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TROPICAL DISCRIMINANTS

ALICIA DICKENSTEIN, EVA MARIA FEICHTNER AND BERND STURMFELS

Abstract. Tropical geometry is used to develop a new approach to the theory of
discriminants and resultants in the sense of Gel’fand, Kapranov and Zelevinsky.
The tropical A-discriminant, which is the tropicalization of the dual variety of the
projective toric variety given by an integer matrix A, is shown to coincide with
the Minkowski sum of the row space of A and the tropicalization of the kernel
of A. This leads to an explicit positive formula for the extreme monomials of
any A-discriminant, and to a combinatorial rule for deciding when two regular
triangulations of A correspond to the same monomial of the A-discriminant.

1. Introduction

Let A be an integer d×n-matrix such that (1, 1, . . . , 1) is in the row span of A. This
defines a projective toric variety XA in CPn−1. Its dual variety X∗

A is the closure in
the projective space dual to CPn−1 of the set of hyperplanes that are tangent toXA at
a regular point. The toric variety XA is called non-defective if its dual variety X∗

A has
codimension one. In this case, the A-discriminant is the irreducible homogeneous
polynomial ∆A which defines the hypersurface X∗

A. The study of these objects is an
active area of research in computational algebraic geometry, with the fundamental
reference being the monograph by Gel’fand, Kapranov and Zelevinsky [13].

Our main object of interest in this paper is the tropical A-discriminant τ(X∗
A).

This is the polyhedral fan in Rn which is obtained by tropicalizing X∗
A. While

it is generally difficult to compute the dual variety X∗
A from A, we show that its

tropicalization τ(X∗
A) can be computed much more easily. In Theorem 1.1, we derive

two explicit combinatorial descriptions of the tropical A-discriminant τ(X∗
A), and in

Theorems 1.2 and 1.3 we present two main applications of our tropical approach.
Without loss of generality, we assume that the matrix A has maximal rank d,

that the columns of A span the integer lattice Zd, and that the point configuration
given by the columns of A is not a pyramid. These hypotheses ensure that the toric
variety XA has dimension d− 1 and that the dual variety X∗

A is not contained in
any coordinate hyperplane.

Let L(A) denote the geometric lattice whose elements are the supports, ordered by
inclusion, of the vectors in kernel(A). We write C(A) for the set of proper maximal
chains in L(A). We represent these chains as (n−d−1)-subsets σ = {σ1, . . . , σn−d−1}
of {0, 1}n. A key player in this paper is the tropicalization of the kernel of A. As
shown in [1] and [10], this tropical linear space is subdivided both by the Bergman
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fan B∗(A) of the matroid dual to A, and by the nested set fans of L(A). Thus,
tropicalizing the kernel of A yields the following subset of Rn:

(1.1) τ(kernel(A)) = support(B∗(A)) =
⋃

σ∈C(A)

R≥0 σ .

The union on the right hand side indicates the finest in a hierarchy of unimodular
simplicial fan structures, corresponding to the nested set complexes [5, 8, 9, 10, 11].

We obtain the tropical A-discriminant by adding the row space of A to the tropi-
cal linear space (1.1). This is the tropical analogue of Kapranov’s Horn uniformiza-
tion [16]. Alternatively, we describe the tropical A-discriminant in terms of regular
polyhedral subdivisions of the point configuration given by the columns of A.

Theorem 1.1. For any integer d×n-matrix A as above, the following sets coincide:

(a) the tropical A-discriminant τ(X∗
A),

(b) the Minkowski sum of τ(kernel(A)) and the row space of A,
(c) the set

{
w ∈ Rn : Πw has a maximal cell σ without strong co-loops

}
.

Here, Πw denotes the regular polyhedral subdivision of A defined by w ∈ Rn. Each
cell σ of Πw is a subset of the columns of A, with the induced matroid structure, and
a∈σ is a co-loop of σ if it lies in every basis. A co-loop a in σ is a strong co-loop if
it is also a co-loop in the superset σ∗ which is defined in equation (5.1) of Section 5.
Typically, a co-loop is strong; e.g., any maximal simplex in a regular subdivision
consists entirely of strong co-loops. In particular, for a generic configuration A, the
set in (c) is the union of all codimension one cones in the secondary fan of A. The
tropical discriminant τ(X∗

A) inherits the structure of a fan both from the Gröbner
fan of the ideal of X∗

A and from the secondary fan of A. In general, neither of these
two fan structures refines the other, as we shall see in Examples 5.5 and 5.6.

The tropicalization of an algebraic variety retains a lot of information about the
geometry of the original variety [17, 19, 20, 22, 23]. In Theorem 1.2 below, our tropi-
cal approach leads to a formula for the extreme monomials of the A-discriminant ∆A,
and, a fortiori, for the degree of the dual variety X∗

A. An alternating product formula
for the extreme monomials of ∆A was given in [13, §11.3.C] under the restrictive
assumption that XA is smooth. Our formula (1.2) is positive, it is valid for any toric
variety XA regardless of smoothness, and its proof is self-contained.

Theorem 1.2. If XA is non-defective and w a generic vector in Rn then the expo-
nent of xi in the initial monomial inw(∆A) of the A-discriminant ∆A equals

(1.2)
∑

σ∈Ci,w

| det(At, σ1, . . . , σn−d−1, ei) | ,

where Ci,w is the subset of C(A) consisting of all chains such that the row space of the
matrix A has non-empty intersection with the cone R>0

{
σ1, . . . , σn−d−1,−ei,−w

}
.

Here, the A-discriminant ∆A is written as a homogeneous polynomial in the variables
x1, . . . , xn, and inw(∆A) is the w-highest monomial xu1

1 · · · xun
n which appears in the

expansion of ∆A in characteristic zero. Theorem 1.2 generalizes to the defective case,
when we take ∆A as the Chow form of the dual variety X∗

A. This generalization
is stated in Theorem 4.6. Aiming for maximal efficiency in evaluating (1.2) with a
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computer, we can replace Ci,w with the corresponding maximal nested sets of the
geometric lattice L(A), or with the maximal cones in the Bergman fan B∗(A). Our
maple implementation of the formula (1.2) will be discussed at the end of Section 4.

Our second application of tropical discriminants concerns the combinatorial prob-
lem of characterizing ∆-equivalence for regular triangulations of A. Following
Gel’fand, Kapranov and Zelevinsky [13, p. 368], two neighboring regular triangula-
tions of a non-defective point configuration A are called ∆-equivalent if they specify
the same initial monomial of the A-discriminant. While ∆-equivalence is fully ex-
plained for toric surfaces and three-folds in [13, §11.3.B], the problem of finding a
combinatorial characterization in higher dimensions had remained open until now.
We present a solution to this problem which generalizes [13, Proposition 11.3.10]:

Theorem 1.3. Two neighboring regular triangulations of a non-defective point con-
figuration A are ∆-equivalent if and only if the restructuring occurs on a circuit
which lies in a facet of A and involves a point of minimal distance from that facet.

This paper is organized as follows. In Section 2, we review the construction of the
tropicalization τ(Y ) of a projective variety Y , and we show how the algebraic cycle
underlying any initial monomial ideal of Y can be read off from τ(Y ). In Section 3,
we discuss general varieties which are parametrized by a linear map followed by a
monomial map. Theorem 3.1 gives a combinatorial description of the tropicalization
of the image of such a map. The dual variety X∗

A of any toric variety XA admits
such a parametrization. This is derived in Section 4, and it is used to prove the
first half of Theorem 1.1, and Theorem 1.2 in the general form of Theorem 4.6. In
Section 5 we turn our attention to regular polyhedral subdivisions and we prove
the remaining half of Theorem 1.1. We then resolve the ∆-equivalence problem by
proving Theorem 1.3. Finally, Section 6 is devoted to the case when A is an essential
Cayley configuration. The corresponding dual varieties X∗

A are resultant varieties,
and we compute their degrees and initial cycles in terms of mixed subdivisions.

Acknowledgement: We thank the Forschungsinstitut für Mathematik at ETH
Zürich for hosting Alicia Dickenstein and Bernd Sturmfels in the summer of 2005.
We are grateful to Jenia Tevelev and Josephine Yu for comments on the first version
of this paper.

2. Tropical varieties and their initial cycles

Tropical algebraic geometry refers to algebraic geometry over the semi-ring
(R∪{∞},⊕,⊙) with arithmetic operations x⊕ y := min{x, y} and x⊙ y := x+y. It
transfers the objects of classical algebraic geometry into the combinatorial context
of polyhedral geometry. Fundamental references include [7, 17, 18, 19, 20, 23].

Tropicalization is an operation that turns complex projective varieties into poly-
hedral fans. If Y ⊂ CPn−1 is an irreducible projective variety of dimension r − 1
and IY ⊂ C[x1, . . . , xn] its prime ideal, then the tropicalization τ(Y ) of Y is the set

(2.1) τ(Y ) = {w ∈ Rn : inw(IY ) does not contain a monomial } .

The set τ(Y ) carries the structure of a polyhedral fan; namely, it is a subfan of the
Gröbner fan of IY ; see [22, §9]. By a result of Bieri and Groves [2], the fan τ(Y ) is
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pure of dimension r. In [3] it was shown that τ(Y ) is connected in codimension one,
and a practical algorithm was given for computing τ(Y ) from polynomial generators
of IY . We will view the tropicalization τ(Y ) of a projective variety as an (r−1)-
dimensional fan in tropical projective space TPn−1 :=Rn/R(1, 1, . . . , 1), which is an
(n−1)-dimensional real affine space.

