,
4. Uieph™'(0;) is an up-set of F, h™(1) is a down-set of F and
Ch ={i € F[h(i) ¢ {0;,1}},
is a (possibly empty) antichain of F.

Proof. Since the implications (1) = (2) = (3) follow straight from definition, we only
prove the remaining implications. Let us start proving that (3) implies (4): To prove that
h=1(1) is a down-set of F we proceed by contradiction. Suppose i < j with h(j) = 1 but
h(i) # 1. Thus, h(j) = 0;, by assumption, which is absurd. To prove that J,.; h~*(0;)
is an up-set of F let us suppose that i < j with h(i) = 0;, then, since h(z) # 1, and
(3), we get that h(j) = 0;. If C) is not an antichain, there exist i,j € C), comparable.
Without loss of generality, we can assume i < j, h(i) # 1 and h(j) # 0;, then because
of (3), we obtain that h(j) = 0;, which is absurd. Finally, to prove that (4) implies (1),
let h € (U;cp MZ)F and suppose that ¢ < j with k(i) # 1. If h(j) # 0;, thus ¢,5 € Cy,
which is absurd, since (', is by assumption an antichain. O]

Remark 5. Let F be a chain and {M;};cr a collection of MTL-chains. Let us consider
h € @,crM; and j € F. Note that there are only two possible cases for h(j), namely
h(j) # 0; or h(j) # 1. If h(j) # 1, from (4) of Lemma 24, it follows that for every j < i,
h(i) = 0; and due to (3) of the same lemma, h(k) =1 for every k < j. If h(j) # 0;, from
Definition 1, we get that h(k) = Oy for every j < k and by (4) of Lemma 24, we have
that h(i) =1 for every i < j.

Lemma 25. Let A be a nontrivial commutative integral residuated lattice. If A is totally
ordered, then the top element of A is join-irreducible. If A is also prelinear then the
converse holds.

Proof. If A is totally ordered, then every element is join-irreducible; in particular its top
element. For the converse, if 1 if join-irreducible, then prelinearity implies 1 = 2 — y or
1=y —x hencex <yory<u. O]

Lemma 26. Let F be a forest and {M;}icr a collection of MTL-chains. Then F is a
totally ordered set if and only if Q),cp M; is an MTL-chain.

Proof. Suppose F is a totally ordered set and let g, h € &),.x M; be such that (g Vv h) =
1. Since the lattice operations in ), . M; are calculated pointwise, for every i € F,
g(i) V h(i) = 1. If g,h # 1, there exists some j € F such that g(j),h(j) # 1. From
Remark 5 it follows that g(k) = h(k) = Oy, for every j < k so we get that (¢ V h)(k) =
g(k) V h(k) = 0x, which contradicts our assumption. Hence, since every MTL-algebra is
prelinear, from Lemma 25 we get that @), . M; is an MTL-chain. On the one hand, let
us assume that &), p M; is an MTL-chain. If F is not a totally ordered set, then there
exist two different elements n and m in F which are not comparable. Let us consider
g,h € Q,cr M;, defined as
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O, ifi>n O, ifi>m

g(i) = h(i) =
1, otherwise 1, otherwise

Observe that g V h = 1 but g,h # 1, which is a contradiction since, by Lemma 25,
the top element of &), . M, is join-irreducible. ]

Let F be a forest and {M,};cr a collection of MTL-chains. We write D(F) for the
collection of down-sets of F. Let S be a proper down-set of F and consider

Xg = {hE ®Ml ’ h’_g: 1}
i€F
Observe that Xg is a proper filter of Q),.p M. Since S€is itself a forest, due to Lemma

23, @;csc M; is an MTL-algebra. Using the fact that every filter of an MTL-algebra is a
prelinear semihoop, we obtain the following result.

Lemma 27. Let F be a forest and {M;};cr a collection of MTL-chains and S € D(F).
Then Xg and Q),;cqc M; are isomorphic prelinear semihoops.>

Proof. Let g € @),cqc M;. Define ¢ : @, g M; = Xg as
g(i), ifig¢ s

1, ifie S

w(9)(i) =

For this part of the proof we will write h to denote p(g). First, we prove that h is well
defined. Let us take ¢ < j in F' and suppose that h(i) # 1. By construction of h, we get
that i ¢ S, so h(i) = g(i). If h(j) # 0;, then h(j) = 1 or 0; < h(j) < 1. In the first
case we obtain that j € S and since i < j and S € D(F), ¢ € S, which is absurd. In
the second case, since S¢ is an up-set of F, from ¢ ¢ S and i < j it follows that j ¢ S.
Hence, h(j) = g(j) # 1. Therefore, there are i,j7 € C}) comparable, which by (4) of
Lemma 24 is absurd. Consequently, h(j) = 0; and thus, by (3) of Lemma 24, we get
that h € @Q),.p M. By construction, it is clear that h € Xg. In order to verify that ¢ is
surjective, let f € Xg and consider f|ge. Since S¢is an up-set and f € §);cp M, it is
clear that ¢(f|sc) = f. The injectivity of ¢ is immediate.

