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Abstract
We evaluated the toxicity of the winery effluent and the efficiency of a symbiotic depuration system by means an experiment
with Rhinella arenarum tadpoles. The studied effluent was taken from warehouses during the cleaning season. These
effluents subsequently subjected to the purification treatment under evaluation. The effluent samples differentiated into two
treatment levels: “raw” where the effluent was evaluated with field conditions and “treated” where the effluent was
previously filtered with the symbiotic depuration system. The results of the bioassays compared with the physicochemical
parameters determined in the effluent samples. The lethal response had a clear-cut correspondence with the effluent quality
assessed utilizing physicochemical parameters. In all cases, dilution of the samples resulted in a significant reduction of their
toxicity. It concluded that (a) winery effluents could be harmful to tadpoles of R. arenarum, (b) the symbiotic purification
system used to treat wine effluents it would produce a significant reduction in the contaminant levels of the effluent.
However, this reduction in contaminant levels does not provide sufficient safety for the release of the effluents into the
environment.
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Introduction

Viticulture is one of the basic economic activities of many
regions of Argentina and the world (Fernández Portela
2013). Effluents are generated during the processing of the
grape (Bustamante et al. 2005), with around 1.5 l of
industrial effluents for each liter of wine made (Crites and
Tchobanoglous 2000). On many occasions, reuse of these
discharges for irrigation has considered; however, their high

content of organic matter makes prior treatment indis-
pensable (González et al. 2003).

Ignorance of the impact that these viticulture effluents
can have when released to the environment has led to
studying alternative technologies such as “symbiotic
depuration” (García et al. 2008). This system distinguished
by the existence of two zones, one for purification and
another one for cultivation. The purification zone consists of
a bed of gravel, which is isolated from the ground by a
waterproof base. The residual water is applied for irrigation
through a network of underground drippers, placed directly
on the gravels, to cause its percolation through them. Once
the impermeable base reached, the residual water flows, by
gravity, to the pouring points, for reuse on other areas
(Rodríguez et al. 2013).

Assessing exposure through determination of environ-
mental concentrations of chemical agents, by itself, does not
ensure the protection of aquatic life since it does not allow
predicting their potential toxic consequences when syner-
gistic or additive effects occur between the chemical ele-
ments in the mixture (Vighi et al. 2003). On the other hand,
the toxicity of chemical agents is affected by other variables
such as pH, organic matter, hardness, which determine their
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bioavailability and their potential for toxicity (Baker et al.
2003). To assess the effect of chemical agents, biological
tools known as toxicity tests have developed, which use
organisms that can represent the different trophic levels of
an aquatic ecosystem (Sponza 2003).

Amphibians have a big part of vertebrate biomass and are
key elements in the food chain (Blaustein and Wake 1990).
Their dependence on water and moisture, their complex life
cycle, and physiological sensitivity to environmental con-
ditions through their extremely permeable skin make them
true bioindicators and therefore are valuable for toxicity
tests (Wake 1991).

Many of the wetland habitats that are crucial for
amphibian reproduction and survival have altered by human
activities including viticulture (Babini et al. 2016; Bishop
et al. 1999). Amphibians that breed in ponds immersed or
surrounded by industrial effluent are probably exposed to
high levels of chemicals and can suffer serious con-
sequences at the population level.

Thus, the potential effects of winery effluent on amphi-
bian are of particular concern due to the lack of pristine
habitats available, particularly for the reproduction and
development of eggs and tadpoles. In general, the eggs and
newly metamorphosed tadpoles are the most sensitive life
stages to environmental contaminants (Power et al. 1989).

Although wine production does not have a reputation as
a polluting industry, the winery wastewater has an acidic
pH, a high organic charge and micronutrient and heavy
metal contents all of which indicate that the wastewater has
the potential to pose an environmental threat (Bustamante
et al. 2005; Malandra et al. 2003; Mosse et al. 2011). An
excess of organic charge could lead to eutrophication with a
drastic decrease in dissolved oxygen and subsequent mor-
tality of aerobic aquatic organisms (Mitsch and Gosselink
2015, 2000). A high heavy metal contents, an elevate nitrate
level and low pH, could be reduce survivorship, alter the
epidermis, both feeding and swimming activity, and could
be generate malformations, decreasing the growth and
development of amphibian tadpoles (Berger 1989; Brand
et al. 2010; Gross et al. 2009; Smith et al. 2006).

