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The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spa-
tial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or
phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to
assess the effect of the high frequency component (PHF

Ac ) of a bi-harmonic acoustic pressure field on the
dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly
focused on the role of the harmonic frequency (Nf 0) and the relative phase between the two frequency
components (ub) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The
results presented in this work were analyzed by means of three different approaches. First, we discussed
some qualitative considerations about the changes observed in the radial dynamics, and the stability of
similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of
numerical simulations, how the use of high frequency harmonic components of different order N, affects
the positional stability of the SL bubbles. Furthermore, the influence of ub in their radius temporal evo-
lution is systematically explored for harmonics ranging from the second to the fifteenth harmonic
(N ¼ 2—15). Finally, a multivariate analysis based on the covariance method is performed to study the
dependences among the parameters characterizing the SL bubble. Both experimental and numerical
results indicate that the impact of PHF

Ac on the positional instability and the radial dynamics turns to be
progressively negligible as the order of the high frequency harmonic component grows (i.e. N � 1), how-
ever its effectiveness on the reduction of the spatial instability remains unaltered or even improved.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Sonoluminescence is a physical phenomenon characterized by
the emission of light pulses from a gas bubble which is forced to
have regular cycles of expansion and compression through the
action of an sound wave. When the amplitude of the acoustic pres-
sure field is slightly above the static pressure of the fluid (P0) the
bubble oscillatory regime become highly nonlinear. In this extreme
situation the energy focused in the spherically converging inertial
collapses is enough to produce a sudden rise in the pressure, den-
sity and gas temperature within the bubble. Consequently, a hot
plasma core is produced from the gas and very short pulse of
visible (and invisible) light is emitted (100 ps–2 ns of duration)
[1]. In the cases where a stationary acoustic field is used, the sono-
luminescent bubbles can be trapped and stabilized in the liquid
medium for long periods of time (several hours or even days).

Single bubble sonoluminescence (SBSL) in a stable fashion was
performed for the first time by Gaitan in 1992 [2], who trapped an
air bubble in a mixture of glycerin and water using single fre-
quency acoustic driving. A few years after the discovery of SBSL,
researchers began to study the potential effects that the use of
multi-frequency driving could have on the bubble dynamics
[3–10]. Taking the single frequency case as a reference, some of
the effects found on these studies can be summarized as follows:
a variation in the emitted light intensity [3,7,11]; the high
frequency components of the acoustic field (PHF

Ac ) promotes the
generation of cavitation bubbles and avoid its dissolution [12];
an increment in the expansion rates of the bubbles Rmax=R0

[5,7,9]; PHF
Ac can also affect the positional stability of the bubbles

[4,5]. However, most of these studies were carried out using low
viscosity liquids like water.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultsonch.2016.02.013&domain=pdf
http://dx.doi.org/10.1016/j.ultsonch.2016.02.013
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Many experimental and theoretical works have shown that
when low viscosity liquids are used, the bubbles are susceptible
to extinction by the bubble breakup that takes place due to the
shape instabilities (Rayleigh–Taylor and Parametric) [13,14]. This
motivated the realization of experiments using viscous fluids with
low vapor pressure like sulfuric acid (H2SO4) or phosphoric acid
(H3PO4) [15–17]. In this case, two other type of instabilities can
occur, one is called spatial instability, while the other one is refer-
eed as positional instability. The first one is characterized by the
appearance of pseudo-orbits (around a fixed point) in the bubble
trajectory [18]. In 2008 Urteaga and Bonetto [11] demonstrated
that the combined use of a bi-harmonic driving was an effective
way to remove the spatial instability. This result was recently con-
firmed and also extended in Refs. [19–22]. On the other hand, the
positional instability occurs when the acoustic pressure amplitude
applied to the bubble exceeds a limit value defined by the balance

of the hydrodynamic forces affecting the bubble (~Fb), which is
mainly determined by the Bjerknes primary force. Thus, when this
frontier of maximum pressure is crossed (i.e. PAcj~Fb¼0) the net force
applied on the bubble changes its sign, and as the equilibrium posi-
tion is modified, the bubble is drifted away from the pressure
antinode until a new position with an acoustic pressure similar
to PAcj~Fb¼0 is reached and the force is once again balanced [23,24].

Furthermore, Dellavale et al. [19] have experimentally shown that
biharmonic excitation is a mechanism that makes it possible to
positionally (and spatially) stabilize SL bubbles in SA85 for very
low dissolved gas concentrations, allowing to reach regions of
parameter space were the intensity of the bubble collapse is
upscaled.

The main advantage of using harmonic frequencies in the driv-
ing signal is to have a stationary acoustic field. The latter is the
superposition of a low frequency component (PLF

Ac) (with amplitude

PLF
Acj0 and a fundamental frequency f 0), and a high frequency com-

ponent PHF
Ac determined by its amplitude PHF

Ac j0, the harmonic order

(N) and the relative phase between the PLF
Ac and PHF

Ac defined as ub.
It is already been established that ub can change either the

position and the emitted light. A systematic investigation about
the influence of ub on a SBSL fixed bubble in water under
bi-harmonic driving, can be found for a case with N ¼ 2 in Refs.
[3,7,5,8–10]. It has also been stated that the equilibrium position
reached by the bubbles is a direct consequence of the complex
acoustic field structure and the action of their gradients through
the primary Bjerknes force. In Refs. [4,7,25] it is shown that a mod-
ification in ub induces a change in the bubble position and
enhances the emitted light, furthermore the presented results sug-
gest the existence of an ‘‘optimum” phase value. However, the
effect of PHF

Ac on the positional instability can be negligible when
the frequency of the harmonics is much higher than f 0 and the
bubbles are not placed on the main pressure antinode, as we have
shown in Ref. [22].

To the best of our knowledge, this is the first scientific work
devoted to explain the role of both the frequency and ub of the

harmonic pressure field PHF
Ac in the context of bubble dynamics from

a general point of view. The previous results reported in the scien-
tific literature are limited to the exhibition of a particular
bi-harmonic driving case.

In this work, we present an extensive parametric study consist-
ing of both experimental results and numerical simulations in
order to explain how different high frequency harmonic compo-
nent constituting the bi-frequency acoustic driving signal affects
the dynamics of sonoluminescent bubbles in H2SO4. In particular
we will focus on the effect of the harmonic frequency used in PHF

Ac

(Nf0) over the positional stability and the radial dynamics of bub-
bles trapped in a pressure field with spherical symmetry, ranging
from the second to the fifteenth harmonic (N ¼ 2—15). Addition-
ally, we analyzed the dependence of the main physical bubble
parameters on the relative phase between PLF

Ac and PHF
Ac for different

values of N. These parameters were obtained through a numerical
fit of the measured bubble radius temporal evolution (from now on
RðtÞ) or by direct measurements of the bubble mean position (rb)
and its collapse time (tc). Thus, we were able to analyze and corre-
late many important aspects of the phenomenon in a much
broader way than previous works. Furthermore, the information
provided by the experimental data was complemented (and
extended) with the numerical simulations.

