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Abstract. In the context of the Ginzburg Landau formalism proposed
by Barci et al. in 2016 for nematic superconductivity, and by perform-
ing a numerical treatment based on the Shooting method, we analyze
the behaviour of the radial distribution of the nematic order parame-
ter when the superconducting order parameter reaches the typical non
trivial saddle point. We consider the cases of a hollow cylindrical do-
main, with a disk or an annular domain as its cross section, whether
the order parameter is subjected to Newmann or Dirichlet boundary
conditions. We conclude that depending on the corresponding situa-
tion a non trivial solution holds if certain relations between the radii
are satisfied. Moreover, we observe a saturation effect on each instances
that constitutes a purely geometrical consequence on the relation be-
tween the typical sizes and shapes of the samples. These conclusions
can be useful for further experimental realizations and extensions to
the interaction of the nematic (superconducting) order parameters with
electromagnetic fields.

1 Physical Preliminaries

Critical phenomena have been extensively studied to determine the behavior of sev-
eral properties as a function of the temperature. From a macroscopic point of view
and in the low temperature limit, Ginzburg Landau equations have been success-
fully applied to explain superfluidity, superconductivity [8,11,13,18,21] and liquid
crystals [7,16], among others. In the context of superconductivity, the decrease of a
magnetic field due to the formation of Cooper pairs, the mathematical formalism of
the Ginzburg Landau theory have also been amazingly developed [17] to understand
the properties of the energy functional and its minimizers, and as a complement to
explain the interaction between superconducting vortices. The latter stems from the
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original problem proposed by Abrikosov for unbounded domains in 1957 [1]. In this
sense, the attractive (repulsive) nature of two equal type I (II) superconducting vor-
tices was explained theoretically [12] and experimentally [19]. Besides, the repulsive
interaction between two equal type II vortices was demonstrated in bounded domains
by applying an electromagnetic analogue of two mutually inducting coils in a long
hollow cylinder domain [15].

On the other hand, liquid crystals and particularly nematic ones, where the
molecules are oriented with respect to a given vector, have gained attention due
to their exotic behaviour in presence of an electromagnetic field. In this context, the
analysis of optical effects such as possible Fréedericksz transitions [9] and the forma-
tion of solitons [4,5] could influence the overall response of nematic liquid crystals in
any of their multiple biological and electrical applications.

Starting from the simplest PDW state, Barci et al. proposed in 2016 [3] a Ginzburg
Landau model for nematic superconductivity that is characterized by two order pa-
rameters, which shows the translational and rotational symmetry breaking of the sys-
tem. This model could represent a simple platform to elucidate the optical response
of these and similar materials and to compare with experiments [20]. In fact, there
is already theoretical works that support the modification of the usual Fréedericksz
threshold in purely nematic liquid crystals, when the system is considered as a nematic
inhomogeneous superfluid in presence of an electric field [10].

In this article, we perform a numerical analysis of an approximation for the di-
mensionless 2D Ginzburg Landau equation for the nematic order parameter of a
nematic superconductor media in a hollow cylinder without electromagnetic fields,
which includes both geometries: a disk and a ring. Due to translational symmetry
[3], the nematic order parameter has the form G(~x) = T (~x) exp 2iα(~x), which T 2

representing the mean value of nematic molecules and α is its phase. In addition, the
superconducting order parameter ψ = F0 exp iθ is such that F0 = 1 and the phase θ

is quantized in order to obtain ~A − ~∇θ = 0, ~B = 0; here, ~A is the magnetic vector

potential and ~B the magnetic field such that ~B = ~∇× ~A.
In this framework, it is natural to consider Dirichlet (D) boundary conditions

(b.c.); however, we also consider Neumann (N) b.c., due to its relevance in the context
of superconductor models. Therefore, we pose the problem on a ring Ri 6 ‖~x‖ 6 Re
and we study the behaviour of T , the radial distribution of the order parameter, in
a wide range of regimes (including both (D) or (N) b.c.): from the (outer) threshold
Re ∼ R+

c to Re � 1 and, for fixed Re, from Ri ∼ 0 to the (inner) threshold Ri ∼
Ra(Re)

−; the existence of these thresholds being one of the main goals of this paper,
see Theorem 1. It is also worth to mention that the radial variable r is scaled with
the coherence length of the system and so are the inner and outer radii Ri and Re.

Regarding the numerical treatment, a broad type of results are available in the
literature, most of them coming from superconducting models, where the parame-
ter is given by the penetration length which is assumed to be small, see [2,14] and
references therein. However, our treatment relies on an easy–to–use algorithm based
on the shooting method performed with high–precision arithmetic that allows us to
easily access the qualitative analysis without any further restriction on the size of
the samples. In particular we explore and describe the behaviour of the solutions
for values near the reported thresholds; besides, we also explore the saturation effect
present near the boundaries of the domain.

This paper is organized as follows: first, we formulate the problem and present
some numerical issues mainly concerned with the saturation effect exhibited by the
solutions, that is the existence of small intervals in which some kind of transition takes
place; then, we restrict to the problem posed in a disk with (D) b.c. and describe in
full detail the proposed algorithm; next, we use this algorithm to characterize the
solutions (for the problem posed in a disk with (D) b.c.) under qualitative different
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regimes focusing mainly in the saturation effect exhibited by the solutions and we
provide estimates for the length of these transitions as a function of the radius; thus,
we take profit of the results presented and make the (minor) changes to adapt the
algorithm for the remaining situations: we first consider the disk with (N) b.c. and
then we move to the ring with (D) and (N) b.c., in this order. Thus, we make a
rigorous approach to establish the existence of thresholds. Finally, we discuss the
results and its physical relevance.