Acute and short-term chronic toxicity tests have been
widely applied in fish, macroinvertebrates and tadpoles for
decades (Bélanger-Deschênes et al. 2013; Ji et al. 2008;
Lajmanovich et al. 2018; Nimmo and Boraas 1982; Scott
and Crunkilton 2000). Nonetheless, there are few studies
examining the effects of chemical complex mixture on
amphibian populations (Bishop and Pettit 1992). This is the
first study that evaluates the influence of winery effluents in
anurans and the effectiveness of an effluent treatment sys-
tem using bioassays.

In this study, we tested the hypothesis that viticulture
effluents still treated with symbiotic depuration system, are

not safe for the environment, affecting aquatic and terres-
trial life. Winery effluents generates sublethal and lethal
effects on anuran tadpoles. In this way, the objective of this
work was to assess the toxicity of effluents from wineries
and the performance of a symbiotic filtration system using
acute bioassays with tadpoles of Rhinella arenarum as a
sentinel organism.

Materials and methods

The tadpoles of R. arenarum were selected to carry out the
present study. This species has an extensive neo-tropical
distribution and it frequently found both natural and agri-
cultural land. Frequent reproduction, large numbers of eggs
in nests (Sanabria et al. 2007), and the easy maintenance
under laboratory conditions make this organism an inter-
esting candidate for toxicity testing. Egg masses used for
this study collected from temporary and unpolluted ponds
located at 25 km west of the city of San Juan, Department
Zonda (31° 55’ S, 68° 70’ W). Ponds are within Monte
phytogeography province (Cabrera 1971).

Eggs used in the exposure experiments were cultured in
the laboratory until hatching. The hatching of the eggs
occurred on the 3rd day of their arrival in the laboratory.
The tadpoles acclimatized in glass tanks that contained
dechlorinated tap water at 22 ± 2 °C for four days, artificial
aeration, and 12 –12 h light–dark cycle. The tests according
to USEPA Standard Methods (2002). Tadpoles were fed
daily ad libitum with a mixture of boiled lettuce and gelatin
up to reaching Gosner stage 26–30 (Gosner 1960) at which
point they were deposited randomly in the trial recipients
according to the experimental design.

Exposure agent: effluents from “raw” and “treated”
warehouses

Toxicity tests were carried out using as a test substance 30 L
of effluents from three wineries distributed in the province
(“toxic agent”).

Samples of winery effluents were taken from three dif-
ferent points in the winery industries (output, middle and
contact of winery effluents with surrounding). The samples
were taken during the process of washing and cleaning the
winery industries, stored in polyethylene containers pre-
viously washed with 10% of nitric acid (HNO3) and rinsed
thoroughly with distilled water, recording their temperature,
pH, and conductivity.

The samples were transported to the laboratory while
maintained at 4 °C and within 5 h of sampling. Samples
were kept refrigerated until their analysis. An experimental
reactor was used to evaluate the effluent treatment system.
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Description and use of the reactor

The study conducted in a laboratory scale reactor that was
constructed to mimic symbiotic depuration systems used by
wineries. This consists of a vertical transparent acrylic tube,
11 cm in diameter and 100 cm in bed height. The treatable
effluent has placed in a tank and through a conduit, and the
effluent was evenly distributed in the upper part of the bed.
Below the distributor is the purification zone, consisting of a
bed of gravels 100 cm high and with a certain granulometry.
In this way, the effluent descended through the gravel bed
and collected from the bottom of the reactor for further
analysis. In the upper part of the distributor was placed a
bed of sand of 10 cm whose function was to allow the
diffusion of oxygen as the effluent descended through the
bed. The flow velocity of the effluent in the reactor with
which it worked was 0.5 L/h, and identified as the most
efficient in the treatment (Fig. 1).

Physicochemical parameters of the winery effluent

The physicochemical profile of the samples determined by
evaluating the following parameters: pH, conductivity,
dissolved solids, turbidity, nitrates, dissolved oxygen (DO),
biological oxygen demand (BOD), chemical oxygen
demand (COD), and dissolved heavy metals (Cd, Cr, and
Pb). All the analyzes were carried out in triplicate, follow-
ing the normalizing methods of Clesceri et al. (1992) and
the American Public Health Association (1992).

Water quality was also characterized by means of the
application of a physicochemical index: WQI contamination
water index (Brown et al. 1970). It is determined con-
sidering temperature, DO, pH, BOD, nitrates, turbidity, and
dissolved solids. It varies between 0-100, the scale being:
very bad 0–25 (1), bad 26–50 (2), regular 51–70 (3), good
71–90 (4) and excellent > 90 (5). A score of 10 corresponds
with a pollution status equivalent to that of a sewer effluent.

