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Abstract
When people seek to understand concepts from an incomplete set of examples and counterexamples, there is usually an
exponentially large number of classification rules that can correctly classify the observed data, depending on which features
of the examples are used to construct these rules. A mechanistic approximation of human concept-learning should help to
explain how humans prefer some rules over others when there are many that can be used to correctly classify the observed
data. Here, we exploit the tools of propositional logic to develop an experimental framework that controls the minimal
rules that are simultaneously consistent with the presented examples. For example, our framework allows us to present
participants with concepts consistent with a disjunction and also with a conjunction, depending on which features are used
to build the rule. Similarly, it allows us to present concepts that are simultaneously consistent with two or more rules of
different complexity and using different features. Importantly, our framework fully controls which minimal rules compete
to explain the examples and is able to recover the features used by the participant to build the classification rule, without
relying on supplementary attention-tracking mechanisms (e.g. eye-tracking). We exploit our framework in an experiment
with a sequence of such competitive trials, illustrating the emergence of various transfer effects that bias participants’ prior
attention to specific sets of features during learning.
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Concept acquisition is a key and widely studied aspect of
human daily cognition (Cohen & Lefebvre, 2005; Ashby &
Maddox, 2011). Many researchers have claimed that a coding
system and a set of rules underlie some of our abilities to
acquire concepts (Nosofsky et al., 1994b; Tenenbaum et al.,
2011; Maddox & Ashby, 1993), and it has been observed
that we seem to learn concepts of objects with more
ease when there are ‘simpler’ rules that can explain
those groupings (Shepard et al., 1961; Nosofsky et al.,
1994a; Rehder & Hoffman, 2005; Lewandowsky, 2011;
Feldman, 2000; Blair & Homa, 2003; Minda & Smith,
2001). In the real-world, humans learn concept descriptions
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while simultaneously deciding on which features to attend
(Schyns et al., 1998); and the selected set of features
usually determines the structure and complexity of the
minimal rules that can describe the concept. For example,
the concept dog can be explained as a four-legged pet that
is not a cat or as an animal for hunting, herding, pulling
sledges or company. Both descriptions are fully compatible
with the concept dog, but our experience induces us to
choose different relevant features to define the concept.
While the first description of dog could be very well
be given by a child having a dog at home, the second
could be given by a shepherd or perhaps an ethologist.
It is likely that the features used to describe dog by
each agent allows them to compactly describe the concept,
while simultaneously separating it from other concepts
frequently encountered in their environment. Here, we ask
about which features participants use to describe concepts,
depending on the logical structure of the description using
those features and also on their exposure to previous
concepts. Why will someone use cat or hunting to define
dog?

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01596-4&domain=pdf
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In propositional concept-learning experiments, partici-
pants are presented with a set of examples, each conformed
of N propositional features, which can take positive or neg-
ative values. For instance, for N = 4 one example can
be logically represented as the element (1, 1, 0, 1), which
takes positive values for the first, second and fourth fea-
tures and negative for the second one, as illustrated in Fig. 1.
A concept can be intuitively understood as a set of exam-
ples, some of them marked as belonging to the concept and
the rest marked as not belonging, i.e. positive and negative
examples. In Fig. 1 we show an example of an underdeter-
mined concept, in the sense that, since the entire universe
of examples is not shown (i.e. the 24 possibilities), different
determined concepts can be consistent with this smaller set
when extending the set of examples to the full universe.

A rule consistent with the concept is a logical formula
built with the features and the conjunction (∧), disjunction
(∨), and negation (¬) operators, which evaluates to true
for objects belonging to the concept and false otherwise
(e.g. p1 ∧ p2, where pi is the ith feature, see Fig. 1). The
minimal description length (MDL) of a concept is the length
of the shortest rule consistent with the concept (Grünwald
& Grunwald, 2007) (here, the length of a formula is
defined as the number of positive or negative occurrences
of propositional symbols plus the number of occurrences of
operators ∧ or ∨ contained in it; for example, the length
of p1 ∧ ¬p3 is 3, and the length of (p1 ∧ ¬p3) ∨ p2 is
5). Importantly, most studies of subjective difficulty with
concept-learning are designed such that a single minimal
rule can be used to describe the concept (e.g. p1 ∧ p2)
(Ashby & Maddox, 2005; Feldman, 2000), even when the
difficulty of finding the features that compose that rule (p1

and p2) is measured with attention-tracking mechanisms
(e.g. Blair et al., 2009; Hoffman & Rehder, 2010). This
limitation is possibly due to the prohibitively large number
of rules that can be built with a given set of features,
making it difficult to control which rules the participant
might use when observing a set of examples. For instance,
in order to determine the difficulty that participants have
in learning the logical rule p1 ∨ p2, it is crucial to control
that no other rule of reasonable complexity can explain the

concept (e.g. p1 ∧ p3). In this work, we use the tools of
propositional logic to build an experimental framework that
allows us to present examples consistent with two (or more)
chosen rules, depending on which features are observed. For
instance, the concept shown in Fig. 1 is consistent with the
explanation p1 ∧ p2 and also with the explanation p3 ∨ p4,
depending on which features are observed. In general, the
experimenter can choose any pair of rules that use any
number of (non-overlapping) features, and our framework
guarantees that the presented examples are only consistent
with the two minimal rules chosen by the experimenter.
Then, by presenting novel examples that are consistent
with only one of the previous rules, the experimenter can
determine which rule the participants internally used to
learn the concept, and thus which features they attended to.

Presenting rules A and B (e.g. p1 ∧ p2 and p3 ∨ p4)
using the same set of examples has several experimental
advantages over separately presenting a set of examples
consistent with rule A and then a set of examples consistent
with rule B. Some of the advantages are:

(1) When comparing the relative difficulty of learning A

and B in the same participant, presenting the examples
separately makes it hard to overcome transfer effects
that cause subjective difficulty to depend on the history
of concepts learnt previously in the task, and cause dif-
ferent relative difficulties if A is learnt before B com-
pared toB being learnt beforeA (see for example Tano
et al., 2020). The experimenter could compare learning
times for A and B across participants, but for reasonably
hard rules there are very large idiosyncratic differences
in learning difficulties which greatly increases the vari-
ance of learning times (see for example Feldman, 2000),
and also the experimenter cannot normalize the past his-
tory of each participant before the experiment. On the
other hand, presenting A and B simultaneously via the
same set of examples allows us to directly measure
which of the two rules is most easily found by the par-
ticipant, when the two are presented under exactly the
same experimental conditions.

(2) The fact that rule A is learnt more easily than B when
presented separately does not necessarily mean that

Fig. 1 Illustration of the features {p1, p2, p3, p4}, the example
(1, 1, 0, 1), and a concept (positive example are marked with bold
boundaries and negative examples with thin boundaries). The concept

can be explained with the twominimal rules p1∧p2 or p3∨p4, depend-
ing on which features are used to build the rule (the first two features
or the last two features, respectively)
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the same happens when presented jointly. This could
not hold if there is an interaction between the logical
operators being learnt (that compose the rules A and
B) and the search mechanism used to find the corre-
sponding rules. For instance, the search mechanism
that allows humans to find a disjunction rule consistent
with the examples could interact with the mechanism
that allows to find conjunctions, an interaction that
could only be characterized when the conjunction and
disjunction are presented at the same time.

(3) Our framework allows us to test second-order subjec-
tive difficulty effects (e.g. rule A is learnt faster if
presented jointly with rule B than with rule C), as
well as second-order transfer learning effects (e.g. par-
ticipants learn more rapidly rule C if they have first
observed ruleA jointly presented with an arbitrary rule
B1, compared to A coupled with a different rule B2).

(4) If one is interested in which features are preferentially
observed by the participant in a given trial (e.g.
features {p1, p2} or {p3, p4}), one could simply
choose the same logical structure for A and B (e.g.
making A and B equal to p1∧p2 and p3∧p4) and test
whether A or B is learnt by the participant. Then, any
preference for learning A over B could only be due to
a preference over the features themselves ({p1, p2}),
and not for the logical description of the concept using
those features (this is, · ∧ ·).

We illustrate these advantages in an experiment in which
participants are presented with a sequence of 6 trials,
observing in each trial a set of examples consistent with
two alternative rules. We illustrate advantage (1) and (2)
discussed above by presenting a conjunction together with
a disjunction; and a simple rule together with a complex
rule. Then, we show that after observing in several trials
that a subset of features is useful to find concise rules, we
induce in the participants a bias to preferentially describe
concepts using those features; this bias was tested exploiting
advantage (4).