2 Formulation of the problem and notation

We are interested in the behaviour for the solutions of the Ginzburg Landau equation

∇2G(~x) = G(~x)
(
|G|2(~x)− 1

)
, ~x ∈ DRi;Re

= {~x : Ri 6 ‖~x‖ 6 Re} . (1)

Without loss of generality and in systems where a rotational symmetry is broken, a
suitable solution for Eq.(1) has the form G(~x) = T (~x) exp 2iϕ, where ϕ ∈ [0, 2π] is the
rotational angle. Therefore, we see that previous equation is restricted to the invariant
subspace S2 = span{J2(λkr) exp i2ϕ : k = 1, 2, . . .}; here (r, ϕ) are polar coordinates,
J2 is the regular Bessel function of order two and the eigenvalues satisfies J2(λk) = 0
or J ′2(λk) = 0, depending whether Dirichlet (D) or Neumann (N) boundary conditions
(b.c.) are used. Introducing polar coordinates, we write previous equation as follows:

t2T ′′(t) + rT ′(t)− 4T (t) = t2
(
T 3(t)− T (t)

)
, t ∈ [Ri, Re] , (2)

with 0 6 Ri < Re. Here, the variable t is normalized by the coherence length of the
system, which help us to measure the saturation from T = 0 to T = 1. Since T is
related to the square root of the mean density of the nematic molecules, it is natural
to consider Dirichlet boundary conditions. However, regarding the superconducting
framework in which the natural boundary condition is given on the radial derivative,
and since from a mathematical point of view an unified treatment is possible, both
Dirichlet and Neumann boundary conditions will be considered: T , T a will denote
the problem posed on a disk or a ring with (D) b.c. and TN , T aN , when posed with
(N) b.c.

Introducing the scaling r = t/Re and the function S(r) = T (rRe), we write
previous equation as

r2S′′(r) + rS′(r)− 4S(r) = R2
er

2
(
S3(r)− S(r)

)
, r ∈ [Ri/Re, 1] . (3)

According to the domain and the b.c., the solution will be denoted S, SN , Sa and
SaN as in the previous case.

3 Numerical issues

In this article we shall describe a Hybrid Symbolic–Numeric algorithm based on the
Shooting Method, see Lemma 4.4, and discuss some qualitative properties exhibited
by the numerical solutions of equation (3). One of these being the existence of thresh-
olds, see Theorem 1 and the other being the estimates for the saturation lengths, see
section 5.1. To this end, we notice that equation (3) has a singularity at the origin
which means that we shall shoot from r = 1 and the evaluation runs backwards. We
also notice that setting the target is also part of the algorithm.

On the other hand, in view of the saturation effect exhibited by the solutions,
see section 5.1, solving the problem given by equation (3) appears to be very ill-
conditioned. In Figure 1 below, we present: on the left, two solutions of equation (2)
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posed in a disk of radius R = 35 with (D) b.c., satisfying both Tk(1) = 0, k = 1, 2,
and |T ′1(1)− T ′2(1)| ∼ 10−17 |T ′1(1)|; on the right, two solutions of equation (2) posed
in a disk of radius R = 80 with (N) b.c., satisfying both T ′k(1) = 0, k = 1, 2, and
|T1(1)− T2(1)| ∼ 10−49 |T1(1)|. We notice that, in any case, the absolute value for the
error near the origin is equal to 1; another remarkable fact is that the divergence of
solutions takes place in a very short interval, which is an alternative way to express
the saturation effect.

(a) Here R = 35 and T ′k(1), k = 1, 2, have a
relative error of 1. 44× 10−17.

(b) Here R = 80 and Tk(1), k = 1, 2, have a
relative error of 2.00× 10−49.

Fig. 1: Equation (3) is ill-conditioned.

3.1 Setting the precision

Since parameters Ri and Re enter into the equation (2) only on the boundary condi-
tions and, as it is shown by Figure 1, for r0 far from the boundary, the solution satisfies
S(r0) ∼ 1 and S′(r0) ∼ 0, it is natural to expect a strong relationship among solutions
with different boundary conditions and with different values for the parameters Ri
and Re. In the sequel we shall exploit this fact to set the shooting parameter.

Fig. 2: Relative error for the enclosing so-
lutions. In dotted line, 0. 7R.

Since we have based our algorithm
on a high–precision arithmetic, we first
explore the size of the working preci-
sion required in the computations and
its relationship with the outer radius
R = Re. In Figure 2 we plot the rela-
tive error for the pair of enclosing so-
lutions produced in the first step of the
algorithm as a function of R: Prec(R) =
Log(ErrRel(R))/R, where ErrRel(R) =
|Sp(δ) − Sn(δ)|Sp(δ)−1, see subsection
4.2 for details; in dotted line, the lin-
ear growth 0.7R. Motivated by these re-
sults, we set Prec(R) = 0.7R as the
working precision.

4 The algorithm

Our algorithm is divided into two main steps. First, we shoot from r = 1 to some
auxiliary target and advance by means of the Bisection Method to r = 0. Then, we
adjust the solution to get the correct value using the Regula–Falsi Method. Since
we are interested in four (highly related) problems (disk, ring, (D) and (N) b.c.) it
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is natural to expect (minor) differences when presenting them: each of one will be
treated separately. We first discuss the problem posed on a disk and then we move
to the problem posed on a ring.

4.1 Solving the non linear problem in a disk.

The first remarkable fact when solving the problem on a disk with (D) or (N) b.c.
is the existence of a threshold Rc such that for Re 6 Rc the problem only has the
trivial solution. Clearly, the actual value for Rc depends on the b.c. considered, see
Theorem 1 below for details.

To handle the singularity at the origin, when dealing with the problem posed on
a disk, we need to get some estimate for the solution for r ∼ 0.

Lemma 1 (Behaviour close to the origin) Let R > Rc and let S(r) be a solu-
tion for (3) with S(0) = 0. Then, there exists a constant C(R) such that S(r) ∼
C(R)J2(Rr), valid for r ∼ 0.

