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Abstract Clear cell renal cell carcinoma (ccRCC) is the most
common subtype of renal carcinomas. There is great interest
to know the molecular basis of the tumor biology of ccRCC
that might contribute to a better understanding of the aggres-
sive biological behavior of this cancer and to identify early
biomarkers of disease. This study describes the relationship
among proliferation, survival, and apoptosis with the expres-
sion of key molecules related to tumoral hypoxia (hypoxia-
inducible factor (HIF)-1α, erythropoietin (EPO), vascular en-
dothelial growth factor (VEGF)), their receptors (EPO-R,
VEGFR-2), and stearoyl desaturase-1 (SCD-1) in early stages
of ccRCC. Tissue samples were obtained at the Urology Unit
of the J.R. Vidal Hospital (Corrientes, Argentina), from pa-
tients who underwent radical nephrectomy for renal cancer
between 2011 and 2014. Four experimental groups according
to pathological stage and nuclear grade were organized: T1G1
(n = 6), T2G1 (n = 4), T1G2 (n = 7), and T2G2 (n = 7). The
expression of HIF-1α, EPO, EPO-R, VEGF, VEGFR-2, Bcl-
xL, and SCD-1 were evaluated by immunohistochemistry,
Western blotting, and/or RT-PCR. Apoptosis was assessed

by the TUNEL in situ assay, and tumor proliferation was de-
termined by Ki-67 immunohistochemistry. Data revealed that
HIF-1α, EPO, EPO-R, VEGF, and VEGF-R2 were
overexpressed in most samples. The T1G1 group showed
the highest EPO levels, approximately 200 % compared with
distal renal tissue. Bcl-xL overexpression was concomitant
with the enhancement of proliferative indexes. SCD-1 expres-
sion increased with the tumor size and nuclear grade.
Moreover, the direct correlations observed between SCD-1/
HIF-1α and SCD-1/Ki-67 increments suggest a link among
these molecules, which would determine tumor progression in
early stages of ccRCC. Our results demonstrate the relation-
ship among proliferation, survival, and apoptosis with the ex-
pression of key molecules related to tumoral hypoxia (HIF-
1α, EPO, VEGF), their receptors (EPO-R, VEGFR-2), and
SCD-1 in early stages of ccRCC.
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Introduction

Renal cell carcinomas (RCCs) are the most frequent tumors of
the adult kidney, and they account for about 3 % of all human
adult malignant diseases [1].

Clear cell renal cell carcinoma (ccRCC), the predominant
subtype of RCC (75–80 %) is usually associated with severe
prognosis and underlying gene mutations [2]. At the time of
diagnosis, 30 % of symptomatic patients have overt metasta-
sis, and the response to conventional therapy has been shown
to be poor. On the other hand, the frequency of asymptomatic
incidental diagnosis of this cancer is still growing and
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although there are treatments available for advanced ccRCC,
none are curative since drug resistance occurs in the majority
of cases [3, 4]. Therefore, there is great interest to know the
molecular basis of the aggressive biological behavior of
ccRCC and to identify early biomarkers of disease, prognosis,
or responsiveness to therapy.

The most remarkable phenotypic feature of the ccRCC is
its clear cell morphology, which has been linked to an en-
hanced rate in lipid biosynthesis and glycogen accumulation.
However, the molecular mechanism underlying this process is
an important component of renal carcinogenesis that needs to
be clarified [5].

As with numerous solid tumors, ccRCC frequently pre-
sents hypoxic areas as a consequence of tumor growth that
exceeds the capacity of its vascular network. The hypoxia-
inducible factor (HIF)-1 is the master regulator of oxygen
homeostasis triggering metabolic adaptations to hypoxia [6].
HIF isoforms (1α and 2α) are important mediators of hypoxic
adaptation and also control several genes involved in tumor
growth. Between the two isoforms, HIF-1α is directly in-
volved in metabolic adaptations to hypoxia and is thought to
have a role in glucose metabolism by increasing glucose trans-
porter expression and glycolytic enzymes [7, 8].

The erythropoietin (EPO) gene is under the direct control
of hypoxia through HIF-1α, a trans-acting factor that binds to
cis-acting DNA hypoxia-responsive elements of the EPO
gene promoter [9, 10]. EPO, a widely known growth factor
for erythropoiesis, can also stimulate angiogenesis [11], as
well as tumor cell proliferation and survival [12]. It has been
reported that EPO is expressed in ccRCC and that its expres-
sion is mainly regulated by hypoxia via HIF [13]. In addition,
it has been demonstrated that human RCC expresses EPO
receptor (EPO-R) and that its activation stimulates the prolif-
eration of renal carcinoma cells in vitro [14]. Nevertheless,
there are controversial reports about the degree of the EPO
and EPO-R coexpression in ccRCC and whether this may lead
to cell proliferation via autocrine stimulation, an essential step
in renal carcinoma tumorigenesis [15]. Consequently, the
complex biology of EPO and EPO-R signaling in ccRCC
requires further investigation [12].