Since the monoid and lattice operations in Xg and @),.gc M; are defined pointwise it
is clear that ¢ preserves such operations. We prove that ¢ preserves the residual. To do
so, let 5,1 € &),cqc M. Then,

p(s)(i) =i @(t)(2), if for all j < i, ¢(s)(j) <; ¢(t)(7)
(p(s) = @ (t)(@) = (2)

0;, otherwise
and
(s = t)(7), ifig s
p(s = t)(i) = (3)
1, ifie S

3From Remark 4, it is clear that every finite bounded prelinear semihoop is an MTL-algebra. Never-
theless, since in this section we are dealing with arbitrary MTL-chains, and in such a case not every filter
is an MTL-algebra, we rather prefer to maintain the term prelinear semihoop in order to distinguish
filters from MTL-algebras.
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If i € S then p(s) = p(t) = 150 ¢(s)(i) —; ¢(t)(i) = 1. Since S € D(F),if j <, j € S.
Therefore ¢(s)(j) = ¢(t)(j) = 1. Hence, for every i € S, p(s — t)(i) = (p(s) = () (7).
On the other hand, if i ¢ S and (¢(s) — ¢(t))(i) # 1 then (p(s) — ¢(t))(i) = 0; or
0; < (p(s) — go(t))(z) <1. In ﬁrst case from equation (2) it follows that there exists

Jj € F with j < i such that ¢(s $] (). i €S, o)) = 0)y) = 1.
Therefore j ¢ S. Hence, since gp( )(j) = 3( ) and e(t)(j) = t(j) we get that there exists
J ¢ S with j < i such that s(j) %, t(j). Then (s — t)(i = (p(s) = ¢(t))(7). In

)
second case, from equation (3) we get that (p(s) = @(t))(

{) 2(5)(0) = p(D)i) 50,

by the definition of ¢, we obtain that ¢(s)(i) — ¢ (t)(i) = (¢(s) = ¢(t))(i). Finally, if
i ¢S and (¢(s) = ¢(t))(i) = 1 then ¢(s)(i) <; ¢(t)(7) and, in consequence p(s)(i) —;
@(t)(i) = 1. Thus, for every j < i, ¢(s)(j) <; ©(t)(j). In particular, if j ¢ S and

j <, sz]) <, t(j). Therefore ¢(s)(i) = ¢(t)(i) = (s — t)(¢). Hence, for every i ¢ S,
(p(s) = o(t))(i) = @(s)(i) =i p(t)(7). This concludes the proof. O

Corollary 28. Let F be a forest, S,T € D(F) such that S C T and { M;}cr a collection
of MTL-chains. Take X§ :={h € Q,cpM; | h|ls = 1}. Then, XI and Q;cgerr M; are
1somorphic prelinear semihoops.

Proof. Since S C T and S,T € D(F) we get that S € D(T). The result follows from
Lemma 27. O

4.1 Forest products are sheaves

In every poset F the collection D(F') of down-sets of F' defines a topology over F' called
the Alezandrov topology on F. Let S,T € D(F) be such that S C T and {M,};cr be
a collection of MTL-chains. Observe that, if h € @),.r M; then the restriction h|g is
an element of §),.g M;, so the assignment that sends 7" € D(F) to &), M; defines a
presheaf P : D(F)® — MTL.

Lemma 29. Let F be a forest and { M;}icr a collection of MTL-chains. Then, for every
S € D(F)
P(S) = P(F)/Xs.

Proof. Let r : P(F) — P(S) be the restriction to S. It is clear that r is a surjective
morphism of MTL-algebras such that r(h) = 1, for every h € Xg. Then, by the universal
property of the canonical homomorphism 5 : P(F) — P(F)/Xs, there exists a unique

morphism of MTL-algebras a : P(F)/Xg — P(S) such that the diagram below

7’(F)—>7’(1*"|)/Xs

commutes. Observe that af = r, so since [ is surjective, it follows that « is surjective
too. The verification of the injectivity of « is straightforward. n

Corollary 30. Let F be a forest, S, T € D(F) such that S C T and { M, }icr a collection
of MTL-chains. Then P(S) = P(T)/X}.
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Proof. Due to Lemma 29, P(T) = P(F)/Xr. Observe that X! =~ Xg/Xp, thus the
result follows as a direct consequence of the second isomorphism theorem (Theorem 6.15
of [18]). O

Lemma 31. Let A be a nontrivial MTL-algebra. Then A/P is an MTL-chain if and
only if P 1s a nontrivial prime filter.

Lemma 32. Let F be a forest, S € D(F) and { M, };cr a collection of MTL-chains. Then
Xg s prime if and only if S s totally ordered.

Proof. Observe that asking S to be totally ordered, is equivalent, by Lemma 26, to asking
&X),es M; to be an MTL-chain. By Lemma 29, Q,.q M; = &),.p M;/Xs. Hence, the
result follows from the first observation and Lemma 31. n

Let Shv(P) be the category of sheaves over the Alexandrov space (P, D(P)). Since
the theory of MTL-algebras is algebraic, it is well-known that an MTL-algebra in Shv(P)
is a functor D(P)? — MT L such that the composite presheaf D(P)®? — MTL — Set
is a sheaf.

Lemma 33. Let F be a forest and {M;}icr a collection of MTL-chains. The presheaf
P :D(P)? — MTL, with P(T) = Q,cqr M, is an MTL-algebra in Shv(P).