Experiment

Participants

The experiment was conducted as a Human Intelligence
Task (HIT) in Amazon’s Mechanical Turk (Crump et al.,
2013; Buhrmester et al., 2011; Stewart et al. 2015).
There were 100 participants, self-selected workers that saw,
accepted, and finished the published HIT. We required
workers to have a HIT approval rate of 95% or more.
Workers were informed that the payment for completing the
experiment was going to be of 1.5 US dollars, and that 1 out
of 20 participants would be randomly assigned a bonus of 10
dollars, regardless of their performance in the experiment’s
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Fig. 2 An example of a pair of concepts C1 and C2 with 6 features. Concept C1 can be described by ϕ1 = p1 ∨ p2, and C2 by ϕ2 = p3 ∧ p4.
This is just a schematic illustration of where each element (tuple) is placed with respect to concepts. These concepts correspond to the ones used
in Trial 1 of the actual experiment. However, elements in the actual experiment are not represented in this way (i.e. as tuples of zeroes and ones)
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Fig. 3 The scheme of our experimental framework for studying con-
cept learning in the presence of multiple explanations. We illustrate
the three phases that constitute each trial: learning phase, training-
feedback phase and generalization phase. Elements are represented

with letters A, B, C and D (for example, the four letters A in the
intersection represent four different elements in the intersection). The
depicted number of such letters A, B, C or D is irrelevant (for example,
there would be 12 As and 4 Ds for concepts of Fig. 2)

tasks as long as they finished the experiment (but note
that trials did not end until they correctly learned each
concept).

For exclusion criteria, see the Appendix A.

Experiment setup

The main idea of our experimental framework is schema-
tized in Fig. 2. The participants observe an underdetermined
concept. This concept is presented to the participants as a
set of elements that belong to it (positive examples), and a
set of elements that do not (negative examples). In Fig. 2,
the elements marked as positive examples are the ones in
the intersection of the two concepts and the negative exam-
ples are the ones outside of both concepts. Importantly, the
listing is incomplete, in the sense that not all elements of
the universe are shown. The critical insight is that, when
extending the set of examples to the full universe, there is
more than one possible concept that is consistent with the
observed examples. For example, in Fig. 2, the presented

examples are consistent with the minimal rule of C1 (i.e.
ϕ1 = p1 ∨ p2) and also with the minimal rule of C2 (i.e.
ϕ2 = p3 ∧ p4). As we explain in the rest of this section,
choosing C1 and C2 appropriately can be exploited to con-
trol the minimal rules that are consistent with the examples
that participants observe.

The actual experiment that we implemented consists of
a sequence of 6 trials constructed in this manner. We now
expand the 3 stages that compose each i-th trial of the
experiment. For a better understanding, see Fig. 3, which
consists of a schematic view of one trial. Note that this
figure is merely illustrative and does not aim to describe
the details of a trial, but rather the sequence of phases and
the logical flow within a trial. In particular, note that the
number of elements A’s, B’s, C’s and D’s in the figure are
not meaningful, as they vary from trial to trial along the
experiment. The actual concepts used in each trial, as well
as the number of positive and negative examples is listed in
Table 1 (groups X,Y are only relevant for Hypothesis III, so
they can be ignored for now), and more details of the actual
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Table 1 The trials of the experiment

Trial Groups ϕi
1 ϕi

2 Shown features Tested hypotheses #Positive
(#Negative)
examples shown

I II III IV

i = 1 X, Y p1 ∨ p2 p3 ∧ p4 p1 to p6 • • 12 (12)

i = 2 X, Y ¬p1 ∧ p2 p3 ∨ ¬p4 • 12 (12)

i = 3 X p1 ∧ p2 MDL 15 • 10 (18)

Y p5 ∧ p6 MDL 15

i = 4 X, Y ¬p5 ∧ p6 MDL 15 • 10 (18)

i = 5 X, Y p7 ∧ p8 MDL 15 p3 to p8 • 10 (18)

i = 6 X, Y ¬p7 ∧ ¬p8 p3 ∧ p4 • 4 (36)

IHere ϕi
1 and ϕi

2 represent the two competing concepts Ci
1 and Ci

2 at the i-th trial (we denote each concept by the shortest propositional rule whose
semantics describes the concept). By “MDL15” we denote a concept whose shortest rule is of length 15 (and made of three propositional symbols
other than the competing rule in the corresponding trial, see “MDL bias” for details). In all trials the full universe size is 26 = 64, corresponding
to all possible elements over 6 propositional features. We indicate how participants were divided into groups X and Y, which was used only for
Hypothesis III. We also indicate which features were shown in the examples, which hypothesis where tested, and the number of positive and
negative examples shown in learning and training phases for each trial

implementation can be found in “Representational details”
and “Details of the experiment’s structure”.

1. Learning stage. The participant is exposed to a set of
‘in’ elements corresponding to Ci

1 ∩ Ci
2 (marked as ‘A’

in Fig. 3), and a set of ‘out’ elements corresponding to
the complement of Ci

1 ∪ Ci
2 (marked as ‘B’ in Fig. 3).

We call these shown elements ‘positive examples’
and ‘negative examples’, respectively. Note that this
information is incomplete, in the sense that not all
possible examples are shown to the participant (as the
only examples that are shown from Ci

1 ∪ Ci
2 are those

in Ci
1 ∩ Ci

2). In the illustrative example of Fig. 2
(corresponding to concepts of Trial 1 of the actual
experiment), 24 elements would be shown: the 12
positive examples in the intersection of C1 and C2, and
the 12 negative examples outside of both C1 and C2.
The participant is asked to learn the concept represented
by positive examples.

As we prove formally in Appendix C, the experimen-
tal design guarantees that there are only two proposi-
tional rules (ϕ1 and ϕ2 in Fig. 2), minimal over their
respective sets of features, such that: (1) they are con-
sistent explanations for shown examples (this is, they
satisfy positive examples but do not satisfy negative
examples), (2) they use different features from each
other (e.g. {p1, p2} in ϕ1 and {p3, p4} in ϕ2) and,
importantly, (3) any rule consistent with the examples
must use a superset of the set of features of at least
one of these minimal rules. For instance, in Fig. 2 any
rule that only uses {p2, p3} cannot explain the exam-
ples, since (1, 0, 1, 1, 1, 1) is a positive example but
(0, 0, 1, 0, 1, 1) is a negative example. Any rule that

can consistently explain the examples must mention a
superset of {p1, p2} (e.g. {p1, p2, p3}) or a superset of
{p3, p4}. The proof of this condition is shown in Theo-
rem 3, but we also sketch it here. Observe that in Fig. 2
the negative example (0, 0, 1, 0, 1, 1) was constructed
from the positive example (1, 0, 1, 1, 1, 1) by flipping
the values of p1 and p4, and doing so results in an ele-
ment that is inconsistent with both ϕ1 and ϕ2. When
an alternative explanation leaves unused some features
p, q that appear in ϕ1 and ϕ2 respectively, there must
be some element that satisfies both rules ϕ1, ϕ2, but
none of them is satisfied when the values of p and q

are flipped. Since the truth value of the alternative rule
is maintained when features that do not appear in it
change, and since we are showing as positive exam-
ples all elements that satisfy both rules ϕ1, ϕ2 and as
negative examples all those that satisfy none of them,
such alternative explanation must be inconsistent with
the shown data.

These three conditions guarantee that the experimen-
tal procedure illustrated in Fig. 2 is a logically sound
method to present a concept consistent with two min-
imal rules chosen by the experimenter (ϕ1 and ϕ2),
depending on which features the participant use to build
the rule.

2. Training-feedback stage. The same examples of the
learning stage are shown to the participant, but this time
without indicating whether they are negative or positive
and in a shuffled order. The participant is asked to tag
each element as ‘in’ or ‘out’, in the same way they
were tagged in the previous step. If all elements are
classified correctly, the participant proceeds to the next
stage. Otherwise, the participant is informed about the
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mistakes in their tagging, and after that the training-
feedback stage starts again.

3. Generalization stage. Previously unseen elements are
shown to the participant1. These elements are taken
from Ci

1 \ Ci
2 and from Ci

2 \ Ci
1 (here, ‘\’ denotes set

difference). These elements are respectively marked as
‘C’ and ‘D’ in the scheme of Fig. 3. The participant
is asked to identify those elements that correspond to
the concept learnt in the learning stage. After they do
so, the next trial starts. If the participant selects those
in Ci

1 \ Ci
2, the concept learnt in the Learning stage

was Ci
1, and if the participant selects those in Ci

2 \ Ci
1,

the concept they learned was Ci
2. Continuing with the

example from Fig. 2, this process would allow us to
determine if the participant was thinking in a rule with
the features {p1, p2} (namely, ϕ1) or {p3, p4} (namely,
ϕ2) to explain the concept. Of course, in practice the
participant can select other elements, with no clear
rationale.

