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The independent evolution of gigantism among dinosaurs has been a topic
of long-standing interest, but it remains unclear if gigantic theropods, the
largest bipeds in the fossil record, all achieved massive sizes in the same
manner, or through different strategies. We perform multi-element histo-
logical analyses on a phylogenetically broad dataset sampled from eight
theropod families, with a focus on gigantic tyrannosaurids and carcharodon-
tosaurids, to reconstruct the growth strategies of these lineages and test if
particular bones consistently preserve the most complete growth record.
We find that in skeletally mature gigantic theropods, weight-bearing
bones consistently preserve extensive growth records, whereas non-
weight-bearing bones are remodelled and less useful for growth reconstruc-
tion, contrary to the pattern observed in smaller theropods and some other
dinosaur clades. We find a heterochronic pattern of growth fitting an accel-
eration model in tyrannosaurids, with allosauroid carcharodontosaurids
better fitting a model of hypermorphosis. These divergent growth patterns
appear phylogenetically constrained, representing extreme versions of the
growth patterns present in smaller coelurosaurs and allosauroids, respect-
ively. This provides the first evidence of a lack of strong mechanistic or
physiological constraints on size evolution in the largest bipeds in the
fossil record and evidence of one of the longest-living individual dinosaurs
ever documented.
1. Introduction
Histological analyses of fossil tetrapod bones are commonly used to investigate
their palaeobiology, and the applications of these methods to dinosaurs have
yielded insights into their growth rates, thermophysiology, taxonomic identifi-
cation and maturity [1–5]. Tyrannosaurus rex, one of the largest terrestrial
carnivores and bipeds known, has been the focus of several studies elucidating
life-history parameters through bone histology [6–9]. Nevertheless, these studies
have sampled different bones of the skeleton, generating questions as to whether
the largest growth stages of T. rex have been sampled [6] or not [10], and also
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whether weight-bearing bones (WBB) present a more or less
reliable record of growth than non-weight-bearing elements
(NWB) (e.g. [1,6,7,11]). To the latter issue, while previous
research on small theropods has suggested that NWB such
as fibulae provide a more complete record when compared
with WBB of the same individuals [12,13], it remains unclear
how well this holds in large theropods [6,7,9], and in other
large dinosaurs, there are varying patterns, with hadrosaurs
appearing to generally preserve the most complete growth
record in WBB [14], while in sauropods NWBs preserve
the most complete and less remodelled growth records [15].
Furthermore, while it was shown that T. rex achieved greater
body mass through growth acceleration when compared
with related tyrannosaurids [6], comparable data are lacking
for other large theropods such as carcharodontosaurids,
which achieved body masses rivalling those of many
large tyrannosaurids. In this histological study, we have
undertaken the hitherto broadest phylogenetic sampling
of non-avian theropods, includingmulti-element comparisons
for 8 of our 11 total sampled species, to address two funda-
mental questions in the study of dinosaur growth and
life-history parameters:

(i) Given documented inter-elemental variability in pre-
served growth mark records in hadrosaurid [14] and
sauropod [15] dinosaurs, how variable is the growth
mark record across commonly sampled bones in the
theropod skeleton, and do WBB or NWB preserve a
more complete growth record?

(ii) Theropod dinosaurs such as Tyrannosaurus and carch-
arodontosaurids independently evolved gigantic sizes
(greater than 1–4.5 tonnes), converging on mass esti-
mates of 7–8 tonnes for large individuals via most
methods, and up to or greater than 10 tonnes in the
case of some estimation methods [6,16–19]. Did all
lineages exhibiting gigantism follow a common
growth strategy of growth acceleration as already
shown for T. rex [6], or is there evidence for a diversity
of strategies with modulation of life-history parameters
other than the growth rate, such as longevity?