Proof. Suppose that T = (J,.; S, with So, T € D(F), for every o € I, and let h, €
P(S4) be a matching family. Thus, for every « # (3 in I:

halsanss = hsls.ns; (4)
Let us consider the following function:

h: I — UiETMi
i hal(i),ifi €S,

Observe that (4) guarantees that h is well defined. To check that h € @),cp M, let
us suppose that ¢ € T and h(i) # 0;. If j < i then, since T = J,.; Sa, there exists
some f € I such that i € Sz. In such case, j € Sg, since Sz € D(F). Then h(i) = hg(i)
and h(j) = hg(j). Since hg € ®z’esﬁ M;, we conclude that h(j) = hg(j) = 1. Therefore

h amalgamates {h,}acr. To verify the uniqueness of h, let us suppose that there exists
f € P(T) such that f|s, = ha, for every a € I. Then,

(flsa)lsanss = (Als.)|sanss = (Rlss)|sanss = (flss)]sanss-

For i € S, we have that

f(@) = (flsa)(@) = ha(i) = (hls,) (@) = h().
Since this happens for every a € I, f = h. O]

Let F be a forest and ¢ € F. Since P is a presheaf of MTL-algebras, its fiber over i is
the set of germs over i and is written as P; (c.f. IL5 [15]). Recall that f,g € P(S) have
the same germ at i if there exists some R € D(F) with ¢ € R, such that R C SN T and
flr = g|r. Hence, P; results to be a “suitable quotient” of the MTL-algebra P(T"). By
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Lemma 33, P; can be described as the filtering colimit over those T' € D(F) such that
1€T) ie.,

P = @}ieT P(T>-

Thereby, for every T' € D(F) the map ¢r : P(T') — P; that sends h € P(T) in its
equivalence class “modulo germ at i” result to be a surjective morphism of MTL-algebras.
We write [h]r for the equivalence class of h in P;.

Lemma 34. Let F be a forest and { M, }icr a collection of MTL-chains. For everyi € F,
Pi) =P in MTL.

Proof. Let i € F and consider ¢|; : P(li) — P;. From the above discussion it is clear that
i is surjective. To check that it is injective, let f, g € P({i) be such that [f];; = [g]-
There exists some R € D(F) with ¢ € R, such that R C |i and f|r = g|g. Since i is the
smallest down-set to which 7 belongs, we get that R = |7. Then f = ¢g. Hence ¢; is an
isomorphism in MT L. O

Corollary 35. Let F be a forest and {M;};cr a collection of MTL-chains. Then, the
fibers of P are MTL-chains.

Proof. Let i € F and P; be the fiber of P over i. From Lemma 34, P; & P(li) =
(%) el M;. Since F is a forest, | is a chain, so by Lemma 26 we conclude that P; is an
MTL-chain. O]

Observe that the same argument used in Example 2 of [3] can be applied to prove
that when the index set is a finite chain, the forest product and the ordinal sum of
MTL-algebras coincide. The following result will be relevant for the last part of this

paper.

Corollary 36. Let F be a finite forest and {M;}icr a collection of MTL-chains. Then
for every j € F, P; = D, ; M.

Proof. If F is a finite forest then | is a finite chain for every j € F. From the observed
above respect to the forest product of MTL-algebras indexed by a finite chain, we conclude

that P(lj) = @D,c,; My, which clearly is an MTL-chain. Therefore, from Lemma 34 the
result follows. O

We can now put together Lemma 33, and Corollary 35 in the following statement:
The forest product of MTL-chains is a sheaf of MTL-algebras over an Alexandrov
space whose fibers are MTL-chains.

5 From finite forest products to MTL-algebras

In this section we show that a wide class of finite MTL-algebras can be represented as
finite forest products of finite archimedean MTL-chains. To do so, we begin by showing
that there exists a contravariant functor H from the category of finite labeled forests to
the category of finite MTL-algebras. Moreover, we will prove that the functor H is right
adjoint to the functor G of Theorem 22 and the counit of the adjunction is an isomorphism.
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It is worth mentioning that this result is strongly based on the characterization of the
join-irreducible elements of a finite forest product of finite archimedean MTL-chains.

In general, the unit of the adjoint pair G 4 H is not an isomorphism. In Section 5.1
we present a class of finite ML T-algebras which solves that problem. Finally in Section
5.2 we give a simple description of the forest product of finite MTL-chains in terms of
ordinal sums and direct products.

Let [ : F — & and m : G — & be finite labeled forests. If (¢, F) : Il — m is a
morphism of finite labeled forests (see Section 3) then ¢ : F — G is a p-morphism and
F = {fi}ier is a family of morphisms f; : (mo)(i) — (i) of MTL-algebras. Recall that
a morphism of posets is a p-morphism if and only if it is open respect to the Alexandrov
topologies of the involved posets, so since F' € D(F) it follows that ¢(F') € D(G). From
Lemma 23, we get that @), m(k) is an MTL-algebra. Notice that moy : F — &
is a finite labeled forest so we can consider the forest product ), x(m o ¢)(i). Since
Uk m(k) = Uicp(m o 9)(i), we define, for every h € @), m(k), the map v :

ke M(k) = @,ep(m o ¢)(i) as the composite

F > ¢(F) —">U;ep(m o 9) (i)

Lemma 37. The map v, defined above, is a morphism of MTL-algebras.