Exposure to the test substance

The test was conducted in 1 L polyethene containers with
five organisms per containers and 500 ml of test solution.
The tadpoles were acclimated for 48 h in hard water
according to the United States Environmental Protection
Agency (2002).

Tadpoles were placed in polyethylene recipients con-
taining the following solutions: (A) hard artificial water
(control); (B) raw wine effluents. (B1) without dilution
(100%), (B2) diluted (10, 20, 30, 40, 50, 60, 70, 80, 90%);
(C) treated vitiviniculture effluent, (C1) without dilution
(100%), (C2) diluted (10, 20, 30, 40, 50, 60, 70, 80, 90%).
After its preparation, it was allowed to stand for one hour, to
achieve uniformity and homogeneity in the solution.

The assays were semi-static with ten replicates of each
condition. The dilution water was dechlorinated by aeration
for 48 h. The length of the test was 96 h according to
USEPA Standard Methods (2002). At the end of the
experiment was labeled and fixed in 10% v/v formaldehyde
for further evaluation of morphological abnormalities. The
experiment was carried out under controlled conditions of
temperature 22 ± 1 °C and a photoperiod of 12 light-dark
hours with artificial aeration. Tadpoles not fed throughout
the experiment.

Survival

Survival was quantified every 24 h during the exposure time.
Each individual considered dead if no movement detected
after gentle prodding. The dead individuals removed from
containers. Dead individuals have taken at each observation
time, were labeled and fixed in 10% v/v formaldehyde for
further evaluation of morphological abnormalities.

Fig. 1 Reactor used in the treatment of winery effluents (schematic
draw), follow the Rodríguez et al. (2013)
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Sub-lethal effects

Registration of behavior every 6 h done after gently swirling
the water five times with a glass rod and observing for 1 min
the swimming activity of each organism.

Observed behaviors were identified previously and
categorized as (A) ES: Erratic swimming (swimming in
circles); (B) LOR: Loss of reflex (delayed response after
stimulation); (C) LOB: Loss of balance (zigzag swimming);
(D) RS: Regular swimming (Reyes et al. 2003; Agostini
et al. 2010). The observer was blind with respect to the
treatment combination the boxes belonged to.

Development of tadpoles

Growth assessed by measuring body length and weight of
the tadpoles. The length of the body (LB) measured with a
digital caliper (0.01 mm precision) after 24 h exposure with
four measurements in total. The average weight measured in
the wet weight of the tadpoles, determined with an analy-
tical balance (OHAUS / PAD14 of 0.0001 g precision). The
measurements have taken on living organisms. To minimize
stress, tadpoles were submerged in water during staging and
measurement, except to take the weight mass.

Anatomical anomalies

After fixation, the tadpole’s external morphology examined
with a binocular stereoscopic microscope (Arcano, China,
Magnification 2×–4×). Tadpoles were stained with Alcian
Blue for cartilage visualization and cleared according to
Wassersug (1976). Their branchial skeletons were then
examined with a binocular microscope and photographed
with a digital camera (Nikon D80, Japan and normal lens
50 mm Sigma, Japan).

Data analyses

The results were recorded as cumulative mortality and
expressed as the surviving proportion. The normality of the
distribution of the data was checked by means of the
Kolmogorov-Smirnov test and the homogeneity of variance
by the Levene median test (Zar 1999).The LC50 value
determined by the PROBIT Analysis (Finney 1952). Bio-
logical data (survival, body length, body weight) were sta-
tistically analyzed using the Mann–Whitney test. A level of
probability below 0.05 was considered to be significant.

The water quality index (WQI) determined following
Dinius (1972). Finally, the level of acute effects not
observed (LAENO) was determined (highest concentration
for which the recorded mortality is 10% or less).

Analyses were performed using the SPSS software
(Version 12.0) and package in ‘R′ version 3.0 (Team 2015).

Results

The water quality index revealed a “bad” type of pollution
(1) for the raw winery effluent, WQI= 30.6, and “regular”
for the treated effluent WQI= 51.2. The value of WQI
obtained for raw effluent indicated that its quality is not
adequate for irrigation without first performing a treatment,
unacceptable for fishing with aquatic life limited and danger
for contact. Contrary, the values of WQI for treated effluent
is much encouraging, indicate that its quality is adequate for
irrigation and all industry without before treatment and only
uncertain for fishing. According to the results at 24 h, the
toxicity of the diluted raw effluent was higher than that of
the treated effluent. The physicochemical parameters of the
winery effluent samples used in the present work summar-
ized in Table 1.

