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Abstract

Premise: Lantana and Lippia (Verbenaceae) are two large Linnean genera whose
classification has been based on associated fruit traits: fleshy vs. dry fruits and one vs.
two seed-bearing units. We reconstruct evolutionary relationships and the evolution
of the two fruit traits to test the validity of these traits for classification.

Methods: Previous studies of plastid DNA sequences provided limited resolution for this
group. Consequently, seven nuclear loci, including ITS, ETS, and five PPR loci, were
sequenced for 88 accessions of the Lantana/Lippia clade and three outgroups.

Results: Neither Lantana nor Lippia is monophyletic. Burroughsia, Nashia, Phyla, and
several Aloysia species are included within the clade comprising Lantana and Lippia.
We provide a hypothesis for fruit evolution and biogeographic history in the group
and their relevance for classification.

Conclusions: Fleshy fruits evolved multiple times in the Lantana/Lippia clade and
thus are not suitable taxonomic characters. Several sections of Lantana and Lippia and
the small genera are monophyletic, but Lippia section Zappania is broadly para-
phyletic, making circumscription of genera difficult. Lippia sect. Rhodolippia is a
polyphyletic group characterized by convergence in showy bracts. Species of Lantana
sect. Sarcolippia, previously transferred to Lippia, are not monophyletic. The clade
originated and diversified in South America, with at least four expansions into both
Central America and the Caribbean and two to Africa. The types species of Lantana
and Lippia occur in small sister clades, rendering any taxonomy that retains either
genus similar to its current circumscription impossible.
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Ovary structure and fruit anatomy often were used in
traditional angiosperm classifications to distinguish taxa
at levels above the species. For example, in the clade re-
cognized today as Lamiales, the number of carpels typi-
cally is fixed at two per flower, but the number of ovules
per carpel varies from one or two to many, and the latter
often was used as a primary family-defining trait, or even
to assign families to orders (e.g., Takhtajan, 1980;
Cronquist, 1981). Molecular phylogenetic studies have
shown that the reliance on such gynoecial traits in La-
miales often was misplaced and that ovule number, locule

number, and fruit type (dry vs. fleshy) are much more
labile characters than implied by traditional classifica-
tions (Wagstaff and Olmstead, 1997).

In Verbenaceae, fruit characters often were used to de-
fine tribes (Schauer, 1847; Troncoso, 1974; Atkins, 2004)
and, similar to the examples cited for Lamiales, have been
shown to be unreliable indicators of relationship at that
level (Marx et al.,, 2010; O'Leary et al., 2012a). Molecular
phylogenetic studies have identified several clades in which
genera characterized by both fleshy and dry fruits occur
(fleshy-fruited taxa listed first): Parodianthus Tronc. with
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Casselia Nees & Mart. and Tamonea Aublet in Casselieae
(Schauer) Troncoso (O'Leary et al., 2008; Marx et al., 2010;
O'Leary and Mulgura, 2010), Citharexylum L. with Rehdera
Moldenke in Citharexyleae Briq. (Marx et al., 2010; O'Leary
et al, 2021; L. Frost, unpublished data), Duranta L. with
Recordia Moldenke in Duranteae Benth. (Thode et al., 2013;
Moroni and O'Leary, 2020), Neosparton Gris. with Diostea
Miers and Lampayo Phil. in Neospartoneae Olmstead and
O'Leary (Lu et al.,, 2019), Lantana L. and Nashia Millsp.
with Lippia L. in Lantaneae Endl., and Xeroaloysia Tronc.
with Aloysia Palau also in Lantaneae (Marx et al., 2010; Lu-
Irving and Olmstead, 2013; Lu-Irving et al., 2014). In all of
these examples the fleshy- and dry-fruited taxa are sister
groups, except in tribe Lantaneae, where the monotypic
Xeroaloysia is now included in Aloysia (Lu-Irving
et al,, 2014), and in the Lantana/Lippia clade, where the
evidence to date suggests complicated relationships among
dry- and fleshy-fruited species in which neither Lantana nor
Lippia appears to be monophyletic (Marx et al., 2010; Lu-
Irving and Olmstead, 2013; Lu-Irving et al., 2014).

Lantaneae are the most species-rich tribe of Verbenaceae
and form a strongly supported clade (Yuan et al, 2009b;
Marx et al.,, 2010). Lantana and Lippia, along with a handful
of taxa variously recognized either as genera (Nashia, Bur-
roughsia Moldenke, Phyla Lour.) or isolated species from
other genera (Acantholippia seriphioides (A. Gray) Moldenke
and five North American species of Aloysia), form a clade
comprising the core of tribe Lantaneae, hereafter referred to
as the Lantana/Lippia clade (Marx et al., 2010; Lu-Irving and
Olmstead, 2013). Phylogenetic studies have identified an
expanded Aloysia, including Acantholippia Gris. and the
monotypic Xeroaloysia (but excluding Acantholippia ser-
iphioides and the five species of Aloysia mentioned above) as
sister to the Lantana/Lippia clade (Lu-Irving and
Olmstead, 2013; Lu-Irving et al,, 2014; O'Leary et al., 2016).
Within the Lantana/Lippia clade, Acantholippia seriphioides
(basionym: Lippia seriphioides A. Gray) was inferred to be
sister to the rest of the clade. Coelocarpum Balf., native to
Madagascar, Socotra, and Somalia, also belongs to the clade
with other Lantaneae, and was included in this tribe on the
basis of cpDNA (Marx et al,, 2010), despite differing in many
morphological traits, because there was not a clear case for
monophyly of Lantaneae without this genus. Subsequent
studies, with better sampling and a mix of plastid and nuclear
DNA, have obtained strong support for Coelocarpum as
sister to all other Lantaneae (Lu-Irving and Olmstead, 2013;
Lu-Irving et al,, 2014).

Recently, studies of groups within Lantaneae have been
published, including a taxonomic revision of Phyla (O'Leary
and Mulgura, 2011), resolution of Acantholippia and Aloysia
(Lu- Irving et al,, 2014; O'Leary et al.,, 2016), and splitting of
Nashia into three genera (Greuter and Rodriguez, 2016). Nei-
ther Lippia nor Lantana have been treated comprehensively,
but revisions of Lantana sect. Lantana (Sanders, 2006, 2012),
Lippia sect. Dioicolippia Tronc. (Mulgura, 2000), Lippia sect.
Goniostachyum Schauer (O'Leary et al, 2012b), and several
works in which species are transferred from Lippia to Lantana

or vice versa (Salimena, 2002a; Silva and Salimena, 2002;
Salimena and Mulgura, 2015; Salimena et al.,, 2017) have been
published. Numerous regional studies, such as Lantana in
Brazil (Silva, 1999), Paraguay (Rotman, 2009), and Argentina
(Rotman, 2012), Lantana sect. Lantana in the Greater Antilles
(Mendes Santos, 2002), Lippia in Argentina (Mulgura, 2014),
and works describing new taxa or new distributional ranges
(e.g., Silva, 2001; Salimena, 2002b, 2010; Silva et al, 2017;
Cardoso and Salimena, 2019; Cardoso et al, 2019a, 2019b,
2019¢, 2020) have added to the nomenclatural and taxonomic
complexity of the clade.