In addition to EPO, the vascular endothelial growth factor
(VEGF) is included among the protein products of HIF-
responsive genes which are upregulated in many human ma-
lignancies. VEGF stimulates endothelial cell mitogenesis and
cell migration, as well as vasodilatation and vascular perme-
ability in RCC [16]. Furthermore, VEGF expression and its
correlation with HIF-1α expression in ccRCC has been pre-
viously reported [17].

Tumor-associated lipogenesis appears to be found in most
human cancers. It has been communicated that lipids, in ad-
dition to their classical structural and bioenergetics roles, con-
tribute to several aspects of tumor biology, such as growth,
redox homeostasis, and metastasis. Thus, numerous studies

have confirmed that tumoral tissues show aberrant activation
of the novo lipogenesis and that inhibition of different en-
zymes involved in fatty acid biosynthesis can block cancer
cell growth [18, 19]. Moreover, emerging literature suggests
that lipid biosynthesis and desaturation is a requirement for
tumor cell survival [20]. Stearoyl desaturase-1 (SCD-1), the
main isoform of human SCD, is the rate-limiting enzyme cat-
alyzing the synthesis of monounsaturated fatty acids, predom-
inantly oleate (18:1) and palmitoleate (16:1). SCD-1 inhibi-
tion has been recently shown to limit the growth and prolifer-
ation of cancer cells and, as a result of this observation, several
studies have focused on the inhibition of SCD-1 as a novel
target for cancer therapy [21, 22].

HIF-1α, EPO, and VEGF, key markers of tumor hyp-
oxia, as well as EPO-R and VEGFR-2, have been studied
separately in ccRCC [6, 8, 13, 23–27]. However, a global
and simultaneous analysis of all of them related to SCD-1
expression in early stages of ccRCC is described here for
the first time, on our best understanding. In particular, a
statistical association among all these markers and SCD-1
has not been previously communicated.

Thus, the aim of present work was to study whether a
relationship exists between these variables in patients who
underwent radical nephrectomy for localized RCC (T1-
2N0M0) with Fuhrman nuclear grade 1 and 2 (G1 and G2)
in order to identify potential early biomarkers of this disease.

Materials and methods

Patients, clinicopathological data, and sampling
procedures

Surgical specimens were obtained from 28 patients with
ccRCC. Patients were treated by radical nephrectomy at the
Urology Unit of the J.R. Vidal Hospital (Corrientes,
Argentina) between 2011 and 2014. Of the total of 28 patients
that underwent nephrectomy, 18 (64.3 %) were detected inci-
dentally and 10 (35.8 %) had symptoms pertaining to RCC.
Among symptomatic patients (n = 10), 5 (50.0 %) presented
hematuria, 3 (30.0 %) asthenia, and 2 (20.0 %) adinamia.

Surgically removed ccRCC and counterpart normal tissues
were collected from specimens and quickly frozen in liquid
nitrogen.

Each tumor underwent pathological staging according to
the TNM system of classification and Fuhrman nuclear grad-
ing [28]: 13 (46.4 %), 11 (39.3 %), 3 (10.7 %), and 1 (3.6 %)
cases were staged T1, T2, T3, and T4, respectively. Fuhrman
grades of G1, G2, and G3 were reported for 10 (35.7 %), 16
(57.2 %), and 2 (7.1 %) cases. Specimens were fixed for
histopathology, immunohistochemistry procedures, and ter-
minal deoxynucleotidyl transferase-mediated deoxyuridin tri-
phosphate nick end labeling (TUNEL) in situ assays.
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Additionally, samples of each patient were divided and tissue
homogenates were prepared for Western blotting.

In the present study, 24 tumors were selected according to
their pathological stage and nuclear grade: T1, T2, G1, and
G2. Four experimental groups were organized as follows:
T1G1 (n = 6), T2G1 (n = 4), T1G2 (n = 7), and T2G2 (n = 7).

The design and methods of this research have been ap-
proved by the Bioethics Committee of the School of
Medicine of the Northeastern National University and by the
Department of Medical Research of the J.R. Vidal Hospital
from Corrientes, Argentina.