Every maximal cone σ of the fan τ(Y ) comes naturally with an intrinsic multi-
plicity mσ, which is a positive integer. The integer mσ is computed as the sum of
the multiplicities of all monomial-free minimal associated primes of the initial ideal
inw(IY ) in C[x1, . . . , xn], where w is in the relative interior of the cone σ.

Remark 2.1. A geometric description of the intrinsic multiplicity mσ arises from
the beautiful interplay of degenerations and compactifications discovered by Tevelev
[23] and studied by Speyer [19, Chapter 2] and Hacking (unpublished). Let X denote
the toric variety associated with the fan τ(Y ). Consider the intersection Y0 of Y
with the dense torus T in CPn−1, and let Y0 be the closure of Y0 in X. By [23, 1.7,
2.5, and 2.7], the variety Y0 is complete and the multiplication map Ψ : T ×Y0 → X
is faithfully flat. If follows that the intersection of Y0 with a codimension k orbit has
codimension k in Y0. In particular, the orbit O(σ) corresponding to a maximal cone
σ of τ(Y ) intersects Y0 in a zero-dimensional scheme Zσ. The intrinsic multiplicity
mσ of the maximal cone σ in the tropical variety τ(Y ) is the length of Zσ.

We list three fundamental examples which will be important for our work.

(1) Let Y be a hypersurface in CPn−1 defined by an irreducible polynomial f in
C[x1, . . . , xn]. Then τ(Y ) is the union of all codimension one cones in the normal
fan of the Newton polytope of f . The intrinsic multiplicity mσ of each such cone σ
is the lattice length of the corresponding edge of the Newton polytope of f .
(2) Let Y =XA be the toric variety defined by an integer d×n-matrix A as above.
Its tropicalization τ(XA) is the linear space spanned by the rows of A.
(3) Let Y be a linear subspace in Cn or in CPn−1. The tropicalization τ(Y ) is
the Bergman fan of the matroid associated with Y ; see [1, 10, 22] and (3.2) below.

In the last two families of examples, all the intrinsic multiplicities mσ equal 1.

The tropicalization τ(Y ) can be used to compute numerical invariants of Y . First,
the dimension of τ(Y ) coincides with the dimension of Y . In Theorem 2.2 below,
we express the multiplicities of the minimal primes in the initial monomial ideals
of IY in terms of τ(Y ). Equivalently, we compute the algebraic cycle of any initial
monomial ideal inw(IY ). This formula tells us the degree of the variety Y , namely,
the degree is the sum of the multiplicities of all the minimal primes of inw(IY ).

Let c :=n−r denote the codimension of the irreducible projective variety Y in
CPn−1. Assume that Y is not contained in a coordinate hyperplane, and let IY
be its homogeneous prime ideal in C[x1, . . . , xn]. If w is a generic vector in Rn, the
initial ideal inw(IY ) is a monomial ideal of codimension c. Every minimal prime over
inw(IY ) is generated by a subset of c of the variables. We write Pτ = 〈xi : i ∈ τ 〉
for the monomial prime ideal indexed by the subset τ = {τ1, . . . , τc} ⊂ {1, 2, . . . , n}.

Assume that the cone w + R>0{eτ1 , . . . , eτc} meets the tropicalization τ(Y ). We
may suppose that the generic weight vector w ∈ Rn satisfies that the image of w in
TPn−1 does not lie in τ(Y ) and that the intersection of the cone w+R>0{eτ1 , . . . , eτc}
with τ(Y ) is finite and contained in the union of the relative interiors of its maximal
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cones. Let σ be a maximal cone of the tropical variety and

(2.2) {v} = (L+ w) ∩ L′,

where L = R{eτ1 , . . . , eτc} and L′ = Rσ are the corresponding linear spaces, which
are defined over Q. We associate with v the lattice multiplicity of the intersection
of L and L′, which is defined as the absolute value of the determinant of any n× n-
matrix whose columns consist of a Z-basis of Zn ∩ L and a Z-basis of Zn ∩ L′.

Here is the main result of this section.

Theorem 2.2. Let w ∈ Rn be a generic weight vector. A prime ideal Pτ is associated
to the initial monomial ideal inw(IY ) if and only if the cone w + R>0{eτ1 , . . . , eτc}
meets the tropicalization τ(Y ). The number of intersections, each counted with its
associated lattice multiplicity times the intrinsic multiplicity, is the multiplicity of
the monomial ideal inw(IY ) along the prime Pτ .

Proof. We work over the Puiseux series field K = C{{ǫ}}, and we assume that the
coordinates of w are rational numbers. We write KPn−1 for the (n− 1)-dimensional
projective space over the field K, and we consider Y as a subvariety of KPn−1. We
also consider the translated variety ǫ−w · Y which is defined by the prime ideal

ǫw · IY =
{
f(ǫw1x1, . . . , ǫ

wnxn) : f ∈ IY
}

⊂ K[x1, . . . , xn].

Let L be a general linear subspace of dimension c in KPn−1 which is defined over
the complex numbers C. The intersection ǫ−w · Y ∩ L is a finite set of reduced
points in KPn−1. The number of these points is the degree of Y . More precisely,
each such intersection point can be written in the form

θ · ǫu + . . . =
(
θ1ǫ

u1 + . . . : θ2ǫ
u2 + . . . : · · · : θnǫ

un + . . .
)
,

where θk ∈ C∗ for all k. There exists a subset τ ⊂ {1, 2, . . . , n} such that ui = 0
for i 6∈ τ and uj > 0 for j ∈ τ . The genericity in the choice of w and L ensures
that τ has cardinality c and that Pτ is a minimal prime of inw(IY ). The intersection
number we wish to compute equals the number (possibly with multiplicity) of such
points θ ·ǫu+ . . . for fixed τ . If we multiply (coordinatewise) the point θ ·ǫu+ . . . by
the vector ǫw then we get a point in Y , and hence u+ w lies in the tropical variety
τ(Y ). Moreover, u + w lies in the cone w + R>0{eτ1 , . . . , eτc}. Hence the desired
points are indexed by the intersection points of that cone with τ(Y ).

By our genericity assumption, each intersection point v lies on some maximal
cone σ of τ(Y ) and it is counted with its multiplicity, which is the product of the
intrinsic multiplicity mσ times the lattice multiplicity of the transversal intersection
of rational linear spaces in 2.2. This product can be understood by means of the
flat family discussed in Remark 2.1. Namely, it follows from the T -invariance of the
multiplication map Ψ that the scheme-theoretic fiber of Ψ over any point of O(σ)
is isomorphic to T ′ × Zσ, where T

′ is the stabilizer of a point in O(σ). Since X is
normal, T ′ is a torus (C∗)r−1. By [23, 1.7], (C∗)r−1 × Zσ is the intersection of T
with the flat degeneration of Y in CPn−1 given by the one parameter subgroup of T
specified by the rational vector w. Our construction above amounts to computing the
intersection of (C∗)r−1 ×Zσ with the corresponding degeneration of L. The lattice
index is obtained from the factor (C∗)r−1, and mσ is obtained from the factor Zσ.
Their product is the desired intersection number. �
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The algebraic cycle of the variety Y is represented by its Chow form ChY , which
is a polynomial in the bracket variables [γ] = [γ1 · · · γc]; see [13, §3.2.B]. Theorem
2.2 implies that the w-leading term of the Chow form ChY equals

∏
[γ]uγ , where

uγ is the (correctly counted) number of points in τ(Y ) ∩ (w + R>0{eγ1 , . . . , eγc}).
We discuss this statement for the three families of examples considered earlier.
(1) If Y is a hypersurface then c = 1 and the bracket variable [γ] is simply the
ordinary variable xi for i = γ1. The w-leading monomial of the defining irreducible
polynomial f(x1, . . . , xn) equals x

u1

1 · · · xun
n where ui is the number of times the ray

w + R>0ei intersects the tropical hypersurface τ(Y ), counted with multiplicity.
(2) If Y = XA is a toric variety with tropicalization τ(Y ) = rowspace(A) then
Theorem 2.2 implies the familiar result (see [13, Thm. 8.3.3]) that the initial cycles
of XA are the regular triangulations of A. Indeed, the cone w+R>0{eγ1 , . . . , eγn−d

}
intersects the row space of A if and only if the (d − 1)-simplex γ̄ = {ai : i 6∈ γ}
appears in the regular triangulation Πw of A. The intersection multiplicity is the
lattice volume of γ̄. Hence inw(ChXA

) =
∏

γ̄∈Πw
[γ]vol(γ̄).

(3) If Y is a linear space then its ideal IY is generated by c linearly independent
linear forms in C[x1, . . . , xn]. The tropical variety τ(Y ) is the Bergman fan, to be
discussed in Section 3, and the Gröbner fan of IY is the normal fan of the associated
matroid polytope [10]. For fixed generic w, there is a unique c-element subset γ of
[n] such that w +R>0{eγ1 , . . . , eγc} intersects τ(Y ). The intersection multiplicity is
one, and the corresponding initial ideal equals inw(IY ) = 〈xγ1 , . . . , xγc〉.

