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An approach based on the Green function and the Born
approximation is used for impulsive radio ultra-wideband
(UWB) microwave imaging, in which a permittivity map of
the illuminated scenario is estimated using the scattered fields
measured at several positions. Two algorithms are applied to
this model and compared: the first one solves the inversion
problem using a linear operator. The second one is based on
the Bayesian compressive sensing (BCS) technique, where the
sparseness of the contrast function is introduced as a priori
knowledge in order to improve the inverse mapping. In order
to compare both methods, measurements in real scenarios are
taken using an UWB radar prototype. The results with real
measurements illustrate that, for the considered scenarios, the
BCS imaging algorithm has a better performance in terms of
range and cross-range resolution allowing object detection and
shape reconstruction, with a reduced computational burden, and
fewer space and frequency measurements, as compared to the
linear operator.

Introduction: Microwave imaging techniques using UWB signals
have been widely studied in recent years due to the various
applications in different fields, such as breast cancer detection [1],
SAR image classification [2], ground penetrating radars systems
[3], and material sample characterization [4]. However, inverse
microwave imaging problems are intrinsically challenging due to
their non-linear nature and ill-posedness [5], and algorithms are
in continuously developing. Different approaches have been used
for building qualitative and quantitative microwave images. In the
former, the objective is to detect changes in the permittivity map
without trying to obtain the true value of permittivity of the
target. For these cases, linear problems can be formulated and
solved using several techniques as diffraction summation and F-
K migration. Furthermore, linearization methods of the non-linear
equations resulting from the scattering theory using the Born
approximation and the Green function are well-established first
principles models [6].

In the case of quantitative microwave images, it is expected to
estimate the true value of the permittivity map and typically,
the non-linear problem has to be solved. For example, this is
the case of the contrast-source formulation, which is based on an
iterative method. In this paper we are interested in detecting the
location and shape of metallic and dielectric objects, which finds
several applications [7–9]. Therefore, we follow the first approach
to estimate a qualitative microwave image using a model based on
the Born approximation (BA).

Additionally, to improve the conditioning of the problem, the use
of schemes which take advantage of a priori information helps to
increase the robustness of the solutions and the overall performance
of the estimators. Also, typical inversion schemes require the
acquisition and storage of a large number of measurements over the
region of interest. This is costly and involved, so the development
of schemes which achieve a good performance with a small set
of measurements is of interest in most practical scenarios. In this
context, compressive sensing (CS) techniques have been applied
to the inverse problem at hand where the signal to be estimated
is sparse in some basis. An interesting approach is the Bayesian
compressive sensing (BCS) framework [10, 11], which has been
applied to inverse problems showing promising results. However,
in most works in the literature, its performance is evaluated using
synthetic data in 2-D scenarios [12,13].

In this work, we employ a BCS algorithm for object detection
and shape reconstruction. We evaluate its performance in 3-
D scenarios with experimental data, where conditions are more
adverse due to non-linearity, noise and jitter in the electronic
devices, interference from sources outside of the experiment, and
non-desired echoes produced by scatterers other than the targets.
The physical model that we use is strictly valid for scenarios

with cylindrical symmetry. Despite that in practical scenarios
this assumption is clearly not satisfied, we show that the model
allows to obtain good performance tomographic images of the
permittivity map. We compare the performance of the BCS
algorithm with a reconstruction technique, frequently used in the
literature [9, 14], which uses the adjoint operator (AO) that maps
the contrast function into the measured scatter fields (under the
Born approximation). Different targets are tested in order to show
the capacity of the BCS imaging algorithm to detect the presence
of the object and estimate its geometric shape.

This work is organized as follows. First we present the model and
the AO algorithm. Second, we apply the BCS algorithm to obtain
the microwave image. Then, we present the results, and finally,
draw the main conclusions.