Table 1 Physicochemical parameters of the winery effluents samples used with the R. arenarum tadpoles assay

Raw effluent Treated effluent Control CMP

Mean SD Mean SD Mean SD FAO DH LVA

pH 6.41 0.11 7.25 0.23 7.66 0.20 6.90 43379 43349

Conductivity (µS/cm) 1202 1.00 1307 6.08 26.00 5.40 >1200 >1400

DO (mg O2/l) 3.00 0.10 6.00 0.00 10.00 0.00 1000.00

Nitrates (mg N-NO3/l) 16.57 4.13 16.80 0.46 0.00 0.00 17.00 20.00

BOD (mg O2/l) 3480.00 207.85 1026.66 11.55 0.80 0.02 100.00–200.00 10.000–200.00

COD (mg O2/l) 1945.00 207.86 1053.33 5.77 0.00 0.00 250.00–500.00 25.000–500.00

Dissolved solids 806.67 0.58 403.66 0.63 0.00 0.00

Turbidity (UTN) 80.00 1.66 30.00 1.44 0.00 0.00 100.00

Heavy Cd 0.50 0.37 0.43 0.29 0.00 0.00 0.01 0.01 0.20

metals (µg/l) Cr 0.22 0.02 0.18 0.03 0.00 0.00 0.10 0.10 2.00

Pb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

The mean, the standard deviation (SD) and maximum permitted quantity (CMP) for each parameter according to Hydraulics (DH, Annex I of
Decree No. 0638/87, Regulatory of Law No. 5824/87, 2006), United Nations Organization for Agriculture and Food (FAO, 1985), and the
protection of the aquatic life of Argentina (LVA, Law 24,051, Decree 831/93 Argentina, 1993)
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Survival

The results of the PROBIT analysis for raw and treated
effluents are presented in Table 2; showing a harmful effect
to the effluent even after having undergone symbiotic
treatment. The highest LC50 was obtained for the raw
effluent with a value of 54.5% at 24 h whereas the treated
effluent had a value of 90% and remained relatively
constant.

The longest survival after the experimental phase (96 h)
obtained in the control (100 %), followed by the tadpoles in
the treated effluent (X̅= 2.38 ± 2.03), and finally the raw
effluent (X̅= 1 ± 1.56). Survival decreased with the
increase in concentration and with the passing of hours,
reaching zero survivors between 6 and 12 h at concentra-
tions of 70, 80, 90 and 100% of the raw effluent (Fig. 2).
Survival decreased exponentially from the start of the
bioassay until the 30 h, after this period, it remained rela-
tively constant until completely stabilized 40 h after the start
of the experiment (Fig. 3).

Significant differences were found in larval mortality
between raw effluent vs control (U= 11760, p= 0.0001, n
= 110), treated effluent vs control (U= 50318, p= 0.0001,
n= 110) and raw effluent vs treated effluent (U= 33294,

p= 0.012, n= 100). LC50 was markedly lower for all
hours, reaching a value of 35.5% for the raw effluent at 96 h
(Table 2).

Growth

The tadpoles exposed to the winery effluents (raw and
treated) presented a reduction in average body length con-
cerning the control treatment. The average length of the
tadpoles was greater in all cases for the control. Significant
differences were found between length of tadpoles in raw
effluent (X̅= 12.21 ± 0.86) vs control (X̅= 13.35 ± 1.04)
(U= 1639.5, p= 0.01, n= 55), and between treated efflu-
ent (X̅= 12.95 ± 1.67) vs control (U= 2832, p= 0.006, n
= 55). Regarding the weight of the tadpoles subjected to the
treatments (raw effluent-treated effluent), they showed a
reduction compared to the control. The highest average
weight values for all hours obtained in the control
(X̅= 2.5 ± 0.5), followed by the treated effluent (X̅=
1.95 ± 0.6), with the lowest average weights corresponding to
the raw effluent (X̅= 1.79 ± 0.75) (Fig. 4, Table 3). However,
no significant differences in weight were found between
tadpoles in raw effluent vs treated effluent, and vs control.

Behavior

All effects on larval behavior resulted in a higher degree of
injury with an increase in concentration. The three LOB,
LOR and ES behaviors were observed in the two treat-
ments, raw and treated effluents, in different percentages.
The most observed behavior was LOR, followed by ES. At
96 h of testing, 97% of the surviving individuals in the raw
effluent and 95% in the treated effluent had LOR (Table 4).