3. Tropicalizing maps defined by monomials in linear forms

In this section we examine a class of rational varieties Y whose tropicalization
τ(Y ) can be computed combinatorially, without knowing the ideal IY . We consider
a rational map f : Cm

99K Cs that factors as a linear map Cm → Cr followed by
a Laurent monomial map Cr

99K Cs. The linear map is specified by a complex
r×m-matrix U = (uij), and the Laurent monomial map is specified by an integer
s× r-matrix V = (vij). Thus the i-th coordinate of the rational map f : Cm

99K Cs

equals the following monomial in linear forms:

(3.1) fi(x1, . . . , xm) =
r∏

k=1

(uk1x1 + · · ·+ ukmxm)vik , i = 1, . . . , s .

Let YUV denote the Zariski closure of the image of f . Observe that if all row sums
of V are equal then f induces a rational map CPm−1

99K CPs−1, and the closure of
its image is an irreducible projective variety, which we also denote by YUV .

Our goal is to compute the tropicalization τ(YUV ) of the variety YUV in terms of
the matrices U and V . In particular, we will avoid any reference to the equations
of YUV . The general framework of this section will be crucial for our proofs of the
results on A-discriminants and their tropicalization stated in the Introduction.

We list a number of special cases of varieties which have the form YUV .
(1) If r= s, and V = Ir then f is the linear map x 7→ Ux, and YUV is the image
of U . We denote this linear subspace of Cr by im(U). Its tropicalization τ(im(U))
is the Bergman fan of the matrix U , to be discussed in detail below.
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(2) If m= r and U = Im then f is the monomial map specified by the matrix V .
Hence YUV coincides with the toric variety XV t which is associated with the trans-
pose V t of the matrix V . Its tropicalization is the column space of V .
(3) Let m=2, suppose the rows of U are linearly independent, and suppose the
matrix V has constant row sum. Then YUV = image(CP1 → CPs−1) is a rational
curve. Every rational projective curve arises from this construction, since every
binary form is a monomial in linear forms.

Our next theorem implies that τ(YUV ) consists of the rays in TPs−1 spanned by
the rows of V . Theorem 3.1 can also be derived from [23, Proposition 3.1], but we
prefer to give a self-contained proof.

Theorem 3.1. The tropical variety τ(YUV ) equals the image of the Bergman fan
τ(im(U)) under the linear map Rr → Rs specified by the matrix V .

Proof. Let K = C{{ǫR}} be the field of Puiseux series with complex coefficients and
real exponents. The elements of K are also known as transfinite Puiseux series,
and they form an algebraically closed field of characteristic zero. The order of a
non-zero element z in K∗ = K\{0} is the smallest real number ν such that ǫν

appears with non-zero coefficient in z. For a vector z = (z1, . . . , zs) in (K∗)s we
write order(z) := (order(z1), . . . , order(zs)) ∈ Rs. In what follows we consider all
algebraic varieties over the field K = C{{ǫR}}. Our proof is based on the well-known
result that the orders of K∗-valued points of a variety are precisely the points in the
tropicalization of that variety (see [7], [19, Theorem 2.1.2], [20, Theorem 2.1]).

Extending scalars, we consider the map f : Km
99K Ks. Let z = f(x) be any

point in the image of that map. For k ∈ {1, . . . , r} we set yk = uk1x1 + · · ·+ ukmxm
and αk = order(yk). The vector y = (y1, . . . , yr) lies in the linear space im(U), and
hence the vector α = (α1, . . . , αr) lies in τ(im(U)).

The order of the vector z = f(x) ∈ Ks is the vector V · α ∈ Rs, since the order
of its ith coordinate zi equals

∑r
k=1 vjk · αk. Hence z = f(x) lies in V · τ(im(U)),

the image of the Bergman fan τ(im(U)) under the linear map V .
The image of f is Zariski dense in YUV , i.e., there exists a proper subvariety Y of

YUV such that YUV \Y contains the image of f . By the Bieri-Groves Theorem [2],
τ(Y ) is a polyhedral fan of lower dimension inside the pure-dimensional fan τ(YUV ).
From this it follows that τ(YUV ) is the closure of τ(YUV \Y ) in Rs. In the previous
paragraph we showed that τ(YUV \Y ) is a subset of V · τ(im(U)). Since the latter is
closed, we conclude that τ(YUV ) ⊆ V · τ(im(U)).

It remains to show the converse inclusion V ·τ(im(U)) ⊆ τ(YUV ). Take any point
β ∈ V · τ(im(U)), and choose α ∈ τ(im(U)) such that V · α = β. There exists a
K∗-valued point y in the linear space im(U) such that order(y) = α. Then the point
yV =

(∏r
k=1 y

v1k
k , . . . ,

∏r
k=1 y

vsk
k

)
lies in (K∗)s ∩YUV , and its order clearly equals β.

Hence β ∈ τ(YUV ) as desired. �

Remark 3.2. The intrinsic multiplicity mσ of any maximal cone σ in the tropical
variety τ(YUV ) is a certain lattice index which can be read off from the matrix V .
Namely, suppose σ is in the image of a maximal cone σ′ of the Bergman fan τ(im(U)).
Then mσ is the index of the subgroup V (Rσ′ ∩ Zr) of the group of Rσ ∩ Zs. This
follows from Remark 2.1 using standard arguments of toric geometry. The discussion
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below implies that Rσ′ ∩Zr is spanned by vectors in {0, 1}r and hence V (Rσ′ ∩Zr)
is spanned by sums of columns of V , so the index is easy to compute.

Theorem 3.1 and Remark 3.2 furnish a combinatorial construction for the tropi-
calization of any variety which is parameterized by monomials in linear forms. Using
the results of Section 2, Theorem 3.1 can now be applied to compute geometric in-
variants of such a variety, such as its dimension, its degree and its initial cycles. To
make this computation effective, we need an explicit description of the Bergman fan
τ(im(U)). Luckily, the combinatorics of this object is well understood, thanks to
[1, 10], and in the remainder of this section we summarize what is known.

Let M denote the matroid associated with the rows of the r×m-matrix U . Thus
M is a matroid of rank at most m on the ground set [r] = {1, 2, . . . , r}. The bases
of M are the maximal subsets of [r] which index linearly independent rows of U .
Fix a vector w ∈ Rr. Then the w-weight of a basis β of M is

∑
i∈β wi. Consider the

set of all bases of M that have maximal w-weight. This collection is the set of bases
of a new matroid which we denote by Mw. Note that each Mw has the same rank
and the same ground set as M = M0. An element i of [r] is a loop of Mw if it does
not lie in any basis of M of maximal w-weight.

We can now describe τ(im(U)) in terms of the matroid M :

(3.2) τ(im(U)) = {w ∈ Rr : Mw has no loop } .

This representation endows our tropical linear space with the structure of a polyhe-
dral fan. Namely, if w ∈ τ(im(U)), then the set of all w′ ∈ Rr such that Mw′ =Mw

is a relatively open convex polyhedral cone in Rr. The collection of these cones is
denoted B(M) and is called the Bergman fan of the matroid M . Depending on the
context, we may also write B(U) and call it the Bergman fan of the matrix U . For a
more geometric construction of Bergman fans as subfans of normal fans of matroid
polytopes, see [10, Sect. 2]. Readers of [22, §9] may note that the Bergman fan
coincides with the fan structure on τ(im(U)) gotten by restricting the Gröbner fan
of the ideal of im(U) to the support of τ(im(U)).

We now recall the connection between Bergman fans and nested set complexes.
The latter encode the structure of wonderful compactifications of hyperplane ar-
rangement complements in the work of De Concini and Procesi [5], and they were
later studied from a combinatorial point of view in [8, 9, 11].

A subset X ⊆ [r] is a flat of our matroid M if there exists a vector u ∈ im(U)
such that X = {i ∈ [r] : ui 6= 0}. The set of all flats, ordered by inclusion, is the
geometric lattice L=LM . A flat X in L is called irreducible if the lower interval
{Y ∈L : Y ≤ X} does not decompose as a direct product of posets. Denote by I
the set of irreducible elements in L. In other contexts, the irreducible elements of
a lattice of flats of a matroid were named connected elements or dense edges. The
matroid M is connected if the top rank flat 1̂ = [r] is irreducible, and we assume that

this is the case. Otherwise, we artificially add 1̂ to I. We call a subset S ⊆ I nested
if for any set of pairwise incomparable elements X1, . . . ,Xt in S, with t ≥ 2, the
join X1 ∨ . . . ∨Xt is not contained in I. The nested subsets in I form a simplicial
complex, the nested set complex N (L). For a definition of nested set complexes in
a slightly more general context and for basic properties, see [8, Sect. 2.3].
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Feichtner and Yuzvinsky [11, Eqn (13)] introduced the following natural geometric
realization of the nested set complex N (L). Namely, the collection of cones

(3.3) R≥0{ eX : X ∈ S } for S ∈ N (L)

forms a unimodular fan whose face poset is the face poset of the nested set complex
of L. Here eX =

∑
i∈X ei denotes the incidence vector of a flat X ∈ I. We consider

this fan in the tropical projective space TPn−1, and we also denote it by N (L).
It was shown in [10, Thm 4.1] that the nested set fan N (LM ) is a simplicial sub-

division of the Bergman fan B(M), and hence of our tropical linear space τ(im(U)).
The Bergman fan need not be simplicial, so the nested set fan can be finer than
the Bergman fan. However, in many important cases the two fans coincide. For a
characterization when this happens see [10, Thm 5.3].