Related to our first question, individual, intra- and inter-
specific variability in growth marks between different bones
remains somewhat poorly quantified in non-avian theropod
dinosaurs due to a paucity of multi-element analyses
compared with the number of studies using a single bone
[12–15,20,21]. Without detailed data to address these uncer-
tainties, palaeohistologists have debated the selection of
WBB versus NWB as the primary source of data for growth
and age reconstructions (e.g. [1,6–8,11,14,21–24]). Arguments
favouring the use of WBB rely on their more symmetrical
growth, because they support the whole body mass and are
thus less influenced by differential allometric patterns than
NWB [7]. The counterargument in favour of using NWB is
that they are less likely to experience stress-induced micro-
fractures and consequently less likely to be remodelled [16].
As an additional benefit, they may have more complete
growth records resulting from a lack of large medullary
cavities [6]. Further investigation of within-specimen histo-
variability is necessary to quantify the uncertainty in
preserved growth signals across individual skeletons and
species samples and allow for more accurate comparisons
of growth records between taxa.
Understanding the macroevolutionary pressures driving
repeated independent evolution of gigantism in theropods,
and the mechanisms bywhich it was attained, is of great inter-
est to understanding how dinosaurian ecosystems were
structured [25]. If the considerable increase in growth rate
over a constrained growth period, as seen in tyrannosaurids
[6,7], is the sole strategy by which theropods achieved large
body sizes, it could suggest that metabolic or mechanistic con-
straints may have influenced the evolution of gigantism in
these bipeds. Alternatively, independent evolution of large
body size in theropods resulting from divergent growth strat-
egies might suggest that differing selective regimes related to
extrinsic factors, or phylogenetic constraints, played a larger
role in these evolutionary patterns.

In this study, specific comparisons focus on variation in
recorded cyclical growth mark (CGM) or line of arrested
growth (LAG) counts, growth zone thickness and vasculariza-
tion patterns, as preserved in the bone microstructure of thin-
sectioned fossil bones. Changes in vascularization patterns
have been shown to relate to metabolism and growth rate,
whereas changes in LAG circumference and growth zone
thickness can be used to assess the amount of body-size
change in a given year [3,4,6,22,26–30]. Additionally, each
sampled specimen is assessed for skeletal maturity, which
can be determined through the presence or absence of an
‘external fundamental system’ (EFS [14], also referred to as
an outer circumferential layer or OCL [26]) in the periosteal
margin of the bone cortex. These combined metrics and
traits allow for relative differences in the growth patterns of
the sampled taxa to be compared and assessed. Furthermore,
proportional annual bone circumference changes were com-
pared for a broad sample of theropods, and model-based
age retrocalculation and growth curve reconstructions
performed on representatives of two gigantic theropod taxa
as an additional comparison and quantification of growth
pattern differences.
2. Results
(a) Element choice is most critical in large-bodied taxa
All thin-sectioned elements predominantly exhibit fibrolamel-
lar bone as a woven-parallel complex tissue [21,28]. Vascular
patterns and density are consistent with a laminar to plexiform
arrangement over much of the primary bone, although
localized areas of more complex reticular or longitudinal vas-
cularization occur and are more prevalent in small-bodied
coelurosaurs, consistent with other studies of theropod osteo-
histology [5–7,12,13,31,32]. Histological comparisons from a
wide range of theropods (figures 1 and 2; electronic sup-
plementary material, table S1) reveal several broad patterns.
First, in smaller-bodied (less than 1 tonne) taxa, growth
mark count varies only slightly between sampled elements
of the same individuals, with NWB often preserving more
growth marks (typically approximately 1 additional LAG;
electronic supplementary material, table S1). A different pat-
tern is seen in Cryolophosaurus ellioti, where considerably
more LAGs are identifiable in the fibula, gastralium and rib
when compared with the femur. The femur of this specimen
is cracked and re-crystallized, however, so determination of
LAGs is hampered.

Unlike the pattern seen in these smaller theropods, the
gigantic taxa Tyrannosaurus rex and an unnamed Campanas



EFS 1 mm
EFS

EFS

EFS

EFS

5 mm

5 mm

1 cm

0.5 cm

1 cm

1 cm

1 cm

1 cm

EFS?