We also qualitatively discuss the role of the harmonic frequency
in the generation of cavitation bubbles and their diffusive stability.
2. Experimental method

The experiments were made using the quartz spherical acoustic
chamber (60 mm in outer diameter and approximately 1 mm in
thickness) described in Ref. [19]. Details of the electronics and
equipments employed can be found as well in Ref. [26,27] and ref-
erences therein. The working fluid used was a highly degassed sul-
furic acid aqueous solution 85% w/w (SA85) with relatively low
concentrations (usually c1=c0 � 15:10�3) of argon or xenon gas
dissolved in the liquid. The resonance frequency of the apparatus
for the lowest order radially symmetric oscillation mode with a
pressure antinode near the geometrical center of the flask, was
experimentally determined in approximately f 0 ¼ 29 kHz. The
driving system was composed of four equal piezoceramics trans-
ducers (PZT) attached to the outer wall of the resonator in diamet-
rically opposed pairs. Two drivers (PZTLF) were excited with the
low-frequency signal (VLF

PZT ¼ V0 sinð2p f 0 tÞ), while the remaining
pair (PZTHF) was used with the high-frequency signal
(VHF

PZT ¼ VN sinðð2pNf 0 tÞ þ aÞ), which was a harmonic of f 0
(i.e. Nf0). A disc shaped pill PZT was fixed to the resonator wall
to be used as a microphone (MIC). In the experiments, the acoustic
pressure field was set controlling the amplitude of VLF

PZT and

VHF
PZT ; f 0;Nf0 and the relative phase between the signal components

(a), which keep a linear relation with the signal picked by the MIC.
The bubbles were produced by acoustic cavitation near the cen-

ter of the spherical resonator (were the main pressure antinode is
located). The standard Mie scattering technique [28] was used to
determine the temporal evolution of the bubble radius. The scat-
tered light was captured using an Oriel 77340 phototube connected
to a Hewlett–Packard HP 54615B oscilloscope. The room tempera-
ture was controlled to be 297 K during the experiments. The exper-
imental data traces were processed and fitted employing the
numerical model of the bubble radial dynamics described in Ref.
[29] which is based in the Rayleigh–Plesset–Keller equation
(RPK). This model takes into account mass transfer effects at bub-
ble wall (e.g. evaporation and condensation). Accordingly, in the
simulations included in this study we have computed hundreds
of acoustic cycles in order to ensure the bubbles diffusive stability.
Furthermore, we have also considered the dissociation of the vapor
diffused inside the bubble during the expansion phase, occurring in
the bubble collapse. It is worth mentioning that in SA based
systems the bubbles reach its equilibrium state (by rectified diffu-
sion) in fewer cycles than in water based systems, mainly because
of the low vapor pressure of the sulfuric acid aqueous solution. The
latter also implies that in SA systems, there is a minor amount of
water vapor to dissociate and/or produce chemical reactions than
in water based systems [29]. All the assumptions in the model have
been compared with a Navier–Stokes simulation (see Ref. [29]).
The heat flux between the gas contents inside the bubble and the
liquid were computed using the thermal boundary layer approxi-



Table 1
Physical properties of SA 85% p/p at 297 K [32–37].

Vapor pressure [Pa] 4.53
Density [kg/m3] 1773.2
Speed of sound [m/s] 1513
Dynamic viscosity [Pa s] 0.022
Surface tension [N/m] 0.056
Specific heat [J kg�1 K�1] 1829.2
Thermal conductivity [W m�1 K�1] 0.3578
Refractive index 1.435
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mation as described in Toegel et al. [30] and Puente et al. [29]. The
density, pressure and temperature are taken to be uniform within
the bubble in the mentionedmodel. The validity of this assumption
has been tested following the work of Lin et al. [31].

This model was also used to carry out some aspects of the
numerical simulations presented in this work (e.g. hydrodynamic
force fields and phase parameter spaces). The physical properties
of the liquid used in the simulations are summarized in Table 1.

The position, stability and relative intensity of the studied SL
bubbles, were evaluated through photographs captured by two
cameras (Nikkon D40x and Hitachi KP-F120) set to take pictures
from two orthogonal perspectives. Particularly, the observed bub-
ble position was corrected taking into account the curvature of the
spherical resonator wall and the changes in the refractive index of
the propagation media. Furthermore, the tridimensional position
was determined by means of a iterative triangulation algorithm.

The collapse time of the bubbles (tc), defined as the time inter-
val between the low frequency acoustic pressure zero crossing
with negative slope and the SL flash emission, was measured with
a timer Stanford Research Systems SR620. This apparatus was
operated at its maximum sampling rate (’1500 samples/s) with
a precision of 100 ns (determined by the jitter in the MIC signal).
3. Results and discussion

This section describes and discuss a series of experiments and
simulations designed to answer two main questions: Is there an
optimum value of N and the relative phase ub in order to enhance
the bubble stability and energy concentration? Is there any limit
frequency in which the HF component of bi-harmonic driving PHF

Ac

cease to have a significant effect on the bubble dynamics? Unless
otherwise specified, all the data presented in this study (both
experimental measurements and numerical simulations) corre-
spond to the case of single bubble sonoluminescence (SBSL). This
part of the work is organized as follows: In Section 3.1, the central
hypothesis is outlined bymeans of simulations of the radial dynam-
ics of typical bubbles for different driving frequencies. Subse-
quently, we compare experimental traces of the RðtÞ measured for
bubbles subjected to different bi-harmonics pressure fields. Fur-
thermore, the effect of ub on the bubble’s stability is demonstrated
through photographs. These findings motivated the realization of a
series of numerical simulations in order to complement and also
support the experimental observations. The numerical simulations,
described in Sections 3.2 and 3.3, let us investigate many aspects of
SBSL phenomenon under controlled and stable situations which are
extremely difficult to achieve in the experiments. In Section 3.2, we
discuss how the use of harmonics of different order N affects the
positional stability of the sonoluminescent bubbles. On the other
hand, the influence of ub in the RðtÞ of a fixed bubble is explored
in Section 3.3. Finally, in Section 3.4 we perform a multivariate
analysis based on the covariance method to study the dependences
among the experimental bubble parameters obtained from the
numerical fits of the RðtÞ. In addition, we tracked the bubbles posi-
tion on the acoustic chamber (rb) in order to analyze their positional
stability. The parametric analysis was complemented with exten-
sive measurements of the collapse time of xenon bubbles carried
out for different bi-harmonic drivings (N) and distinct relative
phases set in the driving signal.

3.1. Qualitative experimental observations

One of the many aspects in which the driving frequency of the
system plays a significant role is the diffusive stability of the bub-
bles. This topic has been broadly discussed in Ref. [8] for a case
where the second harmonic was added to PLF

Ac using water as the
working fluid. In the experiments with SA85, we noticed that the
presence of a high frequency component in the acoustic pressure
field inhibits (or slows down) the bubble dissolution with respect
to the case with single frequency driving. When the HF component
PHF
Ac was applied and PLF

Ac was turned off, small bubbles could be
found several hours after the remotion of the LF component, even
in the cases with extremely low dissolved gas concentrations (e.g.
c1=c0 6 5� 10�3). Simulations of the R0—PAcjb phase space for bub-

bles in SA85 driven only with PHF
Ac set to different harmonics N (not

shown) were ran in order to explain this phenomenon. The results
indicate that an increment in the applied frequency produces a
notorious reduction in the bubble habitat, being this in agreement
with similar calculations performed by Koch et al. [38] for a case
using water. As the frequency is increased, only bubbles with a
small ambient radius can be trapped in the fluid as a consequence
of the mass flux balance occurring in rectified diffusion.

On the other hand, the addition of PHF
Ac in the pressure field pro-

moted the generation of multiple cavitation bubbles (as reported
inRef. [12]). Probably, this is due to the increasednumberofpressure
antinodes distributed all over the resonatorwhich can produce bub-
bles by means of the mechanisms described in Refs. [12,39,40], like
the presence of colloidal particles acting as bubble ‘‘seeds”.

The role of the driving frequency (f) in sonoluminescence can be
studied by analyzing its effects on the bubble radial dynamics
(RðtÞ). Generally speaking, when f is relatively low (compared to
the linear resonance frequency (Minnaert frequency, f M)) the frac-
tion of the acoustic cycle in which the bubble remains in their
expansion phase is relatively high, thus it reaches high values of
Rmax. Based on this argument one might say that when f is low
there is a ‘‘good” coupling between PAc and the RðtÞ. Then, taking
into account that the mechanical energy density is proportional

to ðRmax=R0Þ3, the use of low frequencies might seem to be an effec-
tive strategy to reach high energy focusing through violent bubble
collapses [41]. In this situation, the pressure inside the bubble is
very low for a long period of time and then there is an important
flux of mass from the liquid towards the bubble core and its ambi-
ent radius (R0) increases in each acoustic cycle, leading to a rapid
bubble rupture because of the shape instabilities [14]. Conse-
quently, the use of low driving frequencies do not represent a clear
advantage [21]. Contrarily, if f is very high (e.g. of the order of f M)
there are factors like the fluid inertia and the reduced duration of
the expansion phase, which limit the mechanical energy delivered
to the bubble. In those cases the bubble oscillate with an almost
linear dynamic and sonoluminescence can be only achieved for a
very restricted region of the map of parameters R0—PAcjb [42].