Abnormalities

The alterations detected after 96 h of exposure to the
effluent can be seen in Fig. 5. These included anomalies in
the axial axis in different degrees and epithelial tissue
destruction.

Tadpoles exposed to different effluent concentrations
showed varying degrees of notochord collapses compared

Fig. 2 Dose-responses curves of tadpole R. arenarum for raw and
treated effluent concentrations

Table 2 Acute toxicity (LC50) of the winery effluent (raw and treated) to R. arenarum larvae

Exposure time (h) Raw effluent Treated effluent

LC50 (%) LL–UL df LC50(%) LL–UL df

24 54.90 50.20-59.40 98 90.00 76.20-98.70 98

48 39.20 27.40-50.70 98 86.10 70.90-95.30 98

72 36.10 25.40-46.30 98 86.10 71.50-90.80 98

96 35.50 25.90-44.70 98 86.00 70.90-89.90 98

gl degrees of freedom, LL-UL lower limit-upper limit with 95% confidence intervals
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to those of the control, which had a uniform shape. The
number of individuals with scoliosis (collapse of the noto-
chord) increased with an increase in concentration of the
effluent. Of the total tadpoles exposed, 23.4% had mal-
formations in the raw effluent and only 8.4% in the treated
effluent. Of the total malformed tadpoles corresponding to
the raw effluent, 25% have exposed to concentrations of
100%. In the group exposed to the treated effluent, 24%
have exposed to 100% concentrations (Fig. 6). In all cases,
the malformation observed is a ventro-dorsal curvature,
known as kyphosis (Yaman and Dalbayrak 2014).

Discussion

The continuous growth of industrial activity and lacks of
control for environmental protection, contribute to a pro-
gressive alteration of the environment (Omer 2008). Unlike
isolated toxins, changes in water quality have received little
attention regarding their adverse effects on amphibian tad-
poles, despite being a constant element in cities and towns
(Hatch and Blaustein 2000; Ferrari et al. 2005; Peltzer et al.
2008). Our results show that the survival and health status
of tadpoles of R. arenarum would be affected by the phy-
sicochemical characteristics of viticulture effluents.

Survival

The tadpoles of R. arenarum showed little resistance to raw
or treated effluents in high concentrations. At the lowest
concentrations, survived individuals showed signs of sub-
lethal toxicity. Similar results on mortality were found by
Goswami et al. (2013) when evaluating the effect of urban
effluents on tadpoles of D. melanostictus. The LC50 values

obtained were very low and were directly related to time;
the highest mortality has found during the first hours of
exposure to the effluent. The values obtained for survival
and LC50 are comparable to those obtained by Ferrari et al.
(2005) on the effect on R. arenarum of receiving water from
urban effluents, having a clear correspondence with the
concentration of the effluent, since its dilution resulted in a
significant toxicity reduction in the samples.

The low content of DO, high values of BOD and COD,
and high nitrate concentrations found in wine effluents
could be among the main causes of the high mortality of
tadpoles of R. arenarum. The impact is remarkable on
anurans given their high oxygen consumption throughout
metamorphosis (Smith 1997). States of hypoxia or anoxia
result in a slowing of the physiological and metamorphic
changes necessary for the development of tadpoles
(Burggren and Mwalukoma 1983). Smith (1997) found that
they cause decreased activity, vigor, and deformities in
bullfrog tadpoles. Costa (1967) found that swimming
increases in an excessive way, a behavior associated with
improving water oxygenation.

The concentrations of heavy metals were higher for the
raw effluent. In our case, we found two heavy metals, Cd
and Cr. The concentrations of Cd and Cr in treated and raw
effluents exceed the regulatory values for irrigation and
drainage systems established by Decree 2 107/2006 for the
province of San Juan. The values obtained are similar to
those reported by Vivas Agrafojo et al. (2008), and lower
than those obtained for effluents from food industries by
Pellón et al. (2003). Heavy metals cause, in most cases,
mortality of organisms. Their presence can lead to bio-
chemical imbalances and glandular damage, producing an
abnormal development (Goswami et al. 2013). In the aqu-
eous medium, chromium can be found as Cr (III) and Cr

Fig. 3 Concentration–response relationship for R. arenarum tadpoles continuously exposed to raw effluent a and treated effluent b describing the
rate of survival from the beginning of the exposure up the finish. * Significantly different with respect to control group (P < 0.05)
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(VI). Cr(III) and, in low concentrations, it is essential to
maintain fundamental processes of life (metabolism of
glucose, lipids and proteins) (Alvarado-Gámez et al. 2002).
However, it is toxic in high concentrations (Pawlisz et al.