What we defined above is the coarsest in a hierarchy of nested set complexes
associated with the geometric lattice L. Namely, for certain choices of subsets G
in L, the same construction gives a nested set complex N (L,G) which is also realized
as a unimodular simplicial fan. Such G are called building sets; there is one nested
set fan for each building set G in L, see [8, Sect. 2.2, 2.3]. If two building sets
are contained in another, G1 ⊆ G2, then N (L,G2) is obtained from N (L,G1) by a
sequence of stellar subdivisions [9, Thm 4.2]. The smallest building set is G = I,
the case discussed above, and the largest building set is the set of all flats, G = L.
The corresponding nested set complex N (L,L) is the order complex ∆(L) of the
lattice, i.e., the simplicial complex on L\{0̂} whose simplices are the totally ordered
subsets. Summarizing the situation, we have the following sequence of subdivisions
each of which can be used to compute the tropicalization of a linear space.

Theorem 3.3. Given a matrix U and the matroid M of rows in U , the tropical
linear space τ(im(U)) has three natural fan structures: the Bergman fan B(M) is
refined by the nested set fan N (LM ), which is refined by the order complex ∆(LM).

We present an example which illustrates the concepts developed in this section.

Example 3.4. Let m=4, r=5, s=4, and consider the map f=(f1, f2, f3, f4) from
C4 to C4 whose coordinates are the following monomials in linear forms:

f1 = (x1 − x2)
3(x1 − x3)

3

f2 = (x1 − x2)
2(x2 − x3)

2(x2 − x4)
2

f3 = (x1 − x3)
2(x2 − x3)

2(x3 − x4)
2

f4 = (x2 − x4)
3(x3 − x4)

3 .

So f is as in (3.1) with

U =




1 −1 0 0
1 0 −1 0
0 1 −1 0
0 1 0 −1
0 0 1 −1




and V =




3 3 0 0 0
2 0 2 2 0
0 2 2 0 2
0 0 0 3 3


 .

The projectivization of the variety YUV=cl(image(f)) is a surface in CP3, since U has
rank 3. We wish to study the irreducible homogeneous equation P (z1, z2, z3, z4) = 0
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which defines this surface. The matroid of U is the graphic matroid of K4 with one
edge removed. From [10, Example 3.4] we know that the Bergman fan B(U) is the
fan over the complete bipartite graph K3,3, embedded as a 2-dimensional fan in TP4.

The tropical surface τ(YUV ) is the image of B(U) under V . This image is a 2-
dimensional fan in TP3. It has seven rays: six of them are images of the rays of B(U),
the last one is the intersection of the images of two 2-dimensional faces that occurs
due to the non-planarity of K3,3. Hence the Newton polytope of the polynomial P
is 3-dimensional with 6 vertices, 11 edges, and 7 facets; see Figure 1.

The six extreme monomials of P have been computed (by hand) using Theo-
rem 2.2, namely, by intersecting the rays w + R>0ei with τ(YUV ) in TP3. This
computation revealed in particular that the degree of the polynomial P is 28. Using
linear algebra, it is now easy to determine all 171 monomials in the expansion of P .

z91z
15

2 z
2

3z
2

4

z12
1
z12
2
z4
4

z12
1
z12
2
z4
3

z15
1
z9
2
z2
3
z2
4

z122 z
8

3z
8

4
z12
1
z8
3
z8
4

Figure 1. The Newton polytope of the polynomial P in Example 3.4.

4. Back to A-discriminants

In this section we return to the setting of the Introduction, and we prove The-
orem 1.2 and half of Theorem 1.1. Recall that A is an integer d×n-matrix such
that (1, . . . , 1) is in the row span of A, i.e., the column vectors a1, a2, . . . , an lie in
an affine hyperplane in Rd. We identify the matrix A with the point configura-
tion {a1, a2, . . . , an}; the convex hull of the configuration A is a (d−1)-dimensional
polytope with ≤ n vertices. We assume that the vectors a1, . . . , an span Zd.

The projective toric variety XA is defined as the closure of the image of the
monomial map ψA : (C∗)d → CPn−1, t 7→ (ta1 : ta2 : · · · : tan). Equivalently, XA

is the set of all points x ∈ CPn−1 such that xu = xv for all u, v ∈ Nn with Au = Av.
Let (CPn−1)∗ denote the projective space dual to CPn−1. The point ξ = (ξ1 : · · · :

ξn) in (CPn−1)∗ corresponds to the hyperplane Hξ = {x ∈ CPn−1 :
∑n

i=1 xiξi = 0}.
The dual variety X∗

A is defined as the closure in (CPn−1)∗ of the set of points ξ such
that the hyperplane Hξ intersects the toric variety XA at a regular point p and
contains the tangent space TXA

(p) of XA at p.
Kapranov [16] showed that reduced discriminantal varieties are parametrized by

monomials in linear forms. This parametrization, called the Horn uniformization,
will allow us to determine the tropical discriminant τ(X∗

A) via the results of Section 3.
We denote by CP(ker(A)) the projectivization of the kernel of the linear map given
by A, an (n−d−1)-dimensional projective subspace of CPn−1, and we denote by
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T d−1 = (C∗)d/C∗ the dense torus of XA. The following result is a variant of [16,
Theorem 2.1]; see also [13, §9.3.C].

Proposition 4.1. The dual variety X∗
A of the toric variety XA is the closure of the

image of the map ϕA : CP(ker(A)) × T d−1 → (CPn−1)∗ which is given by

(4.1) ϕA(u, t) = (u1t
a1 : u2t

a2 : · · · : unt
an).

Proof. Consider the unit point 1 = (1 : 1 : . . . : 1) on the toric variety XA. The
hyperplane Hξ contains both the point 1 and the tangent space TXA

(1) at this point
if and only if ξ lies in the kernel of A. This follows by evaluating the derivative of
the parametrization ψA of XA at (t1, t2, . . . , td) = (1, 1, . . . , 1). If p = ψA(t) is any
point in the dense torus of XA, then the tangent space at that point is gotten by
translating the tangent space at 1 as follows:

TXA
(p) = p · TXA

(1).

The hyperplane Hξ contains p if and only if p−1 · Hξ = Hξ·p contains 1, and Hξ

contains TXA
(p) if and only if Hξ·p contains TXA

(1). These two conditions hold, for
some p in the dense torus of XA, if and only if ξ ∈ image(ϕA). �

Proposition 4.1 shows that the dual variety X∗
A of the toric variety XA is

parametrized by monomials in linear forms. In the notation of Section 3 we set
m = n, r = n+ d, s = n, and the two matrices are

(4.2) U =

(
B 0
0 Id

)
and V =

(
In At

)
,

where B is an n×(n−d)-matrix whose columns span the kernel of A over the integers.
Thus the rows of B are Gale dual to the configuration A.

Lemma 4.2. The variety YUV ⊂ Cn defined by (4.2) as in Section 3 is equal to the
cone over the dual variety X∗

A ⊂ (CPn−1)∗ of the toric variety XA ⊂ CPn−1.

Proof. Let f be the rational map defined by (4.2) as in Section 3, and set x =
(x1, . . . , xn−d) and t = (t1, . . . , td) = (xn−d+1, . . . , xn). Then (3.1) equals

fi(x, t) = (bi,1x1 + · · ·+ bi,n−dxn−d) · t
ai ,

which equals the i-th coordinate of ϕA if we write ker(A) as the image of B. �

The following result proves the equivalence of (a) and (b) in Theorem 1.1. The
co-Bergman fan B∗(A) of the rank d configuration given by the columns of A equals
the Bergman fan of the rank n−d configuration given by the rows of B. Thus B∗(A)
is the Bergman fan of the matroid dual to the matroid given by the columns of A.

Corollary 4.3. For any configuration A, the tropical A-discriminant τ(X∗
A) is the

Minkowski sum of the co-Bergman fan B∗(A) and the row space of A.

Proof. By Theorem 3.3, the support of the co-Bergman fan B∗(A) is the tropical-
ization of the linear space ker(A) = im(B). Now, if U is taken as in (4.2) then we
have the following decomposition in Rr = Rn ⊕ Rd:

τ(im(U)) = τ(im(B))⊕ τ(im(Id)) = B∗(A)⊕ Rd.
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The image of this fan under the linear map V =
(
In At

)
is the (Minkowski) sum

of B∗(A) and the image of At. Of course, the latter is the row space of A. Hence
our assertion follows from Lemma 4.2 and Theorem 3.1. �

Similarly, a description of the tropicalization of the reduced version of the dual
variety can be derived from Theorem 3.1. The reduced dual variety Y ∗

A is the closure

of the image of the rational morphism ϕ̃A : CPn−d−1
99K CPn−d−1, whose i-th

coordinate equals

ϕ̃A(s1 : . . . : sn−d)i =

n∏

k=1

( bk,1s1 + . . .+ bk,n−dsn−d )
bk,i , i = 1, . . . , n− d ,

where B again is an n× (n−d)-matrix whose columns span the kernel of A over the
integers. The variety YBBt ⊆Cn−d equals the cone over Y ∗

A in CPn−d−1; hence the
tropicalization τ(Y ∗

A) equals the image of B(B)=B∗(A) under the linear map Bt.
We often do not distinguish between the reduced and unreduced version of dual

varieties and their tropicalizations, and denote both by X∗
A and τ(X∗

A), respectively.

