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FINITE-DIMENSIONAL NICHOLS ALGEBRAS OVER DUAL
RADFORD ALGEBRAS

D. BAGIO, G. A. GARCIA, J. M. J. GIRALDI, O. MARQUEZ

Dedicado a Nicolds con admiracion y gratitud

ABSTRACT. For n,m € N, let H, ,, be the dual of the Radford algebra of dimension
n*m. We present new finite-dimensional Nichols algebras arising from the study of simple

Yetter-Drinfeld modules over Hy, .. Along the way, we describe the simple objects in

g::t YD and their projective envelopes. Then, we determine those simple modules that

give rise to finite-dimensional Nichols algebras for the case n = 2. There are 18 possible
cases. We present by generators and relations the corresponding Nichols algebras on five
of these eighteen cases. As an application, we characterize finite-dimensional Nichols
algebras over indecomposable modules for n = 2 = m and n = 2, m = 3, which recovers
some results of the second and third author in the former case, and of Xiong in the latter.

Cualquier destino, por largo y complicado que sea, consta en realidad de un solo
momento: el momento en que el hombre sabe para siempre quién es.

Jorge Luis Borges

1. INTRODUCTION

Nichols algebras are algebraic objects that encode certain symmetries in classical and
quantum (super) geometric objects. They were introduced by Nichols [N] and appeared
latter as quantum analogues of enveloping algebras of the nilpotent part of a Borel sub-
algebra in the work of Lusztig [L] and Rosso [Ro]. Nowadays, they play a crucial role in
the classification of (pointed) Hopf algebras [AS2], see [A] for more details.

Given a braided vector space (V,¢), one can construct, in different ways, the Nichols
algebra B(V') associated with it. This construction is functorial and it turns out that the
Nichols algebra is determined by (V, ¢). If the braiding c is rigid, B(V') can be realized as a
braided Hopf algebra in the category of Yetter-Drinfeld modules gyD over a Hopf algebra
H, and via the process of bosonization one gets a new Hopf algebra B(V)#H given by
the smash product and the smash coproduct. This fact is used in the Lifting Method
introduced by Andruskiewitsch and Schneider [AS] to classify pointed Hopf algebras.

Fix k an algebraically closed field of characteristic zero. Let H be a Hopf algebra, H its
coradical (the sum of all its simple subcoalgebras) and denote by Hjy the Hopf coradical,
i.e. the subalgebra of H generated by Hy. Then, one has the following possibilities:
either H = Hy = Hjg) and H is cosemisimple, or H = Hjy # Hp and H is generated
by its coradical, or H # Hjg = Ho and Hy is a proper Hopf subalgebra (i.e. H has the
Chevalley Property), or H # Hjg) # Ho. For the class of Hopf algebras with the Chevalley
property, one has the Lifting Method that was applied with a lot of success to pointed Hopf
algebras over abelian groups and some families of non-abelian groups, see for example [A],
[AS2], [An], [AGI], [GaM] and references therein. For the cosemisimple case and the case
where the coradical generates the Hopf algebra there is no general method. This paper
concerns with the last case, where the coradical generates a proper Hopf subalgebra. This
problem is addressed by Andruskiewitsch and Cuadra in [AC], where they proposed a
generalized lifting method. This method coincides with the lifting method in the case that
the coradical is indeed a Hopf subalgebra.
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Let H and A be Hopf algebras. We say that H is a Hopf algebra over A if Hjg =~ A as
Hopf algebras. The standard filtration {H, }n>0 of H is a filtration defined recursively
by H[n] = /\n+1 H[o] = H[o] A H[n,l] ={he H: Ah) € H® H[g} + H[n,]] ® H},
for all n > 0. If the coradical Hy is a Hopf subalgebra, then the coradical filtration
coincides with the standard one. Assume the antipode S of H is injective. Then by [AC,
Lemma 1.1], it holds that Hjy is a Hopf subalgebra of H and {HJ,|},>0 is a Hopf algebra
filtration of H. In particular, the graded algebra associated with the standard filtration
grH = @,50 Hp)/Hip-1), with Hi_y = 0, is a graded Hopf algebra. Moreover, the
homogeneous projection 7 : gr H — Hg) splits the inclusion of Hyg in gr /H, the diagram

R = (gr H)°™ is a Hopf algebra in the category gi} YD of Yetter-Drinfeld modules over

Hy and gr H ~ R#H|g as Hopf algebras. It turns out that R is graded and connected.
As a consequence of this construction one gets the following theorem.

Theorem. [AC, Theorem 1.3] Any Hopf algebra with injective antipode is a deformation
of the bosonization of a Hopf algebra generated by a cosemisimple coalgebra by a connected
graded Hopf algebra in the category of Yetter-Drinfeld modules over the latter. O

The generalized lifting method is then a procedure to describe explicitly any Hopf
algebra as above. If we are interested in finite-dimensional Hopf algebras, the main steps
reduce to the following: for a Hopf algebra A generated by its coradical,

(a) determine all Yetter-Drinfeld modules V' in 4D such that the Nichols algebra
B(V) is finite-dimensional;

(b) for such V', compute all Hopf algebras L such that gr L ~ B(V)#A,;

(c) prove that any finite-dimensional Hopf algebra over A is generated by the first
term of the standard filtration.

A first explicit example is described in [GGi], where the authors study Hopf algebras
over the smallest non-pointed non-semisimple Hopf algebra H o without the Chevalley
property. The complete description of Hopf algebras over Hs 5 is then achieved by putting
together the results of loc. cit., Xiong [X] —where Nichols algebras over semisimple mod-
ules are described, and Andruskiewitsch-Angiono [AA] where generation in degree one is
proved. The complete list can be found in [X2, Theorem 6.87] or in [X, Theorem B], where
one has to drop the assumption on the diagram. Following a suggestion of Juan Cuadra,
we begin the study of Hopf algebras over the family of Hopf algebras H,, ;, that are dual
to Radford algebras R, ,,. Let n,m € N and w be a primitive n-th root of unity. Radford
algebras are pointed Hopf algebras presented by

Rn,m = k<g7$| ' =1- gn’ gnm =1, gz = wxg>,

see Subsection 3.1. These n?m-dimensional Hopf algebras were first constructed by Rad-
ford [R, Section 2] as examples of non-commutative and non-cocommutative Hopf algebras
whose Jacobson radical is not a Hopf ideal. The duals of these algebras H, ,, = R;, ,,, are
described in a more general context in [ACE], see Subsection 3.2. It turns out that H, ,
is generated as an algebra by its coradical.

On the goal to describe all finite-dimensional Hopf algebras over H,, ,,, we study the

H, T
category "
n,m

formed through the study of the category of finite-dimensional representations over the
Drinfeld double D(Hy%,). We describe the simple objects, their projective covers and the
composition series of the latter. Then we proceed to determine those simple modules such
that the corresponding Nichols algebra is finite-dimensional. We do this for the case n = 2
and m > 2. Here we use the general strategy proposed in [AA], where finite-dimensional
Nichols algebras over basic Hopf algebras are related to finite-dimensional Nichols alge-
bras of diagonal type. The main idea is to use braided equivalences of tensor categories
to transport the information from one category to the other. In our case, we have the
following equivalences

YD of finite-dimensional Yetter-Drinfeld modules over H,, ,,,. This is per-

Tn,m ~ Rn,m ~ Hn,m ~
Tn,myD— Rn,myD— Hn,myp— D(HSS&)M’
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where Tj, ,,, is the generalized Taft algebra. The last equivalence is well-known, the second
is given by the general fact that gyD ~ g:)}D for any finite-dimensional Hopf algebra H,
and the first follows from the fact that Ry, ,,, >~ (T5,m)e, is a 2-cocycle deformation of T}, ,,.
We are able to track down all the important information because we know explicitly the
2-cocycle involved in the deformation. See Section 4 for more details. To determine those
Nichols algebras over simple modules that are finite-dimensional we use the classification
of finite-dimensional Nichols algebras of diagonal type due to Heckenberger [H2]. We get a
list of 18 possible cases. Out of these, we present the Nichols algebras over simple modules
by generators and relations for the first 5 cases. As a consequence, we obtain the results of
[GGi] in Theorem 5.17, which corresponds to the case n = 2 = m, and complete the results
of [HX] in Theorem 5.18, which corresponds to the case n = 2, m = 3. Independently of
our work, R. Xiong obtained similar results for the case n = 2 and m = p a prime number
in [X2]. In particular, he completed his previous result in [HX] and give a complete list
of Hopf algebras over Hj 3 over indecomposable objects. The authors became aware of
Xiong results after finishing this work.

The paper is organized as follows. In Section 2 we recall definitions and facts that are
used throughout the paper. Then, in Section 3 we introduce Radford algebras R, ,,, their
duals H,, ,, and describe the Drinfeld doubles D(Hy%) by generators and relations. In
Section 4 we describe the simple D(Hyop,)-modules in Theorem 4.5, their projective covers
in Theorems 4.11 and 4.14, and the composition series of the latter in Proposition 4.12. Fi-
nally, in Section 5 we study the finite-dimensional Nichols algebras over the simple objects
in g;;yp when n = 2. In particular, we determine when these are finite-dimensional
in Lemma 5.7, see Table 1, give the presentation of the first five cases of this table in
Propositions 5.10 — 5.15, and finish the paper with an application to the casesn =2 =m
in Theorem 5.17 and n = 2, m = 3 in Theorem 5.18.
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2. PRELIMINARIES

In this section, we recall some notions that are used along the paper.

2.1. Conventions. Throughout we work over an algebraically closed field k of character-
istic zero. Given a Hopf algebra H over k, we write A, £, S for the comultiplication, the
counit and the antipode, respectively. Comultiplications and coactions are written using
the Sweedler notation with summation sign suppressed.

Theset G(H) = {h € H\{0} : A(h) = h®h} denotes the group of group-like elements of
a Hopf algebra H. The coradical Hy of H is the sum of all its simple subcoalgebras; clearly
the group algebra kG(H) is contained in Hy. The Hopf algebra H is called cosemisimple
if H = Hy, and it is called pointed if Hy = kG(H). For g,h € G(H), the linear space of
(g, h)-primitive elements is given by the set

Pyn(H) :={rc H[A(r) =r®g+h®z}.

The elements on such sets are called simply skew-primitive elements if no emphasis on the
group-likes g and h is needed. If g = 1 = h, the linear space P(H) = P11(H) is called the
set of primitive elements.

Given a k-vector space V', we denote by k{vy, ..., v} the k-vector subspace of V spanned
by v1,...,u € V. For a k-algebra A, we write 4 M for the category of finite-dimensional
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left A-modules. Let g € k. For n € N, we define the g-numbers by

n—1
(O)q =1 ) (n)q ::1_|_q+“._|_qn71 = Zoqsu

= 0,0, = 16, . (}) o
n),! = -+ (n), = s), =
q e 7 o k), (k) H(n — k),
The odd (resp. even) integer numbers are denoted by 2Z + 1 (resp. 2Z). We write G,
for the set of n-th roots of unity and G/, for the subset of the primitive ones.

2.2. Yetter-Drinfeld modules. Let H be a Hopf algebra. A left Yetter-Drinfeld module
M over H is a left H-module (M, -) and a left H-comodule (M, \) that satisfies

A(h-m) = haym—1)S(h()) @ hy - m (), forall me M, h € H.

We denote by gyD the corresponding category. If H has bijective antipode, then gyD is
a braided monoidal category: for any M, N € g)}D, the braiding cpynv : MON = NQM
is given by ey n(m®n) = m_1)-n@mq for allm € M,n € N. A Hopf algebra in Ayp
is simply called a braided Hopf algebra.