EFS

femur

femur

1 cm
femur

fibula

fibula

fibula

rib

rib

rib

3 mm

2 mm

3 mm

3 mm

2 mm

2 mm

2 mm

2 mm

1 cm

EFS

EFSEFS

gastralium

gastralium

1 mm

1 mm5 mm

1 mm
1 mm

4 mm

2 mm

2 mm

1 mm1 mm

(a) Tyrannosaurus rex (FMNH PR 2081)

(c) Cryolophosaurus ellioti (FMNH PR 1821/4926/4934*)

(b) Campanas carcharodontosaurid (MMCh PV 65)

2 mm

ICL

Figure 1. Multi-element osteohistological comparisons of (a) Tyrannosaurus rex, (b) the Campanas carcharodontosaurid and (c) Cryolophosaurus ellioti. In the case of
the latter, all bones are from same individual but represented by multiple specimen numbers based on collection history (see electronic supplementary material,
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carcharodontosaurid (see electronic supplementary material,
methods S1) exhibit marked differences in preserved bone
tissue and LAG counts between WBB and NWB (figure 1).
In these gigantic taxa, the weight-bearing femora consistently
preserve excellent growth records as LAGs and primary
tissue, with a relatively little remodelling. By contrast, the
fibulae of both taxa are heavily remodelled, to the point of
preserving few if any discernable growth marks beside the
EFS in the outermost cortex. Among other sampled elements,
ribs appear to preserve more primary tissue than fibulae, but
have higher rates of remodelling than the femora, and
sampled gastralia are heavily remodelled, similar to fibulae
(figure 1; electronic supplementary material, table S1).

(b) Distinct patterns of growth exist in taxa that
independently evolved gigantic size

Comparisons of the femoral sections of T. rex and the Campa-
nas carcharodontosaurid reveal distinct differences in growth
mark count and distribution. In T. rex, 23 growth marks are
observable (12 in the primary cortex, 11 in the EFS), with
growth zone thickness varying but generally transitioning
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abruptly from broad growth zones in the inner cortex to thin
zones in the outer cortex, just prior to the onset of the EFS
(figure 1a; electronic supplementary material, table S1). By
contrast, in the Campanas carcharodontosaurid, there are 28
growth marks observed (24 in primary cortex, 4 in EFS),
with growth zone thickness gradually decreasing in the
absence of any abrupt shifts (figure 1b; electronic supplemen-
tary material, table S1). Cortical thickness and medullary
cavity size are proportionally similar in both taxa, though
the T. rex specimen is approximately 10% larger than the
carcharodontosaurid.

These distinct patterns are reflected in the model-based
growth curve reconstructions of both taxa and related age
retrocalculations (figure 3a,b), where T. rex exhibits rapid sub-
adult growth increases, which quickly level off to skeletal
maturity under all fitted models, and the carcharodonto-
saurid exhibits a far more drawn out growth pattern with
considerably more shallow slope (and resulting growth
rates). Depending on the model applied, T. rex is recon-
structed with age at death of 27–33 and skeletal maturity
achieved after 16–22 years, which is for most models older,
but overall broadly consistent with previously published esti-
mates for this taxon based on estimates from a rib section [6],
and together with Persons et al.’s fibula data [8] also conclus-
ively demonstrates that we have sampled the largest/eldest
growth stages for T. rex (contra [10]). The model with the
best fit (logistic) for the recorded growth in this mature
T. rex specimen is also consistent with recent analyses of
two juvenile specimens referred to T. rex, which hypothesized
a period of smaller size in early ontogeny followed by a
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massive increase in growth in ‘teenage’ years to achieve adult
body size [9]. Retrocalculated ages for the Campanas carchar-
odontosaurid range from 39 to 53 years, with skeletal
maturity achieved after 35–49 years. The age estimates for
this carcharodontosaurid also place it as one of the oldest
known dinosaur specimens, certainly among the oldest esti-
mates for a large theropod [33], and similar to estimated
ages for mature large sauropod taxa [34], with a caveat that
even the upper bound estimate falls short of the maximal
age estimates proposed for some sauropods [35].
(c) Increased growth rates distinguish sampled
coelurosaurs from non-coelurosaurs