We illustrate Corollary 4.3 for the case when XA is the Veronese surface, regarded
as the projectivization of the variety of all symmetric 3× 3 matrices of rank ≤ 1.

Example 4.4. We take d = 3, n = 6, and we fix the matrix

A =



1 1 1 1 1 1
0 1 2 0 1 0
0 0 0 1 1 2


 .

Note that the more usual matrix

A′ =



2 1 0 1 0 0
0 1 2 0 1 0
0 0 0 1 1 2


 =




2 −1 −1
0 1 0
0 0 1


 · A,

defines the same Veronese embedding of CP2 into CP5, but in this case the
parametrization ψA′ is two-to-one.

Points x in CP5 are identified with symmetric 3× 3-matrices

X =



2x1 x2 x4
x2 2x3 x5
x4 x5 2x6


 .

A point u is in CP(ker(A)) if and only if the corresponding matrix U has zero row
and column sums. If this holds, and t is any point in (C∗)3, then the symmetric
3× 3-matrix X corresponding to x = ϕA(u, t) is singular because it satisfies

(
1 1/t2 1/t3

)
·X =

(
0 0 0

)
.

Hence ϕA parametrizes rationally the hypersurface of singular symmetric matri-
ces X, and the A-discriminant equals the classical discriminant ∆A(x) =

1
2det(X).

The tropicalization of X∗
A is obtained as follows. We choose a Gale dual B of A,

Bt =




1 −2 1 0 0 0
1 −1 0 −1 1 0
1 0 0 −2 0 1


 .
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Figure 2. Bergman complex and tropical discriminant in Example 4.4

Note that the matroid given by the columns of A is self-dual. The Bergman fan
B(B)=B∗(A) is a 2-dimensional fan in R6/R(1, 1, 1, 1, 1, 1), or, equivalently, a graph
on the 4-sphere. We depict this graph in Figure 2. It has nine vertices, corresponding
to the six singletons 1, 2, . . . , 6 and the three circuits 124, 235, 456.

Its image under Bt is the tropical discriminant τ(X∗
A). This is a graph on the

2-sphere, namely, it is the edge graph of a triangular prism as shown in Figure 2.
Since A is non-defective, τ(X∗

A) is the union of codimension 1 cones in the normal
fan of the Newton polytope of ∆A. We conclude that the Newton polytope is a
bipyramid, whose five vertices correspond to the five terms in the determinant of X.

Returning to the general case, we note that the dimension of the image of ϕA is at
most dim(CP(ker(A))×T d−1) = n−2, so the dual variety X∗

A is a proper subvariety
of CPn−1. If the dimension of X∗

A is less than n − 2, that is, if X∗
A is not a hyper-

surface, we say that the toric variety XA, respectively the point configuration A,
is defective. In the non-defective case, there is a unique (up to sign) irreducible
polynomial ∆A with integer coefficients which vanishes on X∗

A. The polynomial ∆A

is the A-discriminant as defined in [13, §9.1.A]. In what follows, the dual variety
X∗

A itself will be referred to as the A-discriminant, even if A is defective.
By the Bieri-Groves Theorem [2, 22], the dimension of the A-discriminant X∗

A

coincides with the dimension of the tropical A-discriminant τ(X∗
A). Corollary 4.3

furnishes a purely combinatorial formula for that dimension.

Corollary 4.5. The dimension of the A-discriminant X∗
A in CPn−1 is one less than

the largest rank of any matrix (At, σ1, . . . , σn−d−1) where σ runs over the set C(A).

Here C(A) is the subset of {0, 1}n defined in the Introduction. That definition is
now best understood using the matroid-theoretic concepts which we reviewed in the
second half of Section 3, where we take U to be the n× (n− d)-matrix B as in (4.2)
and, hence, M to be the rank n−d matroid associated with the rows of B. In fact,
M is the matroid dual to the matroid given by the columns of the d× n-matrix A,
and L(A) coincides with the lattice of flats LM . The set C(A) corresponds to the
facets of the order complex ∆(LM ). In light of Theorem 3.3, one could reformulate
Corollary 4.5 with σ ranging over the facets of the nested set complex N (LM ) or the
Bergman fan B(M) = B∗(A). The maple program discussed below takes advantage
of that formulation for efficiency reasons.

We are now prepared to state and prove the general version of Theorem 1.2.
Let Cc denote the subset of {0, 1}n consisting of all chains of length n − d − c in
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L(A) = LM . Equivalently, Cc is the set of (n−d−c)-element subsets of the elements
of C = C(A). We write inw(X

∗
A) = inw(IX∗

A
) for the initial ideal, with respect to

some w ∈ Rn, of the homogeneous prime ideal IX∗

A
of the A-discriminant X∗

A.

Theorem 4.6. Suppose that the A-discriminant X∗
A has codimension c and let τ =

{τ1, . . . , τc} ⊂ {1, . . . , n}. If w is a generic vector in Rn then the multiplicity of the
initial monomial ideal inw(X

∗
A) along the prime Pτ = 〈xi : i ∈ τ 〉 equals

(4.3)
∑

σ∈Cc
i,w

| det(At, σ1, . . . , σn−d−c, eτ1 , . . . , eτc) | ,

where Cc
i,w is the subset of Cc consisting of all chains σ such that

(4.4) rowspace(A) ∩ R>0

{
σ1, . . . , σn−d−c,−eτ1 , . . . ,−eτc ,−w

}
6= ∅.

Theorem 1.2 is the special case of Theorem 4.6 when A is non-defective, i.e., c=1
and IX∗

A
is the principal ideal generated by ∆A. In that case, the initial monomial

ideal inw(X
∗
A) is generated by the initial monomial inw(∆A).

Proof of Theorem 4.6. According to Theorem 2.2, the prime Pτ is associated to
inw(X

∗
A) if and only if the polyhedral cone w+R>0{eτ1 , . . . , eτc} meets the tropical-

ization τ(X∗
A), which was described in Corollary 4.3 as B∗(A) + rowspace(A).

The collection of cones R≥0σ for σ ∈ C forms a unimodular triangulation of the
co-Bergman fan B∗(A). This was proved by Ardila and Klivans [1], and we discussed
it in Theorem 3.3. Therefore, (4.4) characterizes when w + R>0{eτ1 , . . . , eτc} meets
R≥0σ+rowspace(A) for some σ ∈ Cc. The multiplicity of this intersection is precisely
the stated n× n-determinant. This can be derived from Remarks 2.1 and 3.2. �

Our degree formula for the A-discriminant (Theorem 1.2) can now be rephrased
in the following manner which is more conceptual and geometric.

Corollary 4.7. A monomial prime Pτ is associated to inw(X
∗
A) if and only if the

cone w + R>0{eτ1 , . . . , eτc} meets the fan B∗(A) + rowspace(A). The number of
intersections, counted with multiplicity, is the multiplicity of inw(X

∗
A) along Pτ .

We close this section with a brief discussion of some computational issues. The
co-Bergman fan of the matrix A can be computed efficiently by gluing local Bergman
fans, as explained in [10, Algorithm 5.5]. See Examples 5.7, 5.8 and 5.9 in [10] for
some non-trivial computations. Extending the software used for those computations,
we prepared a maple program for evaluating the formula (1.2) in Theorem 1.2. The
input for our program consists of three positive integers d, n,R, and a d× n-matrix
A which is assumed to be non-defective. The output is a list of initial monomials
inw(∆A) of the A-discriminant ∆A, for R randomly chosen vectors w in Nn. Our
maple implementation is available upon request from any of the three authors.

Example 4.8. Let d = 4 and n = 8, and consider the matrix below. What follows
is the output of our maple program on this input. On a fast workstation, our code
takes about half a second to compute the co-Bergman fan, and afterwards it takes
about one second per initial monomial. So the total running time for this matrix is
about R seconds, where R is the number of iterations specified by the user:
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[ 1 1 1 1 0 0 0 0]

[ ]

[ 0 0 0 0 1 1 1 1]

A := [ ]

[ 2 3 5 7 11 13 17 19]

[ ]

[53 47 43 41 37 31 29 23]

Computing the Co-Bergman fan of A....

DONE. Time elapsed = 0.520

The number of maximal cones in the Co-Bergman fan is 60

48 of these cones map to codimension one in the tropical discriminant.

What follows are 10 pairs of weight vectors and initial monomials:

20 36 36 2 36 58 4

[382,171,298,564,677,339,186,669], x1 x2 x3 x4 x6 x7 x8

36 2 56 66 32

[122, 710, 356, 64, 358, 261, 675, 686], x1 x2 x4 x6 x7

From this output we see that the degree of the A-discriminant equals 192 = 36 +
2 + 56 + 66 + 32. We discuss the geometric meaning of this example in Section 6.

5. Subdivisions

Gel’fand, Kapranov and Zelevinsky [13] established the relationship between the
A-discriminant and the secondary polytope. This polytope parametrizes the regular
polyhedral subdivisions of A. We now explain how this relationship is derived using
our tropical approach. After introducing the notion of a strong co-loop, we prove the
remaining part of Theorem 1.1, namely the identification of τ(X∗

A) with a certain
fan of regular subdivisions of A. Thereafter, we turn our attention to the problem of
characterizing ∆-equivalence of regular triangulations, and we prove Theorem 1.3.