Proof Let S(r) be the solution of (3). Since S(0) = 0 we have that S(r) ∼ 0,
for r ∼ 0; thus, we have 1 − S(r)2 ∼ 1. More precisely, let u be some rounding
unit and let fl(·) be the related floating point representation, for |S(r)| 6 u1/2

we have fl(1 − S(r)2) = 1 and the non linear term evaluates as the linear one:
fl(S(r)

(
1− S(r)2

)
= fl(S(r)). This means that fl(S(r)) solves the linear equation:

r2f ′′(r) + rf ′(r) − 4f(r) = −R2r2f(r), from where we deduce the existence of a
constant C(R) such that fl(S(r)) = C(R)J2(Rr). ut

From previous lemma, for δ ∼ 0, the solution satisfies S(δ) ∼ C(R)J2(Rδ), in
which C(R) is to be fitted: the second step of our algorithm deals with this issue.
The first step consists in to produce two enveloping solutions that are defined in
[δ, 1]. This is achieved by shooting to the point (δ; 0): we look for solutions of (3),
Sp and Sn such that Sp(δ) > 0 and Sn(δ) < 0. The main fact is that δ depends
upon some estimate for the constant C(R). To track the behaviour in both limits
and as R→ R+

c and as R→ +∞, see Figure 3a, we express the constant as C(R) =
M(R)(R −Rc)1/2R−1/2. This expression, together with the inequality J2(s) < s2/8,
valid for s ∼ 0, allow us to deduce the estimate S(r) < (R − Rc)1/2R3/2r2/2, which
we use to get uniform estimates in r and, therefore, to ensure the asymptotics S(r) ∼
M(R)(R − Rc)1/2R−1/2J2(Rr) for r ∈ [0; δ]. Clearly, δ = δ(R) and its actual value,
according to Theorem 1, depends upon the problem to be considered: (D) or (N) b.c.
We finally note that, since M(R) is to be found in the second step, we also need to
set an auxiliary target for the fist step: we set Saux(δ) = 0.

Lemma 2 (Setting the target) Let 0 < u � 1 be some arbitrary precision. For
R > Rc, and accordingly with the boundary conditions considered, we set δ and the
target S(δ) as follows.

(D) δ(u,R) = u1/421/2R−3/4(R− t1)−1/4, and Sδ = M(R)(R− t1)1/2R−1/2J2(Rδ).
(N) δ(u,R) = u1/421/2R−3/4(R− s1)−1/4, and Sδ = M(R)(R− s1)1/2R−1/2J2(Rδ).
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(a) Behaviour of M(R), for Rc 6 R 6 80.
(b) Estimate for |V (R)|, the shooting param-
eter.

Fig. 3

4.2 First step: Estimating the shooting parameter

Since our algorithm proceeds by means of the bisection method, we need to have
an upper and a lower solution, Sp and Sn respectively, that enclose the solution. To
this end, we start considering equation (3) with Dirichlet boundary conditions. Let
R > t1, we have the following empirical formula for the shooting parameter, in which
Mα = ‖J2‖L∞ :

S′(1) ∼ V (R) = −
√

(R2 − t21)Mα .

In Figure 3b we show in red dots the actual value for S′(1) and in solid blue line,
the graph of |V (R)|. This estimate together with the monotonicity of |S′(R)| suggest

the choice vN = −0.99
√

(R2 − t21)Mα and vP = −1.05
√

(R2 − t21)Mα that yield the
enclosing solutions needed to start the bisection method.

The algorithm proceeds by calling the Solver for equation (3) with S(1) = 0 and
S′(1) = v, with v = (vP + vN )/2 (bisection method) as the initial data; we notice
that when calling the solver one must set Prec = 0.7R as the working precision:
Solver has to have the option to set an arbitrary working precision. To enhance the
performance, we force the solver to exit the computation as soon as the solution S
reaches either S(dd) = 1 or S(dd) = 0; this gives an approximate solution defined
in [dd; 1] which is updated as the upper solution Sp or lower solution Sn depending
whether S(dd) = 1 or S(dd) = 0. The loop is designed to advance (backwards)
from dd = 1 to dd = δ, with δ(u,R) given by Lemma 2, which acts as the cut–off
criterion. The output is a vector containing what is needed to start the second step:
{−vP , Sp(δ), S′(δ),−vN , Sn(δ), S′n(δ)}, the initial velocity, the computed solution and
its derivative in δ for both the upper and lower solutions, respectively. We notice that,
we also ask the solver for the value of S′(dd) at each stage of the loop.

4.3 Second step: Adjusting the constant

We now move to the second step, which is to adjust the constant M(R). This is
achieved by means of the Regula–Falsi method. With this in mind, we recall that the
first step provides a solution S(r) for equation (3) which is defined in [δ; 1]. We are
looking for both an initial datum vR (the derivative at r = 1) and a constant M(R),
such that the solution S(r) satisfies both M(R)J2(Rδ) = S(δ) and M(R)RJ ′2(Rδ) =
S′(δ) (in order to have a regular solution).
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This yields the condition S(δ)R = J2(Rδ)/J ′2(Rδ)S′(δ), which is expressed as a
function of the shooting parameter v:

0 = S(δ)R− J2(Rδ)/J ′2(Rδ)S′(δ) =: F (v) (4)

Thus, we use the Regula–Falsi Method to find a solution for the equation (4).
We notice that the first step is designed in such a way that it produces outputs
satisfying S′P (δ) · S′N (δ) < 0. Since S(dd+) > 0 at each stage, the lower solution
always satisfies S′n(δ) > 0; however, since there is a small set of initial data for which
the related solutions satisfy S(δ) > 0 and S′(δ) > 0, we need to avoid this situation:
this is accomplished introducing an auxiliary variable v1, that tracks the false upper
solution; the algorithm proceeds by taking v = (v1 + vN )/2, and updates the value in
vP only when S(δ) > 0 and S′(δ) < 0.

4.4 The pseudo–code

Below, we write the pseudo–code for each of the steps of the algorithm discussed
above, that solves equation (3) in [0; 1] with (D) b.c.

First step: % Find enclosing solutions defined in [δ; 1].
While dd > δ % enclosing solutions are not defined in the whole [δ; 1]

v = (v1 + vN )/2. % bisection method guess.
Solve equation (3) with S(1) = 0 and S′(1) = v.

When S(r0) > 1, Stop integration. dd = r0. % Overflow.
When S(r1) < −0.1, Stop integration. dd = r1. % Underflow.

If: S(dd) < 0 and S′(dd) > 0.
ddN = dd, vN = v, fN = S(dd), DN = S′(dd). % lower solution.