Proof. In order to check that v is well defined, take h € ®,€E¢(F) m(k) and consider
i € F such that y(h)(i) # 0,3). Assume j < i in F. By the definition of v, we get
that h(p(i)) # 0,(;). From the monotonicity of ¢, it follows that ¢(j) < ¢(i). Then by
assumption, when we have that h(¢(j)) = 1, and consequently v(h)(i) = 1. By Definition
1, we have that y(h) € @),cp(mo¢)(i). The proof of the fact that 7 is an homomorphism
is straightforward. O]

Notice, in addition that the family F induces a map o : @Q;cp(m o ¢©)(i) = @),cp ()
defined as a(g)(i) = fi(g(7)), for every i € F.

Lemma 38. The map «, defined above, is a morphism of MTL-algebras.

Proof. Let g € @,cp(m o ¢)(i) be such that a(g)(i) # 1. Let j € F be such that i < j.
Since, f;(g(i)) # 1, we get that, by Lemma 5 ¢(i) # 1. Hence, by assumption g(j) = Oy().
Thereby a(g)(j) = f;(g(j)) = 0;, and by (2) of Lemma 24, we have that a(g) € Qg 1(7)-
The proof of the fact that « is an homomorphism is straightforward. O

Lemmas 37 and 38 allow us to consider the following composite of morphisms of MTL-
algebras:

P Q) " @iy m(k) — > @, (m 0 ) (i) —*=Py(F)

where P, (G) = Qjeq m(k), Pi(F) = Q,ep l(i) and B : Ppu(G) = Qjepry m(k) is the
restriction of P,,(G) to o(F).

Theorem 39. The assignments | — Pi(F) and (¢, F) — avyf define a contravariant
functor

W fLF — fMTL.
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Proof. Let | : F —- &, m : G — G and n : H — & be finite labeled forests, and
(p,F):l—mand (v,G) : | = m be morphism of finite labeled forests. Let

M = {figow : n(¥(p(@)) — (i) | i € F}.
Consider s € H(n) and i € F. Then from

H(¥, G)(p, F)](5)(1) = H(dbp, M)
= (figow)[s(¥
= filgew (s(¥(e
= filH(®, G)(5)((1))]
= H(p, F)[H . G)(5)](7)
= (e, F)H (¥, G)I(s)(0)
we conclude that H[(v, G)(¢, F)] = H(e, FYH(1,G). Since id; = (idp,T), where T is

the family formed by the identities of {i(7)};cF, it is clear from the definition of H that
H(id;) = idyq). O

(5)(4)
(0 (2))
(1))
((2))
¢

g

)]
]

Let F be a finite forest and {M, };cr a collection of MTL-chains. We recall that, in
Lemma 24, for every h € Q)..p M; we defined Cy, = {i € F | h(i) ¢ {0;,1}}.

i€F

Lemma 40. Let [ : F — G be a finite labeled forest. Then h € Z(P/(F)) if and only if
Cy = 10.

Proof. Observe that h € Z(P)(F)) if and only if h(i)*> = h(i), for every i € F, which
is equivalent to say that h(i) € Z(I(:)). Since [(i) is an archimedean MTL-chain, by
Proposition 2, the only possible case is h(i) = 0; or h(i) = 1. This concludes the
proof. O]

Let F be a finite forest and S C F. We write Max(S) for the maximal elements of S.

Lemma 41. Let [ : F — & be a finite labeled forest and S € D(F), then
Xs={h ePi(F)|h(i) =1, for everyi € Max(S)}

Proof. Let h € P/(F) and suppose h(i) = 1 for every i € Max(S). If j € S, there exists
some ¢ € Max(S) such that j < i. Since h(i) # 0;, h(j) = 1 and h € Xg. The other
inclusion is straightforward. O]

Recall that, from Corollary 10 there exist a unique hg € Z(P;(F)) such that Xg = Thg.
As a direct consequence of Lemmas 40 and 41 we obtain the following result.

Lemma 42. Let | : F — & be a finite labeled forest and S € D(F), then

1, j<i, for somei € Max(S5)
0;, otherwise

hs) = {

Corollary 43. Let | : F — & be a finite labeled forest. The following holds for every
1€ F:
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1. Xy; is a prime filter of Pi(F),
2. Xy ={heP(F)|h(i) =1},

3. The map
1

hyi(j) = { 0

is a monzero join-irreducible element of P;(F).

S Ny

j, otherwise

Proof. A direct consequence of Lemmas 32, 41, 42 and Corollary 11. O

Lemma 44. Let | : F — & be a finite labeled forest and h € Z(P)(F)), then h €
J(Z(Pi(F))) if and only if h~ (1) is a chain.

Proof. Let us assume that h='(1) is a chain, then, since F is finite, h=!(1) = |4 for some
i € F. Suppose that there are g, f € Z(P,(F)) such that h = gV f, then h(k) = g(k)V f(k),
for every k € F. If k < i, we get that g(k) V f(k) = 1. Since the top element of [(k)
is join-irreducible, by Lemma 25, g(k) = 1 or f(k) = 1. Consequently, g(k) = h(k) or
f(k) = h(k). If h(k) = O, the result follows, since 0y, is join-irreducible in [(k). Hence h
is join-irreducible. Conversely, suppose that h € J(Z(P,(F))). If h~'(1) is not a chain,
there exist i,7 € F not comparable such that h(i) = h(j) = 1. Let us consider the
following functions:

h(k), ifk #1 h(k), ifk#j
g(k) = f(k) =
0;, otherwise 05, otherwise
From Lemma 40, it follows that g, f € Z(P;(F)). Thereby, h = g V f, which is in
contradiction with the assumption. O

Lemma 45. Let | : F — & be a finite labeled forest. There is a poset isomorphism
between F and J(Z(P/(F))).

