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Abstract. In this paper we study homogenisation problems for Sobolev trace
embedding H1(�) ↪→ Lq(∂�) in a bounded smooth domain. When q = 2 this leads to
a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace
embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces
with weights that are periodic in space. We find that extremals for these embeddings
converge to a solution of a homogenised limit problem, and the best trace constant
converges to a homogenised best trace constant. Our results are in fact more general;
we can also consider general operators of the form aε(x,∇u) with non-linear Neumann
boundary conditions. In particular, we can deal with the embedding W 1,p(�) ↪→
Lq(∂�).

2000 Mathematics Subject Classification. 35B27, 35J65, 46E35.

1. Introduction. Sobolev inequalities have been studied by many authors and are
by now a classical subject. They at least go back to [3] (for more references see [10]).
Relevant for the study of boundary value problems for differential operators is the
Sobolev trace inequality that has been intensively studied (see for example [11, 12, 14–
16]. Given a bounded smooth domain � ⊂ �N , we deal with the best constant of the
Sobolev trace embedding H1(�) ↪→ Lq(∂�). When q = 2 this leads to an eigenvalue
problem of the Steklov type.

Our main goal here is to consider the Sobolev trace inequality for H1 and
Lq spaces with weights that oscillate periodically. We find that extremals for these
embeddings converge as the oscillations go to infinity to a solution of a homogenised
limit problem, and the best trace constant converges to a homogenised best trace
constant.
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620 J. FERNÁNDEZ BONDER, R. ORIVE AND J. D. ROSSI

Let us consider the following coefficients:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aij ∈ L∞
# (�), where � = [0, 1]N, i.e. each aij is a �-periodic

bounded measurable function defined on �N ,

∃α, β > 0 such that α|η|2 ≤ aij(x)ηiηj ≤ β|η|2 ∀η ∈ �N, a.e. x ∈ �,

aij = aji ∀i, j = 1, . . . , N,

(1.1)

⎧⎨
⎩

a0 ∈ L∞
# (�), i.e. a0 is �-periodic, and

∃a−, a+ ∈ �+, such that 0 < a− ≤ a0(x) ≤ a+, a.e. x ∈ �
(1.2)

and ⎧⎨
⎩

b ∈ L∞
# (�), i.e. b is �-periodic, and

∃b−, b+ ∈ �+, such that 0 < b− ≤ b(x) ≤ b+, a.e. x ∈ �.
(1.3)

Associated with these coefficients and a parameter ε > 0, we consider for every critical
or subcritical exponent, 1 ≤ q ≤ 2∗ := 2(N − 1)/(N − 2), the Sobolev trace inequality

S(ε)
∫

∂�

bε|v|qdS ≤
∫

�

(
aε

ij
∂v

∂xj

∂v

∂xi
+ aε

0v
2
)

dx,

valid for all v ∈ H1(�). Here aε
ij(x) := aij(x/ε), aε

0(x) := a0(x/ε) and bε(x) := b(x/ε).
The best Sobolev trace constant is the largest S(ε) such that the above inequality

holds, that is

S(ε) := inf
v∈H1(�)\H1

0 (�)

∫
�

(
aε

ij
∂v

∂xj

∂v

∂xi
+ aε

0v
2
)

dx

(∫
∂�

bε|v|q dS
)2/q . (1.4)

For subcritical exponents, 1 ≤ q < 2∗, the embedding H1(�) ↪→ Lq(∂�) is compact;
so we have existence of extremals, i.e. functions in which the infimum is attained. These
extremals are strictly positive in � (see [14]) and smooth up to the boundary (see [6]).
When one normalise the extremals with∫

∂�

bε|uε|qdS = 1, (1.5)

it follows that they are weak solutions of the following problem:

⎧⎪⎪⎨
⎪⎪⎩

∂

∂xi

(
aε

ij
∂uε

∂xj

)
= aε

0uε in �,

∂uε

∂νε
:= aε

ij
∂uε

∂xj
νi = S(ε)bε|uε|q−2uε on ∂�,

(1.6)
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SOBOLEV TRACE CONSTANT 621

where ν is the unit outward normal vector. Of special importance is the case q = 2. In
this case, (1.6) is an eigenvalue problem of Steklov type (see [20]). In the rest of the
paper we will assume that the extremals are normalised according to (1.5).

