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Abstract

Biofilms constitutes one of the main problems for food industry and public 
health due to the survival and the ability of pathogenic microorganisms to form 
these communities on different surfaces and culture composition. Shigatoxigenic 
(STEC) and Enteropathogenic (EPEC) Escherichia coli are some of the 
microorganisms that could form biofilms and cause serious diseases in humans. 
The aim of this study was to determine the capability to form biofilms of native 
STEC and atypical EPEC (aEPEC) strains on polystyrene and stainless steel and 
to evaluate the effects produced by different stress conditions. The expression 
of the fimbria curli was also studied. All strains were strong biofilm formers at 
37°C on polystyrene, except STEC O145:NM and aEPEC O130:H11 which were 
moderated biofilm formers. No one strain formed biofilm at heat stress (54°C) 
or refrigeration (5°C) temperatures. Stainless steel surface reduced significantly 
the capability to form biofilms regardless the culture composition. Most of the 
STEC and aEPEC strains were curli-negative at 37°C while they showed curli-
positive phenotypes at 20°C. Both curli expression and biofilm formation were 
significantly influenced by temperature and incubation time. STEC and aEPEC 
strains demonstrated to be able to form biofilm and produce fimbria curli under 
different conditions of medium and temperature, which is important due the risk 
of survival and transmission of these pathogens from reservoirs and food to 
humans.
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Abbreviations 
A/E: Adherence and Effacement; aEPEC: Atypical 
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SBF: Strong-Biofilm-Forming; SF: Physiological Solution; STEC: 
Shigatoxigenic E. coli; WBF: Weak-Biofilm-Forming

Introduction
Biofilms are complex communities of microorganisms that grow 

embedded in an extracellular matrix, adhered to biotic or abiotic 
surfaces. These microorganisms have an altered phenotype compared 
to their planktonic counterparts respect to the rate of growth and 
gene transcription. Biofilms could be composed of a single or several 
different microbial species [1]. Biofilms constitutes one of the main 
problems for industry and public health due to the survival and the 
ability of pathogenic microorganisms to form these communities on 
different surfaces, utensils and equipment in contact with food or 
on medical devices such as catheters and prostheses, among others. 
In the food industry, biofilms could be formed on surfaces such as 
plastic, glass, wood, stainless steel and on food [2]. Insufficient or 
inadequate disinfection of surfaces or utensils causes an increase in 
product contamination and the development of food poisoning [3].

Shigatoxigenic (STEC) and Enteropathogenic (EPEC) Escherichia 
coli are some of the microorganisms that could form biofilms. STEC 
is an emerging pathogen related to public health that causes serious 
diseases in humans such as Hemorrhagic Colitis (CH) and Hemolytic 
Uremic Syndrome (HUS) by the production of Shiga toxins and other 
virulence factors. Cattle are the main reservoir, being able to transmit 
STEC to the human through cattle derived foods and direct contact 
with the animals or their environment [4-6]. EPEC strains do not 
produce Shiga toxins but just like STEC, produce histopathological 
lesions of “adherence and effacement” (A/E) in the intestinal tract 
cells. It is transmitted via the fecal-oral route through contaminated 
hands, water and food. Children with diarrhea and asymptomatic 
children or adult carriers as well as chicken and derived food have 
been documented as EPEC reservoir [7,8].

STEC and EPEC harbor virulence and adherence factors that 
allow adhesion and colonization to both living and inert surfaces and 
favor the biofilm formation, such as, the IrgA homolog adherence-
conferring protein (iha) [9], the enterohemorrhagic E. coli factor of 
adherence (efa1) [10], the type 1 fimbria (fim) [11] and the long polar 
fimbria (lpf) [12]. They also can harbor several proteins belonging 
to the Autotransporter (AT) protein family such as, Antigen 43 
(agn43), the Calcium-binding antigen 43 homolog (cah) [13,14] 
and the Enterohemorrhagic E. coli (EHEC) autotransporter (ehaA) 
[15], which favor the agglomeration and cell-to-cell interactions. 
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The extracellular matrix in E. coli biofilms is formed by curli as the 
main component and cellulose [16]. Curli expression is regulated 
by different genes that code for protein subunits, such as its 
transcriptional regulator (csgD) and the indirect regulator of this 
operon (crl) [17]. Crl was proposed as a thermal sensor, which protein 
is more stable at low temperatures; therefore, it is considered that the 
maximum expression of curli occurs at less than 30°C, although it 
can be variable depending on the isolation, its pathogenicity and the 
working conditions [18].