Suppose that H is finite-dimensional. Then the category Z. VD is braided equivalent
to LYD, see [AG, Prop. 2.2.1]. The tensor equivalence is given as follows: Let (h;);es and
(fi)ier be dual basis of H and H*. If V € HYD, then V € . YD by

(1) f-v=f(S(v1))vey and A(v)= ZSil(fi) ®@hi-v, forallveV, fe H".

2.3. Braided Hopf algebras and bosonization. Let H be a Hopf algebra and B a
braided Hopf algebra in gyD. The procedure to obtain a usual Hopf algebra from B
and H is called the Radford biproduct or Majid bosonization, and it is usually denoted
by B#H. It is given by B#H = B ® H as vector spaces, and the multiplication and
comultiplication are given by the smash-product and smash-coproduct, respectively. That
is, for all b,c € B and g, h € H one has that

(b#g)(c#th) = b(gq) - O)#9(2)h,
A(b#tg) = bD#OBP) 190y @ (0D) 0)#92),

where Ag(b) = b)) @ b denotes the comultiplication in B € BYD. Clearly, the map
v : H — B#H given by 1(h) = 1#h for all h € H is an injective Hopf algebra map, and
the map m : B#H — H given by n(b#h) = ep(b)h for all b € B, h € H is a surjective
Hopf algebra map such that m o ¢ = idgy. Moreover, it holds that B = (B#H)*°™ = {z €
B#H | (r®id)A(x) = 2®1}. Conversely, let A be a Hopf algebra with bijective antipode
and 7 : A — H a Hopf algebra epimorphism admitting a Hopf algebra section ¢ : H — A.
Then B = AT is a braided Hopf algebra in gyD and A ~ B#H as Hopf algebras.

2.4. Cocycle deformations. Let H be a Hopf algebra. A convolution invertible linear
map o : H ® H — k is called a normalized 2-cocycle on H if for all a,b,c € H one has
that

a(bays cy)o(a,bayc) = o(aq), bay)o(aebe), ¢)
and o(a,1) = e(a) = o(1,a), see [M, Sec. 7.1]. In particular, the inverse of o is given by
o Y(a,b) = 0(S(a),b). Using a 2-cocycle ¢ it is possible to define a new algebra structure

on H, which we denote by H,, by deforming the multiplication. Moreover, H, is indeed
a Hopf algebra with H = H, as coalgebras, deformed multiplication

me(a,b) = a ¢ b=oc(ag), b(l))a(g)b@)o_l(a(g), b)) foralla,be H,
and antipode S, given by (see [D] for details)
So(a) = o(a(l),S(a(2)))8(a(3))0_1(S(a(4))7 aiy) foralla € H.
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Remark 2.1. Let H be a Hopf algebra and ¢ : H® H — k a normalized 2-cocycle on H.
Then by [MO, Theorem 3.7], there is an equivalence of braided categories gjyl) ~ IyD.
By using different techniques, it is possible to prove that (almost) all known examples of
finite-dimensional pointed Hopf algebras are given by 2-cocycle deformations of bosoniza-
tions of Nichols algebras, see [AGI], [GM], [Mk], [GaM], [GIV], [FGM] and references
therein. Thus, in case the 2-cocycle is given explicitly, to study the category ZyD for
a finite-dimensional pointed Hopf algebras, it is enough to study the category of Yetter-
Drinfeld modules over the bosonization of a Nichols algebra with Hy. The latter category
is a priori better understood. Indeed, simple and projective objects can be described us-
ing a generalization of weight modules and Verma modules, see for example [ARS], [AB],
[AAMR], [RS] and [KR] for the abelian case, and [PV], [V] for the non-abelian case.

2.5. Nichols algebras. Let H be a Hopf algebra and let V' € gyD. A braided N-graded
Hopf algebra R = @, -, R(n) € YD is called a Nichols algebra of V if k ~ R(0),
V ~ R(1) € ¥YD, R(1) = P(R) and R is generated as an algebra by R(1). It holds
that a Nichols algebra always exists and it is unique up to isomorphism. It is given
by the quotient of the tensor algebra T'(V') by the largest homogeneous two-sided ideal
and coideal J satisfying that J = @,,~, Jn(V) is generated by homogeneous elements of
degree > 2. It is usually denoted by B(V) = @,,~o B"(V), where B (V) =k, B1(V) =V
and B(V) = T™(V) /T (V) for all n > 2. See [A], [AS] for more details.

Given a braided vector space (V, ¢), one may construct the Nichols algebra B(V, ¢) in a
similar way to the construction above, by taking the quotient of the tensor algebra T'(V)
by the homogeneous two-sided ideal given by the kernels of certain morphisms @),, known
as quantum homogeneous symmetrizers.

Let B, be the braid group of n letters. Since ¢ satisfies the braid equation, it induces a
representation p, : B, — GL(T"(V)) for each n > 2. Let M : S,, — B,, be the Matsumoto
section corresponding to the canonical projection B,, — S,, and consider the morphisms

Qu=Y" pu(M(0)) € End(T"(V).

oES,

Then, the Nichols algebra B(V,c) is the quotient of T'(V') by the two-sided ideal J =
D52 Tn(V), with T, (V) = Ker @, for all n > 2. One usually simply writes B(V) =
B(V, c) if the braiding c is clear from the context, as in the case of V' € gyD.

There is a useful criterion with skew-derivations to find relations in B(V) with V' €
BYD: for f € V* define 9y € EndT(V) by

95(1) =0,  9(v)=f(v) forall veV and Is(zy) =20s(y) + Y _ 0y, (x)y;,
J

where ¢ 1y ® f) = Y fiwyjandy € T(V). Let x € T™(V) with n > 2. If 9¢(z) = 0 for
all f € V*, then x € 7,(V).

A pre-Nichols algebra ‘%(V, ¢) of a braided vector space (V,c), as defined by Masuoka,
is any graded braided Hopf algebra intermediate between T'(V') and B(V, ¢), that is any

braided Hopf algebra of the form T'(V')/I where I C J (V) is a homogeneous Hopf ideal.
In particular, B(V,c) is a graded braided Hopf algebra B(V,c) = P,~oB"(V,c) such
that BV, ¢) =k, BL(V,¢) = V and B(V,¢) is generated as an algebra by V.

3. RADFORD ALGEBRAS, DUALS AND DRINFELD DOUBLES
In this section we recall the definition of Radford algebras, introduce their duals, certain

Drinfeld doubles, and prove some formulas that are needed in the sequel.

3.1. Radford algebras. Let n,m € N, and w € k be a primitive n-th root of unity. Write
Cpm for the cyclic group of order nm with generator g.
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Definition 3.1. [R, Section 2.1] The Radford algebra R, ,, is the associative algebra
generated by the elements g, x subject to the following relations

(2) 2" =1-g", g =1, gr = WIg.

It is a Hopf algebra with its coalgebra structure determined by g being group-like and
x a (1, g)-primitive element, i. e., A(z) =z ® 1+ g®x. Consequently, e(g) =1, e(z) =0,
S(g) = g~ and S(x) = —g~'x. A linear basis is given by the set {27¢g’ : 0 <j <n, 0<
i < nm}; in particular, dim R,, ,,, = n’m.

The coradical is (Rym)o = kCppm, thus Ry, , is pointed for all n,m € N. The graded
Hopf algebra associated with the coradical filtration satisfies that gr Ry, ,, >~ B(V)#kChp,
where B (V) = k[z]/(z™) is the truncated polynomial algebra, and # denotes the bosoniza-
tion of B(V) and kCp,,. Here V = k{z} is a braided vector space called quantum line.
Precisely, V € g"myD via g - = wz and §(z) = g ® x. The Hopf algebra B(V)#kCypm,

is better known as the generalized Taft algebm as an algebra it can be presented by
B(V)#KCpm, = Tm = k{g, z : =0, ¢"" =1, gr = wxg).

If m =1, then T, 1 = T, is the Taft (Hopf) algebra of dimension n?. Following this ter-
mlnology7 Radford algebras are liftings of quantum lines: they are ﬁltered algebras whose
associated graded algebra is isomorphic to the bosonization B(V)#kC),,. In particu-
lar, they are 2-cocycle deformations of generalized Taft algebras, see [GM], [Mk], [AGI].
Thanks to [GM, Section 4.4], it is possible to describe explicitly the 2-cocycle that give the
deformation. By [GM, Proposition 4.2] we have that R, ,,, = (T,m)s, where the 2-cocycle

o is the exponentiation o = e of a Hochschild 2-cocycle 1 on Tj, ,,, given by
W ifa+b=n,
0 otherwise.

(3) n(z%g",z’g*) = {

Note that since 7 = 0, one has that 0 = e’ =c®e+nando ' =eT=c®e—1.

3.2. Duals of Radford algebras. Duals of liftings of quantum lines were explicitly
calculated in [ACE, Section 3.2]. We describe below the duals of the Radford algebras
R, m, which constitute a particular case.

Fix a primitive nm-th root of unity £ € k* such that ™ = w, and consider the elements
U, X and A of Ry, ,,, defined by the formulas

<U7 xjgt> = wt6j707 <X7 qut> = 5j,17 <A7 xjgt> = Etgj,()'

Proposition 3.2. [ACE, Proposition 3.3] The Hopf algebra Hy, ,, = R}, ,,, is generated by
the elements U, X and A salisfying the following relations

(4) Ur=1, X" =0, A" =T,
(5) UX = wXU, UA = AU, AX = EXA.
Its coalgebra structure is determined by U € G(Hpm), X € Pry(Hpm) and

n—1 1— fn

A(A)=AR A+ Z%l,ankakA @ X*A, where Tnk = W
n —

k=1
The counit and the antipode of A are defined respectively by £(A) = 1 and S(A) =
Am=lgn=1" Note that, as AS(A) =1 = S(A)A, one has that S(A) = A~1 O

Remark 3.3. Using the structure given by the proposition above, a straightforward cal-
culation shows that there exists a Hopf pairing (—, —) : Hp m X Rym — k, induced by the
evaluation, see [ACE, Proof of Proposition 3.3]. Explicitly, it is given by

(6) (X2Ab 269y = 6, £%%(a),! forall 0 <a,c<nand 0 <b,d < nm.
Remark 3.4. By [R, Proposition 2.3], Hy, , is isomorphic as coalgebra to the direct sum

T, ® Dy @@ Dy,—1, where D; is isomorphic to the simple comatrix coalgebra M*(n, k)
of dimension n?, for all 1 <4 < m — 1. In particular, (Hpm)o =kCp, @ D1 &+ B Dy
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and dim(Hy )0 = n?(m — 1) +n. As dim(H,, )0 does not divide dim Hy, 1, (Hpm)o
is not a Hopf subalgebra and consequently H,, ,, does not have the Chevalley Property.
Moreover, the subalgebra of H,, ,, generated by (Hy )0 coincides with Hy, ,,. For a more
general family sharing the same properties, see [ACE, Section 3].

3.3. The Drinfeld double of H, 5. Before we introduce our object of study, we first
recall the definition of the Drinfeld double of a finite-dimensional Hopf algebra.

Let K be a finite-dimensional Hopf algebra. There exist a left action of K on its dual
K*, and a right action of K* on K which are given respectively by:

a—f={fe S (fu),a) fa), a+— f={(f.8  ag)au))a),
forall a € K and f € K*.