Our first result is the following.

THEOREM 1. Let 1 ≤ q < 2∗. Assume that � is a generic domain; that is assume
that the boundary of �, ∂�, does not contain flat pieces or that it contains finitely many
flat pieces with conormal and not proportional to any m ∈ �N. Then, the function S(ε)
converges as ε → 0 to S∗, the best Sobolev trace constant of the homogenised problem
that is defined by

S∗ = inf
v∈H1(�)\H1

0 (�)

∫
�

(
a∗

ij
∂v

∂xj

∂v

∂xi
+ a∗

0v
2
)

dx

(∫
∂�

b∗|v|q dS
)2/q , (1.7)

where the homogenised coefficients are defined by a∗
0 and b∗, which are the mean value of

a0 and b respectively, i.e.

a∗
0 :=

∫
�

a0(y) dy, b∗ :=
∫

�

b(y) dy. (1.8)

The coefficients a∗
ij are given by

a∗
ij :=

∫
�

(
aij − ∂ai


∂y


χj

)
dy, (1.9)

where for any k = 1, . . . , d, χk is the unique solution of the cell problem⎧⎪⎨
⎪⎩

− ∂

∂yi

(
aij

∂χk

∂yj

)
= ∂ak


∂y


in �,

χk ∈ H1
#(�), m(χk) = 0.

(1.10)

Moreover, as ε → 0 the sequence of extremals {uε} of (1.4) converges (along
subsequences) weakly in H1(�) to a limit u∗ that is an extremal of the homogenised
problem (1.7), and so, it verifies

⎧⎪⎪⎨
⎪⎪⎩

∂

∂xi

(
a∗

ij
∂u∗

∂xj

)
= a∗

0u∗ in �,

∂u∗

∂ν∗ := a∗
ij
∂v∗

∂xj
νi = S∗b∗|u∗|q−2u∗ on ∂�.

(1.11)

REMARK 1.1. The homogenised coefficients are related to the original coefficients
by the usual homogenisation rules (see [5]). Concerning boundary terms, in [17], it is
proved that for generic domains there exists a limit. However for non-generic domains
there exist different limits for different sequences of ε → 0. In Theorem 1 we consider
the generic case; that is we impose that the boundary of � does not contain flat pieces
or that it contains finitely many flat pieces with conormal and not proportional to any
m ∈ �N .
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622 J. FERNÁNDEZ BONDER, R. ORIVE AND J. D. ROSSI

REMARK 1.2. This result can be generalised using H-convergence. If we have a
sequence of coefficients (aε

ij) that converges to (a∗
ij) in the sense of H-convergence (see

[18]), then the corresponding extremals uε converge weakly in H1(�) to an extremal of
the limit problem. To see this fact we only have to observe that using H-convergence,
we can pass to the limit in the weak form of equation (1.6).

This result can also be seen from the �-convergence of functionals’ point of view.
The functionals describe the stored energy of the portion of the ε-periodic composite
material occupying a region � of �N . The �-convergence provides the behaviour of the
extremals and the shape of the limit of the functionals (see [9] for an extensive study
of this method).

Our second result deals with the critical exponent, q = 2∗. In this case, under a
geometric assumption on the domain, we have a similar result.

THEOREM 2. Assume that � is a generic domain (see Theorem 1) and that

α(N − 2)|B(0, 1)|1/(N−1)

2(b+)2/2∗
>

|�|a+
|∂�|b−

, (1.12)

where the constants α, a+ and b± are given in (1.1)–(1.3).
Then, the function S(ε) converges as ε → 0 to S∗, the best Sobolev trace constant

of the homogenised problem that is defined by (1.7) Moreover, as ε → 0 the sequence of
extremals {uε} of (1.4) converges (along subsequences) weakly in H1(�) to a limit u∗

that is an extremal of the homogenised problem (1.7) (and, so, a solution of (1.11)).

