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ABSTRACT 

Roundup (R), a formulation that contains glyphosate (G) as the active ingredient, is a commonly 

used nonselective herbicide that has been proposed to affect male fertility. It is well known that 

an adequate Sertoli cell function is essential to maintain germ cell development. The aim of the 

present study was to analyze whether G and R are able to affect Sertoli cell functions, such as 

energy metabolism and blood-testis barrier (BTB) integrity. Sertoli cell cultures from 20-day-old 

rats were exposed to 10 and 100 ppm of G or R, doses which do not decrease cell viability. Neither 

G nor R caused impairment in lactate production or fatty acid oxidation. G and R decreased 

Transepithelial Electrical Resistance, which indicates the establishment of a Sertoli cell junction 

barrier. However, neither G nor R modified the expression of claudin11, ZO1 and occludin, 

proteins that constitute the BTB. Analysis of cellular distribution of claudin11 by 

immunofluorescence showed that G and R induced a delocalization of the signal from membrane 

to the cytoplasm. The results suggest that G and R could alter an important function of Sertoli cell 

such as BTB integrity and thus they could compromise the normal development of 

spermatogenesis. 

 

KEYWORDS: Sertoli cells, Glyphosate, Roundup, Blood-testis barrier, claudin11 
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INTRODUCTION 

Roundup, a formulation that contains glyphosate as the active ingredient and 

polyoxyethyleneamine (POEA) as the surfactant agent, is the major herbicide used worldwide. It is 

marketed as a nonselective, broad-spectrum, post-emergence herbicide used to control weeds in 

crops particularly on genetically modified plants that have been designed to tolerate it (Smith and 

Oehme, 1992). Glyphosate prevents the development of plants by inhibiting the enzyme 

enolpyruvylshikimate phosphate synthase (EPSPS) and interfering with the production of essential 

aromatic aminoacids (Boocock and Coggins, 1983). As this enzyme is not expressed by any 

member of the animal kingdom, the actions of glyphosate have been postulated to be present 

exclusively in plants (Franz et al., 1997; Williams et al., 2000). However, collateral effects in the 

animal kingdom have been observed. Particularly, it has been proposed that glyphosate might act 

as an endocrine disruptor that can affect male fertility. In in vitro studies, it has been shown that 

Roundup inhibits steroidogenesis by disrupting Steroidogenic Acute Regulatory (StAR) protein 

expression in MA-10 Leydig cell line (Walsh et al., 2000). In addition, Roundup can also lead to 

alterations in aromatase mRNA levels and activity of the enzyme in a placental cell line and in 

human HEK293 cells (Benachour et al., 2007; Richard et al., 2005) and in HepG2 cells Roundup 

inhibits the expression of androgen and estrogen receptors (Gasnier et al., 2009). The 

reproductive toxicity of Roundup/glyphosate has also been studied in vivo. In rats, Dallegrave et al. 

(2007) have shown that exposure to glyphosate-Roundup in utero and during lactation may induce 

significant adverse effects on the reproductive system of male Wistar rats at puberty and during 

adulthood. Romano et al. (2010) showed that exposure to the herbicide alters testosterone levels 

and testicular morphology and Cassault-Meyer et al. (2014) showed alterations in aromatase 

levels in testis and in sperm nuclear quality. In adult rabbits, Yousef et al. (1995) also reported 

reduced ejaculate volume and sperm concentration and increased abnormal and dead sperm. In 
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mice, Pham et al. (2019) showed that perinatal exposure to glyphosate affects spermatogenesis by 

reducing testosterone and the number of spermatogonia and spermatozoa. Noticeably, possible 

impairment of Sertoli cell function, which may be partly responsible for the adverse effects 

provoked by the herbicide on male reproduction, has not been analyzed so far. 

In adult mammalian testis, spermatogenesis takes place in the seminiferous tubule where Sertoli  

cells, which provide structural and nutritional support to germ cells, constitute the main 

component of the blood-testis barrier (BTB) (Dym and Fawcett, 1970; Setchell and Waites, 1975; 

Yan and Cheng, 2005). By the presence of a BTB two compartments —basal and adluminal— can 

be recognized in the seminiferous tubules. The majority of the germ cells is situated in the 

adluminal compartment —not receiving blood nutrients or other circulation products— and 

depends on substances produced by Sertoli cells to fuel their metabolism (Regueira et al., 2015a; 

Regueira et al., 2017; Riera et al., 2001). In this context, an adequate metabolic function of Sertoli 

cells is essential to maintain germ cell development. Beyond the nutritional support, Sertoli cell 

production of different substances supplies a precise and distinct microenvironment for successful 

meiosis and spermatogenesis (Mruk and Cheng, 2015; Russell, 1978). This particular 

microenvironment is maintained by the presence of the BTB, which is regulated by an array of 

intriguingly coordinated signaling pathways and molecules (Lui et al., 2003; Wong and Cheng, 

2005). It is worth mentioning that impairment of the BTB leads to disruption of spermatogenesis 

and that some negative effects of several environmental toxicants on male reproductive functions 

have been attributed to a perturbation of BTB integrity (Gao et al., 2015). Few studies have 

assessed the effects of Roundup or glyphosate on Sertoli cell function, particularly on metabolism 

and barrier integrity, and data are not conclusive. 