To illustrate the concepts discussed previously we plot in Fig. 1
(a) numerical results on the response of a typical bubble with
R0 ¼ 8 lm driven using three different frequencies for a fixed pres-
sure amplitude of PAcjb ¼ 1:5 bar. From the RðtÞ curves is easy to
see how the bubble dynamics rapidly become linear as f is
increased. This is particularly noticeable in the lower values of
Rmax and the absence of bounces after the main bubble collapse.

From the preceding paragraph we might conclude that given R0

and PAcjb there might exist an optimum frequency range in which
the bubbles behave in a highly nonlinear fashion but still



Fig. 1. Bubble dynamics for different driving frequencies in SA85. (a) Bubble radius
temporal evolution for three distinct frequencies and a driving pressure amplitude
of PLF

Ac jb ¼ 1:5 bar. The maximum radius reached by the bubble decay notoriously as
f is increased. (b) Frequency response curves (RPK model) for a bubble with a typical
ambient radius of R0 ¼ 8 lm subjected to two different pressure amplitudes. The
red (lower) curve correspond to a case were PHF

Ac jb is below the Blake threshold,
consequently the bubble is subjected to an almost linear oscillation, while the
bubbles associated with the blue (upper) curve oscillate in a non linear fashion. The
Minnaert frequency computed for a bubble under these conditions is
f M ¼ 320:8 kHz. (For interpretation of the references to colour in this figure
caption, the reader is referred to the web version of this article.)
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remaining shape stable. The latter statement could not be rigor-
ously accurate considering the existence of bubble nonlinear soft-
ening resonances as those observed in the case of water systems
[2,42]. In order to study this phenomenon for the case of highly
viscous fluids like SA85, we run simulations of the RðtÞ of a bubble
with R0 ¼ 8 lm and two distinct acoustic pressure amplitudes. In
one case we choose PAcjb ¼ 0:8 bar to excite the bubble in an
almost linear fashion (slightly below the Blake threshold) and
in the other PAcjb ¼ 1:5 bar (far beyond the Blake threshold). It
was numerically verified that all the simulated bubbles were shape
stable. The expansion ratio Rmax—R0ð Þ=R0 obtained from these sim-
ulations are shown in Fig. 1(b) for the frequency range between
10 kHz and 1 MHz. In contrast to the observed in water based sys-
tems, the bubble do not exhibit sharp resonance peaks in none of
the analyzed acoustic pressures. Except for a minor resonance peak
near f = 230 kHz, the amplitude of the bubble oscillations decay
monotonically with an increase in f. These phenomenon is closely
related to the fact that SA85 is 25 times more viscous than water
(hence the bubble behave more likely as a damped oscillator)
and it has almost twice the density (thus it has more inertia).

In cases where bi-frequency driving is used, the effect of the
harmonic component were examined by analyzing the shape of
experimental traces of the RðtÞ. Fig. 2 presents data traces taken
from similar bubbles (’R0) under comparable applied acoustic
pressures PLF

Acjb (low-frequency) and PHF
Ac jb (high-frequency) but

using in each case a different N in the bi-harmonic driving. The
bubble parameters were obtained from numerical fits performed
with the RPK model [29]. Fig. 2 shows the typical signature of each
harmonic in the RðtÞ and how the influence of PHF

Ac jb changes for
different N. The main differences with the reference case (N ¼ 0)
can be summarized as follows: (1) The duration of the bubble
expansion phase is visibly higher for lower harmonics. (2) Right
after the first bounce, the RðtÞ develops a series of fluctuations that
increase their frequency and decrease their amplitude as N grows.
(3) This undulatory pattern is also present during the bubble
expansion and in its maximum radius Rmax. The described pattern
tends to disappear as the frequency of the harmonic moves away
from f 0. Furthermore, there is a remarkable resemblance between
the RðtÞ measured with N ¼ 12 and the one taken with a single
frequency driving (N ¼ 0). The latter become more evident in
Fig. 3, which shows the root mean square difference of the RðtÞ’s
displayed in Fig. 2 relative to the case with N ¼ 0 (defined asR s
0 dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRðtÞjN � RðtÞj0Þ2

q
=ðsPHF

Ac Þ).
It is worth noting that the previous result imply an important

experimental application for the use bi-harmonic driving. That is
the possibility of using the effect of each frequency component of
PAc independently, as we have already done in the experiments
reported in Ref. [22] for an specific case where N ¼ 10;11 was
used. In the latter, PLF

Ac clearly dominated the bubble radial dynam-
ics (and consequently determined the diffusive, positional and
shape instabilities of the bubble), while PHF

Ac mainly suppressed
the spatial stability. Thus, the bubble can be fixed (and thus mea-
sured) through very high harmonic frequencies while its principal
dynamical characteristics can be controlled adjusting PLF

Ac .

Up to this point we have discussed the effect of PHF
Ac analyzing

only the role of the driving frequency. However, the relative phase
(ub) between the two components of PAcð~r; tÞ is another important
factor that has to be considered. It should be noted the difference
between ub and the relative phase between the components of
the electronic driving signal (defined as a). While a is what we
set externally in the customized signal generator system [26], the
relative phase ub refers to the acoustic pressure field that actually
affects the bubble. As detailed in Section 3.4, the original value of
the phase a can be distorted by numerous factors like: the elec-
tronic setup (amplifiers, filters, PZT, etc.), the changes in the acous-
tic impedance of the parts that form the resonator and also by the
bubble position [7] (among other things).

In the experimentswe observed that a variation in a changes the
bubble dynamics in a variety of aspects including the spatial stabil-
ity, the equilibrium position and the light intensity emitted by the
bubble. As beenpreviously reportedbyMoraga et al. [7] andKrefting
et al. [8], we also noticed that the changes took place smoothly and
were reversible, whichmeans that if a is varied from a certain value,
the bubble recovers its original behavior once a is restored. In Fig. 4
we exhibit an example of these facts through a series of photographs
showing thementioned changes encountered as awasmodified in a
full cycle. Itwas commontofindangular intervalswhere thebubbles
were not luminescent or they dissolve (e.g. in Fig. 4 from 240� to
310�), specially for low order harmonics (N ¼ 2—5).

The qualitative observations discussed in this sections moti-
vated the realization of a parametric study, to analyze not only
the bubble radial dynamics for different f, but also the effect of a
variation in the relative phase ub and the role of each frequency
component of the bi-harmonic driving on the hydrodynamic forces
acting on the bubble.
3.2. Positional instability

In sonoluminescence systems with SA85 the action of the Bjerk-
nes primary force imposes an upper limit in the low frequency



Fig. 2. Comparison of the normalized radius temporal evolution of argon sonoluminescent bubbles with similar R0, driven with comparable acoustic pressures but using
different high frequency harmonic components (Nf0) in the bi-frequency driving signal. The characteristic parameters of each bubble were obtained from the experimental
traces (circles) by means of a numerical fit (solid line).

Fig. 3. Root mean square difference of the RðtÞ’s displayed in Fig. 2 with respect to
the case with N ¼ 0. This quantity was averaged in a period (ss) of the LF driving
signal. Considering that each bubble have similar parameters (R0; P

LF
Ac jb; PHF

Ac jb) it is
clear how the bubble radius temporal evolution become more likely to the one with
single frequency driving as N grows. The computed relative error for the data points
included in this figure was around 2%.
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acoustic pressure that can be applied to the bubbles (i.e. PLF
AcjFb¼0).

This is actually an approximation since the threshold is determined
by all the hydrodynamic forces acting on the bubble, as been evi-
denced in Refs. [19,22,24]. Considering a cavitation bubble initially
located near the center of the resonator, the positional stability of
the bubbles can be classified in three typical situations:

1. PLF
Acj0 > PLF

AcjFb¼0: If the low frequency acoustic pressure at the

main antinode (PLF
Acj0) is beyond the positional instability

threshold, the bubble shifts its position away from the center
in order to maintain the balance of the hydrodynamic forces
affecting the bubble. This situation is clearly displayed in
Fig. 15.

2. PLF
Acj0 ’ PLF

AcjFb¼0: In this case, we set a LF pressure amplitude at

r ¼ 0 just on the positional stability threshold PLF
AcjFb¼0. As this

pressure produces a null value of the LF component of the hydro-

dynamic force acting on the bubble h~FLF
b ¼ 0i

� �
, the positional

stability of the bubble must be uniquely determined by h~FHF
b i.