1997; Natale et al. 2000). On the other hand, Cr (VI) is not
known for exerting beneficial actions and is defined as
toxic, being attributed mutagenic and carcinogenic proper-
ties (Rai and Mehrotra 2008; Wan Ngah et al. 2006). As for

Fig. 4 Effluents concentration response curves of body weight and length of the tadpoles during acute exposure. a Body weight treated effluent, b
body weight raw effluent, c body length treated effluent, and d body length raw effluent

Table 3 Gravimetric data of Rhinella arenarum tadpoles exposed to
the winery effluents (raw and treated) and control every 24 h

Treatment Hours Weight larvae (g) SD

Raw 24 0.5146 0.4120

48 0.9439 0.3123

72 1.7893 0.4039

96 1.9773 0.4823

Treated 24 0.8789 0.2445

48 1.1520 0.3452

72 1.7926 0.4033

96 2.0040 0.3654

Control 24 1.3740 0.0705

48 1.7100 0.2288

72 2.4520 0.0690

96 2.4820 0.0204

All data are expressed as the mean and standard deviation (SD)

Table 4 Behaviors dateof Rhinella arenarum tadpoles exposed to the
winery effluent (raw and treated) every 24 h

Exposure time (h) Behaviors

LOB (%) LOR (%) ES(%)

Raw effluent

24 02 80 18

48 00 94 06

72 00 97 03

96 00 97 03

Treated effluent

24 14 65 21

48 08 81 11

72 06 86 08

96 00 95 05

LOB loss of balance, LOR loss of reflex, ES erratic swimming
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Cd, it is characterized by being very toxic in small con-
centrations (James and Little 2003; Gross et al. 2009).
Gross et al. (2009) found that Cd concentrations of
0.00025 mg/l increased larval growth, but concentrations of
0.2 mg/l increased their mortality. James and Little (2003)
also observed its lethal effect on B. americanus tadpoles at
concentrations of 0.54 mg/l. Cd has shown to have drastic
effects on the growth and development of tadpoles (Read
and Tyler 1994). The cumulative effect of Cd on tissues and
organs is the main problem caused by this heavy metal
(Pérez-Coll and Herkovits 1996).

Changes in the pH of water can be generated by various
agricultural, industrial and domestic substances (Muñoz-
Escobar and Palacio-Baena 2010). The pH values found for
two effluents (raw and treated) were within the regulatory
values for irrigation water set by the Hydraulics Depart-
ment; and within the pH range of 4.6-8 established for

winery effluents by Monge and Gutiérrez-Barquín (2001);
pH 3.9-7.9 by Prodanov and Cobo Reuters (2004); and pH
4.2-7.8 by Oliva (2007). However, Henao Muñoz and
Bernal Bautista (2011) observed a delay in the development
of embryos and erratic nests in tadpoles exposed to pH
lower than regulated for irrigation (7.0 < pH > 7.5), and
detected detachment of their external membranes and sud-
den death. For his part, Rios-López (2008) found that
conductivity values of 800 ms/cm, less than do those
established by the current regulations (1200–2000 ms/cm),
decreased the survival of tadpoles of B. marinus and L.
arbritaris.

Growth

This study provided evidence that R. arenarum tadpoles
exposed to raw and treated effluents are affected in their

Fig. 5 Lateral full-body views of tadpoles R. arenarum exposed to the
winery effluent, diaphanized and stained with Alcian blue. Control
tadpoles a, treated effluent at 10% b, 50% c and 100% d; and 10% raw

effluent e, 50% f, and 100% g. Red arrows indicate branchial appa-
ratus; yellow arrows indicate destruction of tissues. Scale bar 2 mm

Fig. 6 Tadpoles with different
degrees of notochordal curvature
(Kiphosis) after exposed 24 h to
100 % of raw effluent a, b and
48 h to 50 % c, d to raw
effluents. Scale bar 2 mm
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development, experiencing a reduction in their body size.
Their reduction in weight and length could be associated
with an increase in metabolic cost due to cellular detox-
ification and depuration processes, to the reduced activity of
some enzymes (Vallee and Ulmer 1972), and to a greater
demand for the synthesis of amino acids (Nishisaka and
Kishimoto 1994). This reduction in weight and length has a
potentially negative effect on anurans versus predation since
large tadpoles will have a greater chance of surviving and
reaching full adulthood than small ones (Collins 1979;
Smith 1987). During stress, the major amount of energy is
used for defensive physiological mechanisms and main-
tenance of homeostasis that is an energetically expensive
process, and less energy is left for investment in life history
traits (mass, growth) (Costantini 2014).