The pattern of growth observed in T. rex [6,7,9], with major
increases in growth rate (via growth zone thicknesses) in
early to mid-ontogeny, followed by abrupt shifts to growth
cessation and maturity, is also observed in the other sampled
coelurosaurs, both qualitatively (figure 2) and quantitatively
via differences in proportional annual changes in femoral
circumference (figure 3c; wherein only coelurosaurs record
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proportional annual changes greater than 10%). This includes
juvenile specimens of tyrannosaurids such as Gorgosaurus
libratus (figures 2b and 3c) and T. rex (figures 2c and 3c), but
also small to medium-sized coelurosaurs such as the ornitho-
mimids Rativates evadens (figures 2d and 3c) andOrnithomimus
edmontonicus [12], the caenagnathid Anzu wyliei [13], and even
in the very rapid growth and fast maturation of small taxa like
the caudipterid Similicaudipteryx yixianensis (figure 2f ) and the
microraptorine Tianyuraptor ostromi (figure 2e). The pattern of
growth in T. rex thus appears to represent an extreme, or ‘end-
member’, variant of the general growth pattern observed
across non-avian Coelurosauria. Similarly, the more gradual
and extended periods of relatively rapid growth in the Campa-
nas carcharodontosaurid (figures 1 and 3) is an extended
variant of the pattern of growth observed in other, smaller
(though still relatively large) non-coelurosaurs, such as Cryolo-
phosaurus ellioti (figure 1c), Allosaurus fragilis (figures 2a and
3c) and Acrocanthosaurus atokensis (figure 3c), which display
many narrow, but relatively similarly spaced growth zones,
rather than the broad inner zones and abrupt shift to thinner
outer zones at the onset of maturation seen in coelurosaurs.
Our Allosaurus fragilis sample records and extends a growth
pattern broadly consistent with other specimens of Allosaurus
[31], and represents the largest histologically examined indi-
vidual (figure 3c; electronic supplementary material, table
S1). As well, double/multiple growth marks are prevalent
throughout the sampled theropod taxa (figures 1 and 2), occur-
ring in specimens of various ontogenetic stages and indifferent
sampled elements. See electronic supplementary material,
results S1 for expanded histological and growth comparisons
of sampled theropod specimens, including additional multi-
element comparisons and discussion of ‘double’/‘multiple’
growth mark distribution. Expanding these comparisons
to include an even broader sample of coelurosaurs and non-
coelurosaurs from the literature recovers a similar pattern,
with coelurosaurs exhibiting higher growth rates when
compared to non-coelurosaur taxa of similar size (electronic
supplementary material, table S3, results S2).
3. Discussion
(a) Multi-element sampling crucial for studies of

theropod osteohistology
Our multi-element comparisons across a phylogenetically
broad sample of theropods, representing taxa and individuals
from a wide variety of body sizes and ontogenetic stages,
suggest that element choice is crucial in histological examin-
ations of gigantic theropods. Particularly in the case of
mature individuals of large to gigantic taxa such as T. rex,
carcharodontosaurids, and even Allosaurus, NWB preserves
less of the growth and age record than WBB of the same indi-
viduals (figure 1). Combined with the benefit of using more
symmetrically growing weight-bearing elements in body
mass estimation equations [19] and growth curve reconstruc-
tions [2,27,36], it is recommended that weight-bearing
elements such as femora or tibiae be used for histological ana-
lyses of gigantic theropod dinosaur species. In all specimens
with EFS, WBB have greater LAG counts than NWB. This
relationship also holds for larger/older specimens without
an EFS, but where moderate to large degrees of remodelling
especially in NWB have erased a greater part of the growth
record. Conversely, in younger specimens exhibiting no
EFS and only slight to moderate remodelling, NWB retain
a greater number of LAGs and may thus have a higher
fidelity with respect to age than WBB, although variances
are small. Taking this into account alongside the small to
moderate variability that exists in growth zone thickness
patterns between elements, we strongly recommend that
multi-elemental sampling be used whenever possible, but
emphasize that for larger and mature animals the inclusion
of weight-bearing elements is crucial.