3. PLF
Acj0 þ PHF

Ac j0 < PLF
AcjFb¼0: Here we adjust the pressure amplitudes

of both frequency components (LF and HF) in order to guarantee

the positional stability of the bubble h~FLF
b i þ h~FHF

b i
� �

< 0, for all

the harmonic frequencies used in the simulations. Hence, the
bubbles settled over the main antinode remained in an equilib-
rium state.

Taking the latter into account, a systematic numerical study on
the role of PHF

Ac in the positional instability of the sonoluminescent



Fig. 4. Photographs of SL argon bubbles in a pressure field composed of a fundamental frequency f 0 and its third harmonic 3 f 0 for different a. The images are the
monochrome negative of the original pictures taken with an exposure time of 333 ms. The bubbles recover they original behavior after the phase a was modified an entire
period of the HF component (360�).
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bubbles was made. This study was composed of a series of simula-
tions of the forces acting on the bubbles in all three experimental
scenarios described above, and using different harmonics applied
to the driving signal.
3.2.1. Simulations for different harmonics in the driving signal
The numerical research was fulfilled by analyzing the main

bubble parameters (PLF
Acjb; PHF

Ac jb;R0;Rmax=R0; _Rmax; Tmax; tc). The posi-
tional instability was also discussed taking into account the three
scenarios outlined in the previous section. In order to emulate
the experimental conditions and procedures, the simulations were
performed setting a fixed relative gas concentration dissolved in
the fluid (c1=c0) and assuming an acoustic pressure profile accord-
ing to a particular ‘‘breathing” mode in the spherical resonant
chamber. Thereby, only bubbles with dynamical parameters
R0; P

LF
Acjb and PHF

Ac jb over the selected isoconcentration curve were
considered, and thus the diffusive stability of the computed bub-
bles was guaranteed.

All the simulations were carried out under the assumption of a
complete translational stability of the bubbles, or a steady equilib-
rium paradigm. This means that the bubbles already passed its
initial transient behavior and are settled on a fixed point of space
[43,22]. It was also assumed a low gas concentration dissolved in
the SA85 (c1=c0 ¼ 5� 10�3), which allows us to rule out the poten-
tial formation of orbits or significant displacements of the bubble
[19]. Finally, the relative phase ub was fixed in 0� for all cases pre-
sented in the simulations of Figs. 7 and 8. In this way we can
ensure that any observed change must be a consequence of the
variation in the harmonic frequency only (and not ub).
The hydrodynamic forces affecting the bubble are: Bjerknes
primary force, Added mass force, History force, Drag force and
Buoyancy force. Because of the low values of c1=c0 (and R0) and
the presence of high frequencies in the driving signal, the influence

of the history force (~Fhist), the viscous drag force (~Fdrag) and the buoy-

ancy force (~Fgrav ) on the positional instability can be neglected

[19,20]. Consequently, only the primary Bjerknes force (~FBj) and

the added mass force (~Fam) were computed in the numerical
procedures.

Sonoluminescent bubbles reach a positional stable state when
the mean value of the net hydrodynamic force over a whole period
of the LF acoustic cycle takes a null value (i.e. when

h~Fbi ¼ h~FBji þ h~Fami ¼ 0), being:

h~FBji ¼ � 4p
3ss

Z
ss
ðRðtÞÞ3~rPAcð~r; tÞdt ð1Þ

h~Fami ¼ 2pql

3ss

Z
ss

d RðtÞ3 ~ulðtÞ �~vbðtÞð Þ
h i

dt
dt ð2Þ

where ss present one period of the LF component of the driving
signal, ql is the liquid density, and~ulðtÞ is the instantaneous velocity
of the liquid surrounding the bubble and ~ubðtÞ is the velocity of
displacement of the bubble.

First, we computed the acoustic pressure profile associated with
different spherical modes corresponding to distinct harmonics
N. Then, we traced a mesh of discrete equidistant points rb along
the resonator radius, where each position rb was referred to a
specific set of pressure amplitudes PLF

Acjb and PHF
Ac jb as shown in



Fig. 5. Study of the stability of argon bubbles in SA85 under bi-harmonic driving
(ub ¼ 0�), considering radially symmetric modes of the acoustic resonator. (a)
Pressure amplitude profile for a case where f 0 ¼ 29 kHz and N ¼ 11. (b) Phase space
diagram R0—rb according to the acoustic pressure profile displayed in (a). The thin
solid blue (black) line is the positional stability threshold (~Fb ¼ 0). This line delimits
the positionally stable region of the map (shaded in light blue (gray)) and the
positionally unstable region (uncolored). The solid line in light gray is the Rayleigh–
Taylor shape instability for the mode n ¼ 2. The dashed black line corresponds to
the parametric shape instability threshold. In the latter two curves, the stable
region is always below the lines, or outside the closed curves. The green (gray) solid
curves are the contours of constant Tmax (in units of kK) and the thin dotted curves
(black) are the contours of constant c1=c0. The thick solid red (dark gray) line
joining the circle and square markers indicates all the possible coordinate pairs in
the R0 where the bubbles are diffusively and shape stable for c1=c0 ¼ 5� 10�3. The
star marker indicates the equilibrium position of the bubble. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this article.)
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Fig. 5(a). Next, we simulated the bubble radius temporal evolution
(RðtÞ), iterating the value of the ambient radius R0 in some interval,
for each discretized bubble position rb. Only the values of rb linked
to pressures above the Blake threshold were computed.

The phase diagrams generated by parameters like R0—PAcjb or
R0—ub are widely used to summarize the characteristics and
stability of sonoluminescent bubbles [44,5,13,7,24,14,19]. In
Fig. 5(b) we introduce a new kind of parameter map generated
by the ambient radius R0 and the bubble radial position (from
now on rb). It is worth noting that in a spherical resonator, the
pressure amplitude profile associated with the first normal mode
is monotonically decreasing, therefore we were able to replace
the PAcjb axis by the radial coordinate r in the standard form of
an R0—PAcjb phase diagram. The main advantage of this type of
map is to give a clear idea of the spatial locations accessible by dif-
fusive stable bubbles with various sizes (R0), which in addition
favors the study of both, positional and shape instabilities. Further-
more, the R0—rb map can also include information about the max-
imum temperature reached by the bubbles or their collapse time. It
is important to note that in this alternative diagrams, such as that
presented in Fig. 5(b), each rb value is related to a different PHF

Ac jb
while ub is fixed to given value (in Fig. 5(b) ub ¼ 0�).

The first series of simulations was set up according to the cases
previously labeled as (1) and (2). In those, we computed several
R0—rb maps for a bi-frequency field composed by a fundamental
frequency f 0 ¼ 29 kHz and one of its harmonics defined between
the second and the fifteenth (N ¼ 2—15). For each discrete location

rb, we also calculated the net force (h~Fbi) acting on a bubble with its
ambient radius belonging to the curve with constant c1=c0 (red
line in Fig. 5(b)).

The integral that represents the mean value of the Bjerknes
force (ec. (1)) over an acoustic period (ss) can be divided into
two multiplicative terms. One has a spatial dependence given by
~rPAcð~rÞ, while the other is purely a function of time, being defined

as f Bj ¼
R
ss ðRðtÞÞ

3PAcðtÞdt [23]. Fig. 6 presents separate graphs of

this two terms (j~rPAcðrÞj and f Bj) along with the PAcðrÞ and the

mean value of the force h~FBji as a function of the radial distance
to the center of the acoustic chamber r, for the cases corresponding
to N ¼ 3 and N ¼ 12. The graphs in Fig. 6(a) and (b) correspond to
case (1) in which the acoustic pressure amplitudes were set to
PLF
Acj0 ¼ 2 bar and PHF