Lantana and Lippia (ca. 100 species and ca. 120-150
species, respectively; Cardoso et al., 2021) comprise the ma-
jority of species of Lantaneae and, along with the few smaller
genera below, share characteristics that distinguish them
from other Lantaneae, including a bilobed calyx and an ax-
illary, condensed inflorescence rachis with spirally arranged
flowers at the end of a long peduncle, creating a head-like
floral display. Acantholippia seriphioides differs from other
species previously assigned to Acantholippia in sharing these
traits. Aloysia, sister to the Lantana/Lippia clade, is char-
acterized by elongate inflorescences and four-lobed calyces.
Lantana and Lippia traditionally are distinguished from each
other by fleshy, drupaceous fruits and dry, schizocarpous
fruits, respectively (Endlicher, 1838; Bentham, 1839;
Schauer, 1847). The small related genera typically share the
above traits, but are distinguished by additional traits: Phyla
(five species distributed throughout North and South
America) has dry fruits, a trailing herbaceous habit, and
malpighiaceous hairs (O'Leary and Mulgura, 2011), Bur-
roughsia (two species of arid habitats in Mexico) has dry
fruits and a glandular appendage extending from the anther
connective in the ventral stamens (Moldenke, 1940), and
Nashia (seven species of arid habitats in the Greater Antilles)
is a spinescent shrub with reduced axillary inflorescences and
fruits with varying degrees of fleshiness and separation into
one or two dispersal units (Greuter and Rodriguez, 2016).
The seven species of Nashia have recently been segregated
into three genera, Diphyllocalyx Greuter & R. Rankin (six
species from Cuba, including one reduced to synonymy and
two newly described), Isidroa Greuter & R. Rankin (one
species from Hispaniola), and Nashia (one species from
Puerto Rico) (Greuter and Rodriguez, 2016).

The sectional classifications of Lantana and Lippia have
been much revised, due to complex morphological patterns
involving intermediate character combinations and suspected
parallel trait evolution (Figure 1). Two sections are currently
recognized in Lantana (Rotman, 2012), sect. Lantana (sensu
Sanders, 2006; equivalent to sect. Camara (Cham.) Schauer in
Chamisso, 1832) and sect. Callioreas (Cham.) Schauer
(Chamisso, 1832, including sect. Rhytidocamara Briq.,
Briquet, 1904). All species of a third section, Lantana sect.
Sarcolippia Schauer, were transferred to Lippia (Silva and
Salimena, 2002). Troncoso (1974) recognized seven sections
in Lippia, including sects. Dioicolippia, Dipterocalyx (Cham.)
Schauer, Goniostachyum, Lippia, Pseudoaloysia Tronc., Rho-
dolippia Schauer, and Zappania (Scop.) Schauer. However,
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FIGURE 1 Floral diversity in Lantana and Lippia. Traditional taxonomic assignments are given with each species. (A) Lantana camara (Lantana sect.
Lantana), (B) Lantana canescens (Lantana sect. Callioreas), (C) Lantana speciosa (Lantana sect. Callioreas), (D) Lantana trifolia (Lantana sect. Callioreas),
(E) Lippia filifolia (Lippia sect. Zappania), (F) Lippia florida (Lippia sect. Rhodolippia), (G) Lippia integrifolia (Lippia sect. Zappania), (H) Lippia
lasiocalycina (Lippia sect. Zappania), (1) Lippia nana (Lippia sect. Dioicolippia), (]J) Lippia origanoides (Lippia sect. Goniostachyum), (K) Lippia rotundifolia
(Lippia sect. Zappania), and (L) Lippia rubela (Lippia sect. Dipterocalyx). Photo credits: A, D, and I by M. Mercadante; B and J by R. Stehmann; C by
V. Dittrich; E by L. M. Neto; F, H, ], K, and L by F. Salimena; G by F. Zuloaga

the type of sect. Pseudoaloysia, L. phryxocalyx Briq., is  no section “Sarcolippia” has ever been validated in Lippia
now considered a synonym of L. lasiocalycina Cham. (sect. (hereafter this group will be referred to as “Sarcolippia”).

Zappania), so sect. Pseudoaloysia is no longer recognized, The Lantana/Lippia clade includes many aromatic
leaving the number of sections in Lippia at six. Despite the  species of ethnobotanical and economic significance, as well
transfer of the species in Lantana sect. Sarcolippia to Lippia,  as several species widely planted as ornamentals. Lantana
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camara L. is both prized as an ornamental and despised as a
pantropical weed. The Lantana/Lippia clade is distributed
(excluding ornamental and invasive plants) widely from
~45°N to ~50°S latitude in the New World (Olmstead, 2013)
and also occurs in Africa. The greatest diversity in this clade
is found in arid and semiarid habitats, with fewer species
occurring in wet tropical environments. Species in this clade
frequently colonize open and disturbed habitats. Lantana
and Lippia have very similar distributions throughout the
Neotropics, rarely occurring beyond 30° latitude north or
south (Lu-Irving and Olmstead, 2013; Olmstead, 2013), and
each having one dispersal event to Africa leading to a
handful of species there. The herbaceous habit of Phyla has
permitted extension of its distribution into temperate zones
in North and South America (O'Leary and Mulgura, 2011),
a trend seen in other woody/herbaceous plant groups
(Zanne et al., 2014). Acantholippia seriphioides extends the
southern distribution of Lantaneae to southern Argentina
(Olmstead, 2013).

Previous phylogenetic studies of Lantaneae included
limited sampling of the Lantana/Lippia clade (Marx
et al, 2010; Lu-Irving and Olmstead, 2013; Lu-Irving
et al., 2014) and provided limited resolution of relation-
ships, but the results of those studies strongly suggest that
neither Lantana nor Lippia is monophyletic and that the
smaller genera aligned with them are all nested within a
phylogenetic matrix of Lantana and Lippia species. The
present study addresses relationships within the Lantana/
Lippia clade and uses this as the backbone to reconstruct the
evolution of fruit type and seed units, as well as to propose a
biogeographic hypothesis for this group.

MATERIALS AND METHODS

Seventy-four species belonging to the Lantana/Lippia clade
were chosen to represent the taxonomic and geographic
diversity of the group (following Lu-Irving and
Olmstead, 2013). A total of 88 accessions formed the in-
group, with several widespread, variable species represented
by two or three accessions, to provide indicators of in-
traspecific sequence variation and to test monophyly of
these species. Based on prior analyses (Marx et al., 2010; Lu-
Irving and Olmstead, 2013; Lu-Irving et al., 2014), three
species of Aloysia were used as the outgroup (Appendix 1).