Definition 3.5. [M, Definition 10.3.5]. The Drinfeld double of K is the Hopf algebra
D(K) = (K*)®P q K, whose underlying k-vector space is K* ® K, and the algebra and
coalgebra structures are given respectively by:

(f >a)(fab) = flag) = frz)) = (a@) = fa))b, l=eml,

A(fpaa) = fig) M an) @ fay > ag), e(f>a) = f(1)e(a),
for all f,f e K* and a,b € K.

The map from K (resp. (K*)®P) to D(K) given by a — 1 a (resp. f+— frx1l)isa

Hopf algebra monomorphism. Thus, K and (K*)“P are Hopf subalgebras of D(K).

The next well-known result establishes the connection between the category gyD and
the category p(geop) M of left D(KP)-modules.

Proposition 3.6. [M, Prop. 10.6.16] There exists an equivalence F : D(KcoryM — %)ﬂD

of braided tensor categories. For V € p(georyM, the image F(V) € fyl) equals V' as
K-module, and the K-comodule structure A+ V' —= K @V, v = v_1) @ v, is uniquely
determined by the equality f -v = f(v_1))v) for all f € K* andv € V. O

From now on, we set D := D(H;:°Y) = (Rym)°P “°P? @ Hyoh. In particular, for all
a € Ry, m and f € Hy b we have that
[ —a=(f,S(aq))as)ae), [ —=a=(S(f))fe),a) f2)
(Ipa fllaval) = (fo) = a@)) > (f) = aq)).
Under the considerations above, the next technical lemma is straightforward.

Lemma 3.7. The following identities hold in D:

U—g=y, X —=g=0, A—=g=y,

U+—g=U, X g=wlX, A—g=A4A,

U—z=w 'z, X—=z=wlg-1), A—z=¢l,

U+~—zx=0, X;:U:wfl(U—l), X" UA+— g=wX""UA,

Az =7y, XN U - 1A

The following proposition yields the presentation of D by generators and relations.

Proposition 3.8. The Hopf algebra D is generated by the elements g, z, U, X and A
satisfying the relations (2) with the opposite product, (4), (5) and the following ones:

(7) Ag=gA,  gX =wXy,
(8) xX =wXz+ (1-Uyg),
(9) A = €A + 1 X1 — w1 Ug) A.

In particular, Ug = gU and 2U = wUz.
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Proof. By the definition of the product in D and Lemma 3.7 we have that
Ag= (1 A)(gral) = (Ag) — g) > (An) —9)

n—1

=(A—=g) (A= g)+ ) Tmp(XFA = g)a (X" FURA — g)
k=1

=g A=gA.

In a similar way, we have
Xg=(1=X)(g>1)= (X —g)>= (X ~—9)
=X =g U—g+(1=gm(X g =gxuw X =w gX.

Since U = A™, from (7) it follows that Ug = gU. Analogously, (4) and (9) imply that
2U = wUz. For (8) we have

Xr= (1 X)(wxal) = (Xg) — 2(9) > (X(p) — 2(1))
=X =) (U—g)+(1—2)p(X —yg)
+(X 21U —z)+(1—=1)x (X — 2)
—wlg-D)=U+wlzx X +wllx (U -1)
=wl@X +gU-1)=w(zX+Ug—1).
The proof of the remaining relations are left to the reader. O

We end this section with the following equalities that will be used later.

Lemma 3.9. For any k € Z, set T'(k) = (1 —w*Ug) € D. The following equalities hold

(10) X"2°T(k) =T(k — 2r +2s)X"2®,  for all r,s >0,
(11) e XP =Xk + (), X (k- 1),

(12) 2" X = WP XaP + (k) T(k — 1)z

(13) (XFzP)A = A(XEh).

Proof. The identity (10) is immediate. We prove (11) by induction on k; the proof of (12)
is similar. For k = 1, (11) is equal to (8). Let & > 1 and assume that the formula holds
for k — 1. Using that X‘T'(j) = I'(j — 2£)X?, for all j, ¢ > 1, we have

Xk — (wqukql, + (k- 1)ka*2F(k —2NX
— I N WXz +T(0) + (k— 1), X 2XT(k)
= WP XFr 4 X WOFID(0) + (B — 1) T(K))
= WX e 4 (k) XD (k - 1).

For (13) we also proceed by induction on k. From (9), X (zA) = X({Ax) = AXz which
implies the identity for £k = 1. Assume that the result is true for & > 1. Then

Xk+1$k+lA —_ Xk:(Xxk)xA
(12) x* (w_ka:kX —w R (k) T (k — 1)xk_1) zA
0 (w Xk X —w ™k (Rl (k= 1 - 26k) XFak) 4
“ 4 (w Xt X — Wk (BT (k — 1 — 26) X o)
19 4 (v X" X — W™ (1) XFT(k - 1)a*)
— AXKHL R+

Here, equality (*) follows by induction and the case k = 1. U
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4. THE CATEGORY pM

In this section we classify the simple objects in p.M and describe their projective covers.
By §3.1, we know that Ry, », >~ (Ty,m)s, where o = € is a normalized 2-cocycle and 7 is a
Hochschild 2-cocycle as defined in (3). Then, there is an equivalence of braided categories

%’ZJ}D ~ R" " YD, given by the identity on the underlying vector spaces and coactions,

but changlng the action by the following formula:
h—o v =0(hay,v-1)(he) = ve) 0 ((he) = v0) (1) P3)s

forall h € Rym, veEV € R" "LyD Taking into account the equivalence HyD ~ H* YD
given in (1) and Proposition 3.6, one has the equivalence of braided tensor categories
Tn m

(14) pereomyM = YD @YD o~ YD~ p M.

Remark 4.1. In [EGST1], [EGST2| the authors describe, using quiver Hopf algebras,
the representation theory of the Drinfeld double D(T}, ") of the dual of the (co-opposite)
generalized Taft algebra T, ,,,. Among other things, they prove that these are algebras
of tame representation type, present the indecomposable objects and describe the tensor

an Hnm

product of two simple objects. Since cop)/\/l o~ f’; "YD ~ T" myD ~ pM, one possi-
ble way to describe p.M would be to translate all the result% usmg the cocycle deformation
and the braided equivalences above. Another way is to use recent results by Pogorelsky
and Vay to describe the simple modules and some projective envelopes using generalized
Verma modules on weights. Alternatively, we have chosen to characterize directly the
simple objects of p M, since we are particularly interested in the explicit structure of the
modules, in order to compute their Nichols algebras.

4.1. Simple D-modules. In this subsection, we describe the simple left D-modules.
For 0 <1i,j7 <nm — 1, let 7;; be the positive integer satisfying that 1 < r;; <n and

A i—}—%—f—l modn if m|j,
“ n if  mij.

We write simply r = r;; if no emphasis in 4, j is needed.

Definition 4.2. Let V; ; be the r-dimensional k-vector space with basis B = {vg, -+ ,v,_1}
endowed with a D-action determined by
Ay =y, g- v =&Fmy, forall 0 <k <r—1,
VE1 if 0§]€<’I“*1,
T-vp = . ]
(1 =&y if k=r-—1,
if k=
X v = 0 1 0,
cup—1 i O0<k<r-—1,

where
(15) e = (k) w F(FwFH 1), forall 0 <k <r—1.

A direct but tedious calculation using the relations in Proposition 3.8 shows that the
action of D on V; ; is well-defined.

Remarks 4.3. (a) If r < n, then (1 — &™) =0, as m | j. In particular, z - v,_1 = 0 and
x acts nilpotently on V; ;. Note that if j = (n — i)m, one has that dimV; ; = 1.

(b) Observe that ¢; # 0 for all 0 < k < r — 1. In fact, if ¢, = 0 then &7Hm(—k+1+1) — 1
which implies that j + m(—k + 14 4) = 0 mod nm. In such a case, m | j and hence
k= % + 14+ 1 =r, a contradiction.

Lemma 4.4. The D-modules V; j, 0 < 1,7 < nm, are simple and pairwise non-isomorphic.
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Proof. Fix 0 < 4,5 < mm — 1 and let V be a D-submodule of V; ;. Take 0 # v € V' and
write v = ZZ;& apvp with k = max{¢: ay # 0}. Then, X*~1.v = agcpcp_1 - - - c1v9. Since
by Remark 4.3 (b), one has that ¢, # 0 for all 1 < ¢ < r — 1, it follows that vg € V. By
acting with = on v, one sees that vy € V for all 0 < ¢ < r, and consequently V =V ;.
We show now that the family {V; ;j}i<i j<nm consists of pairwise non-isomorphic simple
D-modules. Suppose that T : V; ; — Vi ¢ is an isomorphism of D-modules and denote by
By, ; = {vt}o<t<r—1 and By, , = {ut}o<t<s—1, the linear bases of V; j and Vy 4, respectively.
Clearly, we must have r = s. Since T'(vg) is an eigenvector for g, there exist 0 < a <r—1
and A € k* such that T'(vg) = Aug = Ax%up. If a > 0, then 0 = T(X - vg) = AX - u, =
ACqug—1, where ¢, is the scalar given in (15). But this is impossible, since ¢, # 0 by
Remark 4.3 (b). Hence a = 0 and consequently T'(vy) = T(z%vp) = A 2%ug = X up for all
0 <b<r—1. This implies that i = k and j = /. O

The following theorem gives the classification of the simple D-modules. We prove it
through several lemmata.

Theorem 4.5. The family {V; ;}o<ij<nm forms a complete set of isomorphism classes of
simple D-modules. In particular, there exist (nm)? non-isomorphic simple D-modules.

Let V be a simple D-module and consider the linear subspace W = ker X C V. Since
X is a nilpotent element and XA = AX, wXU =UX, wXg = gX, it follows that W
is a non-zero subspace of V invariant under the action of g, A and X. Since g commutes
with A and U = A™, there exists a simultaneous eigenvector v € W of A, U and g; say

gu=av, Av=vv and Uw = v, with a,v,06=+"€k.
Moreover, as g = A™ = 1, we have that there exist 0 < 4,7 < nm — 1 such that
Av =€,  gu=_Ev, Uv=uw.
Lemma 4.6. Let V; ; be the vector subspace spanned by {v,zv,... 2" w}. ThenV;; =V.

Proof. To prove the claim, it is enough to show that V; ; is a D-submodule of V, i.e. V; ;
is invariant under the action of the generators U, g, x, X and A. First we note that
zF"ly € ker X%, for all 0 < k < n. Indeed, the result is true for k = 1. Let k£ > 1 and
assume that 2720 € ker X*~1. By (11), we have that

e XF (2 20) = WP XE (R ) 4+ (k) XTI (k — 1) (2% %)
= wFXF (1) + (k) T — k) XF 1 (2% 20),

and consequently X*(z%~1v) = 0.