Immunohistochemistry (IHC)

Paraffin-embedded sections were deparaffinized and
rehydrated in graded alcohols using routine protocols.
Briefly, sections (4 μm) were stained with the following anti-
bodies: rabbit polyclonal anti-EPO and anti-EPO-R (Epo:
H-162, sc-7956; Epo-R: H-194, sc-5624, Santa Cruz
Biotechnology, Santa Cruz, CA, USA); mouse monoclonal
anti-VEGF (C-1, sc-7269; Santa Cruz Biotechnology); rabbit
polyclonal anti-Ki-67 (H-300, sc-15402; Santa Cruz
Biotechnology); goat polyclonal anti-SCD (E-14, sc-30435,
Santa Cruz Biotechnology), rabbit monoclonal anti-VEGFR-
2 and anti-Bcl-xL (VEGFR-2: #2479; Bcl-xL #2764; both
from Cell Signaling Technology, Beverly, MA, USA).

All primary antibodies were assayed using a 1:100 dilution
with an overnight incubation at 4 °C. For EPO and EPO-R,
slides of adult kidney [29] and placenta [30] were used as
positive controls.

Immunostaining was performed using a DAKO LSAB+/
HRP kit (Dako Cytomation) followed by the application of a
chromogene DAB (DAKO kit) according to manufacturer’s
instructions. All negative controls were obtained by excluding
the primary antibody from the reaction. Samples were then
counter-stained with hematoxylin and visualized under a light
microscope. Images were taken using an Olympus Coolpix-
microdigital camera fitted on a CX-35 microscope (Olympus,
Japan).

Evaluation of immunostaining

Slides stained with EPO, EPO-R, Bcl-xL, VEGF, and
VEGFR-2 were analyzed using light microscopy by two
independent investigators who were blinded to the patient
data. The immunohistochemical expression was evaluated
and categorized in three groups: no (0), weak (+), and
strong (++) IHC expression.

In situ cell death detection (TUNEL assay)

TUNEL assay was performed using an in situ Cell Death
Detection Kit (Roche, Indianapolis, IN, USA) according to

the manufacturer’s instructions. For positive controls, sections
were treated with 0.7 mg/ml DNAse I (Sigma-Aldrich) for
15 min before treatment with TdT. This enzyme was replaced
with the same volume of distilled water in negative controls.
Slides were examined under a fluorescence microscope
(Olympus CX-35 equipped with a Coolpix Digital camera),
and images were processed using Adobe Photoshop 14.0
(Adobe System, San Jose, CA).

Proliferative and apoptotic indexes

The Ki-67 index (KI) and apoptotic index (AI) were expressed
as the percentage of Ki-67-positive and TUNEL-positive cells
per 1000 examined cancer cells, respectively. These percent-
ages were obtained from observations done in histologically
proven cancer areas without necrosis, hemorrhages, or mono-
nuclear infiltrations. Nuclei of apoptotic cells exhibit bright
green fluorescence while proliferative cancer cells have
brownish nuclei due to Ki-67 immunostaining.

Western blot analysis

Expressions of SCD-1, EPO-R, and EPO were determined by
immunoblotting of cytosolic extracts. Samples from ccRCC
patients and a distal section of renal normal tissue of each
patient were homogenized and lysed in an ice-cold buffer
[10 mM HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2,
0.5 mM dithiothreitol, 0.1 % IGEPAL (Sigma Co, MO,
USA)], supplemented with a protease inhibitor cocktail. Cell
lysates were centrifuged at 14,000g for 20 min, and the super-
natant (cytosolic fraction) was used for different assays.

The nuclear pellets were gently resuspended with ice-cold
wash buffer (20mMHEPES pH 7.4, 1.5 mMMgCl2, 420mM
ClNa, 25 % glycerol, 0.2 mM ethylene glycol-bis (beta-
aminoethyl ether)-N,N,N′,N′-tetra acetic acid (EDTA),
0.5 mM DDT, 0.2 mM PMSF with protease inhibitors) and
incubated for 1 h at 4 °C. Samples were centrifuged at 16,000g
at 4 °C for 30 min, and supernatants were collected as nuclear
extracts for HIF-1α immunoblotting. Positive controls for
HIF-1α expression were performed using nuclear extracts
from kidneys of mice submitted to 6 h of hypoxia in a
hypobaric chamber (0.40 atm).