Recall that any vector w∈Rn defines a regular polyhedral subdivision Πw of the
configuration A= {a1, . . . , an}. The cells of Πw are the subsets of A corresponding
to the lower facets of the convex hull of the points (a1, w1), . . . , (an, wn) in Rd+1.
By a cell σ of Πw we always mean a subset σ of A = {a1, . . . , an} whose associated
matroid M(σ) has maximal rank d = rank(M(A)). An element of a cell σ is a co-
loop of σ if it is in every basis of the matroid M(σ). If a cell σ has k co-loops then
it is a k-fold pyramid over a configuration of rank d− k. The assumption stated in
the Introduction that A is not a pyramid means that M(A) has no co-loops.

Let σ be a cell of Πw. There exists a unique affine-linear function ψσ on Rd such
that ψσ(ai) = 1 if ai ∈σ is a co-loop and ψσ(aj) = 0 if aj ∈σ is not a co-loop. With
the cell σ we associate the enlarged cell σ∗ which is defined as follows:

(5.1) σ∗ = σ ∪ { a ∈ A : ψσ(a) < 1 }.
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Note that σ∗=A if σ has no co-loops, and σ∗ = σ if σ is a simplex (i.e., every point
of σ is a co-loop). Otherwise, σ∗ is constructed geometrically as follows: Consider
the hyperplane which passes through all co-loops and is parallel to the affine span
of the non-co-loops. Then σ∗ consists of the co-loops of σ together with all points
of A which lie in the open halfspace containing the non-co-loops. A co-loop of σ is
called a strong co-loop if it remains a co-loop in the enlarged cell σ∗.

Readers of [13] will find it instructive to look at Figure 49 on page 367. In
diagrams (a) and (c) of that figure, the point ω is a strong co-loop of the pyramidal
cell, and in diagram (b) both ω1 and ω2 are strong co-loops of the tetrahedral cell.

The proof of Theorem 1.1 will be completed by establishing the following lemma.

Lemma 5.1. The tropical A-discriminant τ(X∗
A) equals the set

(5.2)
{
w ∈ Rn : Πw has a maximal cell σ with no strong co-loops

}
.

The proof is given after Example 5.3. An important corollary to this lemma is that
membership in the tropical A-discriminant depends only on the regular subdivision
specified by the vector w, i.e., if w ∈ τ(X∗

A) and Πw = Πw′ then w′ ∈ τ(X∗
A).

Corollary 5.2. τ(X∗
A) is a subfan of the secondary fan Σ(A).

The statement of this corollary is new and rather non-trivial when codim(X∗
A) ≥ 2.

For codim(X∗
A) = 1, which is the case studied in [13], it follows from the known fact

that the secondary polytope is the Newton polytope of the principal A-determinant.
The secondary fan Σ(A) of a configuration A is usually described in terms of its

maximal cones, which are indexed by the regular triangulations of A. The tropical
discriminant τ(X∗

A) lies in the complement of these open maximal cones. It consists
of non-maximal cones, so the subdivisions Πw for w ∈ τ(X∗

A) are certainly not
triangulations. We illustrate Corollary 5.2 for the configuration in Example 4.4.

Example 5.3. Let A be the 3 × 6-matrix in Example 4.4 whose toric variety is
the Veronese surface in CP5 and whose tropical discriminant τ(X∗

A) was depicted
in Figure 2. We now identify τ(X∗

A) as a subfan of the secondary fan Σ(A). Both
of these two-dimensional fans are drawn as planar graphs in Figure 3. The graph
Σ(A) is dual to the three-dimensional associahedron, and its 14 regions are labeled
with the 14 regular triangulations of the configuration A. The tropical discriminant
τ(X∗

A) is the subgraph which is indicated by solid lines. Edges of Σ(A) that do
not belong to τ(X∗

A) are dashed. The 14 regular triangulations of A occur in five
∆-equivalence classes corresponding to the open cells in the complement of τ(X∗

A).
The magnification on the left in Figure 3 shows a portion of the (dual) secondary

polytope of A with corresponding polyhedral subdivisions of the 6-point configu-
ration indicated next to the faces. The enlarged points are strong co-loops with
respect to the shaded (non-simplicial) faces, showing that neither of the edges of the
square face in the secondary polytope nor its interior corresponds to a face of the
tropical discriminant. The solid edge, however, corresponds to a cell in τ(X∗

A) since
the only maximal cell of its associated polyhedral subdivision has no strong co-loop.

Proof of Lemma 5.1 (and Theorem 1.1). We first prove the inclusion of τ(X∗
A) in

(5.2). Since the set (5.2) is invariant under translation by an element in the row span
of A, it suffices to consider any vector w in the Bergman fan B∗(A). After adding
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τ(X∗

A
) ⊆ Σ(A)

Figure 3. The tropical discriminant is a subfan of the secondary fan

a constant vector, we may assume that w is non-negative and τ = {i : wi = 0} is
non-empty. Clearly, τ is a face (of some rank) in the regular subdivision Πw of A.
Now, since w ∈ B∗(A), the initial matroid M(A)−w has no co-loops. If τ has rank d
then M(A)−w = M(τ), so τ is a cell of Πw and has no co-loops, and we are done.
Otherwise, if τ has rank less than d, consider any cell σ of Πw which contains τ .
Every co-loop ai of σ is contained in σ\τ . We must show that such an ai cannot
be a strong co-loop. Indeed, since ai is not a co-loop of M(A)−w there exists an
element ak of A\σ which can replace ai in some basis of M(A)−w. This means that
wi = wk, and we can conclude that ak lies in the enlarged cell σ∗. Hence ai is not a
co-loop of M(σ∗), and we are done.

For the converse direction, let w be any vector in Rn such that some cell σ
of Πw has no strong co-loop. After changing w by an element in the row space
of A, we may assume that wi = 0 for i ∈ σ and wj > 0 for j 6∈ σ. This ensures
M(A)−w = M(σ). If σ has no co-loop, we are done. Otherwise, we consider the
affine-linear function ψσ and we identify it with a vector in the row space of A.
Among all elements ak in σ∗ pick one such that λk := wk/(1 − ψσ(ak)) is positive
but as small as possible. Now replace w by w + λkψσ , and replace σ by its proper
superset σ ∪ {aj : λj = λk}, which is a subset of σ∗. At least one of the old co-loops
is no longer a co-loop of the new matroid M(σ). We now iterate this process until
all co-loops have disappeared. At the end, we have replaced the original vector w by
an element of w + rowspace(A) which lies in the Bergman fan B∗(A). This proves
that w lies in the tropical discriminant τ(X∗

A). �
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Corollary 4.3 gives a piecewise-linear parametrization of the tropical discriminant:

B∗(A)× rowspace(A) → τ(X∗
A)

(u , v) 7→ u+ v

If XA is non-defective then this map is generically one-to-one, but some special
fibers may have more than one element. The arguments in the proof of Lemma 5.1
show how to invert the map on a dense subset of τ(X∗

A). Namely, if w ∈ τ(X∗
A) is

such that the corresponding subdivision Πw has a cell σ without any co-loops, the
inversion amounts to the following steps. Pick the unique element v in the row space
of A such that wj = vj for all aj ∈σ, and then set u = w−v. Observe that u ∈ B∗(A)
by definition of the co-Bergman fan and our assumption that σ has no co-loop. If all
cells in Πw do have co-loops, elements v ∈ rowspace(A) and u ∈ B∗(A) are picked
according to the procedure described in the second half of the proof of Lemma 5.1.

We now turn to the proof of Theorem 1.3, which gives our combinatorial char-
acterization of the notion of ∆-equivalence [13, §11.3, page 368]. This equivalence
relation on regular triangulations of a non-defective configuration A is defined as
follows. Let Πw and Πw′ be two regular triangulations which are neighbors in the
secondary fan Σ(A). This means that their cones in Σ(A) share a common face of
codimension one. We call Πw and Πw′ ∆-equivalent if they specify the same leading
monomial of the A-discriminant, i.e., inw(∆A) = inw′(∆A). Lemma 5.1 implies:

Corollary 5.4. The neighboring regular triangulations Πw and Πw′ of the configu-
ration A are ∆-equivalent if and only if every cell in the common coarsening of Πw

and Πw′ has a strong co-loop.

Theorem 1.3 expresses the same condition in geometric terms. Here is the proof:

Proof of Theorem 1.3. Let Π be a subdivision which refines to two neighboring
regular triangulations. Then Π contains a unique circuit C as a face, and the link
of C in Π is a ball or sphere of complementary dimension. Consider any cell σ of
Π which contains C. The co-loops of σ are the elements in σ\C. If a ∈ σ\C is
a strong co-loop then every point in σ∗\σ must lie in the hyperplane spanned by
σ\{a}. Hence this hyperplane is a facet of A, and, among all points of A that are not
on that facet, the point a has minimum distance to that facet. Conversely, suppose
that a is a point with that property. Then σ∗\{a} is contained in that facet and
hence a is a co-loop of σ∗. We conclude that a is a strong co-loop of σ. �

We now present two examples that illustrate Theorem 1.1. In particular, they
highlight the fact that there are different fan structures of the tropical discriminant.

Example 5.5. Let d = 3, n = 6, and consider the non-defective configuration

A =



1 1 1 1 0 0
0 0 0 0 1 1
0 1 2 3 0 1


 .