Else If: S(dd) > 0 and S′(dd) < 0.
ddP = dd, vP = v, fP = S(dd), DP = S′(dd). % upper solution.

Else.
v1 = v, ddP = 1.

End If
dd = max{ddP, ddN}. % force the enclosing solutions to be defined in [δ; 1].

End While
Output: outP = (vP , fP , DP ), outN = (vN , fN , DN ) % Notice DPDN < 0.

Second Step % Adjusting the constant.
While tol > 10−8 % Arbitrary small tolerance.

RFv = vP −RFP (fN − fP )/(RFN −RFP ). % Regula–Falsi guess.
Solve equation (3) with S(1) = 0 and S′ = RFv.
RFf = S(δ), RFD = S′(δ), RFa = R ·RFf − cte1 ·RFD.
If: RFP ·RFa < 0.

RFN = RFa, vN = RFv. % Store it as a lower solution.
Else:

RFP = RFa, vP = RFv. % Store it as an upper solution.
End If
tol = |RFa|. % update the tolerance.

End While

Output:

S̃(r) =

{
RFf/J2(Rδ)J2(Rr) r ∈ [0; δ]

S(r) r ∈ [Rδ; 1]
. % The computed solution.
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5 Behaviour of the solutions on the disk

The main result in this section is the presence of a saturation effect, where the radial
distribution function converges to an almost constant solution close to 1 in a large
interval. Conversely, the spatial variation of S(r) or T (r) in a (small) interval depends
on the typical radii of the hollow cylinder and constitutes a purely geometrical effect.
If we poses the problem in a disk, this fluctuation also occurs around the origin since
we require continuity when r → 0; when (D) b.c. are considered, same applies to
the boundary point r = 1 or t = R (depending whether we are considering solutions
of equation (3) or (2)), and we have the domain split into three regions. Finally, it
should be noted that this effect becomes more visible as the radius becomes larger
and is already present for R > 100. See Figure 4.

(a) (D) b.c. in [0; 1], for R ∈ (t1; 240]. (b) (D) b.c. in [0;R], for R ∈ (t1; 240].

(c) (N) b.c., in [0; 1], R ∈ (s1; 80]. (d) (N) b.c., in [0;R], R ∈ (s1; 12].

Fig. 4: The saturation effect.

Prior to discuss the saturation effect we report some features shared with the
solution of the Guinzburg Landau equation in 1–D, see [2]:

Remark 1 (Monotonicity of the solutions in the disk) Let Rc denote any of
the thresholds for the disk with (D) or (N) b.c. Let S and SN be a solution for
equation (3), posed in [0; 1], with (D) or (N) b.c. respectively, and let R > Rc. Thus,

– when (N) b.c. are considered, SN is an increasing function;
– when (D) b.c. are considered, SD is an unimodal function. The location of its

maximum plays a major role in our analysis and we shall denote it by (xm(R);Sm).

We notice that, applying the scale t = Rr, the same results are valid to solutions for
equation (2), posed in [0;R], the maximum being located at (Rxm(R);Sm).
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5.1 Saturation effect

This subsection is devoted to discuss the saturation effect exhibited for the solutions
of equation (3) posed on a disk with both (D) or (N) b.c. As indicated above, this
feature allows us to divide the domain into two or three regions, each with qualita-
tively different behaviour, which will be considered separately. Finally, let us mention
that we make use of this feature to get an approximate solution valid for R � 1,
compensating the fact that the algorithm becomes slower as R becomes greater.

5.1.1 Saturation near the outer boundary (for (D) b.c.)

We first deal with the outer region. For this purpose we will consider equation (3)
posed in [0; 1] (disk) with (D) b.c. Let R� 1, let S be the solution of (3) and let also
xm = xm(R) be the point in which S attains its maximum. The numerical evidence
shown in Figure 4a suggests that the outer region [xm; 1] shrinks as R � 1. Thus,
taking r ∼ 1 and setting g(r) = 1 − S(r + xm), we get the auxiliary initial value
problem, g′′(r) + g′(r) + 4(1− g(r)) = 2R2g(r)(1− g(r))(1− g(r)/2), with the initial
data g′(0) = −S′(xm) = 0 and g(0) = 1 − S(xm) = gm that needs to be estimated.
Since g′′(0) = (1− g(0))(2R2g(0)(g(0)/2− 4), we take gm ∼ g̃m := 2R−2(1 + 2R−2),
that leads to g′′(0) ∼ (1− g(0))R2g(0)2 > 0 which expresses the fact that r = 0 is a
minimum. (Notice that, the simpler values g̃m = 0, 2R−2 are not useful.)

Finally, we make the scaling t = Rr and obtain the approximate equation for
pR(t) = (t/R):

. p′′R(t) +R−1p′R(t) + 4R−2(1− pR(t)) = 2pR(t) (1− pR(t)) (1− pR(t)/2) , (5)

together with the initial conditions pR(0) = g̃m, p′R(0) = 0, which can be solved
numerically for values of R of large size, we tested it for R 6 5000

Thus, solving the equation pR(t) = 1 and calling sm(R) such that pR(sm(R)) = 1,
we get both an estimate for xm in the form xm ∼ x̃m(R) = 1− sm(R)/R and also an
approximation for the solution in [xm; 1] in the form:

S(r) ∼ Sapp(r) = 1− pR(R(r − x̃m(R))) . (6)

We show the relative error for the solutions Errrel(r) = |S(r) − Sapp(r)|, r ∈
[xm(R); 1], for different values of R in Figure 5a, notice that as R becomes greater
the error decreases and xm(R)→ 1. Figure 5b shows the relative error for the estimate
of the maximum Errrel(R) = |xm(R)− x̃m(R)|, for values R ∈ [50; 280], we also notice
that the error decreases as R increases.

(a) Errrel(r) = |S(r)− Sapp(r)|/S(r) for r in
[xm(R); 1]. Here R = 75, 150, 240.

(b) Errrel(R) = |xm(R)−x̃m(R))|/xm(R) for
values R ∈ [50; 280].