The detection of pesticide residues in the agricultural workers homes (Curwin et al., 2005), the 

presence of these residues and their metabolites in food (Cox and Surgan, 2006) and in the urine 
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of families living near country areas (Curwin et al., 2007) show that there is a risk of environmental 

exposure. Despite the obvious benefits of pesticides, their extensive use has posed problems for 

both the environment and human health. Therefore, searches for mechanisms by which pesticides 

could interfere with normal cell functions are of great interest. The aim of the present study was 

to analyze whether Roundup and/or glyphosate can affect Sertoli cell functions, such as energy 

metabolism and BTB integrity, which are essential to maintain spermatogenesis.  

 

MATERIALS AND METHODS 

 

Materials 

[2,6-3H]-2-deoxy-D-glucose (2-DOG) and [9,10(n)-3H] palmitic acid were purchased from NEN 

(Boston, MA, USA). Culture media, glyphosate and all other drugs and reagents were purchased 

from Sigma-Aldrich (St Louis, MO, USA). The glyphosate formulation used in this work was the 

formulation available on the market called Roundup Full II (Monsanto Argentina S.A.I.C.), which 

contains 54% w/v acid glyphosate. 

 

Sertoli cell (SC) isolation and culture 

Twenty-day-old Sprague-Dawley rats (Rattus norvegicus) were obtained from the Animal Care 

Laboratory, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina. Animals were killed by CO 2 

asphyxiation according to protocols for animal laboratory use following the principles and 

procedures outlined in the National Institute of Health Guide for Care and Use of Laboratory 

Animals. The protocol was approved by the Comité Institucional de Cuidado y Uso de Animales de 

Laboratorio (CICUAL) from the Hospital de Niños “Dr. Ricardo Gutiérrez”. SC were isolated as 

previously described (Gorga et al., 2017). Decapsulated testes were digested with 0.1% w/v 
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collagenase and 0.006% w/v soybean trypsin inhibitor in Hanks' balanced salt solution (HBSS) for 5 

min at room temperature by manual agitation. The enzymatic action was stopped by dilution with 

four volumes of HBSS. Seminiferous tubules were collected by sedimentation and washed twice 

with HBSS. Then seminiferous tubules were cut with a razor and submitted to 1 M glycine -2 mM 

EDTA (pH 7.4) treatment for 10 min to remove peritubular cells. At the end of the incubation 

period nine volumes of HBSS were added and a 30 min sedimentation was performed. The washed 

tubular pellet was then digested again with 0.1% w/v collagenase and 0.006% w/v soybean trypsin 

inhibitor in HBSS for 10 min at room temperature by continuous pipetting. The enzymatic action 

was stopped by dilution with four volumes of HBSS. The cell suspension was collected by 

centrifugation at 200 x g for 3 min. The cell suspension was diluted with HBSS and submitted to a 

10 min sedimentation to remove germ cells. The pellet containing SC was filtered through a nylon 

mesh and SC was recovered by centrifugation at 200 x g for 3 min. SC were resuspended in culture 

medium which consisted of a 1:1 mixture of Ham's F-12 and Dulbecco's modified Eagle's medium, 

supplemented with 10 mM HEPES, 100 IU/ml penicillin, 2.5 μg/ml amphotericin B, 1.2 mg/ml 

sodium bicarbonate, 10 μg/ml transferrin, 5 μg/ml insulin, 5 μg/ml vitamin E and 4 ng/ml 

hydrocortisone. SC were cultured on 6-, 24- or 96-multiwell plates (5 μg DNA/cm2), on Matrigel-

coated cell culture inserts (15 μg DNA/cm2) placed on 24-multiwell plates or on glass coverslips 

coated with laminin at 34°C in a mixture of 5% CO2:95% v/v air. 

No myoid cell contamination was revealed in the cultures when an immunoperoxidase technique 

was applied to SC cultures using a specific antiserum to smooth muscle  actin. Remaining cell 

contaminants were of germ cell origin and this contamination was below 5% after 48 h in culture 

as examined by phase contrast microscopy. 

 

Culture conditions 
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SC were allowed to attach for 48 h in the presence of insulin and medium was replaced at this 

time with fresh medium without insulin. Treatment with glyphosate (G) and Roundup (R) was 

performed with variable doses and for variable periods of time. Cells incubated for 48 h with 10, 

100 and 1000 ppm of G and R harvested on day five were used to evaluate cell viability  and LDH 

leakage. The cells treated for 48 h with 100 ppm of G and R were harvested on day five and used 

to evaluate GLUT1, FAT/CD36 and CPT1 mRNA levels, glucose uptake and fatty acid (FA) oxidation 

and the 48 h-conditioned media were utilized to evaluate lactate production. For western blot 

studies, cells cultured for 4 days under basal conditions and pretreated for 30 min with 10 and 100 

ppm of G or R were used. To quantify Transepithelial Electrical Resistance (TER), SC were cultured 

at high cell density (15 μg DNA/cm2, corresponding to 1.2×106 cells/cm2) on Matrigel-coated (1:6 

dilution with F12/DMEM v/v) cell culture inserts (Millicell HA inserts) (Millipore, Billerica, MA, USA) 

placed on 24-multiwell plates. On day 3 in culture testosterone was added and TER across SC 

monolayer was recorded every 24 h in culture. On day 5, when the tight junction barrier had been 

formed (Lui et al., 2001), different doses of G or R were added and TER was recorded until day 8. 