Here, ∆A = x1x
3
6−x2x5x

2
6+x3x

2
5x6−x4x

3
5. Modulo the row space of A, the secondary

fan has eight rays and eighteen 2-cones, corresponding to a planar graph with eight
vertices and eighteen edges. The tropical discriminant τ(X∗

A) corresponds to the
induced subgraph on six of the vertices, namely, e1, e2, e3, e4, 2e1 + e2 and e3 + 2e4.
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Here, the secondary fan strictly refines the Gröbner fan on τ(X∗
A). The latter is the

complete graph K4 with vertices e1, e2, e3 and e4, while the former has the edges
e1, e2 and e3, e4 subdivided by the vertices 2e1 + e2 and e3 + 2e4, respectively.

Example 5.6. We take d = 4, n = 9, and consider the defective configuration

A =




1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 2 0 1 2 0 1 2


 .

The tropical discriminant τ(X∗
A) is a 7-dimensional fan in R9, regarded as a 6-

dimensional polyhedral complex. Combinatorially, it is an immersion of the complete
tripartite hypergraphK3,3,3. The Gröbner fan subdivision has 51 maximal cones and
it strictly refines the secondary fan subdivision which has only 49 cones. Indeed, the
vector w = (0, 1, 0, 0, 1, 0, 0, 1, 0) lies in the relative interior of a maximal cone of the
secondary fan subdivision which breaks into three maximal cones in the Gröbner
fan subdivision. This example was verified by applying the Gfan software presented
in [3] to the equations defining X∗

A. In particular, we found that inw(X
∗
A) is the

codimension two primary ideal generated by the determinant of the 3× 3-matrix


x1 x4 x7
x2 x5 x8
x3 x6 x9




plus the square of the ideal of 2× 2-minors of the 2× 3-matrix
(
x1 x4 x7
x3 x6 x9

)
.

Remark 5.7. A worthwhile next step would be to relate our results to the celebrated
work of Mikhalkin [17] on Gromov-Witten invariants. The point is that the regular
polyhedral subdivision Πw of A is geometrically dual to the tropical hypersurface
defined by the tropical polynomial

⊕n
i=1 wi ⊙ x⊙ai . This tropical hypersurface is

considered to be singular whenever the vector w lies in the tropical discriminant
τ(X∗

A). Thus our object of study in this paper is the space of singular tropical
hypersurfaces. What has been accomplished in Theorem 1.2 is to give a refined
formula for the degree of that space. Our formula is consistent with the lattice
paths count in [17] in the case d = 3, and it would be interesting to explore possible
applications of our combinatorial approach to Gromov-Witten theory. The work of
Gathmann and Markwig [12] offers an algebraic setting for such a study.

6. Cayley configurations and resultant varieties

One of the main applications of A-discriminants is the study of resultants in
elimination theory. The configurations A which arise in elimination theory have a
special combinatorial structure arising from the Cayley trick. See [13, §3.2.D] for a
geometric introduction. Based on the results of the earlier sections, we here study
the combinatorics and geometry of tropical resultants, and we generalize the positive
degree formula for resultants in [21] to resultant varieties of arbitrary codimension.
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Let A1, . . . , Am be finite subsets of Zr. Their Cayley configuration is defined as

(6.1) A = {e1}× A1 ∪ {e2}×A2 ∪ · · · ∪ {em}×Am ⊂ Zm × Zr,

where e1, . . . , em is the standard basis of Zm. To be consistent with our notation
in Sections 1–5, we can regard A as a d × n-matrix with d = m + r and n =
|A1| + |A2| + · · · + |Am|. As in [13, §8.1] and [21], the Cayley configuration A
represents the following system of m Laurent polynomial equations in r unknowns:

(6.2)
∑

u∈A1

x1,uz
u =

∑

u∈A2

x2,uz
u = · · · =

∑

u∈Am

xm,uz
u = 0.

Here z = (z1, . . . , zr) are coordinates on (C∗)r and we use multi-index notation
zu = zu1

1 · · · zur
r . Our earlier examples include the following Cayley configurations:

• In Example 4.8 we have m = 2, r = 2, and the system (6.2) takes the form

x1z
2
1z

53
2 + x2z

3
1z

47
2 + x3z

5
1z

43
2 + x4z

7
1z

41
2 = 0,

x5z
11
1 z

37
2 + x6z

13
1 z

31
2 + x7z

17
1 z

29
2 + x8z

19
1 z

23
2 = 0.

• In Example 5.5 we have m = 2, r = 1, A1 = {0, 1, 2, 3} and A2 = {0, 1}. The

A-discriminant is the Sylvester resultant ∆A = det




x1 x2 x3 x4
x5 x6 0 0
0 x5 x6 0
0 0 x5 x6


.

• In Example 5.6 we have m = 3, r = 1 and A1 = A2 = A3 = {0, 1, 2}, and
the system (6.2) consists of three quadratic equations in one unknown z:

x1 + x2z + x3z
2 = x4 + x5z + x6z

2 = x7 + x8z + x9z
2 = 0.

The solvable systems of this form constitute the codimension two variety X∗
A.

Returning to the general case, we say that the Cayley configuration A is essential
if the Minkowski sum

∑
i∈I Ai has affine dimension at least |I| for every subset

I of {1, . . . ,m} with |I| ≤ r. The resultant variety of the Cayley configuration A
is the Zariski closure in CPn−1 of the set of all points (x1 : x2 : . . . : xn) whose
corresponding system (6.2) has a solution z in (C∗)r. The following result is a
generalization of Proposition 1.7 in [13, §9.1.A] and of Proposition 5.1 in [4].

Proposition 6.1. The resultant variety of any Cayley configuration A contains the
A-discriminant X∗

A. If m ≥ r + 1 and the Cayley configuration A is essential then
the resultant variety and the A-discriminant coincide.

Proof. Consider the hypersurface in (C∗)m×(C∗)r defined by the Laurent polynomial

m∑

i=1

∑

u∈Ai

xi,u · tiz
u = 0.

If (t, z) ∈ (C∗)m+r is a singular point on this hypersurface then z ∈ (C∗)r is a
solution to (6.2). This proves the inclusion. If A is essential then a linear algebra
argument as in [13, §9.1.A] shows that every solution z of (6.2) arises in this way. �
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The hypothesis that A be essential is necessary for the equality of the resultant
variety and the A-discriminant, even when m = r+1, the situation of classical elim-
ination theory. The following simple example gives a hint of the general behavior.

Example 6.2. Let r = 2,m = 3, A1 = A2 = {(0, 0), (1, 0)}, and A3 =
{(0, 0), (1, 0), (0, 1), (1, 1)}. The Cayley matrix A represents a toric 4-fold XA in
CP7. It is not essential since A1 +A2 is one-dimensional. The system (6.2) equals

x1 + x2z1 = x3 + x4z1 = x5 + x6z1 + x7z2 + x8z1z2 = 0.

The resultant variety has codimension one, with equation x1x4 = x2x3, but the
A-discriminant X∗

A has codimension three. In fact, we have X∗
A = XA in this case.

For the rest of this section we consider an essential Cayley configuration as in
(6.1) with m ≥ r+1 blocks and we set c = m−r. We then have the following result.

Lemma 6.3. The resultant variety X∗
A has codimension c.

Proof. Let W denote the incidence variety consisting of all pairs (x, z) in CPn−1 ×
(C∗)r such that (6.2) holds. Let π1 : W → CPn−1 be the projection to the first
factor. By Proposition 6.1, the resultant variety X∗

A coincides with the closure of
π1(W ). Looking at the second projection π2 : W → (C∗)r, which is surjective and
whose fibers are linear spaces of dimension n−1−m, we deduce thatW is irreducible
and has dimension (n− 1−m) + r = n− 1− c. Then, dim(X∗

A) ≤ n− 1− c.
Given a generic choice of coefficients xi for the first r polynomials, it follows from

the hypothesis of essentiality and Bernstein’s Theorem, that the first r equations
in (6.2) have a common solution z ∈ (C∗)r. We can freely choose all but one of
the coefficients of the last c polynomials so that z solves (6.2). This implies that
dim(X∗

A) ≥ n− 1− c, and the lemma follows. �

Corollary 4.5 asserts that there exists a chain σ1, . . . , σn−2m of (0, 1)-vectors rep-
resenting the supports of vectors in the kernel of A such that the rank of the matrix
(At, σ1, . . . , σn−2m) is precisely n− c. We present an explicit way of choosing such a
chain. By performing row operations, we can assume that each set Ai contains the
origin. Set Bi = Ai\{0}. Let bi ∈ Bi for i = 1, . . . , r such that b1, . . . , br are linearly
independent. Such elements exist because the family of supports is essential. Now,
for any other element a in B = (B1∪· · ·∪Br+c)\{b1, . . . , br}, we can find an element
va in ker(A) with support corresponding to the origin in each Ai for i from 1 to r,
union the variables corresponding to b1, . . . , br and a ∈ Bj , plus the origin of Aj

in case j > r. Choose any such a ∈ Br+1 and let σ1 be the support of va; it will
have 2r + 2 non-zero coordinates. Add a new point a′ in B. We can assume that
the support of va + v′a equals the union of their supports. Let σ2 be the associated
support vector. We continue in this manner, adding a new point in B at a time,
and considering a new element in the chain of support vectors, but avoiding to pick
all of B1 ∪ · · · ∪Br+1 and all of each of Br+2, . . . , Br+c. This produces precisely

1+(n1−2+ · · ·+nr+1−2)−1+(nr+2−2)+ · · ·+(nr+c−2) = n−2r−2c = n−2m

vectors σ1, . . . , σn−2m in C(A). It is straightforward to check that the rank of the
submatrix of (At, σ1, . . . , σn−2m) given by the first m and the last n − 2m columns
has maximal rank n − m. Note that this is just a (0, 1) matrix. Adding the last
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r columns of At containing the information about the specific supports A1, . . . , Am

will increase the rank by r, as a consequence of the fact that the family is essential.
Therefore, the rank of the matrix (At, σ1, . . . , σn−2m) is precisely n−m+ r = n− c.