Fig. 5
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Regarding the problem to measure the saturation effect, that is to get an estimate
for the length of the interval in which the solution S passes from S(1) = 0 to S(1−
ηe) ∼ 1, we denote by ηe this saturation length and take as a (practical) definition the
property S(1 − ηe(R)) = 0. 9995 or, in terms of the auxiliary problem, p(Rηe(R)) =
0. 0005. Since we are also interested in provide an estimate for xm(R) for larger values
of R, and since this is given by p(sm) = 1, we treat both problems at the same time.

Remark 2 (Estimating the maximum and the (outer) saturation length )
Let (xm(R), Sm(R)) be the location of the maximum for the solution S and let ηe(R)
denote the (outer) saturation length. Figure 6a shows the behaviour for R(1−xm(R))
as a function of R, we notice the logarithmic growth; we also report the values obtained
for the saturation length in Figure 6b. Below, we record the asymptotics:

– xm(R) ∼ x̃m(R) = 1− 3 ln(R)/R. It also holds xm(R) ∈ (x̃m(R); 1).

– Sm ∼ S̃m(R) = 1− 2R2(1 + 2R2).
– ηe(R) = η∗eR

−1 with η∗e ∼ 5. 8652.

(a) R(1− xm(R)) in blue, 3 ln(R) in red. (b) ηe(R) for values R ∈ [200; 5000].

Fig. 6

5.1.2 Behaviour close to the origin: both (D) or (N) b.c.

As we reported in Figure 4b, all the solutions of equation (2) with R � 1 (for both
(D) or (N) b.c.) tend to coincide when evaluated close to the origin; in addition, for
R > 100 this kind of saturation effect is already present. As we have done before, we
shall provide an estimate for the (inner) saturation effect and we also take profit of
this feature in order to build an approximate solution for greater values of R.

Thus, we take R = 150 and denote by T150(t) the solution of equation (2) obtained
for R = 150, recall t ∈ [0;R]. Let R� 1 be fixed and let T (t) be the solution of (2) for
R. Since, for t ∼ 150xm(150) = 139. 74, the solution is saturated and therefore satisfies
T (t) ∼ 1 ∼ T150(150xm(150)) and T ′(t) ∼ 0 = T ′150(150xm(150)), and since equation
(2) does not depend on R, we deduce the asymptotic expression T (r) ∼ T150(r) valid
for t ∈ [0; 150xm(150)]. Scaling with t = rR, we have an asymptotic expression for
solutions of equation (3), valid for r ∈ [0; 150xm(150)/R], as follows:

S(r) ∼ Sapp := T150(rR) (7)

In Figure 7a, we plot the relative error (S(r)−T150(rR))/S(r) for r ∈ [0; 2η∗0/240],
where S is the computed solution for R = 240. The value η∗i = 63. 2693 is related with
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the saturation length of the solutions near the origin, discussed below. In addition,
we note that the peak of order 10−8 near r = δ reveals the value u = 10−8 of the
rounding unit used when setting the target, see Lemma 2.

When the problem is posed in a disk with (D) b.c., and look for bounded solutions,
r = 0 acts as a boundary and it is worth to estimate the related saturation length;
indeed, we are interested in make a comparison between these saturation lengths.

To estimate the (inner) saturation length presented in the solutions we look for
η0(R) such that S(η0(R)) = 0. 9995. Thus, we take R = 150, and consider η∗0 =
63. 2693 the smaller solution of the equation T150(t) = 0. 9995; notice that this gives
an uniform length when the problem is posed in [0;R]. Introducing the scaling t = rR,
we obtain the saturation length for solutions of equation (3) as: η0(R) = η∗0R

−1; we
also note that this value is more than ten times larger than η∗e .

Remark 3 (On the saturation lengths) Let S be a solution for equation (3),
posed in [0; 1] with (D) b.c. Let ηe(R) and ηi(R) be the outer and inner saturation
lengths, respectively. Let also η∗e = 5. 865193 and η∗i = 63. 2693. We have the estimate:

– ηe(R) = η∗eR
−1.

– ηi(R) = η∗iR
−1.

Finally, we notice that the values reported for the saturation lengths strongly de-
pends on the choice 0.9995 involved in its definition, which in turn is completely
arbitrary. However, in Figure 8a and 8b we plot the values related to the choice 0.995,
which reveals some bias to the origin since η∗e2/η

∗
e ∼ 1 while η∗02/η

∗
0 ∼ 2.

(a) |S(r)− Sapp(r)| /S(r), r ∈ [0, 2
η∗i
240

]. (b) |S(r)− Sapp(r)| /S(r), r ∈ [2
η∗i
R

;xm].

Fig. 7

5.1.3 Saturation far from the boundary (both (D) an (N) b.c.)

Now, we treat the saturation region in which the solution takes values near 1. Let
R > 150 and S be a solution for equation (3), posed with (D) b.c; according to
previous results, we have the estimate S(r) ∈ [0. 9995; 1] valid for r ∈ [2η∗0/R;xm(R).
We notice that when the equation (3) is posed with (N) b.c., the solution SN is
an increasing function and hence attains its maximum at r = 1, and the estimate
SN (r) ∈ [0.9995; 1] is valid in [2η∗0/R; 1]. Since we have xm(R) → 1, there is no lose
of generality if one restricts to the problem posed with (D) b.c.

Despite the fact that we have the estimate S(r) ∼ 1 − 2R−2(1 + 2R−2), we are
interested in provide an r–dependent approximation. From the estimate S(r) ∼ 1,
we deduce S(r)(S(r) − 1)(S(r) + 1) ∼ −2(1 − S(r)); setting h(s) = 1 − S(exp s),
we obtain the auxiliary (linear, non homogeneous) equation, to be solved for s <
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wm := ln(xm(R)): h′′(s) − 4h(s) = −4 + 2 exp 2sR2h(s). The initial conditions are:
h(wm) = g̃m = 2R−2(1+2R−2), the estimate provided by Remark 2, and h′(wm) = 0.