Since UzFv = w *2kUv = Bw *zFv and gzFv = w2k gv = awFzkv for all 0 < k <
n — 1, we have that V;; is invariant under the action of U and g. As 2" =1 —g¢", it
is clear that V;; is also invariant under the action of z. Moreover, since by (12), Xz*v
belongs to the linear span of {xk’lv}, we have that V;; is also X-invariant. Finally,
to show that V;; is A-invariant, it is enough to prove that A(zFv) = ¢ F 2Fv, for all
0 <k <n— 1. For this, we proceed by induction on k. The case k = 0 follows from the
equality Av = ~vv. Consider now 0 < k < n and assume that A(zF1v) = 6= gh=1y,
Since X" 1A = ¢~(=DAX"1 and X" 1(zF~1v) = 0 for all 1 < k < n, it follows that
X" 1(AzF=1y) = 0. Thus

EA(zP) = EAx(aF o)

1-&n
(n—1)l,
= 2 A" ) = a(ye FDF 1Y) = gD ghy,

= g Az o) + (X" AU — X" A) (2F 1)

Hence A(z*v) = v¢7% 2Fv, and the lemma is proved. O
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Note that by (12), for any 0 < k < n—1, there exists dj, € k such that Xz*v = dpz"~1v.
In fact, it turns out that dy = ¢ for all 0 < k < n — 1. Indeed, using again (12) we get

dp_12* ' = e X (2 T0) = wXaPv + (1 = Ug)at o
= wdpa* v+ (1 - fjwi_Q(k_l))wk_lv

= (wdg + 1 — Fui2k=Dyh=1y,
Thus, dj_1 = wdy, + 1 — w2k~ On the other hand, we have that
0=2X(w)=wXzv+ (1 -Uglv=wdiv+ (1 —&w)v = (wd; +1—&wo,
which implies that dj = w™!(&/w’ — 1) = ¢;. Consequently

di = (k)1 (w80 —w™) = (B)ww P w * Vg —1)=¢, forall0<k<n-—1.
Lemma 4.7. For all 0 <¢,57 < nm — 1, it holds that dim V; ; = r;;.

Proof. As Uv = w'v, we have that Uzkv = wikzky for all 0 < k < n—1. Set r =
max{l <k <mn: zFly #£ 0}. Then, v, zv, ..., x"~'v are eigenvectors of U associated
with distinct eigenvalues, and consequently the set {v,zv,...,2" 1o} is a basis of V; ;.

If mtj, then 1 # &" and whence 2" acts non-trivially on V;;. This implies that
{v,zv,..., 2" 1v} is a basis of V; ; and dim V; ; = n = r;;.

Assume now that m | j. Then 2" -v = (1 —¢")-v = (1 — &™)v = 0 and 2™ acts by 0
on V; ;. Since 2" also acts by zero on V', we have that

e o =2 X (2" ) = wXa"v+ (1= Ug)a™ o = (1 — Fulw207D)m 1y,
Comparing with (15) we have that
w™ TNl (w_(r_l) +(r—1), w_(T_2)> =1+ (r—1)yw .
But 1+ (r—1),w D =14+04+w+ -+ 2w D and

(w—v—l) +(r— 1) w—(r—m) oD (1wt w2 )

=1+ w_l 44 w_(T_l) = (r)w,l7

which implies that _w’(rfl)gjwi (r)y-1 = (1)p-1. If r < n, then (r),-1 # 0 and whence

Wl =¢u = W', Hence r = i + % +1 mod n = r; ;. Suppose now that r = n. Then

(EAx — zA)x" 1o = EAz™v — giemtn=Ngny = EA(1—gM)v— fif_(”_l)(l —g" v
=(1-gMeE-¢ =0
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Observe also that
Xy = X 2(X 2" ) = ¢, 1 X220 = ep10p 2 XT3 B

n—1
= Cp—-1Cp—2 - C1V = (n — 1)'0.1 H wik(wf(kfl)é'jwi _ 1)’(}
k=1
(n—1) n—2 .
=n-1Dl,w 2 H(w—kgjwl —1)v
(16) k=0 2
(n=1)n o -
B Y ) (T
k=0

n—2
= (n— Dlo(~1)" (=" [ (1 - o Feiuiyo
k=0

n—2
= (=D JJ( o *dw.
k=0

Writing \; = ﬁ(l —wkelwl) € k, we have that
k=0
(gX" AU — X" 1A) (2" ) = g XL AU (27 o) — XL A2 M)

= ¢ Wy — (X h)
= e D (W' Dy —1)((n — 1)l An_2v)
= ¢ i — DI Ao (Fw'w™ ) — 1)y
= €D (n — 1)y 10,

Thus, (9) implies that

(1-gmeE-¢ = (;_f; (~€¢ D= 1)ldnr) v

=& -y, o

Then 0 = (1—-¢/™) = [[}_(1—w *¢/w') = A,_1. Hence, there exists k with 0 <k <n—1
such that 1 — w™*¢w? = 0. Since by Remark 4.3 (b), ¢, # 0 forall 1 < k < n —1, it
follows from (16) that 1 — w_kfjwf #0forall0 <k <mn-—2. Thus1— w_(”_l)fjwi =0

and consequently w ™! = &Jw’ = w%“', which implies that n = ¢+ % +1 mod n =r;;. O
Lemma 4.8. For all 0 <1i,7 <nm — 1, it holds that V; ; ~V; ; as D-modules.

Proof. Define the linear map ¢ : Vi j — V; j by ¢(z*v) = vy for all 0 < k < r — 1. Using
the calculations above, it is easy to see that ¢ is indeed an isomorphim of D-modules. [

Proof of Theorem 4.5. Follows directly from Lemmata 4.4, 4.7 and 4.8.

Definition 4.9. Let V be a D-module with linear basis B = {v1,...,v;}. The oriented
graph associated with V', with respect to the basis B, is the graph whose vertices are
the vectors v; with 1 < j < ¢, and the arrows are given as follows: we draw an arrow
from vy to vy if xvp, = Zf»:l Aiev; with A, # 0, and we draw an arrow from vy to vy if
Xvg= 31y N, ui with A}, # 0.

Example 4.10. Let V; ; be the simple D-module given in Definition 4.2. When m | j,
the oriented graph representing its action is the following
e e e —X —

Vo v1 V2 L. Vp_3 Vp_2 Vp_1
~  ~ T~ ~— ~ ~
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On the other hand, if m 1 j, the oriented graph is

4.2. Projective covers of simple objects. In this subsection we compute the projective
covers of the simple D-modules V; ; given in §4.1. We write P(V; ;) for the projective cover
of V; ;. We study the cases dimV; ; = n and dimV; ; < n separately.

We start by observing that, for all 0 < 4,5 < nm — 1, the elements

nm—1

1 o
Cij = —— Z A

r,s=0
form a complete set of non-zero orthogonal idempotents of D, that is ZZL;”:BI e;j =1 and
eijeke = 0; 105 for all 0 <4, j,k,¢ < nm — 1. Moreover, one has that
(17) geij = Eeij, Aeij =Eleij, P(t)ei; =t)eis,
where y(t) := 1 — ¢™#D+5 and T'(¢) is given as in Lemma 3.9, for any integer t. Since
Xkakg = gXkak it follows from (13) that
(18) XFake; j = e j XFaF, for all k&> 1.
Theorem 4.11. Let V;; be a simple D-module with dimV; j = n. Then P(V; ;) =~V ;.

Proof. We prove that V; ; is a projective D-module by showing that it is isomorphic as
D-module to Del(»z.), with egz) = M X""1z"le; i an idempotent element of D.

Set A\, := 1/(c1...cn1), with ¢ = —y(1 — H)w!(t), the coefficients given in (15).
Recall that, by Remark 4.3 (b), these are non-zero. Applying (12) recursively, one can see
that X"~ 1z 1 X" = (n — 1)1, X"~ IT(0)I(1)...T(n — 2). Using this, we have that

n) (n (18) n— n— n— n—
(J) z(,]) /\2X 1( 5% 1)3j 1€ij

=M (n—DLX"IT0)(1)...T(n —2)z" e,
D205~ 1), X" " ID(2)0(3)... T(n — 1)T(0)es
Ar(n = 1)Ly (0)7(29(3) ...y (n = X"z e

= A X" g 19”—6(3)

(17

In order to prove that V; ; ~ De( n) , we show that the set B = {eg?, EZ), R (")}
is a linear basis of De( n) Then, the linear map v : De( n Vi given by ¢(z k ( ))

forall 0 < k <n-— 1, yields the desired 1somorphlsm. Note first that X ez(»’j) = 0 and
gXnlgn=t = xm1yn=lg Thus, by (17) we get that ge(n) = fje(n) Analogously, from

(13) and (17) we obtain Ae(") Ele; (n) Moreover, for all 1 <k <n —1 we have

_Uk

(19) R (R)o P I — 1 — 2(k — 1))65@
17 3
4 _, B(k)ory(1 — ka1 5]) R (J)

This implies that B is a linearly independent set and generates De( n) O

Next we proceed to compute the projective covers of the snnple modules V; ; with
dimV;; < n. Let 1 < i, < nm be such that m | j and r =i+ L +1 # 0 mod n.
Consider the 2n-dimensional k-vector space M; ; with linear basis

_ {u(l) W (1) MORINC) u? (2) e

s Up p 15 Vg ey Up gy Ug Ty e ey U 15 Vg Ty s Upg
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We define a D-module structure on M; ; as follows. The actions of g and A are given by

gu,(f) = wj_r_kugf), gvét) = wj_zvét), t=1,2,

AU}(CI) — §n+i—r—ku(1)’ Au](f) — gi—r—k(ul(f) + u}(j))7

(t) — gily (t) t=1,2,
foral0<k<n—r—1and0 g ¢ < r —1; whereas the action of z is given by
:Uu,(f) = “1(317 MS)T 1= U(()l) Tu 512)r 1=0, t=12
xvé ) = véil, :1r:v7(q27)1 = u((f), :m;(l 1 =0, t=1,2,
foral0<k<n—r—2and 0 </ <r—2;and the action of X is defined by
Xu,(f) =c u,(;)l, Xu[()Q) aw rv(l) Xu((Jl) = Xv(l) =0,
Xvél) = cwél)l, XvéQ) = aw_zv( )1 +c Ué )1, Xv((JZ) S)T 1

where o € k* satisfies that

t=1,2 1<k<n—-r—1land1l</<r—1. Note that kerX\Mi —k{u(()l),vol)}.
The oriented graph of M; ; associated with the basis B is as follows

NC N <1>’\* T, T,
/ 0 -~ : 7"7 \
ud TN, LW \ <2)/N L@
- ‘n r—1 - n r—1
\ o <2>’\ T, - V@
It is clear from the graph above that
1 1 1 1 1 1
Mo=k (ol ..o} N RN CRORY
1 1 1 1 2 2
MQ:k{U(()),... usl)r 1,vé),...,vﬁjl,ué),...,uézpl}, Ms =M, ;,

are D-submodules of M ;. Moreover, these modules give us a composition series of M; ;.
Proposition 4.12. A composition series of M; ; is My C My C My C M3, with composi-
tion factors

Mo ~V;j. M /Mo ~Viyirjmr, Mo/Mi~Viyijmr, Ms/My~YV;
Proof. Follows by a direct computation. O

Proposition 4.13. soc(M; ;) = V; ;. In particular, M; ; is an indecomposable D-module.

Proof. Let V be a simple D-submodule of M; ;. By the proof of Theorem 4.5, there exists
0 # v € ker X|y/, which is a simultaneous eigenvector of A and g, and satisfies that V' = Dwv.

Thus, there are 51, B2 € k such that v = Bluél) + Bgv(()l). As Av = 615”“_%81) + ﬁgéivél)
and "7 o£ €1 we must have that 81 = 0or S = 0. If S = 0 then V = Dv = M; D V; ;,
which implies that V' is not simple, a contradiction. Hence, v = ,6’21)(()1) and V =V;;. O

Denote by Z(V; ;) the injective envelope of V; ;. Note that, as D is a self-injective algebra

(because it is a symmetric algebra), one has that Z(V; ;) ~ P(V; ;) as D-modules. Also
injective D-modules are projective and vice-versa.