Leaf tissue was collected from herbarium specimens or
from field or garden-collected plants. DNA was extracted
following a standard modified CTAB protocol (Doyle and
Doyle, 1987) and purified by isopropanol precipitation. All
PCR and sequencing reactions were carried out according
to standard protocols as described by Lu-Irving and
Olmstead (2013).

Ten nuclear loci and one plastid genome spacer region
were screened for variability among Lantana and Lippia
species (ETS, ITS, PPR11, PPR24, PPR47, PPR81, PPR90,
PPRY7, PPR123, PHOTII, trnL/rpl32). Each locus was am-
plified and sequenced in four representatives of the

Lantana/Lippia clade (Lantana trifolia, Lantana depressa,
Lantana ferreyrae, Lippia dulcis) and pairwise distances
between each representative species were calculated.

Primers used to amplify and sequence ITS were uni-
versal primers ITS 4 and ITS 5 (White et al., 1990). A
custom forward primer was substituted in a few cases in
which universal primers amplified fungal ITS sequences.
The ETS primers used were those described by Lu-Irving
and Olmstead (2013). The PPR loci were amplified and
sequenced using previously published primers (Yuan
et al., 2009a, 2009b; Lu-Irving and Olmstead, 2013) and
primers developed to target additional loci following the
general procedure outlined by Yuan et al. (2009b). Se-
quences of primers used are listed in Table 1.

Sequence data from each locus were aligned using
MAFFT version 7 (Katoh and Standley, 2013) with minor
manual adjustments, and assembled into individual data sets.
Model testing for alignments representing the seven se-
quenced individual loci was conducted using 24 models of
nucleotide evolution, as implemented in jModeltest version
2.31 (Darriba et al., 2012), and the best-fit model for each data
set was determined under the BIC criterion. Phylogenetic
trees were estimated for each of the seven data sets that re-
present individual loci and for the concatenated alignment
using maximum likelihood (ML) and Bayesian inference (BI).
RAxXML-HPC on BlackBox and MrBayes version 3.2.1 on
XSEDE, both via the CIPRES Science Gateway (Ronquist and
Huelsenbeck, 2003; Miller et al., 2010), were used for phylo-
genetic reconstruction. The concatenated data were parti-
tioned into individual loci with substitution models specified
respectively. For each ML analysis, RAXML was set to halt
bootstrapping automatically to estimate support for branches.
Bayesian analyses consisted of two independent runs of four
chains and 10 million generations each, and convergence
was assessed by examining the standard deviations of split
frequencies between runs. A burn-in fraction of 25% was
discarded when summarizing trees.

A species tree from the combined data was inferred using
*BEAST (Heled and Drummond, 2010) as implemented in
BEAST version 2.5.1 (Bouckaert et al., 2019). The seven loci
were treated as six separate partitions (ETS and ITS are
linked on the rDNA repeat) with unlinked substitution, clock
and tree model estimates. The species tree inference was
performed under a coalescent model with piecewise constant
population sizes, and an uncorrelated relaxed clock model
with a lognormal prior, and a birth-death species tree prior.
The substitution models found previously with jModeltest
version 2.3.1 for each loci were specified. The multiple ac-
cessions of individual species were defined as the same spe-
cies or taxon set for a total of 77 species in the species tree
analysis. Markov chain Monte Carlo was run twice for 300
million generations and convergence was assessed by ex-
amining logged states using Tracer version 1.7.1 (Rambaut
et al,, 2018). A burn-in fraction of 25% was discarded when
summarizing trees for each run. The resulting trees from the
two independent runs were combined using LogCombiner
version 2.5.1 (Bouckaert et al., 2019).
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TABLE 1 Sequences of PCR and sequencing primers used in this study
Locus Primer Use Sequence (5'-3') Reference/Description
ETS ETSB PCR/Sequencing ATAGAGCGCGTGAGTGGTG Lu-Irving and Olmstead (2013)
18SIGS PCR/Sequencing GAGACAAGCATATGACTACTGGCAGGATCAACCAG Baldwin and Markos (1998)
ITS ITS4 PCR/Sequencing TCCTCCGCTTATTGATATGC White et al. (1990)
ITS5 PCR/Sequencing GGAAGGAGAAGTCGTAACAAGG New; optimized for Lamiales
ITS.LL.F PCR/Sequencing ATCCCGCCTGACCTGGGGTCG New; optimized for Lantana/Lippia
PPR 11 320F PCR/Sequencing TCTTCTCTTTCTTCACATGGCT Yuan et al. (2009b)
1110F Sequencing GATTTGGCWATGGARATTTA Y-W. Yuan, unpublished data
1300 R Sequencing TCCARATCTCCYTCCTTACAA Yuan et al. (2009b)
1590 R PCR/Sequencing TAACCGTTCATAAGCACATTGTA Yuan et al. (2009b)
PPR 81 81.LL.F PCR/Sequencing GCAAAGTGCAGAARAGTTGA New; optimized for Lantana/Lippia
81.LL.R PCR/Sequencing CCAATGTGRCTACATGCAGT New; optimized for Lantana/Lippia
PPR 90 313 F PCR/Sequencing TCTGTTRTTAAACTCGGCTATGATTC New; optimized for Lamiales
613 F Sequencing GGRAAGSAAGTTCATGGSTATA New; optimized for Lamiales
1073 R Sequencing TATAACCAGYRAGCATRGCATTCCA New; optimized for Lamiales
1346 R PCR/Sequencing TATCTTTRCTCTCCATRKTGTGAAA New; optimized for Lamiales
PPR 97 781 F PCR/Sequencing CTTGTRGATTTGGGTGCWARGTGGTT New; optimized for Lamiales
1585R PCR/Sequencing TTTTTCACATAAGCWGTYACAAGAAT New; optimized for Lamiales
PPR 123 123.LL.F PCR/Sequencing GTGCCTGGGGATTTGGTTCTGTA New; optimized for Lantana/Lippia
LL.825F Sequencing GTGTTTGGAAAGGCTAAGC New; optimized for Lantana/Lippia
1030 R Sequencing GCCCATAMACATCKATCATTAT Yuan et al. (2009b)
1890R PCR/Sequencing AGACTCAGCATCTGRAAATGAAC Yuan et al. (2009b)

Ancestral character state reconstruction was conducted
for fruit characters historically used to distinguish Lantana
and Lippia. Evolution of both fruit type (i.e., dry vs. fleshy)
and seed dispersal units (i.e., one vs. two units) was assessed
using the R package Phytools (Revell, 2012). We fit the
equal rates (ER), all rates different (ARD), and symmetric
rates (SYM) models to the species tree obtained with
*BEAST and selected the best model by Akaike information
criterion (AIC) ranking. We then performed character
mapping by summarizing a distribution of 1000 character
maps under the selected model.

To delimit the geographic distribution for each taxon, the
localities of the studied taxa were compiled from our own
fieldwork and databases and from the literature. Four op-
erational biogeographic areas (South America, Central/North
America, Caribbean, Africa) were defined on the basis of
major distribution patterns of the extant taxa. Terminals were
coded as present or absent for each of the four selected areas.
We inferred ancestral geographic range shifts in the species
tree generated in *BEAST using the dispersal-extinction-
cladogenesis model (DEC; Ree et al., 2005) with the max-
imum number of ancestral areas set to two in the software
Lagrange-CPP (C++ version) (Ree and Smith, 2008).