A straightforward computation gives: h(r) = (xmR)−2((xmr)
2 + (xmr)

−2), r =
exp s, which could be simplified using the estimate xm(R) ∼ 1. We write the ap-
proximate solution, with domain [2η∗0/R;xm(R)], (D) b.c., or [2η∗0/R; 1], (N) b.c.,
as:

S(r) ∼ Sapp(r) := 1−R−2(1 + 2R−2)(r2 + r−2) . (8)

In Figure 7b we show the relative error Errrel(r) = |S(r) − Sapp(r)|/S(r) for
r ∈ [2η∗iR

−1;xm(R)], for R = 200, 240, 280; we notice that the error decreases as R
increases.

Lemma 3 (Asymptotic solution on a disk with (D) b.c.) For R > 150 we get
the following approximate solution, which is expressed using the functions introduced
previously, we refer to Figures 5a, 7b, 7a for details of the relative errors involved.

Sapp(R)(r) =


M∞J2(Rr) [0; δ]

T150(Rr/150) [δ, 2η∗i /R]

1−R−2(1 + 2R−2)(r2 + r−2) [2η∗i /R;xm(R)]

1− pR(R(r − xm(R))) [xm(R); 1]

(a) Behaviour close to the origin. (b) Behaviour close to r = 1.

Fig. 8: Approximate solution for R = 2000. Black dots correspond to the value 0.995:
the related saturation lengths satisfy: η∗02 ∼ η∗02/2 and η∗e2 ∼ η∗e2.

5.2 The problem in the disk with (N) b.c.

Here, we collect the minor changes that have to be made when dealing with Neumann
boundary conditions on the disk. We recall that S, T shall denote a solution for
equation (3) or (2) with (D) b.c. and SN , TN , a solution on a disk posed with (N)
b.c.

Since, both the working precision and the target have been set, the first of these
changes has to do with the estimate of the shooting parameter and the setting of
the enclosing solutions, for which we take profit of the strong relationship among
the solutions shown in subsection 3.1 when posing the problem in [0;R]; however, it
should be remarked that for R ∈ (s1; t1] there is no available solution for (D) problem,
and only for R > 12, T serves as a guess, see the dotted red line in Figure 4d. Since we
are considering Neumann boundary conditions, we take SN (1) ∼ S(xm(R)). To give
a precise formulation, we recall the results of Theorem 1 concerning the threshold
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value, which now is given by Rc = s1 (the first positive zero of J ′2), and also the

estimate S(xm) ∼ S̃m(R) = 1− 2R−2(1 + 2R−2).

Remark 4 (Estimating the shooting parameter: (N) b.c.) Let R > s1, we have
the estimate for the shooting parameter SN (1):

– For 12 < R: SN (1) ∼
√
R2 − s21R−1S̃m(R).

– For 60 6 R: SN (1) ∼ S̃m(R).

Concerning the enclosing solutions, the result is similar to the one given previously.

Remark 5 (Setting the enclosing solutions) Let W (R) =
√
R2 − s21R−1S̃m(R),

the enclosing solutions needed to start the bisection method are given by:

– For 12 < R: Sp(1) = 1.05W (R) and Sn(1) = 0.99W (R).

– For 60 6 R: Sp(1) = S̃m(R) and Sn(1) = 0.99S̃m(R).

For smaller values, say R ∈ [3.06; 12], try first with Sp(1) = λ(R)W (R), interpolat-
ing between λ(3.06) = 1.6 and λ(12) = 1.05; on the other hand, the lower solution
estimate Sn = 0.99W (R). is still valid

The first step proceeds with no further modification, except that when calling
the solver one must set (N) b.c. The same applies to the second step. Therefore,
the algorithm in this case is the one given in section 4.4 with the changes already
mentioned.

Remark 6 (Asymptotic solution on a disk (N) b.c.) Let R � 1 be fixed and
let SN (r) be the solution of equation (3) with Neumann b.c. The approximate solution
is given by:

SN (r) ∼ SNapp(r) =

{
Sapp(r) r ∈ [0;xm(R)]

1−R−2(1 + 2R−2)(r2 + r−2) r ∈ [xm(R); 1] ,

where Sapp(r) is given by Lemma 3 and xm(R) is the point in which S attains its
maximum.

5.3 Solving the non linear problem in a ring.

Now, we consider equation (3) posed on [Ri/Re; 1] for 0 < Ri with both (D) and (N)
b.c.

Regarding the existence of thresholds for the inner radius Ri, when the problem
is posed in a ring the situation is as follows: for Dirichlet b.c. the problem has non
trivial solutions for Ri below a threshold Ra(Re), while for Neumann b.c. the problem
has non trivial solutions for any small values of Ri/Re, see Figures 9a and 9b. We
discuss this issue in section 6, where we make a theoretical approach, see Theorem 1.
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(a) Solutions for Ri ∈ (0;Ra), with
Rext = 20. The oscillatory curve is
J2(Rext)Y2(Rextt)− J2(Rextt)Y2(Rext)

(b) Solutions for Ri ∈ (0;Re), with Re = 6.
Notice the solution on the top, in light blue,
defined for the tiny interval [ 5.85

6
; 1].

Fig. 9

Next, we discuss the settings needed to make the algorithm work. Concerning
the target, the situation is now simpler: take δ = Ri/Re for both (D) an (N) b.c.
Regarding the shooting parameter and the enclosing solutions, for Ri << Ra, (D)
b.c., or Ri ∼ 0, (N) b.c., use the values provided for the problem in a disk. For other
choices, guesses should be selected taking advantage of the properties already shown,
mainly the monotonicity of Remark 1.

The non–linear equation involved in the Regula–Falsi Method has to be reformu-
lated, as it must now only reflect the boundary condition; we express it as a function
of the shooting parameter v (we add a superscript to distinguish it from the solution
in a disk):

FD(v) := Sa(δ) = 0 , FN (v) := (SaN )′(δ) = 0 . (9)

5.3.1 Behaviour of the solutions on a ring

First, we consider the problem posed with (D) b.c. Following the ideas of section
5.1.1, mainly the solution pR of equation (5), we get an estimate for the outer region
[xm(Re); 1], when Re > 150. On the other hand, when Ri > 150, and also Ri �
Ra(Re) (far from threshold) same approach as before allows us to build an estimate
for the inner region [Ri/Re;Ri/Re(2−xm(Ri))]. For Ri ∼ Ra(Re) use the asymptotic
expression given by Theorem 2. For Ri < 150 and Re > 150, apply the estimate to
the outer region and solve the problem with the algorithm in [Ri; 150].