Cytosolic proteins (40 μg) were separated by a 12 %
SDS-PAGE, blotted on nitrocellulose membranes (Bio-
Rad, CA, USA). Eight percent SDS-PAGE was used for
nuclear proteins. Membranes were treated with 1:500 di-
lutions of primary antibodies purchased in Santa Cruz
Biotechnology, Santa Cruz, CA, USA: anti SCD (E-14:
sc-30435), EPO-R (M-20: sc-697), and anti EPO
(H-162: sc-7956 sc-5624). Identical dilution was used
with anti HIF-1α (Novus Biologicals, Littleton, CO) and
anti-βactin (Sigma-Aldrich). Membranes were incubated
with horseradish peroxidase-conjugated secondary
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antibodies (Jackson Immunoresearch Inc., USA).
Immunocomplexes were detected by an Opti4CN kit
(Bio-Rad, CA, USA). Band optical density (OD) was de-
termined using NIH Image software, and the results were
expressed as the ratio: (protein of interest OD/β-actin
OD) × 100. All experiments have been performed at least
three times, and representative results of one experiment
are shown.

Reverse transcription-polymerase chain reaction analysis

SCD-1 messenger RNA (mRNA) expression was deter-
mined by RT-PCR. Total RNA was extracted using the
TRIzol reagent method (Invitrogen) according to the man-
ufacturer’s protocol. First-strand cDNA was obtained by
using the Moloney murine leukemia virus reverse tran-
scriptase (Promega) from 2 μg of RNA. PCR was then
performed using specific primers for SCD-1 as follows:
5′-TTCCTACCTGCAAGTTCTACACC-3′ (forward), 5′-
CCGAGCTTTGTAAGAGCGGT-3′ (reverse) with a prod-
uct of 116 bp. GAPDH were used as housekeeping gene:
5 ′-ATGGGGAAGGTGAAGGTCG-3 ′ (forward); 5 ′-
GGGGTCATTGATGGCAACAATA-3′ (reverse) with a
product of 108 bp. All primers were tested for specificity
using the Blast program available at the National Center
for Biotechnology Information web site (http://www.ncbi.
nlm.nih.gov/). Cycling conditions were as follows:
1 cycle at 95 °C for 10 min, 35 cycles at 95 °C for 30
s, 58 °C for 45 s, 72 °C for 1 min, and a final extension at
72 °C for 10 min. The relative mRNA abundance for a
given gene was calculated using the NIH ImageJ for Mac
OS X application software.

Statistical analysis

Statistical analysis and graphic presentation were performed
using the GraphPad PrismR 6.0 and the Instat R 5.0 packages
(GraphPad, San Diego, CA, USA). Results were expressed as
mean ± standard error of mean (SEM) or ± standard deviation
(SD) according to the statistical analysis employed.
Comparisons between groups were analyzed using two-
tailed paired Student’s t test.

The Mann-Whitney U test was used to compare the
apoptotic and proliferative indexes between ccRCC and
normal renal tissue. Pearson correlation was used to de-
termine the association between the percentage of SCD-1
and HIF-1α increment as well as between the percentage
of Ki-67 index and SCD-1 enhancement. All results with
a P level <0.05 were considered statistically significant,
whereas a P value between 0.05 and 0.10 was considered
of borderline significance.

Results

Patient’s characteristics and tumor classification

Patient characteristics and clinicopathological data are sum-
marized in Table 1.

In the present study, the results obtained for T1, T2, G1,
and G2 were analyzed in four experimental groups according
to pathological stage and nuclear grade as previously de-
scribed in Materials and methods.

Hypoxic microenvironment in ccRCC: expression of EPO,
EPO-R, VEGF, and VEGFR-2

The expression of HIF-1α was determined by immuno-
blotting in nuclear homogenates of ccRCC samples and
compared with normal renal distal tissue samples from
the same patient. HIF-1α overexpression was detected
in the majority of samples when compared to normal
distal kidney tissue (Fig. 1a). ccRCC samples showed a
significant increase of HIF-1α expression of approxi-
mately 50 % (Fig. 1b).

The percentage of increase in HIF-1α expression was ana-
lyzed with the pathological stage and the nuclear grade of the
tumors’ samples as it is shown in Fig. 1c. These data revealed
that HIF-1α significant overexpression was observed in all
experimental groups.

The expression of EPO/EPO-R in ccRCC and normal renal
tissue was assessed by immunoblotting (Figs. 2 and 3) and
immunohistochemistry (Fig. 4).

Western blots revealed that EPO (Fig. 2a, b) and EPO-
R (Fig. 3a, b) exhibited a significant increase in immuno-
staining from ccRCC when compared to bands obtained
from control distal tissue homogenates. Tumoral samples
from T1G1 group showed the highest EPO expression
(approximately 200 % of increase as compared with con-
trol distal tissue homogenates). The immunohistochemis-
try of EPO and EPO-R confirmed their enhanced
coexpression in the majority of ccRCC samples. EPO-R
was detected in 87.5 % of ccRCC revealing membranous
and cy toso l i c s t a in ing pa t t e rns , whe reas EPO
immunostainings were more evenly distributed than
EPO-R in ccRCC samples (Fig. 4a, b).