Once the participant chooses the elements, they
are asked to write an explanation of what constitutes
the concept; this answer is not part of the data
analysis, except that it allows us to exclude participants
that are using methods outside the scope of the
experiment (such as taking pictures). Additionally, the
written answers serve as an extra sanity check of
whether the participants are actually thinking in a
way consistent with the framework of propositional
logic (see Appendix A for observations on the written
explanations obtained in the experiment).

More details of the experiment and its structure can be
found in “Methodology”, particularly in “Representational
details” and “Details of the experiment’s structure”.

Experiment trials

The set of trials chosen in the experiment (Table 1) aims to
reveal the biases that cause participants to choose one set
of features over another in this framework where both sets
of features have their own minimal rules consistent with the
observed positive and negative examples. For instance, in
Fig. 2, what causes participants to choose {p1, p2} versus
{p3, p4} to explain the concept? Our hypothesis is that a key
inductive bias is simply the frequency with which a subset
of features was used previously to explain past concepts. We
name this bias as feature stickiness.

We now present the main hypotheses of this work, and
their relation with the various experimental trials.

1With the exception of Trial 6, where one element is reshown in order
to better test Hypothesis II. See “Experiment trials”.

Hypothesis I In Trial 1 we explore whether the same
factors that determine rule-learning difficulty when learned
in isolation also determine which features participants
use when explaining a set of examples consistent with
two minimal rules. Particularly, it is well known that
concepts involving logical conjunctions are learned faster
than concepts involving logical disjunctions (Bourne, 1970).

In Trial 1, the minimal consistent rule is a disjunction
if the observed features are {p1, p2}, and a conjunction if
the observed features are {p3, p4}. Importantly, unlike in
other concept-learning experiments, both the two-feature
disjunction and conjunction are consistent with the observed
set of examples. We hypothesize that the learning bias that
causes the conjunction to be learnt more easily than the
disjunction will also carry over to this framework were
both explanations are possible (using different features). As
explained before, we use the generalization stage of Trial
1 to determine if participants understood the concept using
{p1, p2} (corresponding to a disjunction) or using {p3, p4}
(corresponding to a conjunction).

This hypothesis was preregistered as:

“In a scenario of two possible explanations for a
concept, one of which can be modeled by the logical∧
between two features and other which can be modeled
by the ∨ between two other features, most people will
find the ∧ explanation over the ∨ explanation.”

Hypothesis II The feature stickiness bias is tested in Trials
5 and 6 of the experiment. After participants have gained
sufficient experience with the task, in Trial 5 participants
encounter a set of examples consistent with two minimal
explanations, a very simple one that uses features {p7, p8}
and a very complex one that uses {p4, p5, p6}. This
leads participants to explain the concept using {p7, p8},
or otherwise they would have to discover an excessively
complex explanation. Therefore, we hypothesize that in this
case most participants would select the features {p7, p8}2.

In the following concept (Trial 6), participants must
choose between explanations that use the previously useful
features {p7, p8}, or another fresh set of features {p3, p4}.
We hypothesize that participants are more likely to explain
the concept using {p7, p8}, only because these features
were useful in the previous concept. Also, recall that
explanations that use a set of features containing either
{p7, p8} or {p3, p4} are also compatible. For example, in
Trial 6 the explanation p3 ∧ p4 ∧ ¬p7 is compatible with
the observed examples. We are also interested in these

2Note that the features {p5, p6} that were used in Trial 4 also appear
in the MDL15 formula of Trial 5. However, we hypothesized that
the extreme complexity of the MDL15 explanation overwheights the
possible feature stickiness effect from Trial 4 to 5. Indeed, we found
that none of the participants used the MDL15 formula in Trial 5.
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rules (e.g. we think it is more likely that participants will
use {p7, p8, p3} than {p3, p4, p7}). The seven elements
chosen for the generalization stage of Trial 6 allows us to
do precisely this: 7 elements appear on the screen, with
p3, p4, p7, p8 respectively equal to (1, 1, 1, 1), (1, 1, 0, 1),
(1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, 0).
These elements are respectively consistent with the minimal
rules p3 ∧ p4, p3 ∧ p4 ∧ ¬p7, p3 ∧ p4 ∧ ¬p7 ∧ ¬p8,
p3∧¬p7∧¬p8, p4∧¬p7∧¬p8 and¬p7∧¬p8. Importantly,
none of the elements is consistent with more than one of the
two minimal rules.

This hypothesis was preregistered as:

If a person has used a set of features in the construction
of an explanation for a concept, it is more likely that
she will also find an explanation containing those
features in the following trial.

Hypothesis III We address the question of whether the
feature stickiness bias represents a computational advantage
in itself. More concretely, we ask if participants find a
consistent rule faster when they are reusing the same
features as in the previous trial. Note that this is a distinct
phenomenon from Hypothesis II, which is concerned
with preferential selection and not with times. We test
this question, independently of the effect of the feature
stickiness bias, in Trials 3 and 4 of the experiment. In Trial
3, we separate participants into groups X and Y. In the same
manner as in Trial 5, in Trial 3 group X is biased to learn
the rule using {p1, p2}, and group Y using {p5, p6}. In the
next trial (Trial 4), participants are biased to learn the rule
using {p5, p6}. We hypothesize that participants from group
Y will learn concept C4

1 faster than participants from group
X, given that they are reusing the same features they used in
the previous trial.

This hypothesis was preregistered as:

When a concept can only be reasonably described by a
given set of features, a person will find this description
faster if that same set of features was useful for her in
the immediately previous trial.

Hypothesis IV Another question, tested with Trials 1 and
2, examines the relative strength of feature bias versus
operator bias. That is, we want to determine whether there
is some strong effect that clearly biases attention towards
features (or rather toward operators) that have previously
been found useful for describing concepts. We test this by
switching the operator (∨/∧) that each pair of features can
use to form a useful rule in each trial, and by then comparing
the number of participants that explain the shown examples
of Trial 2 by reusing the same features from Trial 1 versus
those that reused the operator but used different features.

This hypothesis was preregistered as:

In a scenario where both features and operators are
repeated from a trial to the next, there will be a
stickiness effect favoring one of them over the other.

Methodology

Preregistration and data

This study’s methodology, data collection procedures,
sample size, exclusion criteria, and hypotheses were
preregistered on the Open Science Framework (OSF)
in advance of the data collection and analysis. The
preregistration can be accessed at https://osf.io/mgex3,
while the obtained data and the experiment played by the
participants is available at https://osf.io/gtuwp/.

In this work we also make some exploratory (not
preregistered) analyses: we correct for verbal explanations
that are not consistent with a positive interpretation of the
concept for Hypothesis I, we exclude outliers from the
analysis in Hypothesis II, and we consider the effect of
the participant’s learning history beyond the immediately
previous trial in Hypothesis II. We also explicitly analyse,
in this framework of multiple consistent explanations, the
difference in revealed difficulty between rules of greatly
differing minimal length.

Representational details

The underlying mathematical structure of the trials uses
propositional variables, valuations, and sets of valuations.
However, these are not shown abstractly, but rather are
represented via correspondences to features (symbols),
elements (boxes), and concepts (collections of elements).

We next describe details of the representations used for
the experiment and its competing concepts.

Features—propositional variables The experiment encom-
passes eight propositional variables: p1, . . . , p8. Each vari-
able can take one of two possible values, and these values
are graphically represented by icons. For instance, p1 can
be assigned icon ‘A’ or icon ‘B’, representing the values 1
(positive) and 0 (negative) respectively, p3 can be assigned
a ‘+’ icon or ‘×’ icon representing 1 and 0 respectively, and
so on.

Figure 4 shows the pairs of values for each of the eight
propositional variables. The assignment of pairs of icons
to propositional variables is randomized at the start of
the experiment, and does not vary within the experiment.
The reason to choose icons instead of (colored) values
0,1 is to avoid the possibility of mentally learning a
concept using ‘counting’ or other operators not present in
propositional logic. For example, showing explicit {0, 1}

https://osf.io/mgex3
https://osf.io/gtuwp/
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Fig. 4 Pictured above are the features, the visual representation of the
positive and negative values of the propositional variables. The upper
row represents positive values of the propositional variables, while the
lower row represents their negation

values, a possible explanation for a concept could be more
than 3 ones, but such a description would be much harder in
the icon-based representation, since different propositional
variables have no symbols in common. In “Notes on
the experiment design” we discuss more details on these
considerations.