Remark 7 (Asymptotic solution on a ring: (D) b.c.) Let Ra(Re)� Ri > 150,
and let pR be the solution of equation (5). We have the following approximate solution:

Saapp(Ri, Re)(r) =

{
1− pRi

(2Ri −Rer) [Ri/Re;Ri/Re(2− xm(Ri))]

1− pRe
(Re(r − xm(Re))) [xm(Re), 1]

Since the asymptotic provided by Remark 7 is obtained from pR we deduce an
estimate for both saturation lengths, each of which depends on the related radius.

Remark 8 (Comparing saturation lengths) Let Ra(Re)� Ri > 150 and let ηi,
ηe be the inner and outer saturation lengths for solutions of equation (3) posed in
[Ri/Re; 1] with (D) b.c. We have:
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– ηi = ηi(Ri) = ηeR
−1
i .

– ηe = ηe(Re) = ηeR
−1
e .

Since Ri � Ra ∼ Re − π we deduce the estimate ηi/ηe = RiR
−1
e < 1− πR−1e .

Fig. 10: Relationship among solutions.

Regarding the problem posed
with Neumann b.c., as we
have already mentioned, there
is a non–trivial solution for
any Ri ∈ (0, Re) see Lemma
1. Due to the saturation ef-
fect, for R � 1 the solution
SaN has two different regimes:
r ∈ [Ri/Re;Ri/Re(1 + ηNi )],
in which SNa(r) is almost con-
stant (tiny curl above the solu-
tion for the disk in Figure 10),
and r ∈ [Ri/Re(1 + ηNi); 1], in which SNa(r) ∼ SN (r). We also note ηNi � η∗e .

6 Theoretical approach.

In this section we collect some theoretical results concerning the existence of thresh-
olds. We recall that G(x, y) = S(Rr)ei2ϕ solves the Guinzburg–Landau (G–L) equa-

tion (10) on the ring DRi,Re := {(x; y) : Ri 6
√
x2 + y2 6 Re}, if and only if, S(r)

solves the equation (11) in [Ri/Re; 1]:

∇2G−G(|G|2 − 1) = 0 , (x; y) ∈ DRi,Re
(10)

r2S′′(r) + rS′ − 4S(r) = r2R2S(r)(S2(r)− 1) , r ∈ [Ri/Re; 1] (11)

Below, we present the existence of three kind of thresholds: two of them, establish
a lower bound for the (outer) radius Re of the disk, the third one provides an upper
bound for the thinness of the ring when the problem is posed with (D) b.c. In addition,
we perform an asymptotic analysis around these critical values.

Theorem 1 (Existence of thresholds) Let t1 and s1 be the first positive zeroes for
J2(x) and J ′2(x) respectively; let z1(R) be the largest solution in (0; 1) of J2(Rz)Yz(R)−
J2(R)Y2(Rz). Then, the following statements hold true:

– (D), on a disk: For Re 6 t1, S ≡ 0 is the unique solution for equation (11) with
Dirichlet condition S(0) = S(1) = 0.

– (N), on a disk: For Re 6 s1, SN ≡ 0 is the unique solution for equation (11)
with Neumann condition (SN )′(0) = (SN )′(1) = 0.

– (D), on a ring: For Ri > z1 = Ra(Re), S
a ≡ 0 is the unique solution for

equation (11) with Dirichlet b.c. S(Ri/Re) = S(1) = 0. In addition, for all Re >
t1, we have 1− z1(Re) ∼ π/Re, as a lower bound for the thinness of the ring.

Proof Let GD, GN be a solution for the (G–L) equation (10) in DR with Dirichlet or
Neumann boundary condition respectively. We denote both with G. We also denote
with Rc any of the values t1 or s1.

In order to establish the existence of positive solutions, we recall that the eigen-
values for ∇2 posed on DR = {‖~x‖ 6 R}, with either (D) or (N) b.c., are −λ2k,mR−2

(here Jk(λk,m) = 0 or J ′k(λk,m) = 0). Since in our problem we have G = S(r)ei2ϕ, we
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are looking for solutions belonging to the invariant subspace related to the eigenvalues
−λ22,m/R2 (positive zeroes of J2 or J ′2).

Multiplying (G–L) by G, integrating in DR, and using the integration by parts
formula, we get:

−‖∇(G)‖2L2(DR) = ‖G‖4L4(DR) − ‖G‖
2
L2(DR)

Rearranging terms and using the optimality of the first eigenvalue, we deduce:

‖G‖4L4(DR) = ‖G‖2L2(DR) − ‖∇(G)‖2L2(DR) 6 (1− λ22,1/R2)‖G‖2L2(DR).

Taking R 6 Rc = λ2,1, we have 1 − (λ2,1/R)2 6 0; from previous inequality,
we conclude ‖G‖2L2(DR) 6 0 and, hence G ≡ 0. (For (N) b.c., this is valid in the

orthogonal complement of constant solutions.)
When the domain is the ring DRi,Re = {Ri 6 ‖~x‖ 6 Re}, we only have to

notice that the eigenvalues are given by the positive zeroes of J2(xRi)Y2(xRe) −
J2(xRe)Y2(xRi), and z1 = Ra(Re) is the smallest value of Ri for which this function
does not vanish in (0; 1). Finally, we notice that z1(Re) and 1 are consecutive zeros
for the Bessel function, and it is well known the estimate 1− z1(Re) = π/Re, see [6].
ut

Theorem 2 (Behaviour close to the critical values) Let t1 and s1 be the first
positive zeroes for J2(x) and J ′2(x) respectively; let z1(R) be the greatest zero of
H(R;x) := J2(Rx)Y2(R) − J2(R)Y2(Rx) in (0; 1). Then, the following statements
hold true:

– (D), on a disk: For R = t1 + δ, with δ � 1, the solution for equation (11)
posed on DR with Dirichlet boundary condition, satisfies the asymptotic expression

S(r) ∼ δ1/2βJ2(t1r), with βD = 21/2t
−1/2
1 ‖J2‖L2

rdr([0;t1])
‖J2‖−2L4

rdr([0;t1])
.