RESULTS

Based on the pairwise sequence comparisons for the four
taxa (Appendix S1), seven loci were selected for sequen-
cing for all taxa (ETS, ITS, PPR loci 11, 81, 90, 97, 123).
The PHOTII intronic region, though highly variable
(Yuan and Olmstead, 2008), was not selected because it
could not be directly sequenced, due to allelic length
variation. Sequence data were collected for 92.3% of cells
in the data matrix (91 terminal accessions by seven loci).
Approximately 11% of states in the final (combined)
analyses were scored as missing (including gaps). Vou-
cher information and GenBank accession numbers are in
Appendix 1.

Alignment lengths and details of models inferred for
each alignment are summarized in Table 2. Phylogenetic
analyses conducted using MrBayes resulted in gene trees for
individual loci that were well resolved at the level of major
clades; these loci were sufficiently informative to infer
phylogenetic  history at this level in Lantaneae
(Appendix S2). There were some well-supported differences
between individual gene trees, indicating that one or more
gene trees differ from the species tree (Maddison, 1997).
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TABLE 2 Summary of sequence data collected as part of this study: alignment dimensions for each of seven loci, assembled into individual data sets,
and best-fit models for each data set
ETS ITS PPR11 PPR81 PPR90 PPR97 PPR123
Length 480 762 1277 1162 986 747 1122
Accessions 81 80 80 76 76 63 76
Model GTR+T GTR+1+T GTR+T GTR+1+T HKY +1+T HKY +I1+T HKY +1+T
1 Lantana camara
0.94 Lantana horrida
1 95W= Lantana leonardiorum
1 Lantana strigocamara
Lantana depressa
100 Lantana scabrida
4 l_‘_up/m a cardiostegia
00 Lippia umbellata
1 97— )pia formosa
%6 1 Lippia americana_Sparre 19841
Lippia americana Holm-Nielson 7198
Lantana 1 20 opia americana Nee 8821
R . 94 1 Lippia arechavaletae
Lippia asperrima
Lippia 1 1 D ST
. |_|—|'_100 Lippia rehmannii PLI 2012-111
A/OySIa 94 1 700 ippia rehmannii PLI 2008-20
. |_rgr: Lippia alba Fairchild BG 37139
Nashia f Lippia alba RGO 2004-110
Aloysia barbat:
0.78; L/pp/ a diamantinensis
Phyla "o lupuiina
: b | ippia grandifiora
Burroughsia Lippia coymbosa 0
.. Lippia rotundifolia
Acantholippia
Lippia
Lippia raoniana
Lippia domingensis
Nashia inaguensis
Lippia turbinata
Ippia meuaafhea
S jopia rhodocnei
100 0.77 v L/ppm origanoides F.S. 2975
. 82 Lippia origanoidesF.S. 2995
L ippia origanoides PLI 2010-18
L ——"Lipia origanoides TRSS 212
% Lippia origanoides CVDB 1431
Lippia morj
Lantana exarata
Lantana involucrata
Lantana haughtii
1 Lantana buchii
= T Lantana pauciflora
1 Lantana feticulata
1 Lantana trifolia PLI 2012-90
0.97 1 Lantana trifoliaPLI s.n.
pr— 100 [ antana trifolia RGO 1996-98
LrLamana ukambensis
083 Lantana viburnoides
- Lantana canescens RGO 2007-06
Lantana canescensVT 364
Lantana achyranthifolia
antana canescensPLI 2008-07
Lantana gracilis
antana fucata
Lantana montevidensis PLI 2008-15
4 Lantana caatingensis
Lantana tilcarer
89 Lantana montevidensis RGO 2010-203
Lantana leucocarpa
1 Lantana reptans
1 Lantana scabiosiflora
100 /amana ferreyrae
1 ana macropoa
] L’im 1m Xxenica
100 ippia aristata
1 1 L/pp/a macrophylla
antana speciosa
07] ! 88, Lippia m asiliensis
et 97 1 Lippia pubescens
99 Lippia triplinervis
1 1 Lippia insignis
o0 Lippia lasiocalycina
100 1 Lippia micromera
vor e — e
Lippia rubella : Phyla cunitlia
700! Phyla /mcsa/azz
1 ] 100 Phyla nodiflora PLI 2008-4
o) 700 | 1 :Phy/z nodiflora RGO 2004-159
1 700 Phyla nodifloraRGO 2007-65
1 Burroughsia fastigiata
100 100 ippia dulcis
Lippia integrifolia
- A holippia seriphioides
Al
1 I Aloysia citrodora 4
100 L Aloysia virgata

0.009

FIGURE 2 Phylogeny inferred from the combined sequences of seven nuclear loci. Bayesian posterior probability and ML bootstrap values >0.7 (or
70%) are indicated above and below branches, respectively. Species names are color coded according to current generic classification. The type species of

Lantana and Lippia are in bold and underlined

The ML and BI analyses of the concatenated matrix
resulted in similar topologies that differ only in one well-
supported instance (Figure 2; Appendix S2). Most branches
in the Bayesian topology were supported by posterior
probabilities >0.90 with six exceptions, mostly in terminal
clades among closely related species (Figure 2). The species
tree inferred from all data using the coalescent-based

approach implemented in *BEAST included high posterior
probabilities for major clades, but less confidence in lower-
order branches (Figure 3). The *BEAST coalescent tree and
the Bayesian tree from the concatenated data have very si-
milar topologies and are consistent with respect to major
clades, but differ with respect to some details within those
clades where support was moderate or weak in one or both



PHYLOGENY OF LANTANA AND LIPPIA

14

0.78

8 o9

0.53_ Lantana camara
Lantana horrida
Lantana depressa
Lantana leonardiorum
Lantana strigocamara
Lantana scabrida
Lippia cardiostegia
Lippia umbellata
Lippia formosa
Lippia americana
1 Lippia arechavaletae
Lippia asperrima

Lantana sect. Lantana

Rhodolippia p. p.

Lippia sect. Lippia

097
| Lippia sect. Dioicolippia

Lippia lupulina Rhodolippia p. p.
1 Lippia grandiflora
Lippia diamantinensis
1 Lippia corymbosa
Lippia rotundifolia
1 Lippia javanica
1 Lippia rehmannii
Lippia alba
Aloysia barbata
Lippia morii
{—_ Lippia origanoides
Lippia domingensis
lashia inaguensis
Lippia turbinata
Lippia hermannioides
Lippia pseudothea .
Lippia rhodocnemis | Rhodolippia p. p.
Lippia raoniana

Aloysia “Pseudolippia”
| Lippia sect. Goniostachyum
Nashia

0.9

1
0.65
0.62

.
1

0.95

Lippia filifolia
Lippia florida
Lippia hederifolia
Lantana buchii
Lantana reticulata
Lantana haughtii
Lantana exarata
Lantana involucrata
Lantana pauciflora
Lantana ukambensis
Lantana viburnoides
Lantana trifolia
Lantana caatingensis
Lantana montevidensis
Lantana fucata
Lantana tilcarensis
Lantana leucocarpa
Lantana canescens
Lantana achyranthifolia
Lantana reptans
Lantana scabiosiflora
Lantana ferreyrae
Lantana macropoda
Lantana xenica

0.96 | Rhodolippia p. p.