Theorem 4.14. Let V;; be a simple D-module with dimV; ; < n. Then P(V; ;) ~ M, ;.
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Proof. Let ¢ : V;; — Z(V; ;) be the monomorphism given by the inclusion of V; ; in its
injective envelope and denote by « : V; ; — M; ; the inclusion given by Proposition 4.12.
Since Z(V; ;) is injective, there exists a D-module map v : M; ; — Z(V; ;) such that vk = «.
AsV; j ~ k(V;;) is a simple D-module, we have that kerv N x(V; ;) = 0. Hence kerv =0
and whence v is an injective map. In particular, 2n = dim M, ; < dimZ(V; ;). Since

pD ~ @ I(Vi,j)r = @ I(Vi,j)T D @I(Vm‘)n,

0<i,j<nm—1 r#n r=n
as D-modules, and V; j ~ P(V; ;) =~ Z(V;;) for dimV; j = n, by Theorem 4.11 we get that
n—1
dim D = n*m? > an'r-Qn—i—nm(nm—n—i—l)-n-n
r=1

= n'm? — n'm + n3m 4+ n®mn(n — 1) = n*m?.

This implies that necessarily dimZ(V; ;) = 2n, and v is an isomorphism of D-modules. [

4.3. Braided equivalences. In this subsection, on the goal to study Nichols algebras
over the simple modules {V;;}o<ij<nm, We describe the explicit relations between the

simple D-modules and the simple objects in T" "YD.
Denote by F': pM — %ZJH) the braided tensor equivalence given by the composition
of the functors given in Proposition 3.6, Equation (14) and the beginning of Section 4:

F1 Hn m F2 Rn m IJS Tn m

F: pM——74 yD ry VD —— """ YD

Here F(V) =V as k-vector spaces for any V' € pM.

Proposition 4.15. For 0 < 4,j < nm, the object F'(V;;) € ;"myD is simple and its

structure is determined by the following equalities:

{—f‘jwzv@rl if 0</l<r—1,
xT-vp = 0

19 s, = £73.,¢ ’
(19)  grve=¢ Wy i l—ro1,

¢
(20)  p(ve) = Z By o T @y,

for all0 < € <r—1, where Bk’]( = (é) ‘Hi;;—k (w’i - §jw’3) ifk>1, and Bé’g =1.

Proof. The first assertion is obvious. Let us check the Yetter-Drinfeld module structure

of F(V; ;) over Ty, p,. To this end, we describe the images of V; ; under the composition of
Hn m

the functors Fy, I, and F3. By Proposition 3.6, we have that Fi(V; ;) € )JD via
, 0 if £=0
Ay = fl_zvg, X v = 1 ’
coug_1  if 0<t<r—1,
r—1—¢ r—1 1— g]n '
Z AT D@y + Y XFAU D @ v oy,

|
=0 k=r—¢ (k)o!

for all 0 </ § r — 1. Besides, from (6) it follows that the linear basis {X*A"}o<4p<nm—1
of Hy = Ry, ,, has dual basis {ua}o<ab<nm-—1 given by

20 nm—1
—bd d
oy = S g
’ |
nm (a),! —
Using these bases, from (1) we get that the action of Ry, ,, on Fo(F1(V;;)) € R" " YD s
—§’jwév4+1 if 0</l<r—1,

grue =& W, T { w1 =My if =711,
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whereas the coaction is given by

1 ifk=0
v = 7] k —7,+€ k Qv , _ B A 5
p(ve) = kzoﬁ 00—k Bk £ ((kl))"“w LU 1>w—k(z—Z)Cé o Co_per k>0,

for all 0 < ¢ < r — 1. Using induction, one may check that the coefficients ﬁ,i’]é satisfy that

-1
/ . .
BJ = < ) H (wﬂ—f]ofs), for k > 0.
k w
s=l—k

Finally, by §3.1 we know that the Radford algebra R, ;, is isomorphic to a 2-cocycle
deformation of the Taft algebra T}, ,,, where the 2-cocycle 0 = €' = ¢ ® € + 1 is the one
defined in (3). Then, we may describe the structure of F(V; ;) € ;" " YD by using that
the functor F3 does not change the comodule structure, but the action is changed by the
2-cocycle 07! = e = e ®e — 1 as follows:

. Wty if 0<l<r—1,
o1 vp = E Wby, T _1vp =
gg-10=E§ ¢ o1 ¢ {0 o1,

for all 0 < ¢ <r — 1. This proves the proposition. O

5. ON FINITE-DIMENSIONAL NICHOLS ALGEBRAS ASSOCIATED WITH Vz‘,j

The aim of this section is to describe families of finite-dimensional Nichols algebras over
some simple objects V; ; of the category of Yetter-Drinfeld modules over H,, ;,,, in the case
when n = 2 and m > 2, see Theorem 5.9. To this end, we first establish the pairs (i, )
such that dim*B(V; ;) is finite by using recent results of Andruskiewitsch and Angiono
[AA], and the classification of Heckenberger [H2] of arithmetic root systems of rank 2.
Then we describe by generators and relations certain families of Nichols algebras in small
rank, see §5.3. We keep the notation used in the previous sections.

5.1. Simple Yetter-Drinfeld modules over basic Hopf algebras. We begin this
section by presenting another way to describe the simple objects of T" myD it is based
on [AHS, §3.3] and [AA].

Fix g and x generators of the cyclic groups Cy,, and C/’n; ~ Cpm, respectively, such
that x(g) = &. Recall that T), ,, = B(V)#kCh,,, where V =k{z} € E‘,jC"myD is such that
by g -z =wz, p(z) = g® 2, and B(V) = k[z]/(2") is the truncated polynomial algebra.

The category ﬂigz: YD is semisimple and its simple objects are parametrized by pairs of
natural numbers (a, b) with 0 < a,b < nm — 1. Precisely, the simple object A, associated
with (a,b) is the one-dimensional vector space V;ﬁb = k{y} generated by the element y
with action and coation given respectively by:

(21) g-y=_£", p(y) = 9" ®y.

Consider now Wy, :==V @ Ay € kg"myD By [AHS, §3.3], we have that its Nichols
algebra B(W, ;) is isomorphic to a braided bosonization B(W, ) ~ K#B(V), where K
is a Hopf algebra in :{”yD Here, the action of T}, ,, on K is given by the induced
action of g by (21) and the braided adjoint action of z. In our case, the latter reads
r-z=ad.2(2) = xz — (g-2)x for all z € K. In particular, we have that = -y = zy — &Pyz.

For all 0 < a,b < nm—1, let us write L(\, ;) for the braided vector subspace of K given
by the braided adjoint action of B(V') on Aqp, that is

L(hap) = ade BV) (M) = (ade kla]/(2™) (k{y}).
By definition, it holds that L(\,) is linearly spanned by elements constructed from y
and the braided adjoint action of x.

Proposition 5.1.
(a) L(Aqgp) is a simple object of In, myD forall0 < a,b<nm-—1.
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(b) The map Agp — L(Aap) yields a bijective correspondence between the simple objects
of kc"myD and the simple objects of %’ZJJD.

Proof. Follows from [AHS, Proposition 3.5] and [AA, Proposition 2.9], respectively. O

By the proposition above, we obtain a parametrization of the simple objects in T" YD
and a way to compute them. The following result gives us the correspondence, through
the braided equivalences described in Section 4, between these simple objects and the
parametrization obtained in Proposition 4.15.

Proposition 5.2. Let 0 < ¢, <nm —1. Then L(A—; —;) ~ F(V;;).

Proof. We prove the claim by showing explicitly the isomorphism. In order to construct
the map, we describe first a distinguished basis of L(A,p) for A, = k{y}.

Set o = y and x4 = ad.xz(z;) = x - x; for all i > 0. By induction, one can prove that
the following equality holds for all k£ > 1:

k
k
Ty = xx) g — Wy 2 = E:(—l)éﬁﬂbw[(é_l)/2 <€> 2yt

=0 w

In particular, this imples that x; = 0 for all k£ > n, because w™ = 1 and ™ = 0. Let r the
smallest positive integer such that z,_1 ¢ k{xo,...,z,—o} and x, € k{zo,...,z,—1}. Then,
by the very definition of the elements z; and the module L()yp), the set {zo,...,z,—1}
is a linear basis of L(\,p) and z, = 0. Now consider the change of basis given by

(22)  z=20=y and zp—=—¢w* Va5 0 foralll<k<r—1.

On this basis, the action and coaction of T}, ,, on L(A, ) are given respectively by

(23) = Wk,

—&by if 0<k<r—1,
xT-zp =
F 0 it k=r—1,

(24) pz) = Zﬁ 2" @ 2y,

for all 0 < k < r — 1, where B@k = (’;)w Hf;,ifg (wa —§’bw’s) if > 1 and /Bé,k = 1.
Indeed, since g-x = wz and xp = rxE_1 — kflfbxk 1z, we obtain by induction on k that

g-xp = %Py, for all k > 0. Consequently, -z, = &bwFz;, for all 0<k<r—1las clalmed

Concerning the action of x, by (22) we have that - 2, = (—¢ Pw "“) Zpr1 = —EwF 2
forall 0 <k <r—2. If Kk =r—1, the claim follows since x - x,_1 = x, = 0. The assertion
about the coaction follows by induction using that p(zp+1) = —¢ Pw™p(z - 2) and the

compatibility condition.

Claim: r = dim L(\,) =n if m{b, and r = —a— 2 +1 mod n if m | b.
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We prove first that if 7 < n, then necessarily m | b. As dim L()\,p) = r, from (24) we
have that 0 = p(x - z,—1). But in such a case, the compatibility condition yields

r—1
_ _ / l_a+r—1-¢
0=p(@-2z-1)=> By za)z'y S(z(3)) ® T(2) - Zr-1-¢
=0
r—1 r—1
/ 041 1-¢ 4 1-¢
Bi—r @G T @ 21+ Zﬁzr gt T @
=0 =0
r—1
/ £ atr—1-¢
+ D> Boyo1 929" T S(@) @9 210
=0
r—1 r—1
/ /41 —1-7 / l 1-¢ b r—1-4
= ZB@,r—l at ga+r & Zp—1—¢ — Z/Bé,r—l gr ga—i-r ® 'w” Zr—gt
/=0 =1
r—1
14 1-¢ -1 b r—1—¢
+ BZT 1 9% ga+7‘ ( g .CL') ®§ w" Zr—1—¢
=0
r—1 r—1
Y / ¢ _a+r—{ b 1 Z +r—4
=B 1,129 ®20 + Zﬂf—l,r—lx T @z — Zﬁér 1§W T g T @ 2t
{=1 {=1
r—2
— Z /32”471 wa-i—r—le-‘rlga-‘rr—l—l ® fbw’"_l_/‘z,.,l,g _ }87/"—1,7"—1 wa-i—r—lgbxrga ® 20
=0

= B 1o (1= 029" © 20+
r—1

+Z ﬁé L1 B@r 1£b r—1 [))[ \ 1€b r—{ a+7‘ 1) Zga+r_l®2’r,g.
=1

Thus 8], (1 — w7 1¢") =0 and Bi—1,-1— 51/3,r—1§bwr_1 - 52—1,r—15bWT_ZWa+T_1 =
Oforalll < ¢ <r—1. If g 1r—1 # 0, then 1 = wtT=Leb and consequently b+

m(a+r —1) =0 mod nm and m | b as desired. On the other hand, 0 = 3, _,, ; =
= (watsgb — 1) €7bw=* if and only if there exists 0 < s < r — 1 such that 1 = £bwa™s.
As before, this implies that m | b. In particular, dim L(Aqp) = n if m {b.