Elements (boxes)—valuations A valuation over the propo-
sitional variables is visually represented as a square/box
with the values (icons) of all propositional variables set at
random positions inside the square. We call such represen-
tation an ‘element’ (see Fig. 5 for an example of such an
element). The reason for choosing this representation is to
avoid directional biases that could influence learning, and
to exclude ordering and other operators from the language
of thought (see “Notes on the experiment design” for more
details). Each time an element is shown (in particular, within
the loop in the training-feedback) a new random position is
chosen for the propositional features inside it.

Undetermined concepts—sets of positive/negative valua-
tions The concept shown in the learning stage of a trial
corresponds to two non-overlapping sets of valuations, and
these two sets do not cover all possible valuations. This is
represented as a sequence of ‘in’ and ‘out’ elements, with
no information given on elements that are not shown. At the
learning stage, shown ‘in’ elements (positive examples) are
represented as a green box and shown ‘out’ elements (neg-
ative examples) as a red box. See Fig. 6 for an example of

Fig. 5 An element. This box containing features is the visual
representation of a valuation over six propositional variables. Here the
box appears with a neutral border, but boxes in the experiment always
appear with a border that denotes whether they are positive or negative
examples. The position of the symbols is irrelevant for the concepts,
and is randomly assigned

a tagged sequence of elements used in the learning stage.
Each time the concept is presented, we shuffle the order in
which their positive and negative examples are shown, but
always presenting all positive examples first (also, each val-
uation is assigned new random positions for the features
inside the corresponding box).

(Hidden) concepts—formulas Over the full set of valua-
tions, a concept is simply the set of valuations that positively
describe it. The two hidden concepts for each trial corre-
spond to the valid and minimal generalizations that can be
made from the incomplete concepts. They can be described
as the semantics of the two propositional formulas (rules)
that can be used to explain the incomplete concept (see
Table 1); while these rules coincide over the incomplete uni-
verse shown in the learning stage, they differ over the set
of all valuations. For more details, recall the beginning of
“Experiment setup” and its Item 1. For technical details, see
Appendix C.

In Table 2 we summarize the main logical terminology
used to define formal semantics, and its representational
counterpart adopted in our experimental setup.

Details of the experiment’s structure

As we explain in “Experiment”, each instance of the
experiment consists of 6 trials where the participants must
learn a concept from an incomplete universe. The presented
positive and negative examples are such that there are
exactly two minimal rules (up to logical equivalence) in
propositional logic that 1) are consistent explanations for
the shown examples; 2) use disjoint sets of variables from
each another; and 3) any rule consistent with the examples
must use a superset of the set of features of at least one of
these minimal rules. This experimental setup will allow us
to distinguish which of these rules best represents the way
that the participant learned the concept. See Appendix C for
technical details.

Observe that merely asking the participant to select
already seen elements does not give us any obvious insight
into the internal process that derived into the learning of
the concept; even if they internalized the concept using one
of the two rules, it would remain uncertain which one they
used, as both rules have the same semantics over the shown
universe. In order to distinguish between these two cases,
we use a generalization stage where previously unseen
elements of the universe are shown, and the participant must
select those that they believe belong to the concept. Of these
new elements, some are consistent with only one of the
rules, and other are consistent only with the other rule3.

3The Trial 6 is an exception, and has an element that is consistent with
both rules.
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Fig. 6 A sequence of positive and negative examples in a learning
stage, corresponding to Trial 1. A green border informs the partici-
pant that the element belongs to the concept, while a red-bordered one
informs that it does not belong to the concept. In this case, the exam-
ples could be explained as either ‘boxes containing both an upwards

pointing arrow and a question mark’ or as ‘boxes that contain a cir-
cle or a plus sign’, but note that these two rules determine different
concepts over the complete set of possible elements

Furthermore, immediately afterwards we ask for a written
explanation of what characteristics the participant thinks
describe the concept.

Structurally, the experiment begins with the (hidden)
assignment of the participant to one of two groups X or Y
(see Table 1) and the exposition to a page with instructions.
Afterwards, there are 6 trials with the following structure:

they begin with a learning stage; they continue to a training
stage where they get feedback if they fail to correctly select
the elements that belong to the concept; a generalization
stage where they must choose between elements of the
universe that were not shown previously; and, in all but the
last trial, a stage where the participants can rest between
trials.

Table 2 Terminology used for explaining the formal semantics of Boolean logic both in mathematical terms and in the representational terms
used in the experiment

Mathematical terminology Representational terminology

Valuation: a tuple v = (v1, . . . , vn) where each vi is 0 or 1. Element: a square with n symbols inside (see Fig. 5). There is an
implicit coding shown in Fig. 4 (for example, v1 = 1 is represented
by a ‘A’ and v1 = 0 is represented by an ‘B’, v3 = 1 is represented
by a ‘+’ and v3 = 0 is represented by a ‘×’, and so on).

Propositional variable: pi takes value vi under valuation v =
(v1, . . . , vn).

Feature: pi is represented, via the implicit coding, by one of the
pairs of Fig. 4 within an element representing v.

Concept: a set U of valuations representing the ‘positive’ ones (for
example, C1 in Fig. 2). Notice that the negative valuations are just
all valuations not in U .

Concept: any categorization that divides the space of all possible
elements in either positive (all those elements that belong to U ) or
negative (elements that do not belong to U ).

Observe that any concept U has a corresponding minimal
formula/rule ϕU that characterizes it (i.e. ϕU is true over the
valuations in U , and is false over the complement of U ).

Undetermined concept: a pair 〈U, V 〉 of sets of valuations
representing the ‘positive’ and ‘negative’ ones respectively such
that U ∩ V = ∅ and U ∪ V is not the set of all valuations (for
example, the pair 〈C1 ∩ C2, C1 ∪ C2〉 in Fig. 2).

Undetermined concept: a sequence of positive elements (green
border) representing U , and negative elements (red border)
representing V (see Fig. 6 for an example). Importantly, U and
V do not cover the full universe of possibilities spanned by the
features.

Observe that an undetermined concept 〈U, V 〉 can be generalized
in more than one way by (minimal) formulas ϕ1 and ϕ2 such that
a) ϕi (i = 1, 2) is true over all valuations in U , and false over all
valuations on V , and b) the set all of positive valuations where ϕ1
is true is different from the set of all valuations where ϕ2 is true.
For example, the undetermined concept shown in each trial i of the
experiment can be generalized via the two corresponding minimal
formulas ϕi

1 and ϕi
2 shown in Table 1.
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In what follows, we describe each stage of the experiment
plus the introductory page, with a greater detail than that of
“Experiment setup”.

Introduction and explanation

This is the page that subjects are shown at the beginning of
the experiment. It describes the main task they will be asked
to perform: that of learning from examples to distinguish
what kind of ‘boxes’ belong to a certain concept. These
elements are represented as a collection of 6 symbols, no
more than one from a same pair. It is also informed that the
position of the symbols does not matter. See Fig. 5 for an
example element.

When the subject indicates they have finished reading the
instructions, they are sent to a fullscreen page with three
multiple-choice questions whose purpose is to verify that
the participant has understood the instructions; if they miss
some answer, they are returned to the previous page and the
cycle is repeated until they succeed.

If the participant answers correctly, they are now ready
to begin, and the phases “The learning phase”, “The
training–feedback phase”, and “The generalization phase”
are then entered sequentially for each of the 6 trials.

The learning phase

In this phase of a Trial i, the participant is shown a set
Si � Ui , a proper subset of elements from the current
universe. Each universe syntactically corresponds to all the
combinations of truth values for 6 propositional variables
taken from the set {p1, p2, p3, p4, p5, p6, p7, p8}, thus
spawning a set Ui of 64 elements. On the semantic side we
call ‘features’ the visual representations of the propositional
variables, and these representations remain fixed through
the experiment (recall Fig. 4).