To study the distribution and localization of claudin11, the cells were cultured on glass coverslips 

coated with laminin and treated with 100 ppm G or R in the presence or absence of testosterone 

for 48 h and harvested on day 5. 

 

Evaluation of Sertoli cell energetic metabolism 

Energetic metabolism in SC has been considered to have features of its own. Lactate, produced by 

SC, provides the energetic substrate to germ cells in the adluminal compartment (Grootegoed et 

al., 1984; Jutte et al., 1983). Consequently, it has been postulated that SC utilizes FA as their 

energy source. In this context, lactate production, glucose uptake, FA oxidation and the expression 

of genes involved in these processes were evaluated. 
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a) Lactate determination 

Conditioned media obtained from cells cultured in 24-multiwell plates were used to determine 

lactate production. Lactate was measured by a standard method involving conversion of NAD+ to 

NADH (Gorga et al., 2017). 

b) Measurement of 2-deoxyglucose (2-DOG) uptake 

Glucose transport was studied using the uptake of the labeled non-metabolizable glucose 

analogue 2-DOG on cells cultured in 24-multiwell plates as previously described (Gorga et al., 

2017). 

c) Fatty acid oxidation assay 

FA oxidation was performed measuring the release of  3H2O to the incubation medium from [3H]-

palmitate on SC cultured in 24-multiwell as previously described (Regueira et al., 2015b). 

 

Evaluation of BTB function 

As mentioned in the introduction SC supply germ cells with a microenvironment preserved by the 

BTB. The main component of the BTB is the presence of tight junctions between neighboring SC. In 

order to evaluate BTB function, Transepithelial Electrical Resistance (TER), claudin11 cellular 

distribution and the expression of proteins that participate in tight junction  assembly were 

evaluated. 

a) Transepithelial Electrical Resistance (TER) measurement 

The establishment of the SC junction barrier was assessed daily from day 3 to day 8 by 

measurement of TER across the SC monolayer by a Millicell electrical resistance system (Millipore), 

as described previously (Perez et al., 2014). Briefly, a short (~2 sec) 20-μA pulse of current was 

passed through the epithelial monolayer between 2 silver-silver chloride electrodes and electrical 

resistance was measured. Electrical resistance was then multiplied by the surface area of the 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

insert to yield the area of resistance in ohms.cm2. The net value of electrical resistance was then 

computed by subtracting the background, which was determined by Matrigel -coated cell-free 

inserts. Each time point had quadruplicate bicameral units. This experiment was run four times on 

different batches of cells. 

b) Immunofluorescent (IF) detection of claudin11 protein 

Monolayers were fixed with methanol for 10 min at −20°C.  After washes with PBS, cells were 

permeabilized with 0.1% Triton X-100 in PBS for 30 min at room temperature.  After 3 washes with 

PBS for 1 min each, the cells were blocked with 5% bovine serum albumin (BSA).  Then, the 

coverslips were incubated with a 1:50 dilution of polyclonal antibody against claudin11 (Zymed 

Lab. Inc.) in PBS overnight at 4°C. After 3 washes with PBS for 1 min each, coverslips were 

incubated with an anti-rabbit IgG fluorescein isothiocyanate (FITC)-conjugated (1:25; Vector 

Laboratories, Burlingame, CA, USA). For negative controls, primary antibodies were replaced by 

PBS. Finally, the coverslips were washed 3 times with PBS for 1 min each, mounted in buffered 

glycerine and observed using an Axiophot fluorescent microscope with epi-illumination (Carl Zeiss 

Inc., Oberkochen, Germany). 

 

RT-Real-time PCR (RT-qPCR) 

The expression of genes that participate in energetic metabolism (GLUT1, FAT/CD36 and CPT1) 

and in BTB organization (occludin, claudin11 and ZO-1) was evaluated by RT-qPCR. 

Total RNA was isolated from SC cultured in 6-multiwell plates with TRI Reagent (Sigma-Aldrich). 

The amount of RNA was estimated by spectrophotometry at 260 nm. RT was performed on 2 µg 

RNA at 42°C for 50 min with a mixture containing 200 U MMLV reverse transcriptase enzyme, 125 

ng random primers and 0.5 mM dNTP Mix (Invitrogen, Argentina Ltda).  
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Real-time PCR was performed by a Step One Real Time PCR System (Applied Biosystems, 

Warrington, UK). The specific primers for RT-qPCR are shown in Table 1. Amplification was carried 

out as recommended by the manufacturer: 25 µl reaction mixture containing 12.5 µl of SYBR 

Green PCR Master mix (Applied Biosystems), the appropriate primer concentration and 1 µl of 

cDNA. The relative cDNA concentrations were established by a standard curve using sequential 

dilutions of a cDNA sample. The data were normalized to HPRT1. The amplification program 

included the initial denaturation step at 95°C for 10 min, 40 cycles of denaturation at 95°C for 15 

sec, and annealing and extension at 60°C for 1 min. Fluorescence was measured at the end of each 

extension step. After amplification, melting curves were acquired and used to determine the 

specificity of PCR products. The comparative ΔΔCt method was used to calculate relative gene 

expression. 