REMARK 1.3. In the proof of Theorem 2, what is actually used is that there exists
δ > 0 (independent of ε) such that S(ε) satisfies

α(N − 2)|B(0, 1)|1/(N−1)

2(b+)2/2∗
− δ > S(ε). (1.13)

This condition is implied by (1.12), taking u ≡ 1 as a test function in (1.4).
Arguing as in [15], one can check that hypothesis (1.13) implies the existence of an

extremal uε for (1.4).

Our results are in fact more general. For the sake of clarity we choose to present
first the linear case with periodic coefficients in full detail. However, using ideas from
[4], we can deal with more general (non-linear) operators.

Let aε(x, ξ ) and bε(x, u), with x ∈ �, ξ ∈ �N and u ∈ �, be general non-linear
functions verifying convenient hypotheses (see Section 5). We consider

λ1 = inf
v∈W 1,p(�)\W 1,p

0 (�)

∫
�

a(x,∇v) · ∇v + b(x, v)v dx∫
∂�

|v|q dS
. (1.14)

THEOREM 3. Assume that aε and bε satisfy hypotheses (A1)–(A4), (B1)–(B3) in
Section 5 and that there exist two limit functions ahom : � × �N → �N and bhom : � ×
� → � that satisfy the same hypotheses.
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SOBOLEV TRACE CONSTANT 623

Also assume that the operators Aε G-converge to the operator Ahom associated with
these functions. Let λε

1 and λhom
1 be as in (1.14) with a, b replaced by aε, bε and ahom, bhom

respectively.
1. If 1 ≤ q < p∗ := p(N − 1)/(N − p), then, λε

1 → λhom
1 as ε → 0.

Moreover, the extremals {uε} converge (along subsequences) weakly in W 1,p(�)
to a limit u∗ that is an extremal of the homogenised problem.

2. For the critical case, q = p∗, assume that � verifies

|�|
|∂�|p∗/p

<
c

K(N, p)
, (1.15)

where K(N, p) is the best Sobolev trace constant in a half-space,

K(N, p) = inf
∇v∈Lp(�N+ ),w∈Lp∗ (∂�N+ )

∫
�N+

|∇v|pdx

(∫
∂�N+

|v|p∗
dS

)p/p∗ ,

and c depend on the family of coefficients. Then, the conclusions of the previous
item hold true.

To end this introduction, let us mention that homogenisation results for the
Sobolev trace constant in domains with holes for critical and subcritical exponents
have been recently considered in [13] in the spirit of [8].

The rest of the paper is organised as follows: in Section 2 we recall some preliminary
results that are needed in the proof of the main theorems; in Section 3 we deal with the
subcritical case (Theorem 1) and in Section 4 with the critical case (Theorem 2); and,
finally, in Section 5 we prove the extension for the non-linear case (Theorem 3).

2. Preliminaries. In this subsection we present some results and techniques
in homogenisation of periodic media. We briefly recall the notion of two-scale
convergence (see [2], [19]).

PROPOSITION 2.1. Let � ⊆ �N and wε be a bounded sequence in L2(�) . There exist a
subsequence, still denoted by ε, and a limit w(x, y) ∈ L2(�; L2

#(�)) such that wε two-scale
converges to w in the sense that

lim
ε→0

∫
�

wε(x)φ(x, x/ε) dx =
∫

�

∫
�

w(x, y)φ(x, y) dxdy

for every function φ(x, y) ∈ L2(�; C#(�)). The two-scale convergence is denoted by wε ⇀

w in 2s. Furthermore, if {wε} is a bounded sequence that converges weakly to a limit
w in H1(�), then, wε two-scale converges to w, and there exists a function w1(x, y) ∈
L2(�; H1

#(�)) such that up to a subsequence, we have the following two-scale convergence:

∇wε(x) ⇀ ∇xw(x) + ∇yw1(x, y) in two-scale.