The VEGF and its receptor, VEGFR-2, are responsible
for the angiogenic phenotype of ccRCC. The majority of
the ccRCC samples were positive for VEGF expression
(83.3 %; n = 24) showing a perimembranous and diffuse
cytoplasmic immunohistochemical staining. However,
VEGFR-2 expression exhibited mainly a membranous
pattern in most ccRCC samples (Fig. 5a). The VEGFR-2
protein-positive phenotype of ccRCC was frequently ob-
served (75.0 %; n = 24) (Fig. 5b).
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Proliferation and apoptosis/survival in ccRCC

Positive staining of Ki-67 was detectable in the nuclei of
ccRCC cells (Fig. 6). The proliferative index (Ki-67 index)
was significantly higher in ccRCC (18.3 ± 10.2 %) than in
normal distal renal tissue samples (6.9 ± 2.1 %) (P = 0.0022).
The percentage of increment in Ki-67 index increased with the
pathological stage and with the nuclear grade of the tumors’
samples as it is shown in Fig. 6c. The number of TUNEL-
positive cells in each sample was variable. The apoptotic in-
dex (AI) ranged from <0.9 to 3.4 % with a median of
2.4 ± 0.9 %. However, AI difference between ccRCC and
non-ccRCC specimens (0.9 ± 0.2 %) was at borderline of
statistical significance (P = 0.0556), and similar values were
obtained in the four experimental groups studied. These re-
sults clearly show the predominance of cell proliferation in
early stages of ccRCC.

Members of the Bcl-2 family play an important role in the
regulation of apoptosis. The Bcl-xL protein expression in early
stages of ccRCC was assessed by IHQ (Fig. 7). The immuno-
reactivity of Bcl-xL exhibited an evenly distributed homoge-
neous cytoplasmic pattern ranging from negative (41.7 %) to
strong positive staining (37.5 %).

SCD-1 expression in ccRCC

mRNA expression level of SCD-1 in ccRCC was deter-
mined by RT-PCR. An increment over 2.5 times com-
pared to non-ccRCC tissue samples (Fig. 8a) was ob-
served. Additionally, these increments were verified at
the protein level by Western blotting (Fig. 8b). The per-
centage of SCD-1 overexpression was approximately
60 % in ccRCC (Fig. 8c). The increment in the expres-
sion of this key adipogenic enzyme related to the patho-
logical stage and the nuclear grade of the tumors’

samples is shown in Fig. 8d. Moreover, the protein local-
ization by immunohistochemistry revealed a weakly con-
stitutive expression in renal tubular cells with a homoge-
neous pattern. No immunoreactivity of SCD-1 was ob-
served in glomeruli. However, this enzyme exhibited a
focal strong immunoreaction in the cytoplasm in ccRCC
sections (Fig. 8e).

Percentage of SCD-1 protein levels of the four experimen-
tal groups was plotted as function of their respective percent-
age of HIF-1α protein expression observed in each group. A
positive correlation was observed between SCD-1 and HIF-

Fig. 1 HIF-1α expression in ccRCC samples. aWestern blotting of HIF-
1α. Ten representative normal distal (N) and ccRCC (T) samples are
shown. Immunoblottings were performed by triplicate from a single
sample. Data were normalized to β-actin used as loading control. b
HIF-1α/β-actin (n = 24). c Percentage of increment of HIF-1α expression
related to the pathological stage and the nuclear grade of the tumors’
samples compared with the matched adjacent non-tumor tissues,
respectively. Values are mean ± SEM.* P < 0.05, ** P < 0.01, and ***
P < 0.001 indicate significant differences

Table 1 Characteristics
of patients diagnosed
with clear cell renal
carcinoma

Gender (male/female) 19/9

Nephrectomy
(right/left)

19/9

Median (range)

Tumor size (cm) 7.47 (4.3–10.0)

Age (years) 57.5 (27–84)

Histological grade (n, %)

Grade 1 10 (35.7 %)

Grade 2 16 (57.2 %)

Grade 3 2 (7.1 %)

TNM stage (n, %)

I 13 (46.4 %)

II 11(39.3 %)

III 3(10.7 %)

IV 1 (3.6 %)
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1α (r2 = 0.97; p = 0.0018) as it is shown in Fig. 9a. Moreover,
the proliferative index (Ki-67) was positively correlated with
SDC-1 protein levels (r2 = 0.97; p = 0.0018) (Fig. 9b).