Lantana sect. Callioreas

13 1

0.71

Lantana gracilis
Lippia aristata
Lippia pubescens i
Lippia triplinervis o
Lippia brasiliensis : “Sarcolippia’

12

0% 5

Lippia macrophylla :
I—| Lantana speciosa :

1 Lippia insignis

Lippia lasiocalycina
1 Lippia micromera

Lippia thymoides

Lippia rubella Lippia sect. Dipterocalyx

Phyla cuneifolia

0.99
—— PHylalanceolata

0.59

Phyla

Phyla nodiflora .
p Burroughsia

Burroughsia fastigiata
Lippia dulcis
Lippia integrifolia

Acantholippia seriphioides

Aloysia ChBmarcensis

Aloysia virgata

L+

Aloysia citrodora

0.03

FIGURE 3

Species tree inferred using the multispecies coalescent, as implemented in *BEAST, from sequence data from six independent nuclear loci

(ITS and ETS are linked in the ribosomal repeat and considered as one locus for this analysis). Genus and sectional designations for groups in Lantana and
Lippia are indicated to the right; unlabeled species are Lippia section Zappania. Posterior probability values >0.5 are shown above branches. Numbers in red

identify clades enumerated in the text

trees. The major difference between the *BEAST tree and
the concatenated tree is in the branching order near the base
of the tree after the divergence of Acantholippia seriphioides,
with the former placing Lippia integrifolia (Griseb.) Hieron.
sister to the rest of the Lantana/Lippia clade followed by a
clade comprising Phyla sister to Burroughsia and Lippia
dulcis Trevir., and the latter placing L. integrifolia sister to
Burroughsia and L. dulcis in a clade that is sister to the rest
of the Lantana/Lippia clade. However, these relationships
are weakly supported in both trees.

We identify 17 clades (some comprising individual species)
that are consistently obtained in both the MrBayes and
*BEAST trees (Figures 2 and 3). The order of branches from
the base of the Lantana/Lippia clade is consistent in all trees,
except for clades 2-4: (1) Acantholippia seriphioides, (2) Lippia
integrifolia, (3) a clade comprising Lippia dulcis and Bur-
roughsia, (4) Phyla, and (5) the “core” Lantana/Lippia clade,
which contains (6) Lippia rubella (Moldenke) T.R.S. Silva, (7)

Lippia micromera Schauer and L. thymoides Mart. & Schauer,
and (8) a clade comprising all other Lantana, Lippia, and
Nashia species. Within the latter clade, nine additional clades
are consistently obtained: (9) Lippia insignis Moldenke and
L. lasiocalycina, (10) a clade with Lantana speciosa and four
species of Lippia, including three species of “Sarcolippia” and
L. triplinervis Gardner, (11) the inclusive clade comprising
clades (12) Lippia aristata Schauer and (13) a large clade of
Lantana species comprising section Callioreas, and (14) a large
clade made up primarily of Lippia species, which includes (15)
Lippia sect. Goniostachyum, (16) Lippia sect. Dioicolippia, and
(17) Lantana sect. Lantana. African members of Lantana and
Lippia form clades nested within clades 13 and 14, respectively.

For the fruit ancestral state reconstructions, the ER
(AIC = 48.83545) and SYM (AIC = 48.83545) models were
equally ranked by AIC score and were significantly better
than ARD (AIC =50.53699) in ancestral state reconstruc-
tion of fruit type. Under both the ER and SYM models,
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stochastic character mapping supports the same hypoth-
esis. The ER (AIC = 38.66185) and SYM (AIC = 40.12464)
models were again equally ranked by AIC scores and were
slightly better than ARD (AIC =38.66185) in the ancestral
state reconstruction of seed units. Stochastic character
mapping under both models yielded the same hypothesis
(Figure 4). Under this scenario, correspondence between
fleshy fruits and fruits with a single, undivided seed-
bearing structure, variously referred to as a pyrene or
cluse, is strong, but not universal, with species assigned
to “Sarcolippia” having fleshy fruits that are divided
into two units.

i
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Lantana scabrida
Lippia umbellata
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The biogeographic reconstruction identified the origin of
the Lantana/Lippia clade and most of the backbone of the
tree as occurring in South America (Figure 5). Phyla and the
Burroughsia/Lippia dulcis clade, which form a weakly sup-
ported clade in the *BEAST tree (but not supported in the
concatenated analysis; Figure 2) represent an early expansion
into Central and North America. From ancestors in South
America, at least four dispersal or expansion events resulting
in clades of one or more species have led to range expansions
into both Central/North America and the Caribbean and two
into Africa from South America, in addition to several species
of widespread distribution between continents.
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Stochastic character-mapping results for seed type (left: blue = dry vs. red = fleshy) and seed dispersal units (right: blue = one vs. red = two)

under the equal rates (ER) model and using the species tree generated in this study; 1000 character maps are summarized. The posterior probability along

branches for the character states is shown by shading
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DISCUSSION

Evidence from previous studies of Verbenaceae and tribe
Lantaneae suggests that plastid DNA loci are not sufficiently
variable to provide resolution among species within Lan-
taneae (Marx et al., 2010; Lu-Irving and Olmstead, 2013;
Lu-Irving et al., 2014). For the present study, seven nuclear
loci were considered to be suitably variable to sequence for
all of the sampled accessions (Appendix S1). These loci were
successful in resolving phylogenetic relationships among the
species of the Lantana/Lippia clade. In addition to the ITS
and ETS regions, which are linked as part of the nuclear
ribosomal repeat, the remaining loci are members of the
pentatrichopeptide repeat (PPR) gene family, which have
proven useful for phylogenetic inference in plants (Yuan
et al., 2009a, 2009b; Lu-Irving and Olmstead, 2013; Crowl
et al,, 2014; Lu-Irving et al., 2014; Chau et al.,, 2017, 2018),
including in targeted sequence capture approaches using
next-generation sequencing methods, where they exceed
other commonly used targeted sequence markers in terms
of both average sequence length and variability (Chau
et al., 2018).