This two-scale convergence result is a powerful tool to deal with our problem, the
study of the limit as ε → 0 in (1.4).
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624 J. FERNÁNDEZ BONDER, R. ORIVE AND J. D. ROSSI

Another important tool is the weak star convergence in L∞(�). In general, if

gε, g ∈ L∞(�), we say that gε converges to g weak star in L∞(�), denoted by gε

∗
⇀ g

in L∞(�), if ∫
�

gεφ dx →
∫

�

gφ dx, ∀φ ∈ L1(�).

We note immediately (see [8]) that an ε�-periodic function converges weak-∗ in L∞ to
its mean value. Thus

aε
0

∗
⇀ a∗

0 in L∞(�).

Moreover, if � is a generic domain, i.e. ∂� does not contain flat pieces or that it
contains finitely many flat pieces with conormal and not proportional to any m ∈ �N ,
we have that

bε ∗
⇀ b∗ in L∞(∂�), (2.1)

where b∗ is given by (1.8) (see Remark 1.1).

3. Subcritical case. In this section we assume that q is subcritical, that is 1 ≤ q <

2∗; so the immersion H1(�) ↪→ Lq(∂�) is compact.

Proof of Theorem 1. First, let us prove that the best constants S(ε) and the extremals
uε are bounded in H1 independent of ε. Indeed, by the definition of S(ε) in (1.4) and
our assumptions on coefficients (1.1) and (1.2), there exist two constants 0 < c < C
such that

c λ0 ≤ S(ε) ≤ C λ0, (3.1)

with λ0 defined by

λ0 = inf
v∈H1(�)\H1

0 (�)

∫
�

|∇v|2 + v2 dx(∫
∂�

|v|q dS
)2/q . (3.2)

Now, we show that the extremals uε, the weak solutions of (1.6), are bounded
in H1-norm independent of ε. To prove this fact recall that we have normalised the
extremals by (1.5). By our assumptions on coefficients (1.1) and (1.2), we have

S(ε) =
∫

�

(
aε

ij
∂uε

∂xj

∂uε

∂xi
+ aε

0|uε|2
)

dx ≥
∫

�

(
α|∇uε|2 + a−|uε|2

)
dx.

By (3.1), we obtain that uε is bounded in H1 independent of ε. Hence there exists a
subsequence (which we still call uε) and a function u0 ∈ H1(�) such that uε ⇀ u0 weakly
in H1(�) and uε → u0 strongly in Lq(∂�) for 1 ≤ q < 2∗. By the above-mentioned
convergence and (2.1) we have that∫

∂�

b∗|u0|q dS = 1.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089509990048
Downloaded from https://www.cambridge.org/core, IP address: 152.170.35.163, on subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089509990048
https://www.cambridge.org/core


SOBOLEV TRACE CONSTANT 625

Moreover, using Proposition 2.1, we obtain that uε ⇀ u0 in two-scale, and there exists
u1 such that

∇uε ⇀ ∇xu0(x) + ∇yu1(x, y), in two-scale.

We use φ(x) + εφ1(x, x/ε) with φ ∈ H1(�) and φ1 ∈ H1(�; C#(�)) as a test
function in the weak form of (1.6). As S(ε) is bounded, we can assume that S(ε) → S0,
for an appropriate subsequence. Then we pass to the limit the weak formulation, and
by the two-scale convergence, we get∫

�

∫
�

aij(y)
(

∂u0

∂xj
(x) + ∂u1

∂yj
(x, y)

) (
∂φ

∂xi
(x) + ∂φ1

∂yi
(x, y)

)
dy dx

+
∫

�

∫
�

a0(y)u0(x)φ(x)dx dy = S0

∫
∂�

∫
�

b(y)|u0|q−2u0φ(x) dS dy.