Discussion

In this work, we have studied cell proliferation, apoptosis/
survival, the expression of SCD-1, HIF-1α, and their regulat-
ed proteins (VEGF, EPO), as well as EPO-R and VEGFR-2 in

tumor samples from ccRCC patients. This is, to our knowl-
edge, the first study describing the relationship among prolif-
eration, apoptosis/survival and the expression of key mole-
cules involved in ccRCC tumoral behavior as a function of
early pathological stage and nuclear grade.

Tumor cells within a growing lesion often need to adapt
and survive in hypoxic conditions. The HIFs are important
mediators in the hypoxic adaptation of cancer cells, and they
control several genes that have been implicated in tumor

Fig. 3 EPO-R expression in ccRCC. a Western blottings of EPO-R in
ccRCC. EPO-R (75 kDa) was overexpressed in most of the homogenates
of ccRCC (T) compared to distal normal renal samples (N) from the same
patient. Immunoblottings were performed by triplicate from a single
sample. Ten patients were selected for illustration. Data were normalized
to β-actin used as loading control. b EPO-R/β-actin (n = 24). c
Percentage of increment of EPO-R expression related to the pathological
stage and the nuclear grade of the tumors’ samples compared with the
matched adjacent non-tumor tissues, respectively. Values are
mean ± SEM. **P < 0.01 and ***P < 0.001 indicate significant
differences

Fig. 2 EPO expression in ccRCC. aWestern blottings of EPO in ccRCC.
EPO (39 kDa) was overexpressed in most of the homogenates of ccRCC
(T) compared to distal normal renal samples (N) from the same patient.
Ten patients were selected for illustration. Data were normalized to β-
actin used as loading control. b EPO/β-actin (n = 24). c Percentage of
increment of EPO expression related to the pathological stage and the
nuclear grade of the tumors’ samples compared with thematched adjacent
non-tumor tissues, respectively. Values are mean ± SEM. **P < 0.01 and
***P < 0.001 indicate significant differences
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phenotype and progression [31, 32]. The two best-
characterized HIF-α isoforms are HIF-1α and HIF-2α.
Although most of their functions are overlapping, their

functions in tumor cells are controversial [8, 33]. We have
studied the expression of HIF-1α since Wiesener et al. pro-
vided in vivo evidence of upregulation of HIF-1α linked to

Fig. 4 Immunohistochemistry of EPO and EPO-R in ccRCC. a EPO
and EPO-R immunoreactions in normal distal sections denote the
constitutive expression of these proteins in the cytoplasm of tubular
renal cells (I). Weak immunoreactivity of EPO and EPO-R with
membranous pattern in ccRCC sections (II). Strong EPO and EPO-

R immunostainings with cytoplasmic and membranous patterns
respectively in ccRCC sections (III). Original magnification × 400.
b Semiquantitative evaluation of EPO and EPO-R immunoreactivity
in ccRCC: (0) no, (+) weak, and (++) strong immunohistochemical
expression of EPO and EPO-R (n = 24)

Fig. 5 Immunohistochemistry of VEGF and VEGFR-2 in ccRCC. a
VEGF and VEGFR-2 immunoreactions in early stages of ccRCC: no
(I), weak (II), and strong (III) immunoreactivity. VEGF expression ex-
hibited a perimembranous and diffuse cytoplasmic pattern. The
immunodetection of VEGFR-2 was mainly membranous with some

tumor cells containing immunopositive cytoplasmic pattern. Original
magnification × 400. b Semiquantitative evaluation of VEGF and
VEGFR-2 immunoreactivity. (0) no, (+) weak, and (++) strong
immunohistochemical expression in ccRCC samples (n = 24)
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functional inactivation of the vonHippel-Lindeau (VHL) gene
product in ccRCC [34]. Moreover, Chuang and collaborators
have described that HIF-1α has an important role in the
epithelial-mesenchymal transition in renal cancer cells [33].
It is well known that the epithelial-mesenchymal transition is a
process in which polarized epithelial cells are converted into
motile mesenchymal cells by alterations in adhesion, mor-
phology, cellular architecture, and migration capacity. The
present results showed HIF-1α overexpression in most of
ccRCC samples and that its enhancement was related with
the non-metastasic stages of this cancer.