Proof. Let us to consider u : J(Z(P)(F))) — F, defined as u(h) = mazx h=(1) = iy,.
From Lemma 44, it follows that p is well defined and is injective. To verify that u is
surjective, take ¢ € F' and define

N B PR
hi(7) = { 0;, otherwise

From Lemma 44, it follows that h; € J(Z(P,(F))). It is clear that pu(h;) =i. In order to
check the monotonicity of y, let us suppose that h < g, for h,g € J(Z(P,(F))). From 3.
of Corollary 43, we have that h='(1) C g7'(1), so 45, < i, and consequently u(h) < u(g).
The monotonicity of u~! is straightforward. O

Let [ : F — & be a finite labeled forest. For every i € F' we write h; for the map of
3. in Corollary 43. Let us to consider the assignment ¢; : F — J(Z(P,(F))), defined as

Lemma 46. The assignment y; is a p-morphism.
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Proof. The monotonicity of ¢; follows from 3. of Corollary 43. On the one hand, let « € F
and suppose that g < h;. Thus, h(i) = 1 implies that ¢g(i) = 1 and, due to 2. of Corollary
43 we get that g € X|;. Therefore, h; < g. In consequence, g = (i), which was our
aim. O

Lemma 47. The p-morphism ¢; is an isomorphism.

Proof. We first prove the injectivity of ¢;. Let i,j € F be such that ¢;(i) = ¢;(j). Then
h; = hj. In particular h;(i) = h;(i) and h;(j) = h;(j), which, by definition of h; and h;
means that ¢ < j and 7 <. The surjectivity of ¢; follows from Lemma 44. Finally, we
verify that ¢, ! is also a p-morphism. To do so, notice that for every h € P;(F), ;' (h)
is just the ¢ € F' described in Lemma 44. We will denote such element as 7,. Let us
suppose that j < ¢; '(h), then h(j) = h(iy) = 1 so, for every k < j < i), we get that
h(k) = h(j) = 1. Take

L k<
g(k) = { Ok, otherwise
It is clear that g € Pi(F), g < h and ;' (j) = g. O

Observe that, from Lemmas 15 and 46 we have that for every ¢ € F, there exists a
unique ay,;y € J(Z(Pi(F))) such that ag,y < @i(2). Due to Lemma 17, Tay, ) /Tei(4) is
an archimedean MTL-chain. Let us consider the assignment 7; : Tay,q) — (i), defined
as 7;(h) = h(i). It is clear, from the definition, that 7; preserves all the binary monoid
operations. Moreover, it preserves the residual. If a, ;) < f, g, then for every j < i,
£) = 9(j) = 150 f(j) < g(j), which means that (f — g)(i) = f(i) — g(i), and
consequently, 7;(f — g) = 7(f) —: 7:(g). We have proved the following result:

Lemma 48. The function 7;, defined above, is a morphism of MTL-algebras.

Notice that, from the universal property of quotients in MT L, Lemma 48 implies that
for every i € F' there exists a unique morphism of MTL-algebras f; : (Tay,@))/(Tei()) —
[(i) such that the diagram

Nag@)) — Tag, @) /(7))

commutes.
Lemma 49. For every i € F, f; : (Tay,s))/(Tei(i)) — (i) is an isomorphism.

Proof. To prove the injectivity of f;, suppose that fi([f]) = fi([g]). Then f(i) = g(3).
Since ay, )y < f, g, for every j <, f(j) = g(j) = 1. Hence, f(i) < g(i), for every i < j,
which is equivalent to say that [f] = [g] in (Tay,))/(Tei(i)). To check the surjectivity,
take x € (7). Define
1, k<i
hk)y=4¢ z, k=i
0, otherwise

It is clear that f;([h]) = . O
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Let G and H be the functors from Theorems 22 and 39, respectively.

Lemma 50. Let |l : F — & be a finite labeled forest. Then G o H is isomorphic to the
identity functor in fLF.

Proof. A direct application of Lemmas 47 and 49. O]

Proposition 51. The functor G is left adjoint to the functor H. Moreover, G is full and
faithful.

Proof. Let M be a finite MTL-algebra, | : F — & be a finite labeled forest and f: M —
Pi(F) be a morphism of MTL-algebras. By Lemma 18, there exists a unique p-morphism
[ TZ(P(F)) = T(Z(M)). Let ¢ : F— J(Z(M)) be defined as ¢ = f*u~!, where p
is the isomorphism between F and J(Z(P,(F'))) given in Lemma 45. It is clear that ¢ is a
p-morphism. On the other hand, if we write h; for ~1(¢), then from Lemma 20, it follows
that for every ¢ € F' there exists a morphism of MTL-algebras 7,” : Tag«n,) — Tan, which
determines a unique morphism of MTL-algebras fy, : (Tag-(n,)/(Tf*(hi)) = (Tan,)/(Thi)-
From Lemma 49 we get that (Tap,)/(Th:) = [(i). Let us to consider f; : (Tag-x,))/(Th:) —
[(i) as the composition of f,, with the isomorphism of Lemma 49. This concludes the
proof.