As expected, some differences in phylogenetic re-
construction from different loci were observed (Appen-
dix S2), with two possible causes that are not mutually
exclusive: (1) the relatively small number of variable sites in
individual loci can result in inadequate data to resolve trees
with confidence (Olmstead and Sweere, 1994), and (2) dif-
ferent phylogenetic histories among loci owing to the effects
of lineage sorting or ancient hybridization. The tree topol-
ogy inferred using a total evidence approach (concatenating
all sequence data) is supported by high confidence values
throughout most of the tree (Figure 2), whereas the species
tree inferred under a coalescent model to account for dif-
ferences in branching history among the several loci has low
to moderate posterior probabilities for many nodes, espe-
cially near branch tips (Figure 3). However, trees from both
the concatenated data and the coalescent analysis are con-
sistent in the major clades obtained by each, with most
differences only found in moderate or weakly supported
nodes in the two large and species-rich clades 13 and 14 and
among some of the early diverging clades.

In this and previous studies with limited sampling of
the Lantana/Lippia clade (Lu-Irving and Olmstead, 2013;
Marx et al., 2020), the same major lineages within the
group are consistently obtained. These include several
clades corresponding to taxa recognized in traditional
classifications: Phyla (sensu O'Leary and Mulgura, 2011),
Lantana sect. Lantana (sensu Sanders, 2006; equal sect.
Camara sensu Chamisso, 1832), Lantana section Callioreas
(sensu Rotman, 2012, including sections Callioreas sensu
Chamisso, 1832, and Rhytidocamara sensu Briquet, 1904),
Lippia sect. Dioicolippia (Mulgura, 2000), and Lippia sect.
Goniostachyum (O'Leary et al., 2012b). With only one
species sampled in each, there was insufficient evidence
confirming monophyly of Burroughsia, Nashia s.l., and
Lippia sections Dipterocalyx and Lippia.

A single species each of Nashia s.l. and Burroughsia
was included. Nashia inaguensis Millsp. represents this
Caribbean endemic group of nine species recently parti-
tioned into three genera (Greuter and Rodriguez, 2016) and
is sister to Lippia domingensis Moldenke forming a Car-
ibbean clade nested within the large clade 14. Burroughsia,
segregated from Lippia by Moldenke (1940) because of its
glandular appendage on the ventral stamen pair, occurs near
the base of the Lantana/Lippia clade sister to Lippia dulcis.
Consistent with previous studies (Lu-Irving and
Olmstead, 2013; Lu-Irving et al.,, 2014), Acantholippia ser-
iphioides appears in all trees as sister to the rest of the
Lantana/Lippia clade, with which it shares a bilabiate calyx
and condensed axillary inflorescences.

Previously (Lu-Irving et al, 2014), a clade of three
Mexican Aloysia species (A. barbata (Brandegee) Moldenke,
A. chiapensis Moldenke, A. sonorensis Moldenke) was found
to be nested among species of Lippia. Two additional
Mexican species known only from the type specimens (A.
coalcomana Siedo, A. nahuire Gentry & Moldenke) also
likely belong to this group (Siedo, 2012), informally named
“Pseudolippia” by Siedo (2006). This clade is distinct from
other Aloysia in having a bilobed calyx, a synapomorphy of
the Lantana/Lippia clade, yellow flowers, otherwise not
observed in Aloysia, in somewhat shortened inflorescences
compared to other Aloysia species, and additional calyx and
corolla traits that are more similar to species of Lippia
(Siedo, 2006). This clade is represented here by Aloysia
barbata, where it occurs in a clade with the widespread
species Lippia alba (Mill.) N.E. Br. ex Britton & P. Wilson
and the African species of Lippia in clade 14. Of the five
species in the “Pseudolippia” group, only Aloysia barbata
has another valid name in Lippia (L. barbata Brandegee).

The remaining species are assigned to Lippia sections
Rhodolippia and Zappania and to “Sarcolippia,” none of which
are monophyletic. These species are found primarily in two
regions of the tree, as a grade at the base of the Lantana/Lippia
clade (clades 2, 3, 7, 9, 10, 12 in Figure 3) and again as a grade
in clade 14, from which Nashia, Lippia sections Dioicolippia,
Goniostachyum, and Lippia, and Lantana sect. Lantana are
derived. Species assigned to Rhodolippia occur on four sub-
clades all within clade 14. The large section Zappania has been
divided into three series, Axilliflorae, Corymbosae, and Pani-
culatae, based on inflorescence morphology (Schauer, 1847;
Troncoso, 1974). However, with multiple representatives of
Axilliflorae and Corymbosae included here (Paniculatae is
unsampled), neither is monophyletic, suggesting that the ar-
tificial nature of section Zappania extends to its included
series. The three “Sarcolippia” species form a clade with one
species each of Lantana (L. speciosa) and Lippia (L.
triplinervis).

Morphological traits that characterize taxa

Morphological traits used to characterize the primary gen-
era Lantana and Lippia—fleshy fruits with a single pyrene
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for Lantana and schizocarpous fruit or a leathery drupe
with two pyrenes for Lippia—are found not to be unique
synapomorphies for clades in the phylogeny of the Lantana/
Lippia clade (Figure 4). In contrast, diagnostic traits that
have been used to characterize taxa inferred here to be
monophyletic include (1) Phyla—malpighiaceous hairs and
a trailing herbaceous habit; (2) Lantana sect. Lantana
(Figure 1A)—vyellow to orange corollas, dark blue-black
drupes, and moderately conspicuous narrow floral bracts;
(3) Lantana sect. Callioreas (Figure 1B, C, D)—lavender to
purple corollas, white or purplish drupes, and ovate to re-
niform conspicuously imbricate floral bracts; (4) Lippia sect.
Dioicolippia (Figure 1I)—dioecy (rare in Verbenaceae),
xylopodial perennial plants with yellow flowers; and (5)
Lippia sect. Goniostachyum (Figure 1])—numerous axillary
florescences (except L. morii Moldenke with one axillary
florescence), tetrastichous floral bracts becoming fused near
the apex of the inflorescence.

Lippia section Dipterocalyx (Figure 1L) is a distinctive
taxon characterized by inflorescences with both terminal
and axillary unbranched florescences (other sections have
axillary florescences only) and winged calyces that suggest
monophyly, but a single sample does not permit a test of
monophyly in our analysis. Similarly, Lippia sect. Lippia is a
small clade, most similar morphologically to Dipterocalyx,
from which it was distinguished by Troncoso (1974) by
inflorescences in dense globose heads and a compressed,
bilobed calyx without wings; but, with a single species in our
analysis, it cannot be evaluated for monophyly. The single
representatives of these sections do not come out together
on our tree.