Ac j0 ¼ 1:5 bar. The figures clearly expose that
some regions (near r ¼ 0) are not accessible to the bubble (for
example the gray section of the curves in Fig. 6). Within these high
pressure regions, two things can occur to the bubbles. On one side,
the bubbles enlarge their R0 in order to attain diffusive stability,
leading them to their breakup under the action of shape instabili-

ties (see Fig. 5(b)). On the other side, the positive sign of h~FBji near
the pressure antinode indicates that an eventual bubble would be
repelled from that location. The graphs in Fig. 6(c) and (d) show a
similar numerical simulation carried out for the second experi-
mental scenario labeled as (2). Here we set the low frequency

acoustic pressure amplitude just at the threshold where h~FLF
b i

changes sign while PHF
Ac maintains the same value as in (1), that is

PLF
Acj0 ¼ 1:7 bar and PHF

Ac j0 ¼ 1:7 bar. In this situation (2) the posi-
tional stability of the bubbles located near the center of the res-

onator was mainly determined by h~FHF
b i, so there is more than

one equilibrium position (req) within the acoustic chamber. It is
important to note that req was defined in the locations where the

total force acting over the bubble takes a null value (h~FTotal
b i ¼ 0),

with negative slope to ensure an stable equilibrium (Fig. 6(d)).
Fig. 6 reveals that, regarding the positional stability, the ‘‘zone

of influence” of PHF
Ac is much lower than that of PLF

Ac . That is because
both pressure components have different decay rates as r is
increased. Considering a spherical acoustic chamber with radius
a and a liquid where the sound velocity is cs, the amplitude of
PHF
Ac decays as a

Npcs r, while PLF
Ac diminishes as a

pcs r. An example of this

can be found in Fig. 5(a), where the amplitude of PHF
Ac � PLF

Ac for
r > 3 mm. As a consequence, under the conditions stated in (1)
the high frequency component of the acoustic field have a minor
impact over the equilibrium position reached by the bubble (i.e.

h~FHF
b i � h~FLF

b i), being more relevant for the spatial stability (reduc-
ing the formation of pseudo-orbits).



Fig. 6. Spatial distribution of the hydrodynamics forces (Bjerknes force and added mass force) for diffusively stable argon bubbles (with c1=c0 ¼ 5� 10�3) in a spherical
resonator driven with f 0 ¼ 29 kHz and several harmonics (ub ¼ 0�). The gray lines represent regions where the bubbles can not exist due to the shape instability. In this
figure, the data points plotted for f Bj; FBj and Fam represent mean values, obtained integrating each force term in one period of the LF component of the bi-harmonic driving. (a)
Here the pressure amplitudes in r ¼ 0 mm were PLF

Ac j0 ¼ 2 bar, PHF
Ac j0 ¼ 1:5 bar, and the third harmonic of f 0 was used (N ¼ 3). (b) PLF

Ac j0 ¼ 2 bar and PHF
Ac j0 ¼ 1:5 bar. In this case

N ¼ 12. (c) PLF
Ac j0 ¼ PHF

Ac j0 ¼ 1:7 bar and N ¼ 3. (d) In this plot PLF
Ac j0 ¼ PHF

Ac j0 ¼ 1:7 bar and N ¼ 12.
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The module of the pressure gradient j~rPAcðrÞj is a significant

factor in the mean value of ~Fb, since it acts as a weighting factor
of the temporal parts of the computed forces f Bj and f Am. However,

there were cases with j~rPAcðrÞjN1
� j~rPAcðrÞjN2

(for N1 � N2), but

where the net force j~Fbj was greater for the lowest harmonic, being
this a consequence of how PHF

Ac modifies the RðtÞ in a different way
depending on the harmonic order used.

The characteristic physical parameters related to the equilib-
rium bubbles (located at distinct req), studied in the scenarios (1)
and (2), were compared in Fig. 7 for harmonics ranging from
N ¼ 2 to N ¼ 15. The figure includes PLF

Acjb; PHF
Ac jb;R0; _Rmax and Tmax.

In the cases where multiple equilibrium positions were found,
the closest req to r ¼ 0 was plotted. The simulated results exhibit
a convergence of the analyzed parameters towards those found
for the case with single frequency driving (N ¼ 0), according the
harmonic order was increased. This result was expected since, in
the case labeled as (1), the bubbles reach equilibrium positions
at radial distances req outside the influence zone of PHF

Ac for N P 6

(where PHF
Ac � PLF

Ac). For the second configuration (2) where

PLF
Acj0 ’ PLF

AcjFb¼0, the equilibrium position req slowly approaches the
resonator center (r ¼ 0) while the rest of the parameters present
the same converging behavior observed in (1) as N grows. Never-
theless, in case (2) the harmonic component effect on the bubble
parameters can be noted even for high order harmonics like
N ¼ 15, being this in agreement with the variation found for PHF

Ac jb.
So far we have explored two scenarios ((1) and (2)) where the

bubbles settle away from the main antinode, so the pressure
amplitudes from both frequency components vary for each one
of the bubbles analyzed. To conclude the present study on posi-
tional instability, we analyzed the remaining scenario designated

by (3). In this situation, both components (LF and HF) of ~Fb are
attractive to the antinode, hence the simulated bubbles are spa-
tially, positionally and diffusively stable at the main antinode for
all N. This implies that any observed change in the radial dynamics
of the bubbles, must be a direct consequence of PHF

Ac acting on the

RðtÞ, independently of the spatial term j~rPAcðrÞj.
In the simulations performed for scenario (3), relatively low

pressure amplitudes (PLF
Acj0 ¼ 1:45 bar and PHF

Ac j0 ¼ 0:25 bar) were
used in order to guarantee that the bubble would be trapped very
close to the resonator center (req ¼ 0:1 mm) for all N. A set of the
bubble parameters obtained from these numerical runs is shown



Fig. 7. Characteristic parameters related to the equilibrium bubbles simulated for a spherical bi-harmonic pressure field produced with a LF component (with f 0) besides
distinct frequencies (Nf0) set in the harmonic component. The fundamental frequency was set in f 0 ¼ 29 kHz, while N was varied between the second and the fifteenth
harmonic of f 0ðN ¼ 2—15Þ. The radial position of the bubbles req was determined where Fb ¼ 0 crossing with negative slope (see Fig. 6). The argon relative concentration were
c1=c0 ¼ 5� 10�3. In the fist subplot, the filled markers correspond to the values of PLF

Ac jb and the hollowmarkers represent PHF
Ac jb . The dotted horizontal lines indicates the value

of each parameter obtained for the case with single frequency driving (N ¼ 0).
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in Fig. 8. As found in scenarios (1) and (2), the results demonstrate
that when the HF component of the bi-harmonic driving has
harmonic frequencies far above f 0, it does not significantly modify
the bubble dynamics. Furthermore, as the harmonic frequency is
increased, the average value of PHF

Ac tends to zero when is integrated

within one period of PLF
Ac . These results have a great practical value

implication: the possibility to control the spatial instability
(through PHF

Ac ) and the bubble characteristics (RðtÞ) independently
(as we did in Ref. [22] for a case with N ¼ 11).

3.3. Effect of varying the relative phase ub

As we have shown through the photographs presented in Fig. 3,
a change in the relative phase of the driving signal (a) affects both,
the spatial and positional instabilities and the intensity of the
emitted light. In many cases, the bubble moves along the
azimuthal angle describing an arc segment. An example of this
can be seen in Fig. 9, which displays the coordinates of a SL bubble
whose position was tracked during a continuous sweep of a. This
kind of behavior indicates that the HF component can excite non
axisymmetric modes of the spherical resonator. In an finite thick-
ness wall acoustic chamber, the resonant frequencies correspond-
ing to radially symmetric modes (breathing modes) do not exactly
match the harmonic frequencies of f 0 [45]. Thus, in order to explain
the bubble positional excursions we must analyze the solution of
the HF component of the pressure field for a case without
azimuthal symmetry [27,46]:

PHF
Ac ðr; h;/; t;uÞ ¼ PHF

Ac j0 jlðklnrÞ eim h Pm
l ðcosð/ÞÞ eiðNx tþuÞ ð3Þ

It is worth noting that in the non-radially symmetric modes (where

m– 0), the gradient j~rPAcðr; h;/Þj has radial and also angular com-
ponents, which explains the bubble path displayed in Fig. 9.