The elements of Si are shown as boxes, some of which
have green border (denoting a positive example, that the
element belongs to the concept), while the rest have red
borders (denoting a negative example, that they do not
belong). The green-bordered boxes are shown first, with the

Fig. 7 An unselected element, to the left, is represented by solid red
borders. The same element in a selected state, to the right, is indicated
by dotted green borders

Fig. 8 A partial section of the feedback resulting from a wrong
selection. A solid green border means that the box was correctly
selected as belonging to the concept. A solid red border means that
it was correctly left unselected, meaning that it did not belong to the
concept. A dotted green border means the box belongs to the concept
but was not selected, and a dotted red border means that the box does
not belong to the concept but was selected

red-bordered ones appearing after the last box with green
border. See Fig. 6 for an example learning set.

If the graphical representations are abstracted away to the
underlying basic structure, there are two propositional rules
ϕi
1 and ϕi

2 (of minimum length in their class of logically
equivalent rules, see Table 1) whose semantics correctly
classify the positive and negative examples shown. If we call
Ci
1, C

i
2 the sets of valuations that satisfy ϕi

1, ϕ
i
2, respectively,

we have that Si = (Ci
1 ∩ Ci

2) ∪ (Ci
1 ∪ Ci

2). The rules ϕi
1, ϕ

i
2

use at most4 3 of the 6 propositional variables available in
Ui , and the two rules do not have propositional variables in
common.

When the participant believes they have learned which
elements belong to the concept, they can click a button to
proceed to the next stage.

The training–feedback phase

In this phase, the participant is shown a random rear-
rangement of Si , with all the elements now surrounded
by a red-bordered square. The subject must click exactly
those elements (if any) they believe belong to the concept
—changing them to a dotted green border (see Fig. 7)— and
then has to click a button to submit their choice.

If their selection is incorrect, the participant is shown
which elements they misclassified (either by clicking them
incorrectly or by failing to click them, see Fig. 8). When
they click a button to continue, they restart this stage (with
a fresh randomization).

When the participant finally makes the correct selection,
they continue to the next phase.

4The rules that are actually ‘learnable’ use exactly 2 propositional
variables.
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The generalization phase

In this phase, the participant is shown a subset of Ui\Si

(namely, in (Ci
1 ∪ Ci

2)\(Ci
1 ∩ Ci

2)), that is, a selection of
elements that were not present in the learning phase (hence
nor in the training phase). The participant must classify
which of these elements they think belong to the concept.
The participant does not receive feedback on the choices
they make here. Except for the sixth trial, part of these
elements satisfy the rule ϕi

1 ∧ ¬ϕi
2, while the rest satisfy

ϕi
2 ∧ ¬ϕi

1. Thus —assuming the participant learned the
concept via a process akin to a representation of one of the
two rules— this phase crucially serves to distinguish which
rule they have learned, if any.

After this selection, the participant is asked to submit
a written explanation of what characteristics they think
constitute the concept. This written explanation serves as
an additional validation of whether they are thinking in a
way describable by propositional logic according to our
assumptions, or if rather they are using other methods
(memorization, pen and paper, screenshots, other logics or
formalisms, etc.).

Notes on the experiment design

The elements, universes, and rules that constitute our
experiment are devised in terms of propositional logic.
However, it is important to be careful with the semantics,
i.e. the way elements are actually shown to the participants.
We have to avoid giving more salience to the semantics of a
propositional variable over the others, and it is imperative to
select the semantics of variables in a way such that they do
not share characteristics that might escape our propositional
grammar: for example, if the propositional variables were
represented as circles that can be distinctly colored or not,
it would be quite natural to assume that counting colored
or uncolored circles could provide information, but this
option is not considered in a theoretical design that assumes
only propositional operators to describe rules. A related
consideration is that we must also avoid introducing other
regularities extraneous to the propositional formulation:
if the images corresponding to all propositional variables
are always shown in a straight line in the same order,
salience effects might appear even if we avoid semantics
that become more expressive thanks to the ordered nature of
the represented variables (such as with descriptions of the
form the first and last elements are of the same size).

Building adequate semantic representations for our logic
Taking these precautions into account, we choose to match
each propositional variable with a particular image or figure,
whose position in a square would be randomized (but
avoiding superpositions). It is harder to decide exactly what

would be the matching, but our final decision consists in
matching each propositional variable with a set of two
related Unicode characters (such as a triangle when the
variable is 0, and a circle otherwise). See Fig. 4 for the
exact representations. We take care to choose different types
of characters for different variables: having A, B for p1

and Y, Z for p5 is out as a possibility, since it naturally
introduces counting of the type ‘there is nomore than 1 letter’
and the like. Of course, this process is not fail-safe, as there
are countless possible semantics associations that could
introduce extra-propositional grammar into the experiment.
But we try to minimize the chance that this happens easily or
naturally, and we use the written explanation stage as a way
to catch these exceptions if they occur5.

Finally, tominimize possible salience effects from showing
symbols that could have (despite our intentions to the
contrary) different levels of conspicuousness, we randomize
on a per-participant basis the assignment between pairs
of symbols and propositional variables (but we do not
randomize the assignment to the positive or negative value
of a variable; the same Unicode characters are always
positive in all randomizations, or always negative).

Ordering of positive and negative examples. As mentioned
before, in the learning stage we shuffle the order in which
their positive and negative examples are shown, but always
presenting all positive examples first. Also, the number of
positive examples is smaller or equal to the number of
negative examples for all concepts (see Table 1).

The purpose of placing the positive examples first and
having less positive examples than negative ones is to
bias the participant into thinking of the concept by its
positive formulation, instead of possibly thinking of a
rule that would describe the negative examples, and then
negating that rule to obtain the positive one. This becomes
important when we want to reason about the ease of
learning of different operators: the default assumption is that
participants that correctly select positive examples of the
concept are thinking the positive rule, which differs in its
operator from the negative rule (by the De Morgan laws).

Results

Hypothesis I

We asked whether the conjunction-disjunction bias (which
is known to affect learning times in the case of a single
explanation Bourne, 1970) also determines which features
are used to describe a concept when two alternative
explanations are consistent with the observed universe.

5In the end, they did not occur. See Appendix A.
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Fig. 9 (Left) Number of participants (100 participants total) that,
in the generalization stage of Trial 6, selected an element (possi-
bly among others; the numbers add up to more than 100) with the
elements written on the x-axis, indicating the values of the features
{p3, p4, p7, p8} respectively. As multiple choices were possible, the
sum for all choices adds up to a value greater than 100. In grey we

show 100,000 simulations in which 100 agents randomly attend to one
of the seven subset of features (see text). (Right) From the selected
objects in the generalization phase we can infer which features partic-
ipants used to build the rule for the concept (89 valid participants, see
main text)

In the first trial, the observed examples were consistent
with p1 ∨ p2 and with p3 ∧ p4. As explained in
“Experiment setup”, in the generalization stage we can
determine if participants explained the concept using
{p1, p2} or {p3, p4}. We found that 77 of the 100
participants attended to {p3, p4}, which corresponds to an
explanation that uses a conjunction. 11 participants attended
to {p1, p2} (corresponding to the use of a disjunction for
the explanation), and 12 participants selected examples in
the generalization stage inconsistent with both p3 ∧ p4

and p1 ∨ p2. To test the significance of this result, we
performed a permutation test. Under the null hypothesis
that participants randomly choose between explaining the
concept using features {p1, p2} and explaining it using
{p3, p4}, the probability that 77 of the 100 participants
attend to {p3, p4} is P < 10−12. Thus we conclude that the
observed difference is significant.

Note that it is in principle possible that the participant
learned the concept with a focus on negative examples (B’s
in Fig. 3) instead of on positive examples (A’s in Fig. 3)
(i.e. finding a correct explanation for the negative examples
and then negating that rule to obtain an explanation for the
positive examples).

As we mention in Section 2, we induced a bias to
understand the concept in the appropriate way by first
presenting the positive examples in the learning phase
and by asking them to click on the positive ones in the
training phase. We note, however, that 9 participants gave
verbal explanations consistent with focusing on the negative
examples. In this particular trial, a reverse interpretation is
problematic since the negation of a conjunction corresponds
to a disjunction, and the negation of the disjunction to a
conjunction (i.e. p ∧ q is logically equivalent to ¬(¬p ∨
¬q)). Thus, a more comprehensive analysis should take
into account participants’ verbal explanations in this trial.
However, even considering the worst-case scenario in which

these 9 participants were originally regarded as part of the
‘conjunction’ group and they are now considered part of
the ‘disjunction’ group, the conjunction-disjunction bias is
still significant (P < 10−7). We therefore conclude that,
in this framework where multiple explanations are possible
depending on the attended features, there is a bias favoring
conjunctive explanations over disjunctive explanations.