Larger tumors exhibit hypoxic conditions, and this triggers
HIF action, which further increases the production of VEGF
[26]. Additionally, it has been demonstrated that the expres-
sion of these proteins are involved in tumor growth and me-
tastasis [35], and therefore, provides targets for antiangiogenic
therapies [16, 17, 36]. Conflicting results have been commu-
nicated on the significance of VEGF overexpression in rela-
tion to nuclear grade, tumor stage, and neovascularization in
RCC [27, 37, 38]. To date, only a few reports have described
the expression of the pair VEGF/VEGFR-2 in early stages of
ccRCC. In the current study, we observed coexpression of

Fig. 6 Ki-67 detection in ccRCC. aKi-67 antigen labeling was localized
with a strong and homogeneous brownish granularity in ccRCC nuclei.
Original magnification ×400. b Proliferative index (Ki-67 antigen) from
tumors’ samples (n = 24) compared with the matched adjacent non-tumor

tissues. c Percentage of increment of Ki-67 index related to the
pathological stage and the nuclear grade of the tumors’ samples compared
with the matched adjacent non-tumor tissues, respectively. Values are
mean ± SEM. ***P < 0.001 indicates significant differences

Fig. 7 Immunohistochemistry of
Bcl-xL in ccRCC. a No (I), weak
(II), and strong (III)
immunoreactivity of Bcl-xL in
early stages of ccRCC, showing
cytoplasmic pattern. Original
magnification × 400. b
Semiquantitative evaluation of
Bcl-xL immunoreactivity. (0) No,
(+) weak, and (++) strong
immunohistochemical expression
in ccRCC samples

Tumor Biol.



VEGF and VEGFR-2, reinforcing the evidence of the ccRCC
proangiogenic phenotype associated with non-metastatic
stages of ccRCC in accordance with Song et al. [27] findings.

EPO is also under the direct control of hypoxia, since HIF-
1α binds to the hypoxia-responsive element of the EPO gene
[39]. The expression of EPO and EPO-R in cancer cells, an
apparent consequence of cellular dedifferentiation, may serve
analogous pathways of growth and survival that could ulti-
mately enhance tumor aggressiveness. However, the

contribution of the EPO/EPO-R axis to cancer progression is
not completely understood because its influence on different
carcinomas appears to be quite variable [24, 40–42].

It has been communicated that ccRCC consistently
coexpresses EPO and EPO-R [43] and that the cytoplasmic
expression of EPO in this carcinoma has been shown to be
adversely associated with patient survival [44]. Papworth and
colleagues reported the co-occurrence of EPO and EPO-R in
this tumor tissue without implications in worse prognosis [13].

Fig. 8 Expression of SCD-1 in
ccRCC. a SCD-1 mRNA levels
determination by RT-PCR of a
representative sample. Bars
indicate band quantifications of
all samples (n = 24). b
Immunoblottings of SCD-1.
Illustrative blots of ten samples
comparing SCD-1 expression in
ccRCC versus normal distal renal
tissue of the same patient are
shown. SCD-1 has a constitutive
basal expression in controls.
SCD-1 was overexpressed in
more than 75 % of ccRCC whole
homogenates. Immunoblottings
were performed by triplicate from
a single sample of three
independent experiences. Data
were normalized to beta-actin
used as loading control. c SCD-1/
β-actin (n = 24). d Percentage of
increment of SCD-1 expression
related to the pathological stage
and the nuclear grade of the
tumors’ samples compared with
the matched adjacent non-tumor
tissues, respectively. e
Immunohistochemistry of SCD-
1. Representative
photomicrographs corresponding
to normal distal renal tissue (I)
and ccRCC (II) are shown.
Original magnification ×400.
Values are mean ± SEM.
*P < 0.05, **P < 0.01, and
***P < 0.001 indicate significant
differences
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Thus, the clinical significance of all these findings is, at the
present time, controversial.

The present results showed a strong overexpression of HIF-
1α, EPO, and EPO-R in ccRCC in agreement with Papworth
et al. [13]. However, when EPO expression was related to
TMN stage and nuclear grades in ccRCC samples, a strong
significance was noted in the initial stage group (T1G1).
These results are different from those reported by the men-
tioned authors, who found majority EPO expression in the
higher stages of tumors (III–IV). Hence, we hypothesize that
this EPO overexpression in the early tumor stages could be
essential for triggering the cell proliferation. As urinary excre-
tion of EPO may be correlated with its tissue levels, current
studies performed in our laboratory are evaluating the urinary
excretion of EPO as a potential early biomarker of ccRCC.
Moreover, as it can be noticed, the EPO and EPO-R expres-
sion profiles are not similar, especially in T1G1 group. As in
any other biologic pair ligand/receptor, a stoichiometric or
evenly, a close relationship between ligands and receptor
levels for triggering the subsequent biological effects is not
always required [45].

Several proapoptotic and antiapoptotic proteins of the Bcl-
2 family, as well as proliferative and apoptotic indexes, have
previously been studied in different types of RCC [46, 47]. It
is well known that cell proliferation and cell death determine

tumor growth and progression. The present data focused in
early stages of ccRCC show an enhancement in Bcl-xL ex-
pression and proliferative indexes, as well as a non-significant
increment of AI.