Lippia sections Rhodolippia and Zappania, as well as
“Sarcolippia,” are not monophyletic. The traits that char-
acterize the large sect. Zappania (Figure 1E, G, H, K),
dense axillary or terminal florescences solitary or united in
racemes or corymbs, large pluriseriated floral bracts, and
membranaceous calyx, are a combination of generalized
and plesiomorphic traits for the Lantana/Lippia clade
(Troncoso, 1974). In contrast to the apparent plesio-
morphic traits characterizing sect. Zappania, Lippia sect.
Rhodolippia seems to be characterized by convergent
derived traits. Section Rhodolippia (Figure 1F) is char-
acterized by distinctive large, colored, floral bracts, which
appear to have arisen multiple times independently (also
in Lippia macrophylla, not assigned to Rhodolippia), per-
haps as a modification for pollinator attraction. Colorful
floral bracts that function in attracting pollinators are
found throughout angiosperms (e.g., Bougainvillea, Cas-
tilleja, Cornus, Euphorbia) but are otherwise unknown in
Verbenaceae. “Sarcolippia” is characterized by leathery
drupaceous fruits with two pyrenes. Emphasis on the
drupes, rather than the number of pyrenes, led to the in-
clusion of “Sarcolippia” in Lantana originally. Our results
demonstrate that evolutionary lability in fruit fleshiness is
widespread in the Lantana/Lippia clade (Figure 4) and that
the two species that share clade 10 with “Sarcolippia”
(Lantana speciosa and Lippia triplinervis) may have further

modifications from “Sarcolippia” ancestors that led to
their being more similar to Lantana and Lippia sect.
Zappania, respectively. A newly recognized species, Lippia
raoniana P.H. Cardoso & Salimena., with fruit anatomy
characteristic of “Sarcolippia,” is distant from the other
“Sarcolippia” species.

Several of the species at or near the base of the tree
(Acantholippia seriphioides, Burroughsia, Lippia integrifolia,
L. micromera, and L. thymoides) share the trait of an anther
connective extension on the ventral stamen pair (not ob-
served in L. dulcis, L. rubella, or Phyla). This trait is found
elsewhere in Verbenaceae, including tribe Verbeneae, the
sister group to Lantaneae. The occurrence of this trait only
among the earliest branches of the Lantana/Lippia clade
suggests that it may be an ancestral trait in the group, but
the distribution of taxa without this trait among other
species that exhibit it in this part of the tree makes any such
conclusion speculative. These taxa from the basal grade also
share several noteworthy morphological traits: axillary
spikes or capituliform florescences, commonly small leaves
in fascicles, and white flowers.

Fruit evolution and taxonomic confusion

The classification of Lantana and Lippia has been based on
two associated, but not fully congruent, fruit traits. The
two genera have commonly been distinguished by fleshy
indehiscent fruits in Lantana and by dry schizocarpous
fruits in Lippia (e.g., Schauer, 1847; Troncoso, 1974). In
most species, there is a strict association of fleshiness with
indehiscence of the seed-bearing structure and, thus, a
single dispersal unit (vs. a dry fruit with dehiscence into
two dispersal units). However, a handful of species are
fleshy outside and schizocarpous inside. These species
were assigned to Lantana sect. Sarcolippia by Schauer, who
weighted the fleshy nature of the fruit in his assignment to
Lantana, but have been transferred to Lippia by Silva and
Salimena (2002), who emphasized the separation into two
seed-bearing units. There are four instances of strict cor-
respondence between these traits: Lantana sects. Lantana
and Callioreas, Lantana speciosa, and Nashia (Figure 4).
The phylogenetic proximity of the “Sarcolippia” group
with Lantana sect. Callioreas leaves open the possiblity
that they shared fleshy fruits from a common ancestor
(Figure 4) and that fusion of dispersal structures came later
in Callioreas. The clade that includes three species of
“Sarcolippia” also includes one species characterized by
classic Lippia-like fruits (Lippia triplinervis), suggesting a
unique loss of fleshiness in the Lantana/Lippia clade, and
one with classic Lantana-like fruits (Lantana speciosa),
indicating another case of fusion of the seed-bearing units.
Two instances of fleshy fruits with divided seed-bearing
structures (“Sarcolippia” and Lippia raoniana), and no
examples of the opposite combination, suggests that
fleshiness is a precursor to fusion of the seed-bearing
structures in the Lantana/Lippia clade.
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Biogeography

The Lantana/Lippia clade is widely distributed in the New
World from southern Argentina to southern Canada.
Whereas a few species venture into temperate latitudes
(Phyla in North America and Acantholippia seriphioides in
South America), all of the rest are constrained to pre-
dominantly frost-free zones in the Neotropics and tropical
Africa (Olmstead, 2013).

The most closely related clades in Verbenaceae to Lan-
tana/Lippia are either entirely South American in dis-
tribution (Neospartoneae, Rhaphithamnus) or originated in
South America (Aloysia, Verbeneae), except Coelocarpum,
which is distributed in Madagascar, Socotra, and adjacent
Somalia, suggesting that the clade originated in South
America (Marx et al, 2010; Olmstead, 2013; Lu-Irving
et al,, 2014). All of the early diverging lineages in the Lan-
tana/Lippia clade (except the small clade 3) occur in South
America or are restricted to South America. This implies
that multiple lineages, perhaps as many as four or more
(Figure 5), have reached North/Central America and an
equal number have reached the Caribbean from South
American ancestors. These estimates do not include the
several individual widespread species (e.g., Lantana camara,
Lippia alba, Phyla nodiflora) with distributions in both
North and South America, which represent additional range
expansions between the continents.

Sampling a species-rich clade with broad geographic
distribution can always introduce bias in the outcome of
biogeographic interpretations. In the present study, the
emphasis in sampling was on the center of greatest diversity
in Argentina and Brazil, with significant sampling also in
the Antilles, and relatively reduced sampling elsewhere in
South America and Central America. Given the prior evi-
dence that the origin of the Lantana/Lippia clade was in
South America (Lu-Irving and Olmstead, 2013;
Olmstead, 2013) and that our sampling emphasized taxo-
nomic diversity, the confidence in the conclusions regarding
the ancestral areas of nodes along the backbone of the tree is
likely to be greater than that for nodes near the tips where
sampling within sections, for example, favored South
America. Hence, ancestral areas along the backbone of the
tree are emphasized in Figure 5.

Several of the clades identified here are widely dis-
tributed throughout the Neotropics, including Phyla (clade
4), Lantana sect. Callioreas (clade 13), Lantana sect. Lan-
tana (clade 17), and Lippia sect. Goniostachyum (clade 15).
Sampling bias is likely to have influenced the ancestral area
reconstruction for all of these except section Callioreas.
Section Goniostachyum is distributed from Argentina to
Mexico (O'Leary et al., 2012b), but only two species from
Brazil were sampled here. The biogeographic analysis with
Lagrange identified the ancestral area for Phyla as Central/
North America, but the widespread species Phyla nodiflora
is sister to or paraphyletic with respect to the rest of Phyla
(Figures 2 and 3) and the support for the small Burroughsia/
Lippia dulcis clade as its sister group is weak (and not

obtained in the concatenated sequence analysis; Figure 2).
Thus, the inferred ancestral area for Phyla is equivocal.

Lantana sect. Lantana (clade 17) is represented here only
by U.S. and Caribbean specimens, but prior studies (Marx
et al, 2010; Lu-Irving and Olmstead, 2013; Lu-Irving
et al, 2014) included accessions from Argentina, Brazil,
and the southwestern United States. Section Lantana is sister
to a clade of species from the southeastern United States and
Central America with moderate support, but the inclusive
clade is nested among South American species. The biogeo-
graphic analysis interprets the origin of sect. Lantana to be in
Central/North America or the Caribbean. However, the poor
resolution within sect. Lantana and the limited and biased
sampling across its widespread distribution makes any in-
ference regarding its geographic origin here uncertain.