Our results demonstrating that WBB are less remodelled
than NWB in gigantic taxa may seem counterintuitive given
greater biomechanical stress on WBB. Nevertheless, this pat-
tern matches hypothetical predictions that in large-bodied
taxa with a comparatively rapid and massive overall body-
size increase, the main weight-bearing limb bones need to
increase in size at a rate greater than would allow consider-
able remodelling to occur [37]. Smaller NWB without such
constraints would likely slow or cease their growth at an ear-
lier growth stage and would then begin to experience
considerable secondary bone remodelling [37]. Our results
provide empirical support for this hypothesis in giant thero-
pods and underscore our conclusion that WBB be examined
preferentially when studying the growth of extremely large
bipedal organisms. These results differ in varying degrees
from those published for other dinosaurs. For example, in a
multi-element sampling of Camarasaurus [15], ribs were
found to preserve a more extensive growth record than
limb bones. On the other hand, Horner et al. [14] also
found that in a mature specimen of the hadrosaurid Hypacro-
saurus, hind limb bones including the femur preserved a
better growth record than rib samples. Taken together,
these empirical results suggest that growth patterns are
unique to clades and perhaps even species, precluding a
single sampling approach for all non-avian dinosaurs and
emphasizing the need for multi-element sampling.

(b) Macroevolution of gigantic body size not
constrained to a single growth strategy

Our results suggest that divergent growth strategies exist in
theropods and are particularly identifiable in ‘gigantic’ taxa
(figure 3). While slight to moderate variability exists in
growth from year to year in the sampled specimens, consistent
with other studies of theropod histovariability [9,12], it does
not fundamentally impact the overall macroevolutionary
patterns we observe. Indeed, the relative growth patterns pre-
served for the gigantic representatives of the sampled clades
are very similar to those of their respective smaller sized
relatives, but taken to a relative extreme. Whereas the hetero-
chronic pattern of growth in tyrannosaurs has been ascribed
to acceleration [6] that observed in allosauroid carcharodonto-
saurids may better fit a model of hypermorphosis [38]. This
suggests that gigantic body size in theropods can be achieved
through multiple changes to life-history parameters and is
not mechanistically or physiologically constrained to a single
growth strategy.

From these results, we would also predict that, barring
the identification of an additional distinct strategy for attain-
ing large body size, a suitable null hypothesis for the growth
patterns of other large to gigantic non-coelurosaurian thero-
pod taxa would most closely fit a hypermorphosis model.
Small to medium abelisaurid taxa have been found to display
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a range of moderate to relatively slow growth rates [39],
and although complicated by a lack of mature specimens,
the limited histological data from spinosaurids suggests an
extended period of growth [40]. While the allosauroid
Acrocanthosaurus has been hypothesized to achieve large
body size through growth rate acceleration [41], proportional
circumference changes in femoral sections from juveniles of
this taxon follow the pattern seen in other non-coelurosaurs
(figure 3c).

Multiple growth strategies for achieving gigantism have
also been identified in sauropodomorph dinosaurs [42],
suggesting that body-size evolution by modulating growth
was common in dinosaurs. Whereas LAGs/CGMs are
present throughout growth in most non-sauropod sauropo-
domorphs, sauropods only appear to develop LAGs in limb
bones close to somatic maturity suggesting that protracted
continuous growth during early ontogeny explains their gen-
erally greater body sizes, including the largest terrestrial
animals to have lived. Such marked differences in tissue
organization are as yet unknown among non-avian thero-
pods, in which similar maximum body sizes are attained by
both slow-growing and fast-growing clades, all of which
show LAG/CGM throughout ontogeny (figure 3; electronic
supplementary material, results S1 and S2).