Globally, the EPO, EPO-R, and Bcl-xL overexpression con-
comitant with a non-significative apoptosis suggest that EPO/
EPO-R axis might be part of an autocrine/paracrine loop in-
volved in tumor survival, in accordance with Szejanch et al. [48].

An enhancement of the lipogenic pathway activity is a
universal metabolic feature of proliferating tumor cells, given
their huge requirements for large amounts of lipids as building
blocks for biological membranes. Many observations have
shown that this demand is met by an increased de novo lipid
biosynthesis. Therefore, the process of lipid synthesis itself
may contribute to the tumorigenic phenotype [18]. Many en-
zymes (acetyl-CoA acetyltransferase; ATP citrate lyase; acyl-
CoA synthetase long-chain, or stearoyl-CoA desaturase) with-
in the fatty acid and cholesterol-biosynthesis pathways are
regulated by SREBPs, and some of them show overexpression
in different cancers. SCD-1, a target gene of SREBP, has been
observed upregulated in oncogene-transformed cells [49] and
in several human cancers [50, 51].

Von Roemeling and collaborators have shown that SCD-1
overexpression supports ccRCC viability. Therefore, they
have proposed SCD-1 as a novel molecular target for therapy
[22] in agreement with former studies [20, 52].

The present results showed an increased RNA messenger
and protein expression of SCD-1 in this renal cancer cells.
Notably, SCD-1 expression increased with the tumor size
and with Fuhrman nuclear grade.

It has also been reported that HIF is crucial in modulating
cellular hypoxic responses through altering cell energymetab-
olism, which includes the modification of glucose and lipid
metabolism-associated gene expression, thus promoting tu-
mor progression. Lee et al. [53] have recently demonstrated
that hypoxia treatment stimulates the expression of SCD-1 in
human mesenchymal stem cells concomitantly with their pro-
liferation. Particularly, data analysis reveals statistical positive
correlations between SCD-1 and HIF-1α, as well as between
SCD-1 and Ki-67, what have not been previously reported,
suggesting a putative involvement in tumor progression in
early stages of ccRCC. These new data add encouraging in-
formation to support SCD-1 inhibition as a potential therapeu-
tic strategy to stop cell proliferation. However, the molecular
interplay between these molecules needs further research with
the accomplishment of knockdowns assays of SCD-1 and
HIF-1α in ccRCC cell lines.

Focusing on the relationship between the studied proteins
and patient’s survival, there are controversial reports about the
role of EPO-EPO-R signaling in RCC tumor growth and pro-
gression [13, 43, 44]. Moreover, the combination of EPO-R
expression and sEPO levels may effectively predict clinical
outcome [54]. Similarly, Rioux-Lectercq et al. [26] have

Fig. 9 Correlation analyses related to SCD-1 expression, hypoxia, and
proliferation in ccRCC samples. a Correlation between the percentage of
increment of SCD-1 and the percentage of increment of HIF-1α in each
experimental group. b Correlation between the percentage of increment
of Ki-67 index (Ki-67 % increment) and the percentage of increment of
SCD-1 in each experimental group
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shown that VEGF expression in ccRCC was significantly cor-
related with advanced tumor stage, as well as tumor necrosis,
tumor aggressiveness, and progression. Besides, Holder et al.
[55] found that high levels of SCD-1 expression are associated
with significant shorter relapse-free survival (RFS) and overall
survival (OS) in breast cancer patients. Additionally, the prog-
nostic significance of HIF-1α expression has been evaluated
in a number of solid tumors such as cervical, colon, breast,
lung, and gastric cancers [56, 57]. It has been reported that the
increased nuclear expression of HIF-1α and the cytoplasmic
expression of HIF-2α indicate unfavorable prognosis in RCC
patients [58].

To our knowledge, there are no reports regarding the cor-
relation of SCD-1 and HIF-1α expression with survival rate of
ccRCC. Thus, we will carry out a survival analysis in our
patients in order to analyze if there exists any correlation be-
tween these key molecules and survival rate of ccRCC.

In summary, this is the first report concerning the relation-
ship among proliferation, survival, apoptosis, with the expres-
sion of key molecules related to tumoral hypoxia (HIF-1α,
EPO, VEGF), their receptors (EPO-R, VEGFR-2), and
SCD-1 in early stages of ccRCC. Additionally, this study
demonstrates for the first time that EPO shows a highest ex-
pression in the initial stage group of ccRCC (T1G1), allowing
us to postulate this protein as a potential early biomarker of
this pathology.

This study provides new information of tumoral biology of
ccRCC regarding to hypoxic microenvironment, lipogenesis,
and cell proliferation that might contribute to a better under-
standing of this complex carcinoma.
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