Integrating by parts we obtain that (u0, u1) is the weak solution of the system

∂

∂xi

(∫
�

aij(y)
(

∂u0

∂xj
(x) + ∂u1

∂yj
(x, y)

)
dy

)
= a∗

0 u0(x) in �, (3.3)

νi
∂

∂xi

(∫
�

aij(y)
(

∂u∗

∂xj
(x) + ∂u1

∂yj
(x, y)

)
dy

)
= S0 b∗ |u0|q−2u0(x) on ∂�, (3.4)

∂

∂yi

(
aij(y)

(
∂u0

∂xi
(x) + ∂u1

∂yi
(x, y)

))
= 0 in � × �, (3.5)

with a∗
0 and b∗ defined in (1.8). Considering

u1(x, y) =
N∑

i=1

∂u0

∂xi
(x)χi(y),

we note that u1 satisfies (3.5) for any u0, since χ1 is the solution of (1.10). Moreover,
with this function u1 in (3.3) and (3.4), we obtain that u0 is a solution of⎧⎪⎨

⎪⎩
∂

∂xi

(
a∗

ij
∂u0

∂xj

)
= a∗

0u0 in �,

∂u0

∂ν∗ = S0b∗|u0|q−2u0 on ∂�,

(3.6)

where the coefficients a∗
ij are given by (1.9) and the derivative normal ∂/∂ν∗ is defined

in (1.11). Now, since S0 satisfies (3.6), we get S0 ≥ S∗ with S∗ defined in (1.7). To
conclude the proof of Theorem 1 we need to show that S0 = S∗. In fact, let u∗ be an
extremal of (1.7) and consider

vε = u∗ + εχε
k
∂u∗

∂xk

as a test function in (1.4), where χε
k (x) = χk(x/ε). From the maximum principle and

Hopf’s lemma we get that u∗ is strictly positive in �. Therefore the regularity results of
[6] are applicable, and we obtain that u∗ ∈ C∞(�). Thus, since the functions χk ∈ W 1,∞

(this is a consequence of the hypotheses on the coefficients), we have immediately
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626 J. FERNÁNDEZ BONDER, R. ORIVE AND J. D. ROSSI

vε ⇀ u∗ weakly in H1(�) and vε → u∗ strongly in Lq(∂�) for 1 ≤ q < 2∗. Now, we
obtain

∫
�

(
aε

ij
∂vε

∂xj

∂vε

∂xi
+ aε

0v
2
ε

)
dx =

∫
�

(
aε

ij + aε
ik

∂χε
j

∂yk

)
∂u∗

∂xj

∂u∗

∂xi
dx

+
∫

�

(
aε

ij
∂χε

k

∂yj

∂χε



∂yi
+ aε

ik
∂χε




∂yi

)
∂u∗

∂xk

∂u∗

∂x


dx

+
∫

�

aε
0(u∗)2dx + O(ε).

Passing to the limit, using that χk is a solution of (1.10) and by the weak-∗ convergence
in L∞, we get

lim
ε→0

∫
�

(
aε

ij
∂vε

∂xj

∂vε

∂xi
+ aε

0v
2
ε

)
dx =

∫
�

(
a∗

ij
∂u∗

∂xj

∂u∗

∂xi
+ a∗

0(u∗)2
)

dx,

where a∗
0 and a∗

ij are defined by (1.8) and (1.9), respectively. Moreover, again by the
weak-∗ convergence in L∞, we have

∫
∂�

bε|vε|q →
∫

∂�

b∗|u∗|q.

Therefore, passing to the limit in (1.4) with test function vε, we prove S0 ≤ S∗, and we
conclude the proof of Theorem 1. �

REMARK 3.1. Results on correctors of the extremals are easily obtained with the
two-scale convergence method. Considering the solutions of the cell problem (1.10),
the corrector term is defined by

uε
1(x) = χk(x/ε)

∂u∗

∂xk
(x),

where u∗ is an extremal of the homogenised problem (1.11). Hence, by Proposition 2.1
and following the same lines as [2], (uε − u∗ − εuε

1) converges strongly to zero
in H1(�).