The phylogenetic distribution of growth patterns in the
available theropod data, with representatives of earlier diver-
ging clades (e.g. Cryolophosaurus and allosauroideans such as
Allosaurus, Acrocanthosaurus and the Campanas carcharodon-
tosaurid) primarily achieving larger size via steady growth
over extended periods somewhat similar to those seen in cro-
codilians [43], and coelurosaurs like the tyrannosaurids (e.g.
Gorgosaurus, Tyrannosaurus) achieving large body size through
the acceleration of growth rate, it is conceivable that the latter
strategy was selected for as a result of the greater metabolic
and growth rates synapomorphic to coelurosaurs generally
[2,7,11,16,17,24,29,44]. This inference is supported by the pres-
ence of similar growth patterns, albeit not as extreme,
observed in the histological record of many non-tyrannosaur
coelurosaurs, including ornithomimids (figures 2d and 3c;
see also [12,45–47]), oviraptorosaurs (figure 2f ) [13,17,48],
troodontids [49,50], dromaeosaurids (figure 2e) [51] and of
course, birds [29,52,53]. This may also suggest a physiological
mechanism for how, if not why, previously small-bodied tyr-
annosaurs had the capacity to evolve rapidly into the top
predator niche vacated by large allosauroid theropods follow-
ing the ‘mid-late’-Cretaceous dinosaur faunal turnover in
western North America [44,54–56].
4. Methods
Institutional abbreviations: CMN FV, Canadian Museum of
Nature; FMNH, Field Museum of Natural History; MMCh,
Museo Municipal ‘Ernesto Bachmann’; PMoL, Paleontological
Museum of Liaoning; ROM VP, Royal Ontario Museum;
UM, University of Michigan Museum of Paleontology; UUVP,
University of Utah Vertebrate Paleontology.

Taxonomic, element and catalogue number identifications
of sampled specimens are provided in figures 1 and 2, and
electronic supplementary material, table S1. Prior to palaeo-
histological sampling, specimens were photographed and/or
three-dimensionally scanned. Transverse sections were obtained
from the bones and processed into thin sections for analysis using
standard palaeohistological methods, as outlined by Cullen et al.
[12]. Core samples were obtained using a modified version of the
methods detailed by Woodruff [23] (see electronic supplementary
material, methods S1). Sampled cores were then prepared into
thin sections following the same methods noted above for trans-
verse sections. After sectioning and/or coring, casts of sampled
material were made and integrated with specimens to restore lost
morphological and measurement information.

LAG circumferences were estimated for the Tyrannosaurus rex
(FMNH PR 2081) and the Campanas carcharodontosaurid
(unnamed carcharodontosaurid taxon from the Huincul For-
mation of Argentina; MMCh PV 65) samples using growth zone
radii from cores and measured circumferential dimensions of
the whole bones, with LAG circumferences for other specimens
directly measured from full-sections and/or retrodeformed sec-
tions (electronic supplementary material, table S2). While
growth zone radii cannot be considered directly equivalent to
full measures of zonal area/LAG circumference, the roughly cir-
cular to elliptical and relatively constrained growth pattern of
the femur in other theropods suggests that the patterns observed
here should be broadly consistent with the overall pattern of
femur growth in this individual. Care was taken to sample all
cores/wedges from similar locations on the anterior surface to
maximize comparability, with additional comparisons made to
theropod full-sections to better account for intra-cortical variabil-
ity. Neonatal mass for each individual was estimated following
the method outlined by Grady et al. [57] (and references therein)
and combined with adult body mass estimations, obtained from
femur circumferences of mature specimens, using the methods
of Campione & Evans [58] and Campione et al. [19], in order to
estimate neonatal femur circumferences using the ‘developmental
mass extrapolation’ approach of Erickson and Tumanova [59].
Finally, these data, and the LAG circumference estimates, were
used to compute model-based age retrocalculations and growth
curve fitting following the methods introduced by Cooper et al.
[2] and Lee & O’Connor [36]. Growth mark circumferences from
measured taxa and literature sources were compared, and pro-
portional annual changes (i.e. from LAG to LAG) calculated for
figure 3 analyses, with source data available in electronic sup-
plementary material, table S2 and expanded method details in
electronic supplementary material, methods S1.
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