 

Western blot analysis 

Cells cultured in 6-multiwell plates were washed once with PBS at room temperature. Then, 200 μl 

of PBS containing 2 μl of protease inhibitor cocktail (P-8340; Sigma-Aldrich), 1 mM NaF, 1 mM 

EGTA, 1 mM EDTA, 50 nM okadaic acid and 2 mM PMSF was added to each well. Cells were then 

placed on ice and disrupted by ultrasonic irradiation. Western blot analysis was performed as 

previously described (Riera et al., 2007). Membranes were probed with antibodies that allow 

specific recognition of total Akt and mTOR, phosphorylated p38-MAPK and ERK1/2 (Cell Signaling 

Technology, Inc., Danvers, MA, USA), claudin11 (Zymed Lab. Inc.), androgen receptor and GAPDH 

(Santa Cruz Biotechnology, Inc, USA). A 1:1000 dilution of primary antibodies, as indicated by the 

manufacturer, was used. For chemiluminescent detection of the blots, a commercial kit from Cell 

Signaling Technology was used. The intensities of the autoradiographic bands were estimated by 
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densitometry scanning using NIH Image Software (Scion Corporation). Levels of the corresponding 

total Akt, mTOR and GAPDH served as loading controls. 

 

Cytotoxicity 

A cell viability test (MTT assay) was performed in cells cultured in 96-multiwell using a commercial 

kit (CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay; Promega Corporation).  Cell 

cytotoxicity was determined by measuring the activity of LDH enzyme leaked from the cytosol of 

damaged cells into the medium as previously described (Riera et al., 2007). Results were 

expressed as the percentage of activity detected in the media over the sum of the activities in the 

media and in cells. 

 

Statistical analysis 

All experiments were run in triplicates and repeated 3-4 times. One way ANOVA and post hoc 

analysis using Tukey-Krämer's multiple comparisons test were performed using InfoStat versión 

2016 (Grupo InfoStat, FCA, UNC, Argentina). P values < 0.05 were considered statistically 

significant. 

 

RESULTS 

Effects of glyphosate and Roundup on SC cell viability 

SC cultures were exposed for 48 h to glyphosate (G) and Roundup (R) at concentrations ranging 

from 10 to 1000 ppm, corresponding to 0.01 to 1 g/L respectively. These concentrations were 

selected to perform the study because besides being found in some human urine samples (Krüger 

et al., 2014), they are 10-1000 times lower than the recommended herbicide concentration (10000 

ppm) in agriculture practice. Cell viability was analyzed by MTT assay and by measuring LDH leaked 
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from the cytosol of damaged cells into the medium. The highest dose tested for R (1000 ppm) 

caused a cell death (Figure 1). Therefore, in the present investigation destined to analyze G and R 

effects on SC functions only doses of 10 and 100 ppm were utilized. 

 
Effects of glyphosate and Roundup on SC energetic metabolism 

Energetic metabolism in SC has been considered to have features of its own. Studies on SC glucose 

metabolism have shown that these cells actively metabolize this sugar, but the vast majority is 

converted to lactate (Robinson and Fritz, 1981). Lactate production by SC provides the energetic 

substrate to germ cells in the adluminal compartment (Grootegoed et al., 1984; Jutte et al., 1983). 

Consequently, SC cannot rely on glucose for its own energy requirements and it has been 

postulated that this cell type utilizes FA as their energy source. In this metabolic context, 

mechanisms by which pesticides could interfere with SC lactate production and FA oxidation are 

relevant to comprehend some causes of spermatogenesis abnormalities due to pollutants 

exposure. SC cultures were exposed for 48 h to 100 ppm of G and R. Figure 2 shows the results 

obtained for lactate production, glucose uptake and GLUT1 mRNA levels. The exposure to G or R 

did not modify lactate production neither glucose uptake nor GLUT1 expression. On the other 

hand, figure 3 shows the results obtained for FA oxidation, FAT/CD36 and CPT1 mRNA levels. 

Again, no variations in the parameters analyzed were observed after G or R exposure.  

 

Effects of glyphosate and Roundup on blood-testis barrier integrity  

As mentioned in the introduction SC supply germ cells with a microenvironment preserved by the 

BTB. The main component of the BTB is the presence of tight junctions between neighboring SC. 

The establishment of these junctions between SC in culture was assessed daily from day 3 to day 8 

by measuring TER across the SC monolayer. When SC were plated, junctions begin to assemble 
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and an increase in TER is observed. On day 5, when SC completed barrier assembly, G or R were 

added to the culture medium. The addition of 100 ppm of G or 10 and 100 ppm of R produced a 

significant decline in TER (Figure 4 and Table 2). 

Considering that it had been demonstrated that p38-MAPK and ERK1/2 signaling pathways were 

involved in the disruption of BTB integrity by xenobiotics, the possible alteration of these 

pathways by G or R treatment was evaluated. Figure 5B shows that R increased P-p38-MAPK and 

P-ERK1/2 levels. Figure 5A shows that G did not modify P-p38-MAPK and P-ERK1/2 levels at any 

dose tested. 