We identify {1, 2, . . . , n} with the disjoint union of the sets A1, A2, . . . , Am. Thus
a generic vector w ∈ Rn assigns a height to each point in any of the Ai, and it
defines a tight coherent mixed subdivision ∆w of the Minkowski sum

∑m
i=1Ai (cf.

[21]). When c = 1, the initial form with respect to w of the mixed resultant is
described in [21, Theorem 2.1] in terms of the sum of volumes of suitable mixed
cells of the tight coherent mixed decomposition (TCMD) induced by w. We next
generalize this result to resultant varieties of arbitrary codimension c. For a classical
study of resultant ideals of dense homogeneous polynomials we refer to [14].

Theorem 6.4. A codimension c monomial prime Pτ = 〈xτ1 , . . . , xτc〉 is a minimal
prime of the monomial ideal inw(X

∗
A) only if τ consists of one point each from c

of the Aj . The multiplicity of Pτ is the total volume of all mixed cells in the tight
coherent mixed subdivision ∆w which use the points of τ in their decomposition.

Proof. The resultant variety X∗
A is irreducible (by Proposition 6.1), and it has

codimension c (by Lemma 6.3). This implies (by [15, Theorem 1]) that every
minimal prime of the initial monomial ideal inw(X

∗
A) has codimension c. Let

Pτ = 〈xτ1 , . . . , xτc〉 be such a minimal prime. After relabeling we may assume
that each xτi in Pτ is a coefficient of one of the last c Laurent polynomials in (6.2).

The proof for the case c = 1 is given in [21, §2], and the proof for c > 1 uses the
same general technique. We write fi for the i-th Laurent polynomial in (6.2), but
with xi replaced by xiǫ

wi . Let K be the algebraic closure of the field of rational
functions over K = C{{ǫ}} in the coefficients of the first r Laurent polynomials
f1, . . . , fr, let x denote the vector all coefficients of the last c Laurent polynomials
fr+1, . . . , fm, and consider the polynomial ring K[x]. Let µ denote the mixed vol-
ume of the Newton polytopes of the polynomials f1, . . . , fr. Then, by Bernstein’s
Theorem, the system f1 = · · · = fr = 0 has µ distinct roots z1(ǫ), . . . , zµ(ǫ) in (K∗)r.

For any j ∈ {1, 2, . . . , µ}, the ideal Ij = 〈fr+1(zi(ǫ)), . . . , fm(zi(ǫ))〉 is generated
by linear forms in K[x]. The intersection of these ideals, I = I1 ∩ I2 ∩ · · · ∩ Iµ,
is an ideal of codimension c and degree µ in K[x]. Geometrically, we obtain I by
embedding the prime ideal of X∗

A into K[x] and then replacing xi by xiǫ
wi . This is

the higher codimension version of the product formula for resultants [21, Eqn. (14)].
The ideal I represents a flat family, and its special fiber I|ǫ=0 at ǫ = 0 coincides

with the special fiber of the image of inw(X
∗
A) in K[x]. In particular, Pτ is an asso-

ciated prime of I|ǫ=0, and it contains one of the ideals Ij|ǫ=0. Since the generators
of Ij are c linear forms in disjoint groups of unknowns xℓ, we see that Pτ contains
one unknown from each group. This proves the first statement in Theorem 6.4.

After relabeling we may assume that xτj is a coefficient of fr+j for j = 1, . . . , c.
Each root zj(ǫ) corresponds to a mixed cell C in the TCMD of the small Minkowski
sum A1 + · · · + Ar defined by the restriction of w. By the genericity of w, the
mixed cell C corresponds to a unique cell C ′ in the TCMD ∆w of the big Minkowski
sum A1 + · · · + Ar + Ar+1 + · · · + Am, and every mixed cell of ∆w arises in this
manner. The reasoning above implies that the mixed cell C ′ uses the points of τ in
its decomposition if and only if Ij|ǫ=0 = Pτ in K[x]. This completes the proof. �
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The first assertion in Theorem 6.4 can also be derived more easily, namely, from
the fact that for any (r + 1)-element subset I of {1, . . . ,m}, the mixed resultant
of the configurations Ai, i ∈ I, vanishes on X∗

A and only contains unknowns xi,a
with i ∈ I. However, for the multiplicity count in the second assertion we need the
“product formula” developed above. Theorem 6.4 has the following corollary.

Corollary 6.5. The degree of the resultant variety X∗
A is the sum of the mixed vol-

umes MV (Ai1 , . . . , Air) as {i1, . . . , ir} runs over all r-element subsets of {1, . . . , n}.

We present two examples to illustrate Theorem 6.4 and Corollary 6.5.

Example 6.6. Let m = 3, r = 1 and A1 = A2 = A3 = {0, 1, 2} as in Example 5.6,
and choose w ∈ R9 which represents the reverse lexicographic term order. Then

inw(X
∗
A) = 〈x3x5x7, x

2
6x

2
7, x3x6x

2
7, x

2
3x

2
7, x3x4x6x7, x

2
3x4x7, x

2
3x

2
4, x2x4x

2
6x7 〉.

This ideal has seven associated primes, of which three are minimal: 〈x3, x6〉,
〈x3, x7〉, and 〈x4, x7〉. They correspond to the three mixed cells (3, 6, {7, 8, 9}),
(3, {4, 5, 6}, 7) and ({1, 2, 3}, 4, 7) of the TCMD ∆w of A1+A2+A3 = {0, 1, . . . , 6}.
Each mixed cell has volume two, which implies that the degree of X∗

A is 2+2+2 = 6.

Example 6.7. Let r = 2 and m = 4 and take the Ai to be the four subtriangles of
the square with vertices (0, 0), (0, 1), (1, 0) and (1, 1). Here (6.2) is a system of four
equations in two unknowns z1 and z2 which can be written in matrix form as

(6.3)




x1 x2 x3 0
x4 x5 0 x6
x7 0 x8 x9
0 x10 x11 x12


 ·




1
z1
z2
z1z2


 =




0
0
0
0


 .

The resultant variety X∗
A ⊂ CP11 has codimension 2 and degree 12 =

(4
2

)
· 2. This

is the sum over the mixed areas of the
(
4
2

)
pairs of triangles. The mixed area is 2

for each such pair. Using computer algebra, we find that the prime ideal of the
resultant variety X∗

A is generated by the 4 × 4 determinant in (6.3) together with
ten additional polynomials of degree six in the xi. Theorem 6.4 gives a combinatorial
recipe for constructing all the initial monomial ideals of this prime ideal.

We conclude with a brief discussion of the tropical resultant τ(X∗
A). The results in

Section 5 characterize this polyhedral fan in terms of regular subdivisions of A, and
we will now rephrase this characterization in terms of coherent mixed subdivisions
of (A1, . . . , Am). Theorem 5.1 in [21] implies that every regular subdivision Πw of A
corresponds uniquely to a coherent mixed subdivision (CMD), which we denote by
∆w. Note that Πw is a polyhedral cell complex of dimension r +m − 1 while ∆w

has only dimension r, and Πw is a triangulation if and only if ∆w is a TCMD.
Every cell F of a CMD ∆w decomposes uniquely as a Minkowski sum F =

F1 + · · ·+Fm, where Fi ⊂ Ai for all i. We write F for the corresponding cell of ∆w.
We say that the cell F is fully mixed if each Fi has affine dimension at least one.

Proposition 6.8. The tropical resultant τ(X∗
A) equals the set

(6.4)
{
w ∈ Rn : ∆w has a maximal cell F which is fully mixed

}
.
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Proof. This can be derived from Lemma 5.1 as follows. If Fi does not have affine
dimension at least one, then Fi consists of a single point in Ai. That point is a co-
loop in F . The extended cell F

∗
contains no other points of A which arise from Ai.

Hence Fi remains a co-loop in F
∗
, meaning that Fi represents a strong co-loop of

F . All co-loops of a full-dimensional subconfiguration of A arise in this way. This
holds because every such subconfiguration is a Cayley configuration as well. �

Specializing to the classical case c = 1, when X∗
A is the hypersurface defined by

the mixed resultant, we can now recover the combinatorial results in [21, §5] from
the more general results in Section 5 above. Specifically, the characterization of
R-equivalence for TCMDs of (A1, . . . , Am) given in [21, Theorem 5.2] follows from
our characterization of ∆-equivalence of regular triangulations of A in Theorem 1.3.

The positive formula for the extreme monomials of the sparse resultant given in
[21, Theorem 2.1] can now be recovered as a special case of Theorem 1.2. Thus, one
way to look at Sections 1–5 in the present paper is that these extend all the work
in [21] from essential Cayley configurations with m = r + 1 to arbitrary essential
configurations A. A perspective on how this relates to the results in [13] is given by
the points (a),(b),(c),(d) found at the end of the introduction in [21, p. 208-209].
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