Problem Formulation: Let us consider the scenario sketched in Fig.
1, where a single-input single-output configuration is used to obtain
a tomographic image (over the xz−plane for a fixed y0) of the
observation domain Dobs = {r= (x, z) : z < 0}. Assume that the
transmitting and receiving antennas are located at Na positions
rrn = (xrn, z0) and rtn = (xtn, z0), respectively, where the center
position of the Tx-Rx system xcn = xtn+xrn

2 is moved in the interval
[xmin, xmax] and z0 = 0. We consider the common offset acquisition
method, where the distance between the Tx and Rx antennas is
fixed. The system has −10 dB bandwidth B = [fmin, fmax], which
is divided in Mf bins. We consider scenarios without interface,
although it is straightforward to extend the results to scenarios
with multiple layers given that we only have to recompute the
Green function [15]. The observation domain is illuminated by the

(a) (b)

Fig. 1 (a) Schematic representation of the setup, and (b)
experimental setup for Scenario 1.

incident electric field Einc, generated by the transmitting antenna
Tx. The interaction of Einc with the scatterers produces the
scattered electric field Es. The total electric field is Etot =Einc +
Es. Under the assumption thatEinc has a linear polarization in the
y component, i.e, Einc =Einc ŷ, and that the observation domain
has cylindrical symmetry (with an arbitrary section) also through
the y component, the Green function, which is the impulse response
of the system, is a scalar function (instead of a tensor). In fact, this
is the case if we consider as an excitation a 3-D line source directed
in the y direction. Under these hypotheses and using the BA for
weak scatterers [5], where the total electric field is approximated
by the incident field, the scattered electric field measured at rrn
for a fixed wave number k can be written as

Es(rrn, k) = k2∫
Dobs

∆εt(r)Einc(r, rtn, k)g(rrn, r, k)dr, (1)

where r represents the different positions of the scenario under
investigation, Einc(r, rtn, k) = ıη0kP (k)g(r, rtn, k) is the incident
field produced by the source at position rtn and measured at r,
η0 is the intrinsic impedance of free space (≈ 377Ω), and P (k) is
the Fourier transform of the pulse transmitted by the Tx. The
wave number k is related to the frequency f in Hertz through the
equation k= 2πf/c, where c is the speed of light in free space. For
the homogeneous case under consideration (without considering
the target), g(rrn, r, k) = ı

4H
(2)
0 (k‖r − rrn‖) is the scalar Green

function, where H(2)
0 is the Hankel function of second kind and

order 01. Finally, ∆εt = εrt(r)− εrb is the contrast function, where
in this case the background relative permittivity is εrb = 1 and εrt

1 The time harmonic convention exp(ı2πft) is used here.
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is the relative permittivity of the target. Note that ∆εt is non-zero
only in the target position.

Equation (1) can be expressed by a linear operator applied to
the contrast function. Then the microwave image can be obtained
using its adjoint operator applied to the measured scattered electric
field [14,15] as:

∆̂εr(r) =−ıη0

∫kmax

kmin

dkP (k)k3
∫xmax

xmin

dxcn g
∗(rrn, r, k)

×g∗(rrn, r, k)Es(rrn, k), (2)

where the limits of the outer integral are kmin/max = 2π
c fmin/max,

and ∗ means complex conjugate.
Discrete Model for BCS In order to obtain a solution for (1),

the domain is discretized using a basis of indicator functions, i.e.,

θn(r) =
{

1 si r∈Dn,
0 si r /∈Dn, n= 1, ..., N (3)

where Dobs is divided in N pixels and Dn is the n-th pixel. Then,
the contrast function is approximated by a piecewise 2-D constant
function

∆εr(r)'
∑N

n=1 wn θ
n(r), (4)

and we obtain a matrix formulation of the problem,

Es = Gw,

where the elements of w∈CN , G∈CMfNa×N and Es ∈CMfNa are,
respectively, (w)j =wj , (Es)l =Es(rrj , kq) and

(G)l,n = ıη0k
3
qP (kq)

∫
Dn g(r, rtj , kq)g(rrj , r, kq)θn(r)dr, (5)

with l= q + (j − 1)Mf , 1≤ j ≤Na, 1≤ q≤Mf , 1≤ n≤N . This
means that for the position of each Tx-Rx pair there are Mf wave
number (frequency) samples, where kq is the wave number a the
center of the q−th bin.