We next evaluated possible effects of G or R on the expression of intercellular junction proteins 

such as claudin11, occludin and ZO-1. Figure 6 shows that 100 ppm G or R treatment did not 

modify claudin11, neither occludin nor ZO-1 mRNA levels. Finally, claudin11 protein levels and 

cellular localization of claudin11 was evaluated in SC monolayers. Figure 7A shows that claudin11 

protein levels were not modify by G or R treatment. Figure 7B shows that claudin11 was detected 

at the zone of contact between adjacent cells, in a linear and continuous pattern that delineated 

cell borders in basal conditions. Addition of 100 ppm G or R induced redistribution of claudin11 

since immunofluorescence became discontinuous and was redistributed from the cell surface in to 

the cytoplasm. 

 

Effects of glyphosate and Roundup on testosterone regulation of blood-testis barrier integrity  

It is well known that testosterone is the main regulator of BTB function, and that G or R can act as 

endocrine disruptors. In order to elucidate a possible mechanism responsible for adverse effects 

of G or R, we decided to evaluate whether herbicides can interfere with androgen action in BTB. 

Figure 8A and 8B shows that 100 ppm G or R treatment did not modify androgen receptor mRNA 

or protein levels. Figure 8C and Table 3 shows that testosterone increased TER and that the 
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addition of 100 ppm G or R provoked a significant decline in testosterone -stimulated TER values. 

Finally figure 9 shows that, similar to what was observed under basal conditions, 100 ppm G or R 

treatment induced a redistribution of claudin11 from cell membrane to cytoplasm under the 

presence of testosterone. 

 

DISCUSSION 

Over the last 60 years a progressive decrease in male reproductive function has been observed. 

Epidemiological and experimental studies suggest that one of the main causes is exposure to 

environmental toxicants. As previously stated, several studies have shown that G or R can 

potentially cause adverse effects in male reproduction (Cai et al., 2017; Dallegrave et al., 2007; 

Pham et al., 2019; Romano et al., 2010; Yousef et al., 1995). Despite the compelling documented 

evidence proving the existence of adverse effects on testis function, little is known about direct 

effects on Sertoli cell function and the possible mechanisms involved. 

Primary cultures of Sertoli cells are a good and reliable model to assess the direct effects of 

xenobiotic exposure on this cell type (Liu et al., 2018; Lu et al., 2016; Reis et al., 2015). Regarding G 

and its commercial formulation R, initial studies on Sertoli cell cultures utilizing doses from 1 to 

10000 ppm of G and R were performed. In these experiments, treatment with 1000 ppm R 

produced Sertoli cell apoptosis with a maximal effect in 24 h-incubation period. However, in the 

same study G did not induce apoptosis in isolated Sertoli cells (Clair et al., 2012). Other studies, 

which measured apoptosis and/or cell viability, have also demonstrated that several human cell 

lines are more sensitive to R than to G (Benachour and Seralini, 2009; Defarge et al., 2016; Gasnier 

et al., 2009; Mesnage et al., 2014; Richard et al., 2005). Coincidentally, the results presented 

herein show that 1000 ppm R decreases cell viability while G does not. These differences on the 

actions of both agents can be interpreted by the presence of various adjuvants in R. These 
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adjuvants change human cell permeability and amplify toxicity by G, which may explain the 

differences observed between R and G effects on Sertoli cell viability (Mesnage et al., 2019). As we 

were focused on analyzing possible effects on Sertoli cell function, in this study we utilized 10 and 

100 ppm doses which do not decrease cell viability. 

As mentioned in the introduction, two essential functions of mature Sertoli cells are the provision 

of nutrients to germ cells and the maintenance of a favorable microenvironment for 

spermatogenesis. As for Sertoli cell nutritional function, it has been well documented that Sertoli 

cell glycolysis provides lactate to satisfy germ cell energy demands while FA oxidation supplies 

energy to fulfill Sertoli cell energetic demands. Consequently, it can be predicted that an alteration 

in Sertoli cell metabolism can lead to a perturbation in normal germ cell development. The results 

obtained in the present investigation show that neither G nor R modify lactate production, glucose 

uptake and GLUT1 expression in Sertoli cells. Additionally, the results show that G and R do not 

modify FA oxidation and FAT/CD36 and CPT1 expression, proteins that are essential for FA 

utilization. Altogether, the results presented herein lead us to conclude that G and R effects on 

testicular function are not mediated by impairment of Sertoli cell metabolism. Noticeably, other 

reproductive toxicants, including phthalate esters (Williams and Foster, 1989), nitro-benzene 

(Allenby et al., 1990), gossypol (Monsees et al., 1998b) and certain heavy metal ions (Monsees et 

al., 1998a; Yu et al., 2019), alter Sertoli cell lactate production and show that toxicant effects 

strongly depend on the chemical nature of the toxicant. 

Regarding lipid metabolism, it has been demonstrated that 24 h exposure to 5000 ppm G or R 

induce lipid droplet accumulation in the Sertoli cell line TM4 cytoplasm. This increase in lipid 

droplet accumulation was interpreted as storage of potentially deleterious lipophilic formulants in 

the cytoplasm of TM4 cells and was considered a sign of the cytotoxic effect (Vanlaeys et al., 

2018). An alternative explanation for the above results would be a modification in lipid 
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metabolism, however, the authors did not explore this possibility. We have explored the latter 

possibility and the results presented herein show that 100 ppm G and R, doses that do not affect 

Sertoli cell viability, do not alter FA oxidation. 