As has been mentioned in Section 3.2.1, the Bjerkes force
depends on both spatial and temporal terms (i.e. the pressure



Fig. 8. Simulated characteristic parameters of equilibrium bubbles driven with different harmonics and located over the main pressure antinode (req ¼ 0:1 mm). Similarly to
the calculations in Fig. 7, c1=c0 ¼ 5� 10�3 and f 0 ¼ 29 kHz. The harmonic frequency component (given by Nf0) was varied between N ¼ 2 and N ¼ 15. In this case the
pressure amplitudes were adjusted to relatively low values to guarantee the positional stability of the bubble independently of which N is being used, hence PLF

Ac j0 ¼ 1:45 bar
and PHF

Ac j0 ¼ 0:25 bar. The bubble parameters become independent of the harmonic order at high N values. This is mainly because the fluctuations induced on the bubble radial
dynamics (RðtÞ) by the driving harmonic component turns to be negligible as they approaches to a linear regime.

Fig. 9. Experimental position of a single SL argon bubble as a function of the relative phase between the two components of the driving signal (a) generated with
f 0 ¼ 29:15 kHz and N ¼ 7. Here rb is the radial distance to the resonator center and hb the azimuthal angle. The value of a is relative to the high frequency component VHF

PZT .
There is a smooth displacement in the bubble position. The angular shift shows that in many cases VHF

PZT excites non spherical acoustic modes. The change in both radial and
angular coordinates can also imply an alteration in the RðtÞ and consequently in the hydrodynamic forces acting over the bubble.
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gradients and f Bj ¼
R
ss ðRðtÞÞ

3PAcðtÞdt). The phaseub only appears in

the temporal part of PHF
Ac , then a change in ub produces a direct

variation in PHF
Ac ðtÞ. However, it also induces a change in the RðtÞ

affecting not only f HFBj but f LFBj , in addition. Thus ub is a relevant
parameter, affecting all the forces involved in the positional insta-
bility. Since the impact of PHF

Ac on the RðtÞ of the bubbles becomes
less significant as Nf0 increases, we might expect that the response
of the system to changes in ub decays in the same proportion for
N � 1.

A more detailed analysis of the relation between the positional
instability and ub can be done by means of R0—ub phase diagrams
[5] as that presented in Fig. 10, computed for a bubble settled over
the main antinode of an acoustic field generated with f 0 ¼ 29 kHz
and N ¼ 5. The relative phase ub was defined as positive when the
high frequency was advanced with respect to the low frequency.
Fig. 10 was obtained using the same set of parameters as in
Fig. 8, which corresponds to the limit case (3) where the bubble

remains stabilized near r ¼ 0 (h~Fbi � 0). The results of the simula-
tion shown in Fig. 10 revealed the changes occurring in R0 and Tmax

whenub is modified. Moreover, it shows the existence of regions of
the R0—ub parameter space where the bubbles can not exist in a
stable fashion, being this in agreement with our observations in
the experiments (e.g. Figs. 4 and 9). According to R0—ub maps,
where higher N cases were computed, the unstable regions in the
maps were reduced to a series of narrow bands as N was increased.
3.3.1. Simulations varying ub for different values of N
The measurements discussed in the previous sections, were

complemented with simulations designed to numerically explore
the role of ub on the bubble radial dynamics for different harmon-
ics constituting the high-frequency component of the bi-harmonic
acoustic field. Here we used once again the scenario (3).

Following the same procedure applied in Section 3.2.1, we sim-
ulated bubbles with R0 belonging to the contour of constant rela-
tive gas concentration c1=c0 ¼ 5� 10�3, sweeping the relative
phase between 0� and 360� in regular steps (see Fig. 10). This
numerical scheme was repeated for harmonics ranging from
N ¼ 2 to N ¼ 15. We evaluated not only the characteristic bubble
Fig. 10. Phase diagram R0—ub for a spherical acoustic pressure field generated by f 0
and N ¼ 5. The coding of the map is the same used in Fig. 5(b). The pressure
amplitudes set in this simulation are taken from the case presented in Fig. 8
(rb ¼ 0:1 mm, PLF

Ac j0 ¼ 1:45 bar and PHF
Ac j0 ¼ 0:25 bar).
parameters (R0;Rmax; tc and Tmax) but also the mean value of the
force produced on the bubble by each frequency component (i.e.
~FLF
b and ~FHF

b ). The outcome of these simulations are displayed in
Fig. 11. This plot includes the maximum value, the minimum value
and the standard deviation (STD) found for each parameter,
obtained in an entire high frequency acoustic cycle (s=N). This
way of displaying the data emphasizes the fact that ub becomes
irrelevant as N is increased. On the other hand, the results also infer
that controlling ub may be a useful experimental technique to

confine the bubble (setting j~Fbj to be attractive) when low order
harmonics are used (e.g. N ¼ 2;3). Furthermore, Figs. 10 and 11
Fig. 11. Numerical simulations of the typical parameters of an argon bubble driven
with a bi-frequency driving, composed by a LF component (of frequency f 0) and a
HF component corresponding to a harmonic of f 0ðNf0Þ ranging from N ¼ 2 to
N ¼ 15. The bubble was located near the resonator center at req ¼ 0:1 mm. Here
c1=c0 ¼ 5� 10�3 and the fundamental frequency was f 0 ¼ 29 kHz. The relative
phase ub was iterated between 0� and 360� (that is a whole cycle of PHF

Ac ). The
pressure amplitudes were PLF

Ac j0 ¼ 1:45 bar and PHF
Ac j0 ¼ 0:25 bar. The dotted hori-

zontal lines represent the value of each parameter obtained for the case with single
frequency driving (N ¼ 0). The error bars are the standard deviation of the data
linked to each harmonic.
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show that a change in ub could produce an increase in the maxi-
mum temperature reached by the bubble during the collapse.
Fig. 13. Maximum bubble radius and low frequency component of the acoustic
pressure field as a function of the relative phase ub for experimental argon bubbles
driven using a distinct harmonic order N. (a) Rmax vs. ub . (b) P

LF
Ac jb vs. ub . Both plots

show the high degree of correlation between the parameters and how they decay as
ub is increased. In this figure, the relative error associated to each parameter was
DRmax ¼ 2%;DPLF

Ac jb ¼ 3% and Dub ¼ 2%.
3.4. Parametric analysis of experimental bubbles

In this section we present experimental data mainly composed
by series of measurements of the RðtÞ of non-moving (spatially
stabilized) argon SL bubbles subjected to various bi-frequency
drivings, generated with different harmonics Nf0 and several
driving phases a, besides fundamental frequency (f 0). Additionally,
we carried out extensive measurements of the collapse time tc of
moving (pseudo-orbits) SL bubbles in the case of Xe-SA85 system.

In order to generate experimental observations suitable to per-
form a straightforward comparison with the simulations shown in
Figs. 6–8, we would be able to know precisely and control the
acoustic field at the bubble position rb and the resonator center
(i.e. PLF

Acj0;b; PHF
Ac j0;b and ub). However, it is difficult to the bubble

acoustic environment without the measurement and subsequent
fitting of the bubble radius temporal evolution RðtÞ, as each
bi-harmonic driving can excite different radially and/or non-
radially symmetric HF modes (see Fig. 9). On the other hand, to
measure the RðtÞ by means of the Mie scattering technique, the
bubble must be fixed (without pseudo-orbital movement). More-
over, in SA85 the spatial stabilization of the SL bubbles requires a
fine tuning of VLF

PZT ;V
HF
PZT and ub [19]. Thus, this procedure prevent

us from developing a precise control on the bubble final position
and the values of the bubble physical parameters. As a conse-
quence, we were not able to experimentally reproduce the situa-
tions analyzed numerically in Figs. 8 and 11.

As an alternative approach, we opted to measure the RðtÞ of a
large number of spatially stabilized SL bubbles and then gather
information regarding the system behavior by means of statistical
tools (like STD or multivariate correlation analysis). Consequently,
we measured the bubble radius temporal evolution RðtÞ of spatially
fixed argon bubbles driven with different harmonics, and then
characterized them obtaining a series of parameters through
numerical fits. Specifically, these bubble parameters can be sum-
marized as follows: R0, the expansion ratio Rmax=R0; P

LF
Acjb; PHF

Ac jb,
the relative gas concentration c1=c0, the collapse time tc , the bub-
ble wall velocity _RðtÞ, the mechanical energy density
Fig. 12. Maximum bubble radius vs. collapse time for experimental argon bubbles
driven with distinct N and ub . The gray and black lines represent a linear fit of the
data taken with N 6 8 (without N ¼ 2) and N > 8 respectively. In both cases the
fitted slope was (6:3� 0:1) m/s. Remarkably, the data for N ¼ 2 have a different
trend from the rest od the data. The relative error obtained for Rmax was DRmax ¼ 2%,
while for the collapse time Dtc ¼ 0:05 ls.