Hypothesis II

Most participants understood the concept in Trial 6 using
the same features {p7, p8} used to describe the concept in
Trial 5, even when the logical structure of the rule was
exactly the same independently of attending to {p7, p8} or
to {p3, p4}6. To show this, we study participants’ choices in
the generalization stage of Trial 6 (see Fig. 9).

Suppose that a participant is thinking of the rule ¬p7 ∧
¬p8, thus they are only attending to features {p7, p8} while
ignoring the features {p3, p4}. Since {p3, p4} are being
ignored, the participant should mark those elements in
which {p7, p8} agrees with the rule ¬p7∧¬p8, irrespective
of the values of {p3, p4}. That is, the participant should
mark the elements with {p3, p4, p7, p8} equal to (0, 0, 0,0),
(1, 0, 0, 0), (0, 1, 0, 0) and (1, 1, 0, 0). These elements have
{p7, p8} equal to (0, 0) and ‘anything’ for {p3, p4}. On
the other hand, if the participant is thinking of the rule
p3 ∧ ¬p7 ∧ ¬p8, then she is attending to {p3, p7, p8}, and
she should mark (1, 0, 0, 0) and (1, 1, 0, 0).

In general, by studying which of the 7 examples shown
in Fig. 9 (left) the participant selects in the generalization
phase, we can deduce which features they were attending to

6As expected by our experiment design, 94 of the 100 participants
understood the concept in Trial 5 using features {p7, p8} (6 selected
features with no clear rationale). Using features {p7, p8} is indeed the
only plausible way to learn the concept, given the high complexity of
the alternative MDL15 formula.
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Relative time in Trial 4

Fig. 10 Relative time spent in Trial 4 by participants from the two groups, normalized by the time spent in Trial 5

(Fig. 9, right). For example, all participants should mark the
example with {p3, p4, p7, p8} equal to (1, 1, 0, 0), since it
is consistent with all the logical rules irrespective of which
features are used.

Indeed, as shown in Fig. 9 (left), all participants selected
this example. Although in practice the participant can select
any of the 7 examples in the generalization stage, we found
that all but five participants respected the rules of coherence
illustrated in the previous paragraph. These 5 participants
were ‘one example away’ of respecting the rule, however,
we leave them out of the feature stickiness analysis, but
including them does not change our conclusions. We also
excluded 6 participants that selected elements with no clear
rationale in the previous trial, since they may not have used
features {p7, p8}. However, including these participants
(and assuming they did use {p7, p8} in the previous trial)
does not significantly change the results. In total, these
two exclusions leaves 89 participants for this analysis.
The grey lines in Fig. 9 (left) show simulations of agents
that randomly select one of the seven possible subsets of
features, and then proceed to select the examples consistent
with the logical rule using that features. Participants
responses (black line) were biased towards explanations
using {p7, p8}, as predicted by the feature-stickiness bias.
This can also be seen in Fig. 9 (right), after inferring
which features participants used to build the rule for the
concept. In addition to being biased towards {p7, p8},
several participants explained the concept using all available
features {p3, p4, p7, p8}. This shows that, in addition to
the feature stickiness bias, when the number of features is
relatively small, participants were also biased to describe the
concept using all available features.

To quantify the feature stickiness bias, we assign a
score to each participant according to the attended features
in Trial 6 (deduced from the marked examples). The
scores for the subsets {p7, p8}, {p3, p7, p8}, {p4, p7, p8},
{p3, p4, p7, p8}, {p3, p4, p7}, {p3, p4, p8} and {p3, p4}

are 1, 2/3, 2/3, 1/2, 1/3, 1/3 and 0 respectively7. The
average score for the 89 participants was 0.68 (P <

10−6 in a permutation test with the null hypothesis of
randomly attending to one of the seven subsets of features,
which correspond to the grey lines in Fig. 9), indicating
a significant effect of the feature stickness bias. Although
the feature stickiness bias was significant for both groups
independently (Group X: average score 0.62, P < 10−5;
Group Y: average score 0.74, P < 10−6), we found that
feature stickiness was higher in Group Y (two-sample t-test
comparing the scores of the two groups shows t = 2.35,
P < 0.05). The only difference between the groups is
that Group Y had already (artificially) experienced feature
stickiness between the previous Trials 3 and 4, so they have
already identified it as an useful bias for the task. This
suggests that the entire concept-learning sequence can be
important when studying learning biases.

Hypothesis III

This hypothesis regarded the behavioral advantage of the
feature stickiness effect, which we tested by comparing
learning times in Trial 4 for participants of Groups X versus
Y (see Fig. 10). If the feature stickiness bias represents a
behavioral advantage, Group Y should learn concept C4

1
faster than Group X. To avoid confounds due to inter-
individual differences in absolute learning time, for this
analysis we normalize individual learning times with the
time spent in Trial 5, which uses different features than
the previous concepts and should not be affected by any
obvious inter-trial relation with previous concepts8. Thus

7Part (d) of the Analysis Plan section in our preregistration had
a mistake in the use of features names: the learnable concept
corresponding to the fifth trial uses p7 and p8, not p3 and p4 as
erroneously written in that part; compare with the section on Study
design, which matches Table 1.
8Indeed, Trial 5 was pre-registered as a ‘normalizer’ trial.
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we compare between the two groups (X and Y) the time
spent in Trial 4 divided the time expended in Trial 5. This
gives one number for each participant, and we compare the
lists of numbers of the two groups using a two-sample t-test.
The differences in the learning times between the groups
are not significant if we analyze the data of all participants
as shown in Fig. 10 (two-sample t-test shows t98 = 1.26 ,
P = 0.2; Cohen’s d = 0.25), but they are significant if we
rule out from this analysis 5 outliers that spent more than 5
times in concept 4 than 5, or in concept 5 than 4 (t98 = 2.18 ,
P < 0.05, Cohen’s d = 0.42)9.

Hypothesis IV

The idea of this hypothesis is to test if participants prefer
sticking to operators or sticking to features form one trial to
the next. In this work we did not find conclusive evidence
regarding this hypothesis. We suspect that the cause was an
experimental setup that underestimated the strength of the
bias favoring the ∧ operator over the ∨ operator. We found
that 77 of the 100 participants explained Trial 1 using ∧, 11
explained it using ∨ and 12 selected elements in the gener-
alization phase with no clear rationale. Of the 77 that used ∧,
64 also used ∧ in Trial 2, thus changing features but main-
taining operator; and 7 of them used ∨, changing operator
but maintaining features (the other 6 selected elements with
no clear rationale). Of the 11 that used ∨, 10 used ∧ in
Trial 2, changing operator but maintaining features; and 1 of
them used ∨ in the second trial. We realize, however, that a
change from using ∨ in the first concept to ∧ in the second
one could not only be due to the effect of feature stickiness,
but also simply to the stronger preference for ∧. Thus with-
out a precise quantitative knowledge of the prior preference
of ∧ over ∨, we cannot conclude about the effect of oper-
ator stickiness vs. feature stickiness. A future experiment
could probe the existence of operator stickiness by having
longer consecutive periods where feature reuse is not a use-
ful bias and where only one logical operator remains useful
for explaining a concept, before finally presenting a concept
that can be explained via two different rules, each using dif-
ferent operators. Thus we leave for future work the task of
studying the interaction between the feature stickiness bias
and the precise structure of the logical rules being learnt.

MDL bias

The MDL-bias hypothesis posits that concept-learning
difficulty increases with its MDL (Feldman, 2000). In
addition to their other roles, Trials 3 (group X and Y), 4,

9The ANOVA proposed in the pre-registration also did not reveal
significant differences in learning times. For simplicity in the analysis
of the outliers, we replaced here the ANOVA for a simple t-test
between the normalized learning times of the two groups.

and 5 served to test this hypothesis in the new framework
of multiple consistent explanations. In these trials, there
were two possible explanations that were consistent with
the shown data, one of much higher MDL than the other
(15 vs. 3). For example, in the Group X of Trial 3, the
short explanation was p1 ∧ p2, while the longer one was
((p3 ∨ (p4 ∨ p5)) ∧ (¬p3 ∨ ((p4 ∨ ¬p5) ∧ (p5 ∨ ¬p4))));
the longer rule in other trials was always a substitution
of features applied to this one (in order to keep the
features disjoint between the two explanations). For these
3 trials, the responses of the 100 participants add to a
total of 300 responses. From this total, 18 responses in the
generalization phase did not choose objects consistent with
any of the two explanations; 2 responses were consistent
with the MDL 15 rule; and 280 responses were consistent
with the MDL 3 rule. While this was expected by the
experimental design (since we included a MDL 15 rule in
those trials where we wanted to bias the participants into
finding the other rule), we conclude that the MDL-bias
hypothesis holds in this framework of multiple consistent
explanations. Future work could explore in greater detail the
relative difficulty of rules with slightly different MDL in
this framework.