Bayesian Compressive Sensing: We consider the case where the
measurements of the electric field are noisy, and the noise is zero-
mean white normally distributed with variance σ2, i.e,

Es = Gw + N, N∼N (0, σ2I), (6)

where I is the identity matrix of size MfNa ×MfNa. This
equation defines a linear problem for estimating w from Es. In
scenarios where the size of the target is much smaller than the
observation domain2, the contrast function defined in the previous
section is a sparse signal, meaning that only a few components of
w are different from zero. Then, a compressive sensing approach
can be used. In particular, we used the BCS approach, which is a
framework where a compressive sampling approach is used. In other
words, the measurements are obtained as a linear combination of
the projection of the signal Gw onto a random basis. We define
the sensing matrix Ψ∈ {0, 1}Ns×MfNa as a selection matrix, i.e. a
matrix with orthogonal rows and a unique non-zero component in
each row with value 1, which selects Ns components of Es:

t = ΨEs = Φw + N, Φ = ΨG. (7)

An advantage of using a probabilistic framework is that it is not
required to satisfy the restricted isometry property (RIP) on the
Φ matrix. The image problem using BCS is formulated as follows:
given the measurements t, obtain

ŵ = arg max
w

p(w|t) (8)

where p(w|t) is the a posteriori density function. Following [16],
a closed-form solution to this problem can be obtained
if p(w|t) =

∫
p(w|t,α, σ2)p(α, σ2|t)dαdσ2 ≈ p(w|t,αMP, σ

2
MP) =

N (µ,Σ), where µ= σ−2ΣΦT t, Σ = (σ−2ΦTΦ + A)−1, and A =
diag(α1, ..., αN ) is a diagonal matrix. Thus, the problem (8) has
solution ŵ =µ, and the so-called hyper-parameters αMP and σ2

MP
are computed as in [16], and the image is constructed using (4).

2 In other scenarios one typically can find an adequate basis
to explain w through few coefficients.

Results: In order to evaluate the advantages of the BCS algorithm
compared to the direct inversion technique in Eq. (2), we measured
different targets in air: a metallic cylinder and a tank with water.
We use an impulsive UWB radar to acquire the time-domain
measurements of the electric field atNa positions in the x-direction.
The antennas are only moved in a linear motion in front of the
target to mimic scenarios in which the target is embedded in a
material which is only accessible from one side.

The scattered electric field is needed as an input to the
algorithms (Eqs. (2) and (7)). In order to obtain it, the incident
electric field Einc is measured without the target and then it is
subtracted from each measurement. As we need the signal in the
frequency domain, we use the FFT to transform each time-trace.

The size of the pixels Dn is 2 cm× 1 cm. This value was selected
as a trade-off between computation time of the algorithm and good
resolution of the reconstructed targets. The observation domain
for the first experiment is xmax − xmin = 2.2 m, with measurement
steps of 5 cm for the position of Tx and Rx resulting Na = 41. For
the others scenarios, the length of the domain is xmax − xmin =
1.1 m, with the same step and Na = 21.

A custom test-bed hardware was built using off-the-shelf
components. A field programmable gate array (FPGA) is used to
generate a train of narrow pulses which is then upconverted to
the carrier frequency fc = 1.9GHz, amplified and then transmitted.
The receiver architecture is composed of a low-noise amplifier, a
bandpass filter and a single-stage zero-frequency I/Q demodulator.
After the conversion to baseband, the I and Q signals are amplified
via a high linearity differential driver amplifier which feeds a high
speed dual channel analog-to-digital converter (ADC), operating
with a sampling frequency fs = 1.8GS/s. A real-time sampling
strategy was used for this prototype, mainly for reasons of
availability, but an equivalent-time sampling strategy could also
be used to achieve a substantial reduction in hardware costs. The
ADC is controlled by the same FPGA which is used to generate
the pulses, which allows for an easy synchronization between the
transmitted pulses and the receiver. The FPGA will generate a
pulse train composed of Np = 91 pulses, with a pulse period of
Ts = 100ns. At the receiver, the scattered pulses will be coherently
combined to obtain an increase in the signal to interference and
noise ratio (SINR) of the received signal.

The antennas are printed elliptical monopole antennas [17],
which have the advantage of being low-cost, simple to design,
compact and planar. One of their disadvantages is that their
radiation pattern is not very directional. In order to improve their
directionality, a square reflector of side 160mm (the wavelength at
the central frequency of 1.9GHz) was placed behind each antenna
at a distance of 39mm (a quarter wavelength at the antenna
central frequency). The two antennas were placed side-by-side, and,
in order to reduce their mutual coupling, a conductive reflector
was placed between the two. The horizontal separation between
the antennas was chosen to be 200mm. A single antenna with
its reflector has an azimuth 3dB beam width of 80o, and an
elevation beam width of approximately 110o. The antennas are
linearly polarized in the vertical direction and their boresight gain
is approximately 10dB. The antenna setup can be seen in Fig. 1(a).