Fig. 14. Normalized ratios between the standard deviation of PLF
Ac ; P

HF
Ac ; tc ;Rmax and rb ,

relative to the deviation found in ub for the measured SL bubbles driven with
distinct N. These statistical quantities point out how susceptible is a certain
parameter to changes in ub . Moreover, the high values found for the mean value of
the Pearson coefficient (close to the unity) indicate that there is a linear correlation
between the data displayed in the three upper graphs and the relative phase. The
decay observed in the normalized slope of the correlated quantities for higher
harmonics demonstrate that the influence of ub also decreases.



622 J.M. Rosselló et al. / Ultrasonics Sonochemistry 31 (2016) 610–625
PLF
Acjb ðRmax=R0Þ3, the maximum temperature of the gas/plasma

Tmax; f 0, the harmonic frequency Nf0 andub. In addition, we tracked
the bubble position in the acoustic chamber in pursuance of ana-
lyzing their positional stability. We measured more than 130 SL
bubbles driven with harmonics between N ¼ 2 and N ¼ 12
(approximately 13 RðtÞ per N). For each N, the external relative
phase a was varied in steps of 30�.

A multivariate analysis based on the covariance method [47]
was implemented to study the relation among the parameters
characterizing the SL bubbles. Particularly, we computed the Pear-
son’s correlation matrix (obtained from the sample covariance
matrix following Eq. (3.83) of Ref. [47]) and the spectral decompo-
sition of the sample covariance matrix in order to quantify the
degree of correlation and the slope corresponding to the linear
dependence for each parameter pair.

A strong correlation was found between the maximum radius
reached by the bubbles Rmax and the collapse time tc. As shown
in Fig. 12, this quantities were related by a linear dependence with
the same slope for all the harmonics (N). Remarkably, all the bub-
bles studied in this research exposed the same linear behavior as
that observed in the Rayleigh collapse of an empty cavity [42], con-
sidering the broad variety of driving conditions in which the cur-
rent bubbles were measured. Regarding to the Rayleigh case, the
calculated slope Rmax=tc for a pure inertial (undriven) collapse in
SA85 and a static pressure of P0 ¼ 925 mbar is 7.915 m/s, while
the linear fit applied to the data in Fig. 12 produced a slope of
(6:3� 0:1) m/s. In relation to the energy concentration reached
by the bubbles in the collapse, we found a correlation between
the maximum collapse velocity _Rmax, the maximum temperature

Tmax and the mechanical energy density PLF
Ac ðRmax=R0Þ3, being these

parameters proportional to each other. From the experiments, we
also detected that those three variables have a non linear relation
Fig. 15. Position and tc of SL bubbles in a Xe-SA85 system for a ramp in the low freque
driving frequency of f 0 ¼ 29 kHz. Both photographs were taken with an Iso level of 320
describing pseudo-orbits) SL bubble during the pressure ramp (single-frequency driving a
bubble during the pressure ramp (single-frequency driving and c1=c0 < 10�3 [27]). (c) Evo
value of PLF

Ac j0 in the ramps was the minimum pressure in which the bubble get positio
c1=c0 � 12:10�3.
with the relative gas concentration c1=c0, in agreement with the
reported in Ref. [21] for bubbles with different P0. The results show
that SL bubbles achieve violent and hotter collapses as the amount
of gas inside the bubble is decreased, in agreement with the results
in Ref. [19].

The correlation analysis also revealed that the relative phase ub

is closely related to important parameters like Rmax; Tmax;Rmax=R0; tc
and the acoustic pressure PLF

Ac . It was remarkable to find that these
parameters always decrease as ub increases, as shown if Fig. 13 for

Rmax and PLF
Ac . Since we were not able to explore a whole cycle fo the

HF driving component in any of the studied cases, we did not
observe a periodic dependence of the aforecited parameters on
ub as it was reported for positionally stable bubbles in Ar–Water
systems in Ref. [8]. The experimental results show a clustering in
the values found for the relative phase ub. These values were con-
fined within intervals with widths of 40� to 100� depending on the
harmonic order N (see Fig. 13). The latter agrees with the simula-
tion depicted in Fig. 10 which shows that the bubbles can not exist
in a stable fashion for all the values of ub (uncolored regions) and
also the trials presented in Fig. 2. The role of the positional instabil-
ity in the definition of the bubble equilibrium parameter values
must be taken into account to give a proper explanation of this
phenomenon, considering the case of acoustic pressure profiles
with radial and also angular dependencies.

Regarding to the spatial distribution of the bubbles in the
acoustic chamber, they were grouped in clusters, whose extent
changed according to which harmonic frequency was used. This
fact reinforces the idea that the acoustic field is not axisymmetric.

As a way to estimate how sensitive was each parameter to
changes in ub, we computed the ratio between the STD of each
variable and the STD found for ub. This fluctuation analysis can
be useful in cases like this, where some of the variables are related
ncy driving amplitude VLF
PZT ðPLF

Ac j0Þ and VHF
PZT ’ 80 Vrms. Here we used a fundamental

0 and 30 s of exposure time. (a) Typical behavior of a moving (spatially unstable;
nd c1=c0 > 10�3 [27]). (b) Typical displacement of a spatially fixed (non-moving) SL
lution of the collapse time for two bubbles driven with N ¼ 2 and N ¼ 11. The initial
nally unstable (close to the Bjerknes frontier). The relative gas concentration was



Fig. 16. Mean collapse time (tc) as a function of the harmonic order (N) used in the
bi-frequency driving. The data were taken applying two different experimental
methods and using two distinct noble gases. The error bars represent the standard
deviation of the data. (a) This experimental data was taken using xenon gas with a
concentration of c1=c0 � 12:10�3 dissolved in the SA. The experimental data is the
average of seven traces taken during pressure ramps (as shown in Fig. 15) setting
different values of a with 60� of separation in each measurement. In all cases we
used a driving frequency of f 0 ¼ 29 kHz and similar values of VHF

PZT (just below the
cavitation threshold). The error bars indicate the mean standard deviation of the
data. (b) Collapse time of argon bubbles obtained from the numerical fits of the
series of RðtÞ measured under random conditions for different values of N (see
Fig. 2). The mean c1=c0 was �12:10�3.
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in a highly non linear fashion and the correlation analysis fails.
Fig. 14 presents values for the STD ratio of PLF

Ac; P
HF
Ac ; tc;Rmax and rb

relative to the deviation inub for SL bubbles driven with a different
high-frequency component (Nf0) applied in the bi-harmonic driv-
ing. The parameters that presented a little spread compared to that
observed in ub, must have a negligible dependence on the relative
phase. In particular, the positional stability of the bubbles was ana-
lyzed in Fig. 14(a). In this figure, the spread in the bubble position
rb was compared with a product of the STD of PLF

Ac and STD of ub,
being those the most relevant parameters regarding to the modifi-
cation of the bubbles equilibrium position (as shown in Figs. 9 and
15). As shown in Fig. 14(a), the third harmonic pulls the SL bubble
toward the center of the resonator whereas the opposite behavior
(repulsive) was observed for N ¼ 2 and N ¼ 5.

The dependence among the measured bubble parameters was
also analyzed by means of the Pearson’s product–moment correla-
tion coefficient. This coefficient together with the correlation slope,
computed from the largest eigenvalue of the sample covariance
matrix, quantify the degree of linear dependence between the
parameters taken in pairs. It was found, that many parameter pairs
have Pearson’s coefficient with values close to the unity, indicating
a strong linear correlation between the data points. Some examples
of those measurements are shown in the subplots (b)–(d) of Fig. 14.
In this figure, the decay observed in the STD ratio and the normal-
ized slope of the correlated quantities for higher harmonics, is in
agreement with the numerical simulations, showing that the rela-
tive phase becomes irrelevant to the bubble radial dynamics as the
harmonic frequency augments. In particular, it is worth noting that
despite of the regular spread and the lack of correlation observed
between PHF

Ac jb and ub for all N, the LF acoustic pressure PLF
Acjb did

not vary considerably for higher harmonics, then the HF compo-
nent has little influence on the Bjerknes frontier in those cases.