It is worth mentioning that Sertoli cells, in addition to the nourishment provided to germinal 

epithelia, supply germ cells with a suitable microenvironment for successful meiosis and 

completion of spermatogenesis (Russell, 1978; Russell et al., 1989). This microenvironment is 

sustained by the BTB, whose main components are the tight junctions between neighboring Sertoli 

cells (Dym and Fawcett, 1970; Setchell and Waites, 1975; Yan and Cheng, 2005). The BTB is highly 

dynamic and is regulated by an array of intriguingly coordinated signaling pathways and molecules 

(Lui et al., 2003). Several studies have shown that many environmental toxicants, such as 

cadmium, bisphenol A, fluoride and sulfur dioxide exert their effects by targeting Sertoli and germ 

cell junctional proteins, as well as the permeability of the BTB (Li et al., 2009b; Siu et al., 2009; 

Zhang et al., 2016). TER is a widely accepted quantitative technique that measures the integrity 

and permeability of BTB in vitro. This in vitro model has been widely used by several studies 

related to the field of testicular toxicants (Byers et al., 1986; Janecki et al., 1992; Li et al., 2001; 

Okanlawon and Dym, 1996). The results presented in this investigation show that 100 ppm G and 

10 and 100 ppm R decrease TER after 24 and 48 h-treatment. Notable, the disrupting effect of G 

on the permeability of other barriers had already been observed. It was shown that exposure to 10 

mg/ml (10000 ppm) G reduces TER and increases permeability to mannitol in Caco-2 and IEC-18 

intestinal cell lines (Vasiluk et al., 2005). In addition, 1 and 10 μM G treatment (0.16 and 1.6 ppm) 

decreases TER and increases permeability to fluorescein in iPSC-derived brain microvascular 

endothelial cells cell line (BMECs) (Martinez and Al-Ahmad, 2019). Results from other authors and 

our own let us postulate that one of the mechanisms by which G exerts toxic effects is related to 

disruption of barrier properties in different important organs such as intestine, brain and te stis. 
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It has been shown that p38-MAPK and ERK1/2 pathways play central roles in the dynamics of BTB. 

For example, TGFb3-induced physiological effect on Sertoli cell BTB dynamics is mediated via the 

p38-MAPK pathway (Lui et al., 2003). As for toxicant effects, it has been demonstrated that the 

polychlorinated biphenyls (PCBs), such as congener Aroclor1254, and the perfluorooctane 

sulfonate (PFOS) can disrupt the BTB integrity by activating the p38-MAPK pathway (Jia et al., 

2017; Qiu et al., 2013). Additionally, it has been shown that Biphenol A and mono (2-ethylhexyl) 

phthalate (MEHP) alter BTB by activating ERK1/2 pathway (Chiba et al., 2012; Thuillier et al., 2009). 

The present investigation shows that R increases P-p38-MAPK and P-ERK1/2 levels. Therefore, it 

might be suggested that R decreases TER through a p38-MAPK and ERK1/2 dependent pathways. 

However, the same reasoning cannot be applied to the effects of G considering that it lowers TER 

while it does not modify P-p38-MAPK and P-ERK1/2 levels. Hence, it seems that there is no direct 

relationship between P-p38-MAPK and P-ERK1/2 levels and TER levels, at least as a consequence 

of G and R exposure. We then decided to look for further mechanisms that may be involved in the 

disruption of BTB integrity by exposure to G and R. 

The next set of experiments was devoted to analyze possible alterations in the expression of some 

tight junction proteins, such as occludin, claudin11 and ZO-1, in response to G or R. An increased 

expression of these proteins, at the time when the junctions are assembled as manifested by a 

stable TER across the Sertoli cell epithelia, was demonstrated (Lui et al., 2001; Wong et al., 2000).  

It is worth mentioning that certain agents that perturb BTB permeability, such as cytokines or 

toxicants, alter the expression of cell junction proteins (Chiba et al., 2012; Chung et al., 2001; 

Kaitu'u-Lino et al., 2007; Lui et al., 2001; McCabe et al., 2016; Perez et al., 2014; Ramos-Trevino et 

al., 2017). The results obtained in the present investigation show that nei ther occludin nor 

claudin11 or ZO-1 expression was modified by G or R treatment. 
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Finally, we decided to investigate whether the cellular localization of a tight junction protein such 

as claudin11 could shed some light on the mechanism underlying the decrease in TER. Claudin11 is 

a key molecule that provides functional integrity to the BTB. It is located in functional Sertoli cell 

tight junctions and its intracellular distribution pattern changes when gonadotropins are 

suppressed, coincident with a dysfunctional barrier (McCabe et al., 2016). Claudin11 null mice are 

sterile highlighting the importance of this protein for BTB integrity (Gow et al., 1999). It is worth 

mentioning that in men with testicular disorders such as intraepithelial neoplasia, 

hypospermatogenesis, spermatogenic arrest, and Sertoli cell only testes, claudin11 is located in 

the cytoplasm, away from the tight junctions (Fink et al., 2009; Haverfield et al., 2013; Nah et al., 

2011) reinforcing the idea that localization of claudin11 in cytoplasm can be considered a sign of 

BTB dysfunction. In in vitro studies, a direct relationship between TER and localization of claudin11 

in membrane junctions has been observed (McCabe et al., 2016; Qiu et al., 2013). The results 

presented herein show that although G and R treatment does not modify claudin11 protein levels, 

a redistribution of claudin11 from membrane to cytoplasm is observed. This alteration in the 

distribution of claudin11 may be interpreted as the result of an increase in membrane protein 

recycling from cell surface to cytoplasm. This last result may explain, at least in part, the effects of 

G and R in the integrity of BTB and the deleterious effect of these toxicants at testicular level . 