The resolution of the image is limited by the hardware
(bandwidth), the antenna characteristics (central frequency,
fundamentally), and the setup configuration, and can be analyzed
through the point spread function (PSF). The resolution in the
x and z direction are δx≈ c

fc
= 15.8 cm and δz = c

B = 30 cm,
respectively.

Scenario 1: Metallic cylinder. The first experiment was done
using a metallic cylinder with a diameter of 6cm and a height
of 70cm as a target. Its position in the (x, z) plane (using the
coordinate system of Fig. 1(a)) was rt = (1.1 m,−42.7 cm). The
experimental setup is shown in Fig. 1(b). For the BCS algorithm,
a random sampling both in space and frequency was used: 10 pairs
of Tx/Rx positions and 10 frequency bins were selected from a total
number of 41 positions and 100 frequency bins. So, for BCS only a
25% of spatial measurements were used and 10% of the frequencies.
The results obtained using both AO and BCS algorithms are shown
in Figs. 2(a) and 2(b) respectively. In both cases, the black circle
represents the true target. The scale is normalized with respect
to the absolute maximum. The position and size of the cylinder
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are successfully estimated using both algorithms. Although the
weak scattering hypothesis in the BA fails due to a high contrast
target, the model is still valid for estimating its geometry. This can
be explained by noting that the support of the contrast source
that generates the scattered electric field is the same for both
the incident electric field and the total electric field. Note also
that the BCS algorithm achieves much better resolution than the
OA algorithm, especially in the range (z) direction, improving
the resolution predicted by the PSF analysis. Additionally, this
experiment allows us to validate the use of the 3-D model with
cylindrical symmetry in this scenario, in spite of the extension of
the metallic cylinder finite and the transmitting antenna is not a
line source but a linear polarized finite-size directional antenna,
with the target centered respect to it in the y direction.

(a) (b)
Fig. 2. Scenario 1: metallic cylinder. (a) AO and (b) BCS.

Scenario 2: water tank. In this case, the target was a plastic
tank filled with water (εrt ≈ 80), with the shape of a rectangular
prism; its width, height and depth are 22.8 cm× 32.5 cm× 3.2 cm,
respectively. The position was r= (0.55 m,−42.7 cm). In Fig. 3(a)
the reconstruction with the AO algorithm is shown while Fig. 3(b)
corresponds to the BCS algorithm. For BCS, 10 Tx/Rx (50%) were
used and the number of frequencies bins is 10 (10% of the total).

(a) (b)
Fig. 3. Scenario 2: water tank. (a) AO and (b) BCS

In this case, the target has a rectangular shape whose perimeter
is shown in the figure with a black line. Similar to the previous
experiment, the advantage that BCS presents with respect to the
AO is the increased spatial resolution, allowing in this case to
estimate the frontal shape of the target with more precision.

Scenario 3: rotated water tank. In this scenario the same tank of
Scenario 2 was used, but rotated approximately 10◦ with respect
to the antennas, as shown in Fig. 4(a). The position was r=
(0.55 m,−42.7 cm). For the BCS algorithm, 15 random positions
for Tx/Rx and 50 frequencies bins were taken.

(a) (b)
Fig. 4. Scenario 3: rotated water tank. (a) AO and (b) BCS.

From Fig. 4(a) it is clear that the AO algorithm detects the
position but does not manage to estimate accurately neither the
rotation nor the shape. On the other hand, the performance of the
BCS algorithm is better, as it estimates well the position, allows to
see the rotation of the target and permits to reconstruct, at least
partially, the front of its shape (see Fig. 4(b)).

Conclusions: In this paper we evaluated two microwave imaging
algorithms with experimental data obtained with a impulsive UWB

radar test-bed in different scenarios. From the experiments we draw
the following conclusions: i) For point targets, like Scenario 1,
or moderately complex scenarios such as the rotated water tank
of Scenario 3, both algorithms detect the position of the targets
but BCS is able to detect the shape of the target better. ii) The
number of measurements when using BCS can be substantially
reduced, but not with the adjoint operator. This allows to reduce
the complexity of measurement system, the time taken to perform
the measurements, and the processing time of the algorithm. iii)
The spatial resolution is improved with the BCS algorithm given
that better discrimination is obtained. iv) The 2-D physical model
is a good model for a practical 3-D scenarios when a tomographic
microwave image is required. Although in real scenarios as the
examined here the hypothesis of cylindrical symmetry of the target
does not hold, the algorithms perform well as they can detect the
position and shape of the targets.
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