Biofilms have been studied for decades using several in vitro 
models in an effort to understand the mechanisms of bacteria to 
survive and persist in the environment or into a host. Such studies 
reported the capability of the microorganisms to form biofilms 
is influenced by many factors, such as culture medium (nutrient 
composition, temperature, pH), hydrodynamics (continuous flow 
vs. batch system), substratum (roughness, chemistry), incubation 
times, among others [19-21]. The results obtained will depend on the 
combination of these factors, even using the same microorganism. 
For example, different abilities to form biofilms have been observed 
in STEC isolates from different origins according to the composition 
of the culture medium and the incubation times [22,23]. The effects 
of temperature, oxidative and nitrosative stress, pH, salt content and 
water activity (aw) have been the most studied factors that affect the 
survival and growth of STEC [24-28]. Previous studies with STEC 
strains isolated from cattle and food were carried out using different 
organic and inorganic acids, fruit and alcohol juices, and at extreme 
temperatures (acidic, alcoholic and thermal stress) to observe the 
viability of this bacterium against different stress conditions. The 
results showed that STEC no-O157 serotypes were more resistant 
to high temperatures (54°C) than O157:H7, which is the serotype 
routinely used to standardize the thermal inactivation protocols of 
these pathogens [29]. In addition, no-O157 serotypes had a better 
behavior to acidic pH than O157:H7 being able to survive at least 8 h 
at pH=2.5; suggesting the great resistance that they would have during 
the digestion process in the host and their potential to cause disease. 
In addition, the ability of these bacteria to neutralize the surrounding 
acidic environment has been proven, which would contribute to 
greater host survival [26].

In EPEC strains, biofilm formation studies were performed using 
different methodologies, demonstrating the ability of these bacteria 
to adhere to cell lines with different patterns and to form biofilm on 
surfaces such as polystyrene and glass [30]. The role of the expression 
of the BFP and EspA in the biofilm formation on polystyrene under 
static and continuous flow conditions has been determined in typical 
EPEC strains, although the quorum sensing mechanism was also 
necessary to form biofilm [31]. However, little is known about the 
influence of different stress situations or changes in temperature or 
pH on the biofilm formation of this E. coli pathotype, particularly in 
atypical strains. 

The aim of this study was to determine the capability to form 
biofilms of native STEC and atypical EPEC strains on polystyrene 
and stainless steel and to evaluate the effects produced by different 
stress conditions. In addition, the expression of the fimbria curli was 
studied.

Materials and Methods
Bacterial Strains

A total of fifteen STEC and atypical EPEC strains (aEPEC) 
isolated from different sources were randomly selected from a 
collection of different E. coli pathotypes belonging of the Laboratorio 
de Inmunoquímica y Biotecnología (UNCPBA, Tandil, Buenos Aires, 
Argentina); the reference STEC strain O157:H7 EDL933 was also 
included. All the strains were previously serotyped and characterized 
in their classic virulence factors -stx1, stx2, eae, ehxA- [4,5,8,32,33], 
in other putative virulence genes present in the megaplasmid -katP, 
espP, subA, stcE- and in several adhesins and fimbriae involved in 
colonization and biofilm formation -efa1, iha, fimCD, ehaA, agn43, 
agn43EDL933, csgA, crl- [34,35]. Strains were grouped according 
the pathotype and the presence/absence of eae: STEC (eae positive/
negative) and aEPEC (Table 1).