Now we prove that r = —a — —+1 mod n if m | b. Since for all 1 < ¢ <r —1 it holds

that 6277_1 = (r(;)i)‘” (w® ~ &% (’" y Z))ﬂéfl,rfh from the equation above we get that

0= By ys (1= w1 = s bmrmton) _ et etrt)

(0w

Since 1 = f,_;, we necessarily have that

0_17w*+7‘ 1( l)wwaJr(T*l)ww wE—H’ 1,0+r-1
(D (D
& 14 (r—1yw=wntl(r = 1), w® + wm T latr=1
& 14 (= Dyw=wn (= 1), + W)

o (o = wm T,

If r < n, then (r), # O and the equality above holds if and only if 1 = wm matr—1  Thig
implies that r = —a — H + 1 mod n as desired. If r = n, a similar argument shows that
n:—a—%—l-l mod n.

Finally, consider the linear map ¢ : F(V;;) — L(A_; ;) given by ¢(vi) = 2 for all

0 <k <r—1. From (19), (20), (23) and (24), it follows that ¢ is an isomorphism in

Tn,m
T YD. U
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5.2. Finite-dimensional Nichols algebras over the simple modules V; ;. In this
subsection we isolate the pairs (¢,7) with 0 < 7,5 < nm — 1 such that B(V; ;) is finite-

dimensional. Recall that, by Proposition 5.2, the simple module V;; € ZZ’:Z))D corre-

sponds to the simple module L(A_; _;) € ;:’ZyD via a braided equivalence, and that

Tnm =~ B(V)#KkCpp. The next result is a direct consequence of [AA, Theorem 1.1] and
Proposition 5.2.

Theorem 5.3. For all pairs (i,j) with 0 <14,j < nm — 1, it holds that dimB(V; ;) < oo
if and only if dimB(V & A_; _;) < oo. O

Here, W_; _; = V& A_;_; € g"’"yD is a braided vector space of diagonal type as-
sociated with the basis {x,y}. Thus, one may decide whether B(V & A_; _;) is finite-
dimensional or not by looking at the classification provided by Heckenberger [H1, H2],
which establishes the correspondence between finite-dimensional Nichols algebras of diag-
onal type and certain generalized Dynking diagrams. In our case, this reads as follows.

The braiding ¢ associated with W_; _; is given by:

clrr)="rer, cz@y) =Ty,
cly©r) =M@y, y@y) =y ey
Hence, the corresponding braiding matrix and generalized Dynkin diagram D; ; are

_ (g og S

(25) q - (é-flm fij ) Dz,j : O—— 0
By Theorem 5.3 above, and since the braided vector spaces W_; _; are of rank 2 for all
i,7, it is enough to settle when the generalized Dynkin diagram in (25) belongs to [H2,

Table 1]. We do this for some specific cases and in an schematic way. It might be worth
noting that this procedure can be done for all families of semisimple modules in g:gyp,
eventually looking at braided vector spaces of higher rank. ’

The generalized Dynkin diagrams corresponding to arithmetic root systems of rank 1
and 2 are listed in [H2, Table 1] by rows and depend on fixed parameters ¢, € k*. We
call them Heckenberger diagrams for short. In each row, we order the diagrams from left
to right, and we set Hy  for the /-th diagram in the k-th row. Following Heckenberger’s
notation, we index the first row by 0; it corresponds to a disjoint union of two connected

-2 -1
components of rank 1. For instance, Hy 1 denotes the diagram qoqio , with g €
k*\Gy4. The set of indices of Heckenberger diagrams is the following:

7:={(0,1),(1,1),(2,1),(2,2),(3,1),(4,1),(4,2),(5,1), (5,2), (6,1), (6,2), (7,1), (7, 2),
(7,3),(7,4).(7,5),(8,1),(8,2),(8,3),(9,1),(9,2), (9,3), (10, 1), (11, 1), (11, 2),
(11,3),(12,1),(12,2),(12,3), (12,4), (13,1),(13,2), (14, 1), (14, 2), (14, 3), (14,4),
(15,1), (15,2).(15,3),(15,4), (16,1), (16,2) }.

From now on we assume that n = 2 and m > 2.

As n = 2, the generalized Dynkin diagram Dj ; in (25) reduces to the following diagrams

26 -1 1% —1  gTimim gl
(26) D;;: o o or D; ;- o———o0

Besides, by Definition 4.2, we have that dimV;; < 2 for all 0 < 4,5 < 2m — 1. In
particular, dimV; ; = 1 if and only if 7 = 0 and 7 is even, or j = m and 7 is odd.

We start by setting some notations and conventions. Recall that ¢ € k* is a fixed
primitive 2m-root of unity; in particular £ = —1.

Lemma 5.4. If £77™ = _1, then D; j is not a Heckenberger diagram.
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Proof. If £7= = 1, then m = j+im mod 2m. Thus, mi = ji+mi® = ji+mi mod 2m,
which implies that 7j = 0 mod 2m. In particular, the label of one vertex of D; ; equals 1.
The claim follows since no Heckenberger diagram has a vertex labelled by 1. O

Lemma 5.5. If 77" =1, then m divides j and D; ; is the union of two Heckenberger
diagrams of rank one. Moreover, dimV;; = i+ L +1 mod n, and dimB(V; ;) < oo if
and only if n{iL.

Proof. If €737 =1 then j = —im mod 2m, which implies that m divides j; say j = mt
for some t € Z and £ = (£™)%. Then, by Definition 4.2 we have that dimV; ; =i+t +1
mod n. Under this assumptions, it holds that cyx_;, ;ex_, ;v = id, which implies by
[Gr, Theorem 2.2] that B(V & A_; _;) ~ B(V) @ B(A_;—;) as No-graded braided objects.
Write d = n/ ged(n,it) for the order of (€™)®. Then, B(\_;_;) is finite-dimensional if
and only if d # 1. In such a case, B(A_; _;) ~ k[y]/(y?). Since B(V) ~ k[z]/(a"), the
lemma follows by Theorem 5.3. U

Remark 5.6. Assume that 77" = 1. Then, by Theorem 5.3 and Lemma 5.5 we have
that B(V; ;) is finite-dimensional if and only if j = m and i is odd. In such a case,
gz’j _ gfmiQ _ (_1)i2
-1 -1
equals o o. Set Vi, = kvg. By the proof of Proposition 4.15, we have that the

module and comodule structure of V; ,, in g;” VD is given by A - vy = vy, X -v9 = 0
and p(vg) = A™ ® vg. Thus, the corresponding braiding is c¢(vg ® vg) = A™ - vy ® vy =
£y ® vy = —vp ® vg. This implies that B(V; ) ~ klx]/(z?) for all i odd.

= —1 and the corresponding Heckenberger diagram is disjoint and

From now on, we assume that {7779 =£ 1, that is, the corresponding Heckenberger
diagram in (26) is connected. Consider the following subset of indices of Z:

L£:=1(2,1),(2,2),(4,1),(4,2),(6,1),(6,2),(7,2),(7,3),(7,4),(7,5),(9,2),(9,3), (11, 2),
(11,3),(12,3),(12,4), (13,1),(13,2), (14, 1), (14,2), (14, 3), (14,4), (15, 3), (15,4) }.

Lemma 5.7. Let 0 < 4,5 < 2m — 1 and assume D; j is a connected Heckenberger diagram
H]%g. Then (k‘,g) eL.

Proof. We show that the remaining cases are not possible. Since a vertex of D; ; is labelled
by —1, the cases in the subset {(7,1),(8,1),(9,1),(11,1),(12,1), (12,2), (15,1), (15,2)} are
not possible. Besides, the cases in {(1,1),(3,1),(5,1),(5,2),(10,1)} are neither possible
by Lemma 5.4. 1 e8¢ - o
Suppose that D; j = Hig1: o—————o , with ( € G}. Then £ = —C and {77 =
—(¢73. This implies that 14ij = 0 mod 2m, 7ij # 0 mod 2m, 145 = 0 mod 2m and
—Tmi — 75 # 0 mod 2m. In particular, 7j = ms for some s € Z. Thus 0 # Tij =
mst mod 2m, which implies that ¢ and s are odd. But on the other hand, —7mi — 75 =
—Tmi —ms = m(—7i + s) = 0 mod 2m, a contradiction. The cases Hjg2, Hg2 and Hg3
can be treated similarly and are left to the reader. O

Remark 5.8. By direct inspection on [H2, Table 1], one sees that there exists (k, ¢1) such
that D; ; = Hy e, if and only if there exists o such that D_; 1 1) _(j4m) = Hg,- In such a
case, it holds that £1 # f.

In the following proposition we state the converse of Lemma 5.7. In particular, we
present the list of all pairs (4, j) such that B(V; ;) is finite-dimensional, and the conditions
that the integers m, i and j must satisfy.

Proposition 5.9. For all pairs (k,l) € L there exist m, i and j with m > 2 and 0 <
i,j < 2m — 1 such that D; j = Hy . In particular, for any such triple (m,1,j), it holds
that dim 5(V; ;) < oo. The list of all possible triples (m, 1, j) is displayed in Table 1 below.

Proof. We prove only the first 4 cases, the remaining ones follow mutatis mutandis.
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TABLE 1. Heckenberger diagrams of rank 2 associated with V; ;.
Write mg = ged(m, j), m = mimg with my, mg and a,b € N.

m (4,7) : Di; = Hpp Conditions (k,0)
mima | (1 —myia,ma(my — b)) | ged(m1,b) =1, a,be2Z+1, my #1.] (2,1)
mims (mya, mab) ged(mi,b) =1, a,b€2Z+1, my #1.| (2,2)
mims (m1§+1,m2b) ged(my,b) =1, a,my € 2Z + 1, (4,1)

my # 1, bz%ﬂmod 2. (4,2)

3 6,1
e (3a — 1, mab) gcd(3,6) =1, b =a mod 2. (6,1)
(6,2)

7,2

6ma (4 + 12a, mab) ged(6,b) = 1. (7.2)
(7,3)

7,4

6meo (9 + 12a, mab) ged(6,b) = 1. (7. 4)
(7,5)

9Imeg (12 + 18a, mab) ged(3,b) =1, b e 2Z. 9,2)
9ma (7 + 18a, mab) ged(3,0) =1, be 2Z + 1. (9,3)
4meg (2 4 8a, mab) ged(2,0) = 1. (11,2)
4mey (7 + 8a, mab) ged(2,b) = 1. (11,3)
12mgy (8 4 24a, mab) ged(12,0) =1 (12,3)
12my | (17 + 24a, mab) ged(12,6) = 1. (12, 4)
5ma (2 + 10a, mab) ged(5,0) =1, be2Z. (13,1)
5me (9 + 10a, mab) ged(5,0) =1, be2Z+1. (13,2)
14,1
10me (17 4 20a, mab) ged(10,b0) = 1. ( )
(14,2)
(14,3)

10mg (4 4 20a, mab) ged(10,0) = 1.
(14,4)
95 + 30a, mab d(15,b) = ged(15,¢) = 1,
15me (25 + 30a, mab) or ged( ) = ged(15, ¢) (15.3)
(10 + 30a, mac) be2Z, ce2Z+1.
15 (6 + 30a, mab) or ged(15,b) = ged(15,¢) =1, (15.4)
(21 + 30a, mac) be2Z+1, ce?2Z.