African species are restricted to two clades, one each
in Lantana and Lippia (Figure 5). In each case, the sister
to the African clade is a widespread New World species,
Lantana trifolia (now also a widespread weed in Africa)
and Lippia alba, respectively. Two specimens of Lippia
rehmannii were collected in South Africa as L. rehmannii
and L. wilmsii; the latter is considered a synonym of the
former (Fernandes, 1986).

We also identified two clades within clade 14 compris-
ing mostly species occurring in the campos rupestre of the
Espinhago Range, including the Lippia species L. hederifolia,
L. filifolia, and L. florida in one and L. lupulina (Cerrado
endemic), L. diamantinensis, and L. grandiflora (previously
misidentified as L. pusilla; Lu-Irving and Olmstead, 2013) in
the other. These species have in common a well-developed
xylopodium and flower after fires. Similarly, the species in
clade 10 (members of “Sarcolippia” and two related species)
are endemic to eastern Brazil, where they occur in the Serra
do Mar, Mantiqueira Range, and Espinhago Range chains
associated with Atlantic Forest vegetation.

Taxonomic implications

Despite extensive transfers of names between Lantana, Lip-
pia, and the other small genera sometimes recognized in
Lantaneae since Linnaeus (1753) first applied these names
(e.g., Millspaugh, 1906; Moldenke, 1940, 1941; Silva and
Salimena, 2002; O'Leary and Mulgura, 2011), none of the
previous circumscriptions for Lantana or Lippia align with
monophyletic groups based on our current understanding of
phylogeny. Both of the currently recognized sections of
Lantana (Rotman, 2012) are monophyletic (with the excep-
tion of the recently described Lantana speciosa, which falls in
the “Sarcolippia” clade), as are the small genus Phyla, the
“Pseudolippia® clade of Aloysia species (Lu-Irving
et al., 2014), and at least two recognized sections of Lippia
(Dioicolippia and Goniostachyum), but all of these groups are
nested within the inclusive Lantana/Lippia clade. Two sec-
tions of Lippia, sects. Rhodolippia and Zappania, plus
“Sarcolippia” are not monophyletic, although a clade is ob-
tained corresponding to species recognized as “Sarcolippia”
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(clade 10) with a couple of additional species. Rhodolippia
appears to be a polyphyletic group of species sharing the
convergent trait of large, colorful floral bracts, whereas Zap-
pania represents a paraphyletic group characterized by ple-
siomorphic or generalized traits, among which clades
representing virtually all other taxa named at the genus or
section rank are nested. Species recognized as “Sarcolippia”
have a history of ambiguity with respect to generic assignment,
initially being described in Lantana, but subsequently trans-
ferred to Lippia (Silva and Salimena, 2002). In our tree, Lan-
tana speciosa and Lippia triplinervis occur in a clade with
species of “Sarcolippia.”

Adhering to the contemporary convention of recognizing
and assigning names only to monophyletic groups in classifi-
cation, revising these genera under the International Code
(Turland et al., 2018) will require extensive changes, regardless
of how genera are circumscribed. Two contrasting approaches
to resolving the taxonomy of Lantaneae are possible.

In one approach, an effort to retain both Lantana and
Lippia would require that several small clades be recognized
as genera, many without clear defining traits. The type
species of Lantana (L. camara) and Lippia (L. americana L.)
occur in small clades that are sister to each other (type
species in bold in Figure 2). So, even if retaining both names
is a desired outcome, recircumscribing Lantana and Lippia
will result in small genera bearing those names, and most
species currently placed in each genus would need to be
assigned to other genera. A few valid generic names are
available, but with the exception of Tamonopsis Griseb.
(= Lantana sect. Callioreas), these would also only apply to
small clades in our phylogenetic tree, requiring that large
numbers of species be assigned to new genera.

Thus, trying to construct a classification that retains both
Lantana and Lippia would require establishing numerous new
genera of dubious usefulness for field botanists. Also, with re-
presentative but limited sampling present in this study, it is
likely that additional evidence will uncover more distinct
lineages requiring yet more names or suggest combining some
lineages that now appear to be distinct, resulting in more names
abandoned to synonymy. A second, simpler alternative is to
recognize a single large genus. Both Lantana and Lippia are
available names, having first appeared in Species Plantarum
(Linnaeus, 1753). Lantana is perhaps the more widely re-
cognized name, due to the number of widely cultivated species,
and the global impact of Lantana camara as a cosmopolitan
weed in tropical regions (Day et al, 2003), whereas keeping
Lippia would require fewer name changes, since many species of
Lantana and most of the species in the small segregate genera
already have names in Lippia. A third compromise option
might be to establish new genera for Acantholippia seriphioides
and Lippia integrifolia, expand Burroughsia to include Lippia
dulcis, and retain Phyla, while placing the rest into a
single large Lantana or Lippia. We are currently preparing a
taxonomic revision.

A complementary taxonomy could be drafted using the
principles of phylogenetic nomenclature as detailed in
PhyloCode (Cantino and de Queiroz, 2020). A phylogenetic

classification would permit defining and naming well-
supported clades without the constraint of rank. In such a
classification, all of the clades that correspond to named
groups at the rank of genus (e.g., Burroughsia, Nashia,
Phyla) or section (e.g., Callioreas, Camara, Goniostachyum)
within Lantana or Lippia could be recognized, as well as any
other clades it would be useful to name in order to enhance
communication about diversity in Lantaneae (e.g., “Pseu-
dolippia” for the clade of Mexican species presently assigned
to Aloysia, or the African clades of Lantana and Lippia). For
example, any of the 17 clades that were obtained con-
sistently between the concatenated Bayesian analysis and the
coalescent *BEAST analysis could be defined and named,
along with others. In our opinion, this strategy would
provide the greatest consistency with current taxonomy by
recognizing clades based on shared morphology within the
Lantana/Lippia clade, while retaining the identity of the
group as a whole, without the constraints of equivalence of
names within ranks. PhyloCode does not provide for the
application of species names, so a revision based on the
conventional code also would be needed.

CONCLUSIONS

The species of the Lantana/Lippia clade are closely related
and, based on the inability to resolve relationships in prior
chloroplast DNA studies, appear to be recently diversified,
belying their remarkable morphological diversity and wide
geographic distribution. The close relationships between
them can be resolved using DNA sequence data of sufficient
variability, and in sufficient quantity, but care should be
taken in interpreting the results, due to the possible con-
founding effects of gene tree/species tree incongruence.
Revising generic boundaries within the Lantana/Lippia
clade will not be straightforward; we recommend absorbing
most, if not all, of its species into an expanded Lantana or
Lippia, and exploring a rank-free classification scheme to
retain widely used names for many recognized groups.
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