The linear correlation found between tc and many relevant bub-
ble parameters makes it an ideal control variable to characterize
the system, since it can be directly measured for moving and
non-moving SL bubbles without the requirement of fitting the bub-
ble radius temporal evolution RðtÞ. Therefore, we carried out mea-
surements of tc employing a different and independent
experimental method. The main advantage of this alternative
system rely on its increased statistical weight and the fact that tc
is measured directly from the bubble flashes and the MIC signal
using a timer. In this experiment we used xenon gas dissolved in
the liquid (c1=c0 � 12:10�3) in order to enhance the emitted light
intensity allowing us to capture flashes from a bubble in its dim-
mer state. The measurements were taken following the same pro-
cedure applied in Ref. [19], that is, acquiring an important number
of samples of tc (over 20,000 values) during a pressure ramp
applied to the resonator containing a single SL bubble. Here we
repeated this method seven times for each bi-harmonic driving
constituted by high-frequency components (Nf0) ranging from
N = 2 and N = 12, varying the external phase ub in 60� for one ramp
to another. It is important to note that not only the pressure ampli-
tude is modified during the ramps but also the relative phase of the
acoustic field. Thus, this measuring protocol allows us to cover a
wide range of possible values of ub that were attainable in the
experiment. The initial value of PLF

Acj0 in the ramps was defined as
the minimum pressure in which the bubble got positionally unsta-
ble (close to the Bjerknes frontier). As the pressure was increased,
the bubble average position shifted outward the resonator center
in order to conserve the equilibrium of forces [24,22]. Fig. 15 shows
the typical behavior of a moving (spatially unstable) SL bubble
(Fig. 15) and the displacement of a non-moving SL bubble
(Fig. 15(b)) during the pressure ramps. These two experimental
situations, obtained in the Xe-SA85 system using two different
dissolved gas concentrations and a single-frequency driving [19],
were reproduced here using two different bi-harmonic drivings
and the same c1=c0 � 12:10�3. The ripples in tc displayed in
Fig. 15(c) were directly related to the spatial stability of the bub-
bles, which depends on both ub and PHF

Ac j0. In this example, the evo-
lution of the collapse time for a bubble driven with N ¼ 2
evidences an undulatory pattern whose frequency and amplitude
are consistent with the orbits described by the SL bubble, contrar-
ily to the observed for the case with N ¼ 11 where the bubble was
spatially stabilized (without pseudo-orbits). On the other hand, the
discontinuities (jumps) exhibited in the curves of Fig. 15(c) are
related with the sudden displacements of the SL bubble during
the pressure ramp [19].

Fig. 16(a) presents a summary of the measurements of the aver-
aged tc values made employing distinct harmonics in the Xe-SA85
system. In this figure, the spread in tc found for each N, is given by
the standard deviation together with the difference between its
maximum and minimum. It is worth noting that both quantities
are determined not only by the sweep in ub but also the ramp in
PLF
Acj0. Then, considering that the range pressure amplitudes applied

in each case (i.e. using different harmonics in the HF component of
the bi-frequency driving signal) were very similar, and the value of
tc is dominated by the LF component of the acoustic field, is
expectable to find equivalent spreads in tc for all harmonic orders
N. These results were compared with the ones obtained from the
fitted RðtÞ corresponding to SL bubbles in the Ar-SA85 system
(Fig. 16(b)). The experimental data acquired by both methods have
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shown how the mean value of the collapse time was greater for the
lower harmonics and tended progressively to the value obtained
with single frequency driving as N was increased, being this in
agreement with the simulation described in Fig. 11 and the exper-
imental results reported in Fig. 5 of Ref. [19].

4. Conclusions

In this work, we performed an extensive parametric study in
order to achieve a deeper understanding about the role of the high
frequency component of the acoustic field in the dynamics of sono-
luminescent bubbles driven with bi-harmonic signals in H2SO4,
specifically in a Ar–SA85 or Xe–SA85 systems.

The diversity of data gathered during this research, consisting of
both experimental results and numerical simulations, let us ana-
lyze the phenomenon under discussion from a general perspective.
This kind of study allowed us to further understand not only the
many advantages of the use of multi-harmonic driving in Sonolu-
minescence, but also some unexplored corners of the bubble
dynamics itself like the absence of sharp resonances peaks in the
expansion ratio (observed in Fig. 1(b)), for typical acoustic pres-
sures used in Sonoluminescence in the case of SA85, in contrast
to that reported in water based systems.

Regarding to the positional instability, a numerical study of the
physical parameters achieved by bubbles at equilibrium was car-
ried out for cases using harmonic frequencies (Nf0) ranging from
N ¼ 2 to N ¼ 15. These simulations were related to three prototyp-
ical situation ((1)–(3)) classified according to the pressure ampli-
tude of PLF

Ac and PHF
Ac in the resonator center. As shown in Fig. 7,

for scenarios (1) and (2) the bubbles settled in different equilib-
rium positions req away from the main antinode depending on

which harmonic frequency component (Nf0) was added to PLF
Ac ,

while for the remaining scenario (3) both components of ~Fb are
attractive to the antinode for all N. In (1) and (2) the bubbles got
closer to r ¼ 0 for higher values of N. Consequently, the use of high
frequencies driving improves the positional stability compared to
cases with low order harmonics (e.g. N ¼ 2;3). When the bubbles
were already stabilized over the pressure antinode as in (3), the
changes in their radial dynamics were independent of the specific
pressure profile generated by the particular mode being excited.
Still for those cases, the simulated results displayed in Fig. 8 show
a convergence of all the analyzed parameters towards the ones
obtained with single frequency driving (N ¼ 0) as the harmonic
order was increased.

A variation in ub changed the bubble dynamics in relevant
aspects like the spatial stability, the equilibrium position and the
light intensity emitted by the bubble. Moreover, the existence of
regions of the R0—ub parameter space where the bubbles can not
‘‘survive” due to the shape or positional instabilities, was demon-
strated experimentally in Fig. 3 and also through calculus in Figs. 5,
6 and 10. Regarding to the positional stability, the effect of the rel-
ative phase on the behavior of the bubbles decreases significantly
according N increases (see Figs. 11, 14 and 16).

The presence of PHF
Ac in the acoustic pressure field inhibited the

bubble dissolution with respect to the case with single frequency
driving, while additionally promoted the generation of multiple
bubbles by acoustic cavitation.

On the other hand, the effect of the HF component on the bub-
ble radial dynamics was also examined experimentally. Initially,
the shape of several measured traces of the RðtÞ was analyzed. A
remarkable resemblance between the RðtÞ taken with N ¼ 0 and
the ones measured with biharmonic driving, was observed as har-
monic order N was increased (Fig. 3).

The parametric analysis of the experimental data confirmed all
the conclusions derived from the numerical simulations. Further-
more, the multivariate analysis pointed out the existence of many
dependencies among the characteristic parameters involved in the
dynamics of SL bubbles. In particular, the correlation found
between tc and some important bubble parameters like
Rmax=R0;ub and PLF

Ac revealed that the collapse time is a proper
parameter to characterize SL systems. All the experimental results
gathered in this work, composed by numerical fits of numerous
RðtÞ and direct measurements of the collapse time of argon and
xenon bubbles indicated that, regardless of the bubble position
or the concentration of gas dissolved in the liquid, the HF compo-
nent of the acoustic field has a relevant impact on the SL bubbles,
only by reducing the effect of the spatial instability as its frequency
moves away from the fundamental.

This research has shown that each frequency component of a
biharmonic acoustic field can be used in an uncoupled fashion to
produce different effects on the SL bubbles. For example, PLF

Ac can
be used to regulate the diffusive, positional and shape stability,
while suppressing the spatial stability (reducing the pseudo-
orbits) through PHF

Ac , by setting harmonics with N � 1. On the other
hand, controlling ub may be a useful experimental technique to

confine the bubble (handling j~Fbj to be attractive) when low order
harmonics are used (e.g. N ¼ 2;3). Moreover, this could be useful
to increase the maximum temperature reached by the bubble in
its collapse.
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