– (N), on a disk: For R = s1 + δ, with δ � 1, the solution for equation (11)
posed on DR with Neumann boundary condition, satisfies the asymptotic expres-

sion SN (r) ∼ δ1/2βNJ2(s1r), with βN = 21/2s
−1/2
1 ‖J2‖L2

rdr([0;s1])
‖J2‖−2L4

rdr([0;s1])
.

– (D), on a ring: For Ri = z1(Re)− δ, with δ � 1, the solution for equation (11)
posed on [Ri/Re; 1] with Dirichlet boundary condition, satisfies the asymptotic
expression Sa(r) ∼ δ1/2βaD(Re)H(Re; r), with

βaD(Re) = 21/2(Re− z1(Re))
−1/2‖H(Re; ·)‖L2

rdr([Ri;Re])‖H(Re; ·)‖−2L4
rdr([Ri;Re])

. For

Re � 1, the asymptotic expression simplifies as, in which wron is the Wronskian:

Sa(r) ∼ δ1/24π−1
√

3
−1

wron(1)−1 sin(πR(r − 1 + π/R)).

Proof We now develop an asymptotic expression for the solution. Let R = Rc + δ,
with 0 < δ � 1, and let φ1 := J2(Rcr) exp 2iϕ.

Since φ1 is an eigenfunction of L := 1 +∇2 for the first eigenvalue λ2,1 = 1− R2
c

R2 ,

we look for solutions of the form G = δ1/2β(J2(Rcr) exp 2iϕ+ δh), with β chosen in
such a way that h ∈ (φ1)⊥. Replacing this expression into the (G–L) equation we get:

δ1/2βL(φ1) + δ3/2βC1(h) = δ3/2β3
(
|φ1|2φ1 +O(δ)

)
.

Using the eigenvalue identity L(φ1) = (1−R2
c

R2 )φ1 = 2δ 1
Rc(1+δR

−1
c )

φ1 and cancelling

out the factor δ3/2β, we obtain:

2 1
Rc(1+δR

−1
c )

φ1 + L(h) = β2
(
|φ1|2φ1 +O(δ)

)
.
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Making δ → 0, taking the scalar product with J2(r) = limδ→0 φ1(r) and rearrang-

ing terms, we get the value: β = 21/2R
−1/2
c ‖J2‖L2([0;Rc])‖J2‖

−2
L4([0;Rc])

.

Finally, we give the actual values for the parameter β, we also give the value for

limR→Rc
M(R) = βR

1/2
c :

– Disk, (D) b.c.: βD = 21/2t
−1/2
1 ‖J2‖L2

rdr([0;t1])
‖J2‖−2L4

rdr([0;t1])
= 1. 48512.

limR→t1 M(R) = 3. 36557.

– Disk, (N) b.c.: βN = 21/2s
−1/2
1 ‖J2‖L2

rdr([0;s1])
‖J2‖−2L4

rdr([0;s1])
= 1. 88133.

limR→s1 M(R) = 3. 28788.

Now, we treat equation (3) posed in a ring with (D) b.c., using the same ideas: we
take Ri = Rez1(Re) − δ, φ1 := H(Re; r) exp i2ϕ the eigenfunction related to λ1(δ),
the first eigenvalue of 1 +∇2 in the ring. In this case, a straightforward computation
gives λ1(0) = 0 and λ′1(0) = −(Re(1 − z1(Re)))

−1, from where we get an identical
asymptotic expression, the only change being in β, which is given by:

β(Re) = 21/2(Re(1− z1(Re)))
−1/2‖H(Re; ·)‖L2

rdr([z1;Re])‖H(Re; ·)‖−2L4
rdr([z1;Re])

.

Since, for R � 1, is valid the estimate H(Re; r) ∼ wron(1)R−1e sin(R(r − 1 + π/R)),
here wron(1) ∼ 0. 63662 is the related Wronskian, we have the simplified expression:

Sa(r) ∼ δ1/21.15470 sin(πR(r − 1 + π/R)), here 4π−1
√

3
−1

wron(1)−1 ∼ 1.15470. ut

Lemma 1 (Existence of non–constant solutions in a ring: (N) b.c.)
Let Ri ∼ Re, then there exists SN , a non–constant solution for equation (3) posed

in [RiR
−1
e ; 1] with (N) b.c.

Proof First, we notice that equation (3) does not admit constant solutions. We con-
sider previous equation with initial conditions: S(1) = P and S′(1) = 0. Since
S′′(1) = S(1)(4 + R2(S(1)2 − 1)) we deduce the existence of 0 < δ1 < δ2 ∼ 0,
such that: for P1 = 1−δ1, the related solution satisfies S′′1 (1) > 0 and for P2 = 1−δ2,
S′′2 (1) < 0. Hence, for any r ∼ 1−, we have S′1(r) < 0 and S′2(r) > 0 and therefore,
we deduce the existence of an initial value P0 ∈ (1− δ2; 1− δ1) such that the related
solution satisfies: S0(1) = P0, S′0(r) = 0, which is non constant as we have previously
noted.

7 Conclusions and further applications

In conclusion, the numerical analysis of the Ginzburg Landau equation shows the
influence of the boundaries in the radial distribution of the nematic parameter S(r).
In fact, the radial distribution saturates to its equilibrium value S0 = 1(T0 = 1) in
a region that depends on the size and shape of the cylindrical domain considered.
From a physical point of view, this saturation effect arises in the capacity of the
radial distribution S(r) (T (r)) to reach the saddle point in the nematic state driven
by a purely geometrical effect, but normalized in units of the (thermal) coherence
length of the system. Moreover, in the case of an annular domain we observe that
the saturation is not necessarily symmetric with respect to the origin and depends
on the ratio between the internal and external radii of the sample. This asymmetric
behaviour remains if we consider a disk and we require a continuous solution of S(r)
(T (r)) at the origin, due to the ambiguity of the molecular alignment at the center
of the sample.
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