O

We conclude this section by noticing that the counit of the adjunction of Proposition
51, is not an isomorphism. In order to check this fact, consider the MTL-algebra A whose
underlying poset is 0 < = < e < 1 and whose product is given by the following table:

OI8[D | -
o8| ||+
o|lo|o ||
oo oIr R
[ev) Hew) Hew) Nen) Raw}

Observe that J(Z(A)) = {1,e}, and G(A) =14 : T(Z(A)) — &, is a finite labeled
forest which satisfies [4(1) = la(e) = 2. Since J(Z(A)) is a chain, then, from Lemma 34
and Corollary 36 we obtain that

’H(Q(A)) = H(ZA) = PIA(\L 1) = lA<1) & ZA(G) = lA(l) ©® ZA(G) =3,

where 3 is the MTL-chain of three elements.

5.1 The duality theorem

In this section we present a duality theorem between the class of locally unital finite
MTL-algebras and finite labeled forests. To do so, we restrict the results obtained in
Section 5 to the class of locally unital finite M'TL-algebras.

Definition 2. Let M be a finite MTL-algebra. An element e € Z(M)* is said to be a
local unit if for every x <e, ex = x.
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Lemma 52. Let M be a finite MTL-algebra and e € Z(M)*. The following are equivalent:
1. e 1s a local unit.
2. ey=eNvy, for everyy € M.

Proof. Let us assume that e is a local unitand y € M. Since eAy < y, e(eAy) < ey. Hence
eNy < ey, because e ANy < e and e(e Ay) = e Ay. The other case is straightforward. [

Definition 3. A finite MTL-algebra M is said to be locally unital if every nonzero idem-
potent satisfies any of the equivalent conditions of Lemma 52.

Note that not every locally unital MTL-algebra is a BL-algebra, since, for example,
every simple MTL-algebra is locally unital and not every simple MTL-algebra is a BL-
algebra. Furthermore, it is the case that every BL-algebra is a locally unital MTL-algebra,
since the divisibility condition implies that every idempotent different from 0 is a local
unit. Moreover, there are even finite MTL-algebras which are not locally unital. As an
example, one may consider the MTL-algebra A of four elements, which was presented at
the end of the last section.

Let M be a locally unital MTL-algebra. For the rest of this section we will write ),
to denote J(Z(M)).

Remark 6. Observe that as a direct consequence of Definition 2, it follows that for every
e € Fy, Tac/Te = [a, €.

Let M be a locally unital MTL-algebra and m € Max(F)s). In what follows we will
denote the set (Jm) N Fyy simply by ({m).

Lemma 53. Let M be a locally unital MTL-algebra and m € Max(Fy;). Then, for every
x € M there exists some e € m such that a, < x.

Proof. Suppose that there exist y > 0 such that for every e € [m it holds that a, £ y. In
particular, if n = min({m), it follows that a,, = 0; so 0 & x, which is clearly absurd. [

Lemma 54. For every locally unital MTL-algebra M and m € Max(Fy), M/(Tm) =
D.-,, e, €]

Proof. In order to simplify the notation for this proof, we write B for €@, ., [a.,€]. Let
us consider the map f : M — B, defined as f(z) = x Am. It is clear that f is a surjective
morphism of MTL-algebras such that f(m) =1 € B. We stress that B has the universal
property of M /tm. To prove it, let g : M — E be a morphism of MTL-algebras such
that g(m) = 1g. For every z € B define ¢(z) = g(z). It easily follows that i) o f = g,
and since f is surjective, then ¢ is unique. Hence M/(Tm) = B. ]

Let M be a locally unital MTL-algebra. Recall that G(M) = Iy, : Fjy — S is a
finite labeled forest, so, from Lemma 45, it follows that Fy = J(Z(P,,(Far))). As a
consequence, we get that €@, [ac, e] = Py, (Im). Explicitly, such assignment is defined
for every z € @,.,, [ac, €] by:

22



m, c<e,
hz(c) - z, C=¢€; (5)
ey, C> €,

Here e, is the unique idempotent join-irreducible below m such that a., < z <e,.
Observe that Fy = ,,cp,, ($m). Hence the family R = {m},,cn is a covering for
Fye Let fo, o M — Py, (Im) be defined as f,,(2) = haam.-

Lemma 55. Let M be a locally unital MTL-algebra. For every x € M, the family
{ (@) }meMaz(ra) 5 @ matching family for the covering R.

Proof. Let m,n € Max(F)r). Since Fy is a forest, (Jm) N (In) =0 or ({m) N (In) # 0.
In the first case, the result holds, because by Lemma 33, P;,, is a sheaf. In the second
case, there exists an e € Fy;y with e < m,n such that (Jm) N ({n) = (le). Observe that

(xAm)hNe=xA(mAe)=xzANe=xzA(nAe)=(xAn)Ae.