On the other hand, those surviving tadpoles will be able
to undergo an early metamorphosis and to prolong it before
reaching their threshold size, resulting in individuals with
reduced body sizes and/or deformities (Harris et al. 2000;
Boone and Semlitsch 2002). Long periods of metamor-
phosis or small sized adults can have many consequences in
nature. Small larval sizes on reaching metamorphosis affect
individual reproduction, survival, immunocompetence and
the ability to escape predators and defend territory (Carey
et al. 1999; Hayes et al. 2006; Shenoy et al. 2009). In this
way, the population would be negatively affected by a low
recruitment of juvenile individuals and/or by the presence of
adults affected in their performance (Werner 1986; Bridges
and Boone 2003).

The presence of nitrates and heavy metals (Cd-Cr) in
values above the levels regulated for viticulture effluents
with high conductivity values could also explain the
reductions in size observed in R. arenarum tadpoles. Even
at very low concentrations, all of them negatively affect
growth and development time (Gallo-Delgado et al. 2006;
Muñoz-Escobar and Palacio-Baena 2010; Smith et al.
2006). In our study, nitrate concentrations in the two
treatments were within the range established by Prodanov
and Cobo Reuters (2004) for effluents from cellars
(13–220 mg/l), lower than those recorded by Monge and
Gutiérrez-Barquín (2001) (61 mg/l), and did not exceed
those established by the Hydraulics Department. However,
Rouse et al. (1999) found that lakes with nitrate con-
centrations of 16.8 mg/l had sublethal and lethal effects on
amphibians. Nitrate alters the growth and development of
amphibian tadpoles (Berger 1989; Jofre and Karasov 1999).
Among the most common adverse effects are reduced
feeding and mobility, doubled tails, body swelling and
deformities (Berger 1989). It can also lower pH and oxygen
levels (Tattersall and Boutilier 1999).

Sublethal effects of acidity on embryos and tadpoles of
amphibians have also been reported to affect their

embryonic development, growth, foraging ability and
avoidance of predators (Pierce 1985). Regarding con-
ductivity, the values in wine effluents did not exceed those
established by the current regulations to be turned over for
irrigation, natural courses and drains. These values are
within the range reported by Oliva (2007) (600–2000 ms/
cm). However, Chinathamby et al. (2006) found growth
retardation and abnormal behaviors when exposing tadpoles
of L. ewingi to concentrations of 500–800–1000 ms/cm.

Behavior

Knowledge about alterations in the behavior of tadpoles of
R. arenarum against toxic components is scarce, the
observed behaviors are important as sublethal signs because
they give us more rapid information about the effect of a
toxic substance, allowing us to prevent the spread of the
toxic agent to organisms where its effect may still be
masked.

Studies on sublethal effects on larval behavior are scarce
and, in the works referred to, they are part of the final
observations (Reyes et al. 2003; Álvarez-Colombo et al.
2011). In our study, in both treatments, we found three
types of behavior: erratic swimming, loss of reflexes and
loss of balance. The “LOR” behavior increased with the
increase in exposure time and with increased concentra-
tions, however, “LOB” and “ES” decreased with these
increases. These behaviors had already been observed by
exposing tadpoles of the Cuban frog O. septentrionalis to
the herbicide glyphosate (Reyes et al. 2003). Similar
behaviors observed in bullfrog tadpoles, L. catesbeianus,
exposed to potassium permanganate (Álvarez-Colombo
et al. 2011) and in tadpoles of D. bogerti exposed to mer-
cury chloride (Muñoz-Escobar and Palacio-Baena 2010).

Abel and Skidmore (1975), and Jonsson and Toledo
(1993), showed similar alterations of swimming behavior in
fish. Some of these alterations can be explained by accli-
matization to the toxic agent or by energy expenditure,
which involves metabolism (Rondón-Barragán et al. 2007).

All of the components found in viticulture effluents have
been shown to have some effect on the behavior of tadpoles
and could explain the ethological characteristics observed in
the common toad R. arenarum.