Discussion

In this work, we design an experimental framework in which
participants observe an incomplete set of examples, which
are consistent with two alternative minimal descriptions
depending on which features are observed. We illustrate
several advantages of our method compared to separately
presenting sets of examples consistent with only one
minimal description at a time. First, we show that when a
set of examples is consistent with a disjunction and also
with a conjunction, participants are more likely to find
the conjunction, in accordance with well-known previous
results that show that the conjunction is learnt faster
than the disjunction when presented separately (Bourne,
1970). Then, we show that when rules of significantly
different MDL are consistent with the observations, almost
all participants discover the simpler rules, consistent with
previous result showing that, when rules of different MDL
are tested separately, learning times are proportional to
MDLs (Feldman, 2000). Finally, we show that when the
logical structure of the minimal rules is independent of
the selected features, participants are more likely to reuse
the same features used to describe previous concepts, and
preliminary results suggest that reusing features allows
them to learn concepts faster than a control group that
is not reusing features. To our knowledge this effect has
not been previously characterized in the concept-learning
literature, adding to the library of effects illustrating how
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human attention is biased towards features that are useful to
describe the concepts (see Blair et al., 2009; Kruschke et al.,
2000, 2005; Hoffman & Rehder 2010, among others).

Eye-tracking studies in categorization tasks have revealed
that feature attention rapidly changes between trials depend-
ing on which features are relevant for classification in each
trial (Blair et al., 2009), as well as depending on prior knowl-
edge about feature relevance (Kim & Rehder, 2011). In
Kruschke et al. (2005) it is found that eye movements con-
firmed that attention was learned in the basic learned inhi-
bition paradigm, and in (Hoffman & Rehder, 2010) it is
also found that eye movements revealed how an attention
profile learned during a first phase of learning affected
a second phase. Our experimental setup allows us to test
an arguably simpler complementary hypothesis: everything
else being equal, participants are biased to use the same fea-
tures used in the past. Importantly, we were only able to
test this hypothesis thanks to our framework, which allows
us to present a set of examples consistent with two rules
of exactly the same logical structure, but using different
sets of features. Then, without using eye-tracking, we can
recover which rule the participants learned, and thus which
set of features they attended to. Since the two sets of fea-
tures explain the examples using exactly the same logical
structure, preferentially explaining the concept using one
set of features over the other can only be due to a prefer-
ence over the features themselves, and not a preference over
alternative logical structures.

Although some of the hypothesis that we test are aligned
with the well-known Einstellung effect which states that
adopted solutions may hinder simpler ones when aiming at
tackling novel problems, our experimental setting is different
to the classical water jar test (the most commonly cited exam-
ple of an Einstellung effect, where participants need to
discover how to measure a certain amount of water using
three jars with different and fixed capacity) (Luchins, 1942)
in two senses. First, we do not drive the experiment to con-
trol and supervise the aspects that participants have to pay
attention to. On the contrary, our focus is on the choice of the
features that show to be useful for learning a concept with
more than one rational explanation. Second, our experimen-
tal framework is consistent with the Language of Thought
(LoT) hypothesis (Fodor, 1975), which states that the human
capacity to describe concepts —and, more generally, of all
elements of thought— builds on the use of a symbolic and
combinatorial mental language and it is specifically conceived
to handle expressions in propositional Logic (but expansi-
ble to other formal languages), which is the ground where
the rational explanations can be formalized. Such approach
enables us to treat the notion of feature in a very precise way.

We note that other frameworks besides LoT can be used
for our experiment. For example, consider similarity-based
classification rules (Juslin et al., 2003a, b), where each

feature is multiplied by a weight and the classification rule
is a function of the sum of the weighted features, usually a
linear function with a soft decision boundary (Juslin et al.,
2003b). In this framework, the generalization phase would
determine which of two possible decision boundaries was
used by the participants (both consistent with the elements
observed in the learning phase); and the feature-stickiness
effect would be explained by the inertia of the weights’
values from one concept to the next. However, two obstacles
in this framework makes us prefer the LoT framework
for Boolean concept-learning tasks. First, although a linear
classification rule can readily learn the conjunctions and
disjunctions in our experiment, more complex classification
rules would require nonlinear functions of the features
(e.g. the exclusive-or (XOR)). For nonlinear boundaries,
the values of the weights that accompany the features
could be hard to interpret, since it might no longer be
true that a higher weight means higher feature importance.
In contrast, in the LoT framework complex classification
rules are compositionally built to accommodate concepts
of any complexity, and feature importance can always
be modeled as the probability of including a feature
in a formula, independently of its complexity. Second,
unlike similarity-based rules, the LoT framework naturally
explains how humans can built verbal explanations for
the learned concepts. Indeed, almost all participants gave
informal explanations of conjunctions and disjunctions in
propositional logic after learning each concept (see the
shared data online for the list of verbal explanations).

Another well-studied phenomenon related to our work
is Kamin’s cue blocking, where the learning of a given
stimulus B is blocked by the mere fact that it was preceded
by a set of stimuli A that already pairs with the outcome.
This shows that the subject learned that stimulus B was
not useful, and hence disregards their attention to it in
the upcoming events (Wagner, 1970; Mackintosh, 1975;
Rescorla & Wagner, 1972). Studied in humans in Chapman
and Robbins (1990), Arcediano et al. (1997), and Kruschke
and Blair (2000) among others, our work differs from these
approaches in that we never introduce a stage were a feature
A is intentionally exposed in absence to B, in order to guide
the attention of the participant.

We conjecture that most first-order determinants of
subjective concept difficulty will also hold in a relative
manner in our dual-concept setup, such as theMDL bias (for
less extreme cases than evaluated in this work) (Feldman,
2003) and the transfer learning hierarchical structure bias
(Tano et al., 2020). Importantly, our experimental setup
also allows to directly test second-order subjective difficulty
effects (e.g. concept A is learnt faster if presented jointly
with concept B than with concept C), as well as second-
order transfer learning effects (e.g. participants learn more
rapidly concept C if they have first observed concept
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A coupled with B1, compared to A coupled with B2).
We believe that a systematic study of concept-learning
difficulty with two (or more) concepts presented at the
same time in each trial may open a new window into
the dynamics of human concept-learning mechanisms. For
example, consider the study in Piantadosi et al. (2016),
where participants gradually learn one concept while
simultaneously selecting elements currently believed to
belong to that concept. Here, the authors fit a Bayesian
language model to participants’ choices in order to illustrate
how the posterior probability of the different rules in the
grammar varied across time, to approximate the order in
which different rules are learned. In contrast, using our
experimental setting we can directly estimate, in a model-
free manner, the probability that each rule is learnt faster
than another. One simply needs to jointly present (in an
incomplete and mutually compatible way) a set of examples
consistent with those two minimal rules, and then measure
the fraction of participants that discover each rule.

Usually, concept-learning biases have been studied in an
isolated manner: the participant observes examples indi-
cated as inside or outside a single concept, and the experi-
menter evaluates its subjective difficulty for the participant.
Although different methods have been used to present the
concept to the participant (e.g. all elements at the same time
(Tano et al., 2020; Kemp, 2012) or small sets of elements
presented in series Piantadosi et al., 2016), to the best of
our knowledge all previous category-learning studies have
attempted to evaluate a single concept at a time. Here, we
present a controlled logical setting to evaluate the relative
difficulty of two concepts presented at the same time and
under the same experimental conditions, and the framework
could be generalized to more concepts straightforwardly.

Open Practices Statement This study’s methodology, data collection
procedures, sample size, exclusion criteria, and hypotheses were
preregistered on the Open Science Framework (OSF) in advance of
the data collection and analysis, in order to ensure transparency,
reproducibility, and rigour. The preregistration of this study can be
found at https://osf.io/mgex3. The actual experiment as presented to
the participants, together with all the experimental data analyzed, is
available online at https://osf.io/gtuwp/.

Appendix A: Exclusion criteria and data
processing

We decided to collect data for up to 3 weeks or until we
reached a total of 100 participants. Via restrictions on the
platform where the experiment was conducted, participants
that took more than 4 hours or who did not complete all
the trials were automatically excluded from the analysis. We
were also prepared to exclude afterward the results from
those participants whose verbal explanations denoted the

use of external aids or methods outside the scope of the
paper, such as using external help or taking screenshots
of the concept, but there were no clear-cut cases of that
behaviour (N = 0).