Disruption of the Sertoli cell permeability barrier by loss of usual distribution patterns of other 

junctional proteins such as occludin, ZO-1, and Cx43 induced by other toxicants has also been 

demonstrated (Fiorini et al., 2004; Li et al., 2009a; Qiu et al., 2013) and these results indicate that 

redistribution of these proteins can also contribute to alter barrier permeability. Further studies 

will be necessary to definitively assign a role to this phenomenon in the alteration of BTB dynamics 

by G o R. 
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Several lines of evidence obtained from in vivo and in vitro approaches highlight the importance of 

testosterone in the regulation of BTB assembly and function. In vivo studies showed that 

reestablishment of testicular androgen levels by hCG or testosterone treatment leads to a 

restoration of claudin11 localization and BTB function (Haverfield et al., 2013; McCabe et al., 2012; 

McCabe et al., 2010). In vitro studies showed that Sertoli cell permeability barrier formation and 

claudin11 localization are promoted by androgen treatment (Kaitu'u-Lino et al., 2007). 

Furthermore, numerous studies describe G or R as endocrine disruptors. On the one hand, it was 

demonstrated that in vivo treatment of drakes with R decreases the expression of the androgen 

receptor (AR) in Sertoli cells (Oliveira et al., 2007) while in rats, G treatment does not modify AR 

expression in the same cell type (Dai et al., 2016). On the other hand, it was shown that in vivo 

treatment of rats decreases serum testosterone levels (Romano et al., 2010), and furthermore, it 

was demonstrated that the effect on testosterone levels may be attributed to a decrease in the 

expression of STAR in Leydig cells (Walsh et al., 2000). Therefore, it is tempting to speculate that G 

or R effects on BTB integrity can be partially attributed to the interference with androgen action. 

The results presented herein show that neither G nor R treatment modified androgen receptor 

mRNA and protein levels. They also show that the effects of the herbicides on TER and on 

claudin11 localization in the presence of testosterone were similar to those observed under basal 

conditions. Thus, G and R are able to disrupt BTB function in the presence of testosterone. Further 

in vivo experiments will be necessary to determine a possible role of G or R as endocrine 

disruptors. 

In summary, this investigation shows that G and R alter the Sertoli cell junction barrier 

permeability. This study also shows that, at least in part, the loss of location of claudin11 at the 

interface between neighboring Sertoli cells might be responsible for the disassemble of the 
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barrier. We postulate that BTB integrity is a sensitive target for the adverse effects of G or R on 

male reproductive function.  
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Table 1: Rat-specific primers sets for RT-PCR analysis. 

 

 

  

Gene Primer sequence Product Size 
(pb) 

Accession 
Number 

Glut1 FWD: 5’-GGAGTGTCGGTTTAGGTTGC-3’ 98 NM_138827.1 

 REV: 5’-GCTGTGAAACGGAGAATGGA-3’   

Fat/Cd36 FWD: 5’-ACCAGGCCACATAGAAAGCA-3’ 137 NM_031561.2 

 REV: 5’-CACCAATAACGGCTCCAGTAA-3’   

Cpt1 FWD: 5’-GGAACTCAAACCCATTCGTC-3’ 113 NM_031559.2 

 REV: 5’-GTTGGATGGTGTCTGTCTCT-3’   

Claudin 11 FWD: 5’-TGGTCTCTACCACTGCAAGC-3’ 95 NM_053457.2 

 REV: 5’-CCAGAACTGAGGCAGCAATC-3’   

Occludin FWD: 5’-CCACTATGAAACCGACTACACG-
3’ 

73 NM_031329.2 

 REV: 5’-ATATTCCCTGAGCCAGTCCTC-3’   

ZO-1 FWD: 5’-CATCTAAACCTCCAAGTGCTTC-3’ 132 NM_001106266.1 

 REV: 5’-CAATATCTTCAGGTGGCTTCG-3’   

Hprt1 FWD: 5’-AGTTCTTTGCTGACCTGCTG-3’ 127 NM_012583.2 

 REV: 5’-TTTATGTCCCCCGTTGACTG-3’   
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Table 2: Effect of 48-h treatment with G and R on TER 

 TER (Ω.cm2) 
Control 92,3 ± 3,1 

G 10 ppm 85,5 ± 4,5 

G 100 ppm 58,0 ± 1,5* 

R 10 ppm 67,8 ± 2,8* 

R 100 ppm 62,2 ± 4,9* 
 

SC monolayers were maintained under Basal conditions or treated with 10 or 100 ppm of G or R 

on day 5 for 48 h. Results are presented as means±SD of four independent experiments (*p<0.05). 
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Table 3: Effect of 48-h treatment with G and R on testosterone regulation of TER across SC 

 TER (Ω.cm2) 
Basal 94,7 ± 8,4 
T 1μM 144,9 ± 13,2* 

T+G 100 ppm 111,5 ± 12,5 

T+R 100 ppm 98,0 ± 6,0 

 

SC monolayers were maintained under Basal conditions or stimulated with testosterone (T) since 

day 3. On day 5, SC monolayers were treated with 100 ppm of G or R for 48 h. Results are 

presented as means±SD of three independent experiments (*p<0.05).  
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FIGURE LEGENDS 

Figure 1:  Effect of G and R on SC cytotoxicity. 