Then, from the description of hypy, and hga, of equation (5), we obtain that hypm|.e =
hm/\nue‘ []

Recall that Lemma 33 states that P, is a sheaf so, from Lemma 55, we obtain that
every € M determines an amalgamation h, for the family { fi, (%) }memaa(Fn). This fact
allows us to consider the assignment fy, : M — Py, (Fyr), defined as f(z) = h,. Observe
that by construction f is a morphism of MTL-algebras.

Lemma 56. For every locally unital MTL-algebra M, the assignment fyr is an isomor-
phism.

Proof. Only remains to check that fj; is bijective. To prove the injectivity of fy,, suppose
hy = hy, then, since h, and h, are the amalgamations of the families { f,.(%) }mentan(ry)
and { f. (Y) }meMaz(Far), Tespectively, it follows that hypm = hyam for every m € Max(Fyy).
Then, from equation (5), it follows that z A m = y A m, for every m € Max(F)y).

Then, V,errar(ry) (T A M) = Venranmn (Y A m). Thereby, © AV, cyrowmy™ = Y A
\/meMax(FM) m. Since VmGMa:L"(FM) m =1, thus = = y.
Finally, to prove the surjectivity of f, let h € P(Fyr). Then, h|j,, € P({m) for every
m € Max(Fy). Since P(Im) = @, ., [ae, e] we will write z,, for the unique element of
@D.<,,lac, €] which corresponds to hl},,,. Observe that for every m,n € Max(Fy) we have
that

(g ) limoun = (Blyn) liman

Thereby 2, A €mn = 2Zn A\ €mn, Where e,,, is the greatest e € Fj; below m and n. Hence
Zm A= (Zm A €mn) A (M AN) = (2, A €mn) A (M AR) =2, Am, (6)

since z,, < m and z, < n. If we consider x = \/ Zm, then applying equation

meMaa:(FM)
(6), in the following calculation

rAn= \/ (zm An) = \/ (zn Am) =z, A ( \/ m) = zn,
méeMax(Far) méeMax(Far) meMax(Far)

we obtain that hy|;, = h|}, for every n € Max(Fy). Thereby, since h is the amalgama-
tion of the family {A|ym }meraz(ry,) and Py, is a sheaf, it follows that h, = h. O
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Let us to consider the following quasi-equation in the language of MTL-algebras:
(LU) (x> =2)A(zVy=1)= (zy = 1)

By Definition 3, it is clear that (LU) holds for every finite locally unital MTL-algebra.
Recall that if [ : F — & is a finite labeled forest and ¢ € F, then, by definition, (i) is
an archimedean MTL-chain. From Corollary 3, this means that Z(I(i)) = {0, 1}. By
Definition 3, it follows that {(7) is a finite locally unital MTL-algebra. Since P;(F) is, by
definition, a subalgebra of [],_, I(7) and quasi-equations are preserved by direct products
and subalgebras then, P;(F) is a locally unital MTL-algebra. Hence, we have proved the
following result:

Lemma 57. For every finite labeled forest | - F — &, the finite MTL-algebra H(l) is
locally unital.

If we write luMT L for the category of locally unital finite MTL-algebras, Lemma 57
allows us to restate Theorem 39 as follows:

Theorem 58. The assignments | — Pi(F) and (¢, F) — ayf define a contravariant
functor

H: fLF — WMTL.

Now, if we write G* for the restriction of the functor G of Theorem 22 to the category
luMT L, then, as a consequence of Proposition 51 and Theorem 58, we obtain that G* 4 H
and that the unit is an isomorphism. Notice that the assignment fy : M — Py, (F)
is the counit of the latter adjunction and, by Lemma 56, it is an isomorphism. We have
proved the main result of this paper:

Theorem 59. The categories lwMT L and fLF are dually equivalent.

5.2 An explicit description of finite forest products

The aim of this section is to bring a characterization of the forest product of finite MTL-
algebras in terms of ordinal sums and direct products. Unlike the rest of this work,
the methods used in this part are completely recursive and do not require any further
knowledge. Finally, we recall that, throughout this section, the symbol & will be used
indistinctly, to denote the ordinal sum of posets and the ordinal sum of MTL-algebras.

In [1], Aguzzoli suggest that every finite forest can be built recursively. We adapt
those ideas in the following definition:

Definition 4. The class of finite forests fFor, is the smallest collection of finite posets
satisfying the following conditions:

(F1) 1 € fFor,
(F2) If F < fFor, then 1® F € fFor,
(F3) If Fy,..., F,, € fFor then |4, Fy € fFor.

Recall that every finite forest F' can be expressed as a finite disjoint union of finite
trees. Hence each finite forest can be written as F = Lﬂzzl T}, where T}, is a finite tree.
We call the family {T}} the family of component trees of F.
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Lemma 60. Let F be a finite forest and | : F — & be a finite labeled forest. Then

3

Pl( + Tk) = Pll(Tl) X ... X Pln(Tn)

k=1

where l; = l|r,, for everyi=1,...,n.

Proof. Consider ¢ : Pi(\H;_, Tr) = P, (T1)x...x Py, (T,) defined as p(h) = (h|r,, ..., h|T,)-
Also, consider 7 : P, (T1) X ... x P, (T) — Pi(H;_, Ti) defined as 7(hy, ..., hy,) = h,
with h(i) = h;(i) if i« € T,;. It is clear that ¢ and 7 are well defined morphisms of
MTL-algebras and that one is the inverse of the other. O]

Lemma 61. Let F be a finite forest and [ : F — & be a finite labeled forest. If F = 1®Fy,
where Fy is a finite forest, then

Pi(F) = 1(L) & Py,(Fy)
where L= Min(F) and ly = l|F,.