—1 —1
o Case (2,2): Hyo = o4 , with ¢ € k*, ¢ # £1. Let (¢,5) be such that
D;; = Haa. Set my := ged(m, j) and write j = mab, m = mymy with ged(b,m;) =1 and
mi,b € Z. Then (m,i,j) = (mima, mia, mab), with m; # 1 and a,b € 2Z + 1. Indeed,
since ¢¥ = —1, we must have that ij = m mod 2m, say ij = m + 2mk = m(2k + 1) for
some k € Z; in particular ib = m(2k 4+ 1). As ged(my,b) = 1, it follows that i = mja
for some a € Z and whence mjab = m1(2k + 1). Then ab = 2k + 1 and consequently
a,b € 2Z 4 1. Suppose that m; = 1. Then m = my, j = mb and &IHim = gmb+i) = 41
which is a contradiction. Conversely, any triple (m,i,7) = (mima, mja, mob) with the
assumptions above satisfies that D; ; = Hao: clearly €9 = —1 and &M = ¢ # 41, since
&+ — 41 if and only if m divides mob, and the latter occurs if and only if m; = 1.
-

o Case (2,1): Hoy = ot , where ¢ € k™, ¢ # £1. By Remark 5.8, it follows
that D;; = Ha if and only if D1_;,,—; = Ha2. By the previous case, we must have
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that m = mimgo, 1 — i = mia mod 2m and m — j = mob mod 2m with m; # 1 and
a,b € 2Z + 1. Thus, (m,i,j) = (mima,1 —mia, m — mab) with my # 1 and a,b € 2Z + 1.

q a? -1
o Case (4,1): Hyy = o———o , where ¢ € k*\Gy4. Let (¢,j) be such that D; ; =

Hy1. As above, set mg := ged(m, j) and write j = mgb, m = mymg with ged(b,m1) =1
and my,b € Z. Then (m,i,j) = (mlmg,mlgﬂ,mgb) with m1, a € 2Z + 1 and b =
%ﬂ mod 2. Since ¢ = €Y and ¢~2 = &1 we have that ij # 0,mmod2m and
gitim — ¢=2j Qo —2ij = j + im mod 2m and whence —(2i + 1)j = (2k + i)m, for
some k € Z. Thus, —(2i + 1)b = (2k 4+ i)my and m; divides —(2i + 1). Let a € Z such
that —(2i + 1) = mja. Then j # 0 # b, m1,a are odd integers, i = —(mya + 1)/2 and
ab = (2k 4+ i). Hence b =i mod 2. The converse is straightforward.

—q ! g 1
o Case (4,2): Hyo = o———o , where ¢ € k*\G4. This case follows from the
previous one by replacing g by —¢ . O

5.3. Presentations. In this subsection we present the finite-dimensional Nichols algebras
corresponding to the first five rows of Table 1 by generators and relations. The braidings
are described in the proofs. We freely use the results and notation from §2.5 and [AGi],
where braidings of rank 2 were described. We also provide PBW-bases, the dimensions
and the Hilbert series; for the latter, we write (n); = t"=! + ..+t + 1 € k[t] for n € N.

In general, the description of finite-dimensional Nichols algebras by generators and
relations is a (quite) hard problem. For small dimensions, one can use the help of GAP,
but for the general case one would need to use more theoretical tools to solve the problem,
such as convex orders or Weyl groupoids as in the abelian case, see [An]. We computed the
first cases by using theoretic arguments and lots of computations. For space (and time)
reasons, we leave the description of the remaining cases to future work.

To give the presentation, as in the proof of Proposition 5.9, we fix the following con-
ventions: for 0 < ,7 < 2m — 1 set

my := ged(m, j), m = myme with ged(b,m1) = 1 and mq,b € Z.

The following description corresponds to the first row of Table 1.
Proposition 5.10. Assume (m,i,j) = (myma,1 — mya, ma(my — b)) with my # 1 and
a,b €27+ 1.
(1) If my is odd then
B(Vij) =~ k(vg,v1 : v =0, vovy — v1vp = 0, vi — (1 + £ m20)%2 = 0).
(2) If my is even then
B(Vij) = kvg, v : v3™ =0, vovy +v1vp = 0, v? + (1 — £ m20) % = 0).
In particular, for both cases we have that {vy°vy" : 0 < ap < ged(2,m1)my, 0 < a; <
1} is a PBW-basis of B(V;;), dimB(V; ;) = ged(2,m1)2my and the Hilbert series is
(ged(2,m1) my); (2):.
Proof. If my is odd, then the braiding of V; ; is given by

(c(v; ©03)); 3 —Emm2by, ® g v @ vg — (720 + 1)y ® vy ‘
P —& My @ o —op @y + (1= €722 (™20 + g @ vg)

this is a braiding of type 91 2. Similarly, when m is even the braiding reads

(c(v; ®vj));. _ (& e —v1 @ v+ (672 — 1wy @ vy
RO T _emmabyg @ vy —uy @ v 4 (1 — €722 (6720 — 1)yg @ g )
which is a braiding of type %1 2 (a) (b). Hence, the corresponding Nichols algebras, PBW-
bases and dimensions are given by [AGi, Proposition 3.10 and 3.11], respectively. O

The next presentation corresponds to the second row of Table 1. Its proof also follows
from [AGi, Proposition 3.10 and 3.11].
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Proposition 5.11. Assume (m,i,j) = (mima, mja, meb) with m; # 1 and a,b € 2Z + 1.
(1) If my is odd then

B(Vij) = k(vo,v1 : 05 =0, v]" =0, vour + & w109 = 0).
(2) If my is even then
B(Vij) =~ kvg,v1 : v3 =0, vI™ =0, vovy + £ ™2 v = 0).

In particular, in both cases {vi°vi* : 0 < ag < 1,0 < ay < ged(2,m1)m} is @ PBW-basis
of B(Vij), dimB(V; ;) = ged(2,m1) 2my and the Hilbert series is (ged(2,m1) mq)s (2)¢.
]

We split the description of the Nichols algebras corresponding to the third row into
two cases. Assume (m,i,7) = (mima, ml;‘“,mgb) with a,m; € 2Z + 1, m; # 1 and
b= %ﬂ mod 2.

mab+mob mab—mob

Proposition 5.12. Suppose that b is even. Setp =& =z k= (1-£2m20) ¢~ =2 (1—
£m28) and write vip = [v1,v0)e = v1vo — M c(vy @ Vo) = vivg — poguy. Then B(V;j) is the
algebra generated by vy, v1 satisfying the following relations:

(27) V10Vp = Ug¥1p, viv1g = —p2viov1 — kp(p — 1)vd,
(28) vyt =0,
(29) vI™ =0,

In particular, {v§vbv§: 0<a<m1, 0<b<2 0<c<2m}isa PBW-basis of B(V;;),
dim B(V; j) = 4m? and the Hilbert series is (m1)¢ (2)2 (2m1):.

Proof. The braiding associated with Vj; ; is of type 912 and equals

A N _(rvo®ve prui®u+(@E-—p Hu®u
(el @ 0)sgeon = (Do S0 VIR B

As p # +1, by [AGi, Proposition 3.10] it follows that B(V; ;) does not have any quadratic
relation. By computing Ker )3, we obtain that relations (27) must hold in B(V; ;). Also,
(28) holds since vy™ is a primitive element of degree bigger than 1. To show that (29)
holds we use skew-derivations. Write dy = 8U3 and 01 = 81}; for the skew-derivations
associated with the dual basis {vf,v]} of V; ;*.

Consider the pre-Nichols algebra given by the quotient %(Vi,j) =TV;;)/I, where I is
the two-sided ideal generated by the relations (27) and (28). In particular, in ’%(Vm-) it

2
holds that v%, = kp(g)i—l) -
p*+1

We claim that B = {v§ vll’o vf : 0<a<m;—1, 0<b<1,0<c} generates linearly
%(Vi,j). Indeed, since vy vf = (a), vg_lvm + p*vgv; for all 0 < a < my — 1, we have that

v v 030§ = (), vf " vi0viuf + p* viurvloof
{ (a)p v turov§ + p® vgusT if b=0,
— ) kQ-p)(@°T+1)  a+3 a+2 a

1 .
| V80§ — prT2 8ottt if b= 1.

This implies that the linear subspace spanned by B is a left ideal of ’%(V@j). Since 1 € B
and B(V; ;) is generated by vy and vy, the claim follows.
Set ¢ = —p~ ! and for £ € N, 1 € Zy consider AEZ) € %(V”) defined recursively by
AEZ) = affg UoAEZﬁl) + afﬁ) ’UlAgﬁl), L e ZQ, l > 2,
Agl) =, L€ 2o,

where

(¢

and af) = (¢ p)'" (-0

)

20 _ E'=t gt =2 if £ is even,
O] kgt if £is odd,
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By induction, one may prove that the evaluation of AEE) on Jy and 01 equals
o(AD) =adJ (0O AY and g (AY) =dl (0, ALY, forallieZy, £>2.

As q € G, , it follows that AY™) € J(Vij). On the other hand, if we write A} in
terms of the set B, we get that

AEJQE) _ v%(qz + 1)5 £(20—3)

—ZU ” 2([ r) (q _|_1)€ "(—k)'q 2(4—r)(€=1-7)— €+1(2€> (2r —1),

2r—1, 2(677")71 2 t—r ro2(—1-r2—41( 20 (2r)q
+Z” (@ + 1) Ry <2r+1> g1
In particular A(le) — 2m1(q + )m1 m1(2m1—3) _ U(Q)ml(_k)m1q—m1+1(2m1 _ 1)q —
0™ (¢? +1)™q m1(2m1 3), which implies that v?™ € J(V; ;).

Flnally, let J be the two—31ded ideal of T(Vw) generated by the relations (27) — (29).
Clearly, T(V;;)/J ~ B(V;. 1)/ (Wa™) is a pre-Nichols algebra of V; ; linearly spanned by
the set B’ = {vgvll’ovf 0<a<m—1,0<b<1,0<c<2m;—1}. To show that
B(Vij) ~T(V;j)/J, it suffices to see that for all z € T'(V;;)/J it holds that dy(z) =0 =
01 () if and only if = 0. This follows from the equalities

O (vg ”lfo vf) = (C)q(*qz)b( q)"vg Ull)o vl 17
(v vip) = (a)pvg ™" viy + p*(1 — p*)dp1 vGu1,
forall0 <a<m;—1, 0<b<1,0<c¢<2m; — 1. In particular, B’ is a basis of B(V; ;)
and the related Hilbert series is (m1)¢ (2)2 (2m1):. O

Now we describe the finite-dimensional Nichols algebras corresponding to the third row
for the case when b is odd. The proof is quite similar to the one above.

mab— m2b

Pr0p0s1t10n 5 13. Suppose that b is odd. Set p = & ,q=-—ptand k= (1-

§2m2b)§ (1+§m2b). Write vig = vivg+quovi. Then B(V; ;) is the algebra generated
by vo, v1 satz’sfying the following relations:

(30) V10V = —VyV10, w110 = ¢ vigv — kq(q — 1),

(31) vg™ =0,

mq—1 1*777«%
) e
(32) ’U{nl + (=F) p ’ ’Ugnl 21)10 =0.
(2 + 1) (p+1)
In particular, {vovwvl 0<a<2m;,0<b<2,0<c<m} isa PBW-basis of B(V;;),
dim B(V; ;) = 4m{ and the related Hilbert series is (2m1); (2);2 (1)1

Proof. First note that the braiding associated with V; ; is of type i 2(a) (b):

(clv; ®v;)); _ [ quo®vo  pvi®uo+ (p+q)vo @1
77niet01 —q vy ¥ V1 pu1 ®v1 + kv ® v

As p # +£1, by [AGi, Proposition 3.11] we have that B(V; ;) does not have any quadratic
relation. Relations (30) follow from a direct computation of Ker 3, and (31) follows from
the fact that vgml is primitive, as the order of ¢ is 2m;.