Biofilm Formation Assays
The detection and quantification of biofilms were performed in 

96-well polystyrene microtiter plates and stainless steel coupons under 
previously described laboratory conditions [23], with modifications. 
Briefly, the experiments were performed in two sections, according 
to different stress conditions and surfaces. In section 1 (polystyrene 
surface), biofilm formation assay was performed under different 
temperatures of incubation: standard (37°C), heat stress (54°C) and 
refrigeration temperature (5°C) and different culture conditions: 
standard, acidic or alcoholic at 37°C. Acidic and alcoholic conditions 
were achieved adding acetic acid (0,05 M, pH=5,5) or ethyl alcohol 
(6%) to Luria Bertani (LB) medium (with and without glucose 0,5%) 
respectively. In section 2 (stainless steel surface), biofilm formation 
was performed under different culture conditions: standard, acidic 
and alcoholic as described above. In this section, 24-well polystyrene 
plates were used as support for stainless steel coupons (1x1cm, 
finishing number 304#4) which were previously cleaned and sterilized 
according to Joseph, et al. [36].

In each section, the surfaces were washed, fixed and stained with 
crystal violet (0.1%) according to the protocol described previously 
[23]. The dye adhered to the biofilms was eluted with 200 µl of ethylic 
alcohol 96% and the OD570 was read in a Labsystem Multiscan EX 
microplates reader (I.C.T, S.L. Instrumentación Científica Técnica, 
S.L.). In section 2, only the stainless steel coupons were staining to 
obtain the OD corresponding to the biofilm on this surface.

Three consecutive wells were used for each strain. The OD of 
each well was averaged and corrected by a cut-off OD (average OD of 
three wells with sterile medium and 3 times its standard deviation). 
According to the corrected OD, the strains were classified into four 
categories: Non-Biofilm-Forming (NBF), Weak-Forming (WBF), 
Moderate-Forming (MBF) and Strong Biofilm-Forming (SBF) [37]. 
Three independent experiments were made and data obtained were 
statistically analyzed by ANOVA InfoStat 2015E (National University 
of Cordoba, Argentina).

Curli Expression Assays
The curli phenotype of STEC and aEPEC strains was studied by 

the Congo red assay at optimum growth temperature (37°C) and at 
room temperature (≈20°C) and then, the biofilm formation from 
colonies incubated at both temperatures was evaluated. Briefly, one 
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aliquot of each strain stored at -70°C was reactivated in 500µL of LB 
for 2 h, at 37°C with moderate agitation. Then, they were seeded in 
Congo Red Agar plates (CRA) and incubated for 24 h at 37°C, after 
that they were incubated an additional 24 h at room temperature 
(≈20°C). The phenotypes expressed at each temperature were observed 
and colonies were classified as rdar (“red, dry and rough”; curli and 
cellulose production), sar (“red and smooth”; only curli production) 
or saw (“white and smooth”; not curli or cellulose production). 

One individual colony from CRA incubated at 37°C and then at 
20°C was taken for each strain. Colonies were separately homogenized 
in 1 ml of physiological solution (SF). From that homogenate, 50µl 
was seeded in 24-well polystyrene plates (three consecutive wells were 
used for each strain and six wells for culture medium controls). The 
plates were incubated at 37°C and 20°C statically for 48 h following the 
same protocol used above. Biofilm formation was estimated by the 
violet crystal technique as previously described and the OD obtained 
was related to the curli expression phenotypes.

Results and Discussion
Biofilm Formation

The biofilm formation for STEC and aEPEC strains was variable 
according the culture conditions on polystyrene. Indeed, under 
different temperatures of incubation all strains were SBF at 37°C, 
except STEC O145:NM and aEPEC O130:H11 that resulted MBF. 
No one strain formed biofilm at thermal stress (54°C) or refrigeration 
(5°C) temperatures (Figure 1). When the average of biofilm formation 
was compared by E. coli group (eae-positive STEC, eae-negative 
STEC, and aEPEC strains), it was found that eae-negative STEC were 
SBF at 37°C than aEPEC and eae-positive STEC strains (Figure 1).

Under different culture conditions -standard, acidic or alcoholic- 
all strains were MBF or SBF; aEPEC group resulted more biofilm-
forming than the STEC groups in all conditions (Table 2, Figure 2). 