4. Critical case. In this section we deal with the critical exponent q = 2∗ = 2(N −
1)/(N − 2).

Proof of Theorem 2. Recall that as observed in Remark 1.3, hypothesis (1.12)
implies the existence of an extremal uε for (1.4).

As before, by the definition of S(ε) in (1.4) and our assumptions on coefficients
(1.1) and (1.2), we have (3.1). Hence, the extremals uε are bounded in H1(�) and we
have, for a subsequence,

uε ⇀ u0 weakly in H1(�),

uε → u0 strongly in Lq(∂�), with 1 ≤ q < 2∗.
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Arguing exactly as in the previous section we obtain that uε ⇀ u0 in 2s and,
moreover, that u0 is a weak solution to⎧⎪⎨

⎪⎩
∂

∂xi

(
a∗

ij
∂u0

∂xj

)
= a∗

0u0 in �,

∂u0

∂ν∗ = Sb∗|u0|q−2u0 on ∂�,

(4.1)

where S is the limit of a subsequence of S(ε); the coefficients a∗
ij are given by (1.9); and

the derivative normal ∂/∂ν∗ is defined in (1.11).
Let us prove that u0 �= 0. To this end we use the following Theorem due to [16].

THEOREM 4. There exists a constant B > 0 such that(∫
∂�

v2∗ dS
)2/2∗

≤ A
∫

�

|∇v|2 dx + B
∫

�

v2 dx

for every v ∈ H1(�), where

A = 2
(N − 2)|B(0, 1)|1/(N−1)

.

REMARK 4.1. The constant A in Theorem 4 is sharp.

Now, as uε ≥ 0, it follows that u0 ≥ 0 and, by classical regularity theory, u0 is
smooth up to the boundary. By the strong maximum principle and Hopf’s lemma,
it follows that either u0 > 0 or u0 ≡ 0. In order to prove of the result, we have to
exclude this last possibility. To this end, we use the argument given in [15] to show that
‖u0‖L2(�) �= 0. In fact, by Theorem 4, we have that there exists a constant B such that

(∫
∂�

v2∗ dσ

)2/2∗
≤ A

∫
�

|∇v|2 dx + B
∫

�

|v|2 dx

for every v ∈ H1(�). Recall that uε are normalised such that (1.5) is satisfied; so, by
(1.3),

1 =
(∫

∂�

bεu2∗
ε dσ

)2/2∗
≤ (b+)2/2∗

(
A

∫
�

|∇uε|2 dx + B
∫

�

u2
ε dx

)
.

Hence, for some suitable B̃ we get

1
(b+)2/2∗

≤ A
α

(∫
�

aε
ij
∂uε

∂xj

∂uε

∂xi
dx +

∫
�

aε
0|uε|2 dx

)
+ B̃

(∫
�

u2
ε dx

)
.

Therefore,

1
(b+)2/2∗

≤ A
α

S(ε) + B̃
∫

�

|uε|2 dx. (4.2)

Passing to the limit ε → 0 in (4.2) we arrive to

1
(b+)2/2∗

≤ A
α

S + B̃
∫

�

|u0|2 dx;
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therefore, as we have assumed (1.13), which implies

α

A(b+)2/2∗
> S,

we conclude u0 �= 0.
Now, multiplying (4.1) by u0 and integrating by parts, we obtain∫

�

a∗
ij
∂u0

∂xj

∂u0

∂xi
+ a∗

0u2
0 dx = S

∫
∂�

u2∗
0 dS.

As u0 �= 0 it follows that S �= 0 and ‖u0‖L2∗ (∂�) �= 0. Therefore, we conclude that

S0 ≤

∫
�

a∗
ij
∂u0

∂xj

∂u0

∂xi
+ a∗

0u2
0 dx

(∫
∂�

u2∗
0 dS

)2/2∗
= S

(∫
∂�

u2∗
0 dS

)1/(N−1)

≤ S.