Consider now the pre-Nichols algebra given by the quotient ‘%(Vw) =TVi;)/I, where
I is the two-sided ideal generated by the relations (30) and (31). In particular, in %(Vm)
kq(q — 1) iy

¢?+1 "

Moreover, following the proof of Proposition 5.12, one can prove that B = {v{ vll’o v§ e
0<a<2m;—1,0<b<1,0 < c} generates linearly ‘%(V”)

it holds that v?, = —
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To show that (32) holds in the Nichols algebra, we use skew-derivations on some fixed
elements: for £ € N and ¢ € Zy consider the elements AEE) € B(V; ;) defined recursively by

{Aw_aggm D10 uAlD, ez 032

AEl) =, = ZQ,
where
1—¢ l4+1—2 .
o0 — Elp if £ is even, 0 _
o { Rl ifgisodd, M4 @ =P-aTT

By induction, we may prove that for all ¢« € Zo, and ¢ > 2 one gets
QA =afy @, MY and (A0 =af) (0, A2

11— >
which implies that Agml) € J Vi), since p € G}, . Writing Agyﬂ) in terms of B yields
Ag2e+1) _ Uze+1(p2 + 1)fptCe-D)

20 +1
_ Z,Ugrv% (e—r) +1 + 1)Zfr(_k)7"p2(€77")2*€+1 ( + ) (27, . 1)1)
p

2r

T— 2(6—r T T T T 20+ 2r
—Zv% 10101}1( )(p2+1)£ (—k)p2-mt=is )é+2(2r+1> p(Jr)pi'

(_k) mlzflpm12+3
p+1

my—1 (m3—1)(m;—2)
2

In particular, A{™) = o7 (p24+1) "5 p

+op 20y , from which

relation (32) follows.

Let J be the two-sided ideal of T'(V; ;) generated by the relations (30) — (32). Clearly,
the pre-Nichols algebra T'(V; ;)/J is isomorphic to s%(Vw) /J', where J' is the two-sided
ideal generated by the relation (32), and it is linearly spanned by the image of the set B.
To show that T'(V; j)/J ~ B(V;;) it is enough to prove that for all z € T'(V; ;)/J it holds
that dp(x) = 0 = 01(x) if and only if 2 = 0. But this follows from the following equalities
for0<a<2m;—1land 0<b<1,0<c<m —1:

01§ v 05) = ()™ 0 vig vf

9o (v§ ’Ulfo) = (a)qvg~ ! ”10 +q%(q* — 1)6p,1 vy 01

We present next the Nichols algebras corresponding to the fourth row.

Proposition 5.14. Assume that (m,i,j) = (3m2,3a — 1,mab) with ged(3,b) = 1 and
b=a mod2. Setp=(-1)%€""cG} q=p ' k=(-1)%p—1) and vip = vivo —
(—=1)**puvgvy. Then B(V;,j) is the algebra genemted by v and v1 satisfying:

0=uvp,

0 = vigvo + (—1)*(1 + 2¢q) vovio — 21)81)1,

0 = v1v10 + (—1)%(2 + q) vigvs — 2pvu?,

36) 0= v} + (=1)*(2g — 2) vgv1 + (1 + 2¢) vovio-

In particular, B = {v® vij v{* : 0 < ap,a2 <2, 0 < ay <1} is a PBW-basis of B(V;;),
dim B(V; ;) = 18 and the Hilbert series is (3)? (2),2.

w w W
T = W
— N

(
(
(
(

Proof. The braiding associated with V; ; is given by

N _ puo ® o (—1)%qu1 @ vo + (p+ q) vo ® vy
(C('Lz & 'UJ)) ,J€{0,1} <(_1)a+1pv0 ® vy qu Qv + k’UO ® vg

If @ is odd, then it is a braiding of type R 2, and if a is even, then it is a braiding of type
M1 2 (a) (b), see [AGi]. Clearly, the associated Nichols algebra has no quadratic relation
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since p, ¢ € G4. A quick calculation shows that the cubic relations (33) — (36) correspond
to elements in Ker Q3.

Let s%(Vw) = T(V;;)/I be the pre-Nichols algebra given by the quotient of 7°(V; ;) by
the two-sided ideal generated by the relations (33) — (36). We show that actually B(V; ;) ~
B(V; ;). First note that, from these relations it follows that the equality ’U%O = 2q Vo191
holds in B(V;, )

Let B = {vgo v v7? 1 0 <ap,az <2, 0 <a; <1}. Then, by showing that any element
of the form vy vg® v} v]? belongs to the subspace linearly spanned by B, a straightforward
computation similar to the one in the proof of Proposition 5.12, yields that B generates
linearly B(V;.;).

As a consequence, we get that the highest degree of a (non-zero) element in ‘%(VH) is
6. Then, by the Poincaré duality, all possible relations appear in degree 2 or 3. As we
computed all quadratic and cubic relations, we have that B(V; ;) ~ B(V;;) and B is a
basis of B(V; ;). Consequently, the related Hilbert series is (3)7 (2),2. O

We end this subsection with the presentation of the finite-dimensional Nichols algebras
corresponding to the fifth row.

Proposition 5.15. Assume that (m,i,j) = (6mg,4 + 12a, mgb) with ged(6,b) = 1 and

a €7Z. Setp=¢tmb e Gy q= -0 c G, k=p(p+q), vio = vivo — pvov1 and
U110 = V1010 — pqUigv1. Then B(V; ;) is the algebra generated by vy and vy satisfying:

(37) vg =0,
(38) v10v0 = —p(q + 1) vovio — pPqvjuL,
(39) vivi10 = (1 = p — pg) virovt + (p — 1)(1 — pg) vigv}
+ p(p — 1) vor} + p(pg — 1) vjoio,
(40) vl = —(p+@)*((2p* = p+q(2—p)) vgv} + (p— 1 — g) voviovy

— (1 +pg) viy + (1 = p = p*q) vovi10)-
In particular, B = {vi° vijvijpv® + 0 < ap,a1 <2, 0<ay <1, 0<a3 <3}isa
PBW-basis of B(V;;), dimB(V; ;) = 72 and the Hilbert series is (4)¢ (3)¢ (3)s2 (2)43.
Proof. The braiding of V; ; is of type M1 2 and equals
o WY _(puo®vy —qui®vo+ (p+q)vo @ v
(c(vi ® v5))ijefo1}y = (pvo®v1 41 ® v + v ® o

A sheer calculation of Ker (2, Ker Q3 and Ker Q4 give us the relations (37) — (40). Thus, we
need only to show that the pre-Nichols algebra given by the quotient B(V; ;) = T'(V;;)/1,

where I is the two-sided ideal generated by these relations, is actually the Nichols algebra.
In particular, in ‘B( 5,7) we have the following equalities
vi10vo = (14 p)(1 + q) voviio — p(1 + 2q) viy — voviovr — p(2 + q) viv7,
vi1ov10 = (1 = pg + q)vioviio + (—2p — 2¢ — 1)vigvr + (p + ¢ + pg)vovirovs
+ (14 2p°q)vovr00 + (2p — g + 1vjo,
U?o = —pquovioviio — (P + Q)'UOU%OUI +(p— 1)11311110111 +(1-p- pQ)UgUmU%,
viio = (0 + 2 = 3pg)vioviiovr + (3pg — 2p — igv} + (p+ ¢ + 2pg — 1)vovi1007
+ (1= p — 5 — 4pq)voviov} + (4pg — 2q + 6p*)vjvi.
From these equations, one can see that the set B = {vg° vjj vi,v{® : 0 < ag, a1 <2, 0 <
az <1, 0 < az < 3} generates linearly B(V;;). Thus the top degree of B(V; ;) is 12.
Using the Poincaré duality, we obtain that B(V; ;) ~ B(V; j) unless there exists a new
relation of degree less or equal than 6. With the use of GAP, one may compute explicitly
Ker Q5 and Ker Qg and check that no new relation appears. In particular, B is a basis of
B(Vij)- 0
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5.4. Summary for n = 2 and m = 2,3. In this last subsection, we collect the pre-
sentations for the cases n = 2 and m = 2,3. In particular, we obtain the description of
the finite-dimensional Nichols algebras corresponding to indecomposable modules over the
Hopf algebras H,, ,, = R}, .m» With n and m as above. This follows from our previous results
and as a consequence of the following theorem due to Andruskiewitsch and Angiono.

Theorem 5.16. [AA, Theorem 1.2] Let Z € g:vzyp be such that dim*B(Z) < co. Then

Z is semisimple.
As a first application, we obtain another version of [GGi, Theorem A], see also [X].

Theorem 5.17. Let Hao be the dual of the Radford algebra of dimension 8 and V €

H22yD an indecomposable module. Then dimB(V') < oo if and only if V is simple and

zsomorphzc either to V12, V32, Va1, V33, Va1 or Vaog3. In such a case, the corresponding
Nichols algebras are presented as follows:

(a) B(Vi2) ~k[z ]/(xQ) with A-x = &x, X -2 =0 and p(z) = A2z, dim B(V; 2) = 2
(b) B(V32) ~ K[z ]/ wzthA r=_E82, X - x—O and p(x) = A2 ® x;

(¢) B(V31) ~k{vo,v1 : vg =0, vovy +v1v9 = 0, v3+(14+&)?v3 = 0), dimB(V31) = 8
(d) B(Vs3) ~k(vg,v1 : v =0, vov1 + v1vg = 0, v] + (1 — &)?v3 = 0);

(€) B(V21) ~ k{vg,v1 : v3 =0, v} =0, vov1 — Evyvg = 0), dim B(Va1) =38

(f) B(Va3) ~k(vg,v1 : v =0, v} =0, vovy + Evvg = 0).

Proof. Let V € H22

Theorem 5.16, V IS simple and isomorphic to some V;; with 0 < 4,5 < 3, since it is
indecomposable.

As n = 2 = m, we have that dimV;; < 2. If dimV = 1, the assertion follows from
Remark 5.6, with V' isomorphic to Vi or V3. If dimV = 2, then the claim follows
by inspection on Table 1, where one needs to look only at the first three rows. In all
cases, m = m; = 2 and mg = 1. The conditions on the first row implies that V ~ V5
or V ~ V33, whereas conditions on the second row implies that V ~ V51 or V =~ Vy3.
Conditions on the third row are not compatible with our assumptions on m. Finally, the
presentations follow from Remark 5.6 and Proposition 5.10 and 5.11. 0

YD be indecomposable and assume that dim B(V) < co. Then by

We end the paper by describing the case for n = 2 and m = 3. In particular, we
obtain the results of Hu and Xiong [HX] on finite-dimensional Nichols algebras over inde-
composable objects and we answer [HX, Question 1] explicitly. The proofs follows mutatis
mutandis from the proof above. The corresponding presentations are referred to the results
in the previous section.

Theorem 5.18. Let Ho 3 be the dual of the Radford algebra of dimension 12 and V €

H23yD an indecomposable module. Then dimB(V') < oo if and only if V is simple and

zsomorphzc either to V1 3, V33, V5.3, which are 1-dimensional, or to Va2, Vaa, V31, V35,
Voo, Vaa, V51, Vs5, Vs2, Vsa, Vo1 or Vo5. In such a case, the corresponding Nichols
algebras are presented in

( ) Remark 5. 6f07’ Vl .35 V33, V53,

(b) Proposition 5.10 (m1 odd) for Vao and Vi 4;

(¢) Proposition 5.11 (my odd) for V31 and Vs 5;

(d) Proposition 5.12 for Voo and Vs 4;

(e) Proposition 5.13 for V5’1 and Vs 5;

(f) Proposition 5.14 for Vs, Vs, Va1 and Vos.
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