Proof. Let us assume F = 1&F and suppose that h € Py(F). If A, = {i € F'| h(i) # 1},
then either L€ Ay, L ¢ Ay, or h(L) = 0,. In the first case, from the assumption it follows
that h(j) = 0, for every j € Fy. In the second case, again, by assumption, we obtain that
h(L) = 1. The final case implies that h = 0. Thereby, h represents either an element of
[(L) (those with h(L) # 1) or an element of P, (Fy) considered as h = h|g,. Based on
this fact we consider p : Py(F) — (L) & P, (Fp), defined for every h € Pi(F) as

h(L), ifh(L)#1
p(h) = { hlg, ifh(l)=1

Let a € [(L) & Py, (Fp). Then, a is either an element of [(L) or a € Py, (Fp). Let us take
q:U(L)®P,(Fy) = P(F) as q(a) = h,, where h,(i) = a(i) if i € F or

_Joa, ifael(l)
ha(L) = { 1, otherwise

It is clear that p and ¢ are well defined morphism of MTL-algebras such that one is the
inverse of the other. This concludes the proof. O

Let T be a finite tree, ¢+ € T and consider the set of covering elements of i:
Cr(t) ={j €T ]i=j}
where < denotes the covering relation in posets.

Definition 5. Let T be a finite tree and | : T — & be a finite labeled forest. For every
1 €T let us define recursively the following MTL-algebra:

N ROF i€ Max(T)
Ma(i) = { 1) ® Wy Ma(j), i & Max(T),

25



In the following, we will write IC;(T) for Mx(m), where m is the bottom element of
T.

Let F be a finite forest and {Tj} be its collection of component trees. If [ : F — &
is a finite labeled forest let us consider the MTL-algebra:

Ky(F) = HKI(Tk> (7)

Proposition 62. Let | : F — S be a finite labeled forest. Then Pi(F) = K(F).

Proof. We prove the Proposition by induction over fFor. If I' = 1, the conclusion is
trivial. On the one hand, let us suppose that F =1 & F,, with Fy € fFor be such that
Pi(Fy) = K (Fp). From Lemma 61 and the inductive hypothesis, it follows that

PF)=U(L)®P,(Fy) =1U(L)d K, (Fo).

Since Fy is a finite forest, Fo = W,_, T}. Thus by equation (7):
Ko (FO) = H K (Tg) = H MT% (mk)7
k=1 k=1

with my = Min(T9). Since Cp(L) = {my, ..., m,}, by Definition 5, we have that P;(F) =
(L)@ Ky (Fo) = Ki(F). Finally, assume that F = |,_, Fy, with F;, € fFor be such that
Pi(Fy) = Ki(Fy), for every i = 1, ...,n. Since Fy = "% T};, with {T};} be the family of
component trees of Fy, then F = [4J;'_, |§J;*% T4;. By Lemma 60, we have that

Pl(F) = Pl(TH) X ..o X Pl(Tlml) X ..o X Pl(Tnl) X ... X Pl(Tnmn)- (8)

Since the direct product of algebras is associative, by Lemma 60, P;(Fy,) = [ 2% Pi(Tk:).
Then, from equation (8), we get that P;(F) = [[,_, Pi(Fs). Hence, by inductive hypoth-
esis we have that P;(F) = [[;_, Ki(Fx). From equation (7), we have that KC;(Fy) =
[[i2 Ki(Thi), so, since the family of component trees of F is | J;/;"5 {Tx:}, again, from

equation (7), we conclude that P,(F) = IC;)(F). O

In the following example we illustrate how to build an MTL-algebra by applying
equation (7) and Definition 5.

Example 1. Let | : F — & be a finite labeled forest and regard the following finite tree

F:
90 ol
€o
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As we can see, F = T W Ty, where Ty = {a,c,g,h} and Ty = {b,d,e, f}. Since
Min(Ty) = {a}, Min(Ts) = {b}, from equation (7), it follows that:

Ki(F) = Ki(Th) % Ki(T2) = M, (a) x M, (b).

Observe that Cr,(a) = {c} and Cr,(b) = {d,e, f}. Since a ¢ Max(T;) and b ¢
Max(T,), applying Definition 5 to Mz, (a) and Mr,(b) respectively, we obtain:

Ki(F) = [l(a) ® M, (c)] x [I(b) ® (Mz,(d) x Mr,(e) x Mz,(f))]

Since ¢ ¢ Max(Ty) and Cr,(c) = {g,h} but d,e, f € Max(Ts); again, applying
Definition 5 to My, (c), Mz,(d), Mz,(e) and My, (f) respectively, we get:

Ki(F) = [I{a) ® (I(c) & (M, (g) x Mz, (h)))] x [1(b) & (I(d) x I(e) x I(f))].

Finally, since g,h € Max(Ty), applying Definition 5 to My, (g) and Mg, (h), we
conclude that:

Ki(F) = [l(a) © (I(c) @ (I(g) > 1(h)))] x [l(b) @ (I(d) x U(e) x I(f))].
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