Now, arguing exactly as in the end of Section 3, we conclude the desired result. �

5. The non-linear case. Finally, in this section we consider the extension of our
previous results to a more general class of non-linear operators, including the p-
Laplacian with oscillating coefficients. The main ideas for these extensions are similar
to the ones used before in combination with those of [4].

We consider non-linear monotone operators A : W 1,p(�) → (W 1,p(�))∗ of the
form

Au = − div(a(x,∇u)) + b(x, u),

whose coefficients a : � × �N → �N belong to the class of functions satisfying the
following hypotheses:

(A1) a(·, ·) is of Carathéodory type.
(A2) Monotonicity: 0 ≤ (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2), ∀ξ1, ξ2, a.e. x.
(A3) Uniform ellipticity: α|ξ |p ≤ a(x, ξ ) · ξ, ∀ξ , a.e. x.
(A4) Growth: |a(x, ξ )| ≤ β|ξ |p−1, ∀ξ , a.e. x.

And the function b : � × � → � satisfies the following hypotheses:

(B1) b(·, ·) is of Carathéodory type.
(B2) Uniform α|u|p ≤ b(x, u)u, ∀u, a.e. x.
(B3) Growth: |b(x, u)| ≤ β|u|p−1, ∀u, a.e. x.

For a and b satisfying the above hypotheses, we consider the eigenvalue problem

div(a(x,∇u)) = b(x, u) in �,

a(x,∇u) · ν = λ|u|q−2u on ∂�.
(5.1)

If there exist λ and u solutions of (5.1), taking u as a test function in the eigenvalue
problem, we note that

λ =

∫
�

a(x,∇u) · ∇u + b(x, u)udx∫
∂�

|u|qdS
. (5.2)
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SOBOLEV TRACE CONSTANT 629

Moreover, the infimum in (1.14) is attained and is called the first eigenvalue λ1 for
the problem (5.1). This fact is indeed by the lower semi-continuity property of the
functional associated with A for the minimising sequence.

Let ε > 0 be a small parameter which represents the scale of heterogeneity. We
consider a family of functions aε, bε satisfying the previous hypotheses, for example,
aε(x, ξ ) = a(x/ε, ξ ) and bε(x, u) = b(x/ε, u) which are, in addition, periodic in x. Thus,
we deal with the minimisation problem

λε
1 = inf

v∈W 1,p(�)\W 1,p
0 (�)

∫
�

aε(x,∇v) · ∇v + bε(x, v)v dx∫
∂�

|v|q dS
. (5.3)

First, assume that q is subcritical. Then, since the embedding W 1,p(�) ↪→ Lq(∂�)
is compact there exist extremals for (5.3). We normalise the extremals with the condition∫

∂�

|uε|qdS = 1. (5.4)

The normalised extremals are weak solutions of the problem

div(aε(x,∇uε)) = bε(x, uε)uε in �,

a(x,∇uε) · ν = λε
1|uε|q−2uε on ∂�.

(5.5)

Since in the statement of Theorem 3 we have assumed the G-convergence of the
operators the conclusions concerning the convergence of the first eigenvalue and its
associated extremals follow.

Note that this assumption is not restrictive, since if aε and bε are measurable
coefficients which satisfy (A1)Î–(A3) and (B1)–(B3), then the operators Aε G-converge
(up to a subsequence) to a maximal monotone operator Ahom whose coefficients, ahom

and bhom, are measurable and which satisfies (A1)-Î-(A3) and (B1)–(B3). We refer to
Theorem 4.1 of [7] for this well-known compactness result for the G-convergence on
the class of multi-valued functions of the type a.

For the critical case p∗ = p(N − 1)/(N − 2) we can argue exactly as before in
Section 4, noting that condition (1.15) on the domain and the coefficients involved
imply that there are minimisers of (5.3), since some compactness is recovered.
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