Additionally, while our preregistered exclusion criteria
did not encompass the potential cases of written explana-
tions that were legitimate but indicative of use of rules
extraneous to propositional logic or to our semantic frame-
work, in the end we did not detect any of these cases. This
encouraging result is weakly indicative of the usefulness of
our careful considerations for building adequate semantic
representations, as mentioned in “Notes on the experiment
design”. For the comprehensive written explanations of the
participants, we refer the reader to the uploaded raw data at
https://osf.io/gtuwp/.

Balanced division into the two groups was handled
via the psiTurk library, which decides the group a new
worker will be assigned to, based on the current number of
completed experiments in each group.

We ignored individual trails from participants that in the
generalization stage chose a generalization inconsistent with
any valid explanation (but this did not provoke the exclusion
of other independent trials by the same participant). See
“Results” for details.

Appendix B: Pilot

This experiment is informed by a previous pilot with 22
participants, which we executed in order to have some
validation for our expected effects before making the
preregistration. This pilot used more complex pairs of
concepts, with a longer minimum description length for
the two corresponding rules, and where using both ∧ and
∨ in the same rule was often necessary. Originally, we
expected a naturally arising separation into different groups,
depending on the features of explanation found for the first
trial. However, we encountered a very strong preference
for explanations using solely ∧, and this prompted various
changes in the final design of the experiment that was
preregistered in the OSF version.

More precisely, in our first trial in that pilot, 81% (N =
18) of the workers explained the (incomplete) concept as
a conjunction of three variables, while only 9% (N = 2)
explained it as a disjunction of two. This happened even
though we had made the ∧ explanation longer with the
intention to compensate for the relative ease of ∧ with
respect to ∨ (so as to avoid getting a statistically inadequate
number of participants self-selecting to the ∨ case). This
result goes in linewith knownwork about the relative hardness
of learning concepts with the ∨ operator (Bourne, 1970). In
our framework of more than one plausible rule, a possible
explanation to this population disparity could be that, when

https://osf.io/mgex3
https://osf.io/gtuwp/
https://osf.io/gtuwp/
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looking for common characteristics, it is natural to search
first for individual features that always appear. Another
explanation could be that, in a universe with low number of
features, repetition of many of them becomes very salient,
and thus the relation between hardness and number of
conjunctions is not necessarily monotonic. In any case, this
result was not part of the preregistration, so it is presented
here only as an indication of an interesting effect to study.

Appendix C: Technical results

Let us fix a non-empty set of propositional variables PROP. A
valuation is formally defined as a function v : PROP → {0, 1}
that determines the truth value of the propositional
variables. A valuation can be extended in the standard way
to preserve the usual semantics of Boolean operators and
thus to determine the truth value of propositional formulas
(which we call ‘rules’ in the context of describing concepts).
We say that a valuation v satisfies a formula ϕ if v(ϕ) = 1.
We say that a formula ϕ is a contingency if there exist a
valuation vt that satisfies it and a valuation vf that does not.

Given a propositional formula ϕ, we define VARϕ as
the set of variables that appear in it. For example, if ϕe =
p1 ∨ (p2 ∧ ¬p2), then VARϕe = {p1, p2}.

We say that a formula ϕ is variable-minimal if there is no
other formulaψ such that the truth values of ϕ andψ coincide
over all valuations and VARψ � VARϕ. For example, the
previous ϕe is not variable-minimal, since it is equivalent to
ψ = p1, which uses one less propositional variable.

We begin by proving a very basic lemma for illustrative
purposes.

Lemma 1 Let ϕ1 and ϕ2 be two contingencies such that
VARϕ1 ∩ VARϕ2 = ∅.

Then there exists a valuation vin such that vin satisfies both
ϕ1 and ϕ2, and a valuation vout that satisfies neitherϕ1 norϕ2.

In other words, the lemma says that when we have
two non-trivial concepts concerning non-overlapping sets
of features, then there is at least one (positive) example
that satisfies both concepts simultaneously and at least one
(negative) example that satisfies none of them.

Proof Whether a valuation satisfies or not a formula ϕ

depends only on how it evaluates propositional variables
on VARϕ. Since VARϕ1 ∩ VARϕ2 = ∅ and both formula
are satisfiable via some v1 and v2 respectively, we can
construct a valuation vin by joining the values of v1, v2 on
the (disjoint) sets of variables of each formula: vin(p) =
v1(p) if p ∈ VARϕ1, vin(p) = v2(p) if p ∈ VARϕ2, and
vin(p) = 0 otherwise.

Similarly, since ϕ1, ϕ2 are not contingencies, there exist
valuations v̄1 and v̄2 that do not satisfy ϕ1 and ϕ2 respectively.
We use these valuations as before to construct a valuation
vout that does not satisfy ϕ1 nor ϕ2, as we wanted.

Lemma 2 If ϕ is a variable-minimal contingency, and p ∈
VARϕ, then there exists a valuation v such that v satisfies ϕ

but ṽ does not, where ṽ is the single valuation that coincides
with v except on p.

Proof By way of contradiction, assume the conclusion does
not hold: that for any valuation, its satisfaction of ϕ is
independent of its value on p. In this case, necessarily
{p} �= VARϕ, or otherwise ϕ would not be a contingency
(as it would always be true or always false).

Now consider Vϕ the (non-empty) set of valuations that sat-
isfy ϕ, and consider V

−p
ϕ its restriction to VARϕ\{p}. From

V
−p
ϕ we can construct, in a standard way via truth tables,

a formula ϕ̃ with VARϕ̃ = VARϕ\{p} such that a valua-
tion v satisfies ϕ̃ if and only if v|VARϕ̃ ∈ V

−p
ϕ . Since by

assumption the value of p does not matter for ϕ, we have by
construction that ϕ is equivalent to ϕ̃, but VARϕ̃ � VARϕ,
which contradicts the variable-minimality of ϕ.

The following theorem shows the general theoretical cor-
rectness of our experimental setup. It says that if we show
as positive examples the full intersection of two non-trivial
concepts whose minimal descriptions contain no features in
common, and show as negative examples the complement of
the union of both concepts, any rule used to explain the seen
(incomplete) concept must use a superset of the variables used
to minimally describe one of these concepts. Otherwise, the
chosen rule would be incompatible with the known data.

Theorem 3 Let ϕ1 and ϕ2 be two variable-minimal
contingencies such that VARϕ1 ∩ VARϕ2 = ∅. Let ψ be a
formula such that VARψ ∩VARϕ1 �= VARϕ1 and such that
VARψ ∩ VARϕ2 �= VARϕ2. Furthermore, assume that for
all valuations v that satisfy ϕ1 ∧ϕ2, v also satisfies ψ . Then
there exist two valuations vin, vout such that:

1. vin satisfies ϕ1 ∧ ϕ2

2. vout does not satisfy ϕ1 ∨ ϕ2

3. vin and vout both satisfy ψ .

Proof From the hypotheses we know that there is a variable
p1 ∈ VARϕ1\VARψ and a variable p2 ∈ VARϕ2\VARψ .
Since ϕ1, ϕ2 are variable-minimal contingencies, from
Lemma 2 we have that there exist valuations v1 and v2 such
that they satisfy ϕ1 and ϕ2 respectively, but where ṽ1 and
ṽ2 do not, with ṽ1 and ṽ2 being the valuations that coincide
with v1 and v2 save on p1 and p2 respectively. Using that
VARϕ1 ∩ VARϕ2 = ∅, we can construct from v1 and v2 (as
we did in the proof of Lemma 1) a valuation vin such that
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vin satifies both ϕ1 and ϕ2, and also such that vout does not
satisfy neither of them, where we take vout to coincide with
vin save on p1 and on p2. From the hypothesis, necessarily
vin satisfies ψ . However, since {p1, p2} ∩ VARψ = ∅, the
value over p1 or p2 does not matter for the satisfaction of
ψ , and thus vout also satisfies ψ , as we wanted to see.

Note that the statement of Theorem 3 can be generalized
to any number of non-trivial rules ϕ1, . . . , ϕn such that
VARϕi ∩ VARϕj = ∅ for all i �= j , and with ψ such that
VARψ ∩ VARϕi �= VARϕi for all i. This means that we
can test concept learning under any multiplicity of possible
explanations, as long as the underlying propositional
universe is large enough and the rules are chosen adequately.
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