In the standard condition the strongest biofilm formers were the 
strains belonging to the serotypes O40:H10, O91:H21 and O157:H7 
from aEPEC, eae-negative STEC and eae-positive STEC, respectively. 
Under acidic conditions, the aEPEC serotypes O108:H9, O19:H11 
and O40:NM were SBF; while O157:H7 and O113:H21 were the 
best biofilm formers from the eae-positive and eae-negative STEC, 
respectively. Under alcoholic conditions, the aEPEC strains O108:H9 
and O19:H11, eae-negative STEC O130:H11 and eae-positive STEC 

E. coli group Serotype Virulence profiles

eae-positive STEC

O103:H2 vt1, vt2, ehxA, eae, espP, subA, efa1, fimCD, ehaA, agn4, csgA, crl

O111:NM vt2, ehxA, eae, katP, espP, efa1, iha, fimCD, ehaA, agn43EDL933, agn43, csgA, crl

O145:NM vt2, ehxA, eae, katP, espP, efa1, iha, fimCD, ehaA, agn43EDL933, agn43, csgA, crl

O26:H11 vt1, vt2, ehxA, eae, katP, espP, efa1, iha, fimCD, ehaA, agn43EDL933, agn43, csgA, crl

O157:H7 vt2, ehxA, eae, katP, espP, stcE, efa1, iha, fimCD, ehaA, agn43EDL933, agn43, csgA, crl

eae-negative STEC

O91:H21 vt2, ehxA, saa, espP, iha, fimCD, ehaA, agn43, csgA, crl

O113:H21 vt2, ehxA, saa, espP, subA, iha, fimCD, ehaA, agn43, csgA, crl

O130:H11 vt1, vt2, ehxA, saa, espP, subA, iha, fimCD, ehaA, agn43, csgA, crl

O178:H19 vt1, vt2, ehxA, saa, espP, subA, iha, fimCD, ehaA, agn43, csgA, crl

O8:H19 vt2, ehxA, espP, iha, fimCD, ehaA, agn43, csgA, crl

aEPEC

O19:H11 eae, fimCD, agn43, csgA, crl

O130:H11 eae, fimCD, agn43, csgA, crl

O40:NM eae, fimCD, agn43, csgA, crl

O40:H10 eae, fimCD, agn43, csgA, crl

O108:H9 eae, fimCD, csgA, crl

EDL933† O157:H7 vt1, vt2, ehxA, eae, katP, espP, stcE, efa1, iha, fimCD, ehaA, agn43EDL933, agn43, csgA, crl

Table 1: STEC and aEPEC serotypes used in this study.

†Reference STEC strain O157:H7 EDL933 was incorporated to the eae-positive STEC group in order to a better analysis of the results.

Figure 1: Comparison of the biofilm formation under different temperatures 
of grows.

Figure 2: Comparison of biofilm formation between groups of E. coli strains 
under different culture medium on polyestyrene. 



J Bacteriol Mycol 7(7): id1151 (2020)  - Page - 04

Cáceres ME Austin Publishing Group

Submit your Manuscript | www.austinpublishinggroup.com

O157:H7 were SBF.

The biofilm formation on stainless steel was significantly lower 
than that obtained on polystyrene (p<0.0001). The highest OD values 
were observed in aEPEC strains which ranged from 0,4 to 0,6 in 
standard culture conditions (Table 2). The 81% of the strains were 
considered WBF under standard culture and the rest were NBF (19%). 
Under acidic and alcoholic conditions, the strains decreased their 
biofilm formation (WBF in a 56 and 50%, respectively) and increased 
the percentage of NBF (44 and 50%, respectively). The aEPEC group 
formed more biofilm under standard culture medium, while eae-
negative STEC were better in acidic and alcoholic mediums. The eae-
positive STEC group were the lowest biofilm former in all condition 
studied (Figure 3).

Curli Expression
In this assay, data showed that temperature significantly 

influenced both biofilm formation and curli expression (Table 3). The 
biofilm formation was greater at 37°C than at 20°C (p=0.001) and both 
eae-negative STEC and aEPEC strains were better biofilm-forming 
than eae-positive STEC at both temperatures (p=0.003) (Figure 
4). The curli phenotype was affected by temperature inversely to 
biofilm formation, so more positive curli colonies (“sar” and “rdar”) 
were observed at 20°C than at 37°C (p=0.0007). A direct association 
between the curli phenotype and the biofilm-forming capacity could 
not be established (p=0.059).