All alterations in the observed behaviors are significant
because of their importance to the conservation of the
ability to escape, which determines a great part of the sur-
vival of this species in the natural environment (Rondón-
Barragán et al. 2007). Thus, tadpoles with behaviors such as
LOB, LOR, and ES show a reduction in their ability to
escape, to search for food or move to more suitable areas in
the face of adverse conditions affecting survival of the
population.
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Phenotypic abnormalities

Skin

Although information on the effects of toxic elements on
the tissue of amphibians is limited, some studies have
shown their high susceptibility to foreign substances
(Rondón-Barragán et al. 2007; Álvarez-Colombo et al.
2011). Anurans exposed in a direct way to the aquatic
environment; their skin is a complex organ and the main
route of exchange of gases for respiration, water, and ions,
thus being particularly exposed to the action of toxins
(Duellman and Trueb 1994; Natale 2006; Prokić et al.
2016)

The tadpoles exposed to raw and treated effluents
showed the destruction of the epidermis in different
degrees, depending on the concentration to which they were
exposed and the treatment they underwent. Tadpoles
exposed to raw and treated effluents at the highest con-
centrations experienced the most serious effects on their
epidermis. Similar effects on skin destruction were observed
both by Álvarez and Nicieza (2002) as Prieto et al. (1986),
where the damage occurred externally and with irreversible
characteristics.

Alterations in the epidermis or the destruction thereof are
usually associated with an inflammatory reaction to an
irritant (Rondón-Barragán et al. 2007). In those cases in
which skin detachment was observed and individuals have
resisted the lethal effect of the toxic agent, the damage
turned out to be irreversible (Álvarez and Nicieza 2002).

In most cases, toxic agents such as heavy metals,
detergents and even pH can be the cause of skin destruction
and capillarity. The presence of these compounds in viti-
culture effluents and of a pH of 6 (raw effluent) and 7
(treated effluent) could explain the damage observed. This
damage often leads to a reduction in oxygen diffusion
capacity and subsequent collateral effects (Lajmanovich
et al. 1998).

Malformations

In this study, the malformation observed in R. arenarum
tadpoles, due to the effect of the effluent, was scoliosis, and
was observed in samples of raw and treated effluents,
although in a greater percentage in the former. This mal-
formation coincides with that reported for tadpoles of the
crab C. granulata exposed to sublethal concentrations
(Keselman 2002), and with that of tadpoles of P. biligoni-
gerus found by Sandoval (2008), with different degrees of
curvature in the notochord. It has also been documented in
investigations with heavy metals such as Cd and Cr (Unrine
et al. 2004). Scoliosis has been reported in P. cruciger
tadpoles exposed to agrochemicals such as glyphosate,

chlorpyriphos, etc. (Jayawardena et al. 2010) and in tad-
poles of anurans exposed to nitrate values of 16.8 mg/l.

The concentrations of nitrates and heavy metals in both
effluents (raw and treated) above the regulation could
explain the results obtained. Brand et al. (2010) observed
malformations in tadpoles exposed to Cd.

Caudal scoliosis adversely affects the swimming of tad-
poles (Burke and Michel 2008). Scoliotic tadpoles show
slower swim and escape velocities, being more susceptible
to predation than tadpoles exhibiting a normal phenotype
(Burke and Michel 2008).

It is important, however, to distinguish between acute
toxicity from specific pesticides and biological results based
on synergistic interactions between mixtures of con-
taminants (Bridges and Boone 2003; Fagotti et al. 2005;
Relyea 2005). In this sense, a clear cause-effect relationship
cannot be found for physicochemical characteristic or sub-
stance in particular, given that certain compounds are cap-
able of interacting chemically when combined. Klaassen
(1996), hypothesized that exposure to mixtures of pesticides
can result in synergistic or antagonistic effects for health
because the metabolism of one pesticide can affect the
metabolism of another one.

Although the toxic effects observed in tadpoles of R.
arenarum exposed to viticulture effluents could attributed to
the synergy between chemical compounds and environ-
mental factors, the effects of cumulative exposure to con-
taminants and their synergistic interactions with
environmental stress factors, natural or anthropic, are
uncertain (Fagotti et al. 2005).

Conclusions

Contamination by effluents from wineries could affect the
aquatic life of the tadpoles studied, exerting a harmful effect
on their behavior, morphology, growth and survival. The
symbiotic filtering system used causes a reduction in the
effluent pollutant levels; however, it is not sufficient for the
effluent to be released into the environment.

Finally, although the physicochemical characteristics are
central when analyzing an effluent, they do not by them-
selves allow characterizing the impact of its release. It is
considered that an integrated approach is required for an
adequate characterization of the quality of an effluent or a
treatment system, using physical-chemical analysis and
bioassays in a complementary manner.
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