SC were maintained under Basal conditions or incubated with 10, 100 or 1000 ppm of G or R for 48 

h. (A) Cell viability was determined by MTT assay. (B) LDH activity was determined in SC monolayer 

and in the culture medium. Values represent mean±S.D. of one representative experiment out of 

three. *p<0.05 versus Basal. 

Figure 2: Effect of G and R on lactate production, glucose uptake and on Glut1 mRNA levels in 

SC. 

SC were maintained under Basal conditions or incubated with 100 ppm of G or R for 48 h. (A) 

Lactate levels were determined in the conditioned media. (B) Glucose uptake assay (2-DOG 

uptake) was performed after the 48 h incubation period. (C) Total RNA was extracted and RT-qPCR 

was performed to detect Glut1 mRNA levels. The comparative ΔΔCt method was used to calculate 

relative gene expression. Graphics show pooled data from four independent experiments 

performed indicating fold variation in mRNA levels relative to Basal.  

Figure 3: Effect of G and R on FA oxidation, FAT/CD36 and CPT1 mRNA levels in SC.  

SC were maintained under Basal conditions or incubated with 100 ppm of G or R for 48 h. (A) Fatty 

acid oxidation was assessed by measuring 3H2O produced in the incubation medium. (B and C) 

Total RNA was extracted and RT-qPCR was performed to detect FAT/CD36 and CPT1 mRNA levels. 

The comparative ΔΔCt method was used to calculate relative gene expression. Graphics show 

pooled data from four independent experiments performed indicating fold variation in mRNA 

levels relative to Basal. 

Figure 4: Effect of G and R on TER across SC. 

SC monolayers were maintained under Basal conditions or treated with 10 or 100 ppm of G (A) or 

R (B) on day 5. TER across SC monolayer was measured from day 3 to 8. Values represent 
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mean±S.D. of triplicate wells from the same culture of one representative experiment out of four. 

Asterisks indicate significant differences from basal cultures for each particular day, p<0.05.  

Figure 5: Effect of G and R on P-p38-MAPK and P-ERK1/2 levels in SC. 

SC were maintained under Basal conditions or incubated with 10 or 100 ppm of G (A) or R (B) for 

30 min. Western blot analysis was performed utilizing antibodies for phosphorylated p38-MAPK 

(P-p38-MAPK) and ERK1/2 (P-ERK1/2) or total Akt (T-Akt). Results are representative of 3 

independent experiments performed/treatment group. 

Figure 6: Effect of G and R on claudin11, occludin and ZO-1 mRNA levels in SC.  

SC were maintained under Basal conditions or incubated with 100 ppm of G or R for 48 h. Total 

RNA was extracted and RT-qPCR was performed to detect occludin, claudin11 and ZO-1 mRNA 

levels. The comparative ΔΔCt method was used to calculate relative gene expression. Graphics 

show pooled data from four independent experiments performed indicating fold variation in 

mRNA levels relative to Basal.  

FIGURE 7: Effect of G and R on claudin11 protein levels and localization in SC. 

SC were maintained under Basal conditions or incubated with 100 ppm of G or R for 48 h. A) 

Western blot analysis was performed utilizing antibodies for claudin11 or total Akt (T-Akt). Results 

are representative of three independent experiments performed/treatment group. B) Claudin11 

was revealed by IF. Bars: 50 μm. 

Figure 8: Effect of G and R on androgen receptor (AR) expression and testosterone regulation of 

TER across SC.  

SC were maintained under Basal conditions or incubated with 100 ppm of G or R for 48 h. A) Total 

RNA was extracted and RT-qPCR was performed to detect AR mRNA levels. The comparative ΔΔCt 

method was used to calculate relative gene expression. Graphics show pooled data from four 

independent experiments performed indicating fold variation in mRNA levels relative to Basal. B) 
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Western blot analysis was performed utilizing antibodies for AR or total Akt (T-Akt). Results are 

representative of three independent experiments performed/treatment group. C) SC monolayers 

were maintained under Basal conditions or stimulated with testosterone (T) since day 3. On day 5, 

SC monolayers were treated with 100 ppm of G or R. TER across SC monolayer was measured from 

day 3 to 8. Values represent mean±S.D. of triplicate wells from the same culture of one 

representative experiment out of three. Symbols indicate significant differences for each particular 

day: *p<0.05 T vs Basal; #p<0.05 T vs T+G; §p<0.05 T vs T+R. 

FIGURE 9: Effect of G and R on claudin11 localization in the presence of testosterone in SC. 

SC were incubated with 100 ppm of G or R in the presence of testosterone for 48 h. Claudin11 was 

revealed by IF. Bars: 50 μm. 
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HIGHLIGHTS 

 Glyphosate (G) and Roundup (R) effects on Sertoli cell function was studied in vitro  

 G and R do not modify Sertoli cell lactate production and fatty acid oxidation 

 G and R decrease Transepithelial Electrical Resistance 

 G and R cause a redistribution of claudin11 from membrane to cytoplasm 

 G and R could impair Blood-Testis-Barrier integrity 
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