The ability of bacteria to produce biofilms depends on many 
factors inherent to the microorganism, the environment and the 
surface where it can adhere. The studies of biofilm by STEC and EPEC 
have been based especially on the risk that these bacteria represent for 

E. coli Group Serotype
Polystyrene* Stainless Steel⁑

Standard Acidic Alcoholic Standard Acidic Alcoholic

eae-positive STEC

O157:H7 1,590 1,083 1,157 0 0 0

O26:H11 1,567 0,425 0,645 0,0632 0 0

O103:H2 0,986 1,021 1,054 0 0 0

O111:NM 0,662 0,779 0,731 0,1257 0 0

O145:NM 0,387 0,395 0,989 0,1527 0,1606 0,0153

EDL933 1,175 0,896 0,874 0,0158 0 0

eae-negative STEC

O91:H21 2,053 1,227 1,357 0 0,0511 0,1609

O113:H21 1,905 1,220 0,853 0,0898 0,1130 0,2890

O130:H11 1,889 0,988 1,425 0,0920 0,1146 0,2549

O178:H19 1,221 1,273 0,898 0,2102 0,1287 0,2426

O8:H19 1,347 1,004 0,656 0,3170 0,1433 0,2848

aEPEC

O40:H10 2,425 1,101 0,789 0,4529 0 0

O19:H11 2,399 1,853 2,101 0,6016 0,3563 0,0930

O108:H9 2,336 2,479 2,744 0,1000 0,1129 0

O40:NM 2,008 1,195 1,077 0,5673 0 0,0700

O130:H11 0,789 0,611 0,702 0,0964 0,0531 0

Table 2: The estimated biofilm formation (OD570) under different culture conditions according to the surfaces used.

References:
*Strains were considered as biofilm formers when their OD was greater than the established cut-off OD (ODc=0,192) on polystyrene. Strains whose values were 
included to 2ODc (0,385) were considered WBF; values between 2ODc and 4ODc (0,770) were considered MBF, and more than 4ODc were classified as SBF. 
⁑Strains were biofilm former when their OD were greater than ODc=0,541 on stainless steel. Strains whose values were included to 2ODc (1,082) were considered 
WBF. No one strain could be classified as MBF or SBF since no value was greater than 2ODc on this surface.

Figure 3: Biofilm formation under different culture conditions on stainless 
steel surface. It is notably that the OD’s average obtained were never greater 
than 0.50 in the three groups.

Figure 4: Differences in the biofilm formation between E. coli groups 
according with the temperature of incubation.
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public health worldwide. Most STEC biofilm studies have focused on 
serotype O157:H7 [38-42] and few reports have been published on 
STEC no-O157 or EPEC [30,43,44]. In these studies, variables such 
as the culture medium, different surfaces, the expression of several 
adherence factors such as curli and cellulose, have been studied to 
find out how these pathogens form biofilm.

This study was aimed to investigate the ability to form biofilms of 
a set of native STEC and aEPEC strains under different conditions of 
culture media, surfaces and temperatures in order to know whether 
these conditions affect their biofilm formation. The temperature was 
the variable that more affected the biofilm formation, since at extreme 
temperatures (heat and cold) the strains did not form biofilms. 
Previous studies have evaluated the biofilm formation at refrigeration 
temperature (4 and 15°C) but they used longer incubation times (up 
to 16 days) finding a greater biofilm formation at 15°C more than at 
4°C, regardless of the surface and substrate [20,42]. Other authors 
have used temperatures that favored the production of fimbria curli 
and cellulose, and greater adhesion and biofilm formation were 
obtained at 28°C, 30°C or 37°C on semi-solid and solid surfaces such 
us, stainless steel, teflon and glass [41, 44]. In agreement with our 
results, these findings suggest that temperature have a great influence 
on the ability to form biofilms, since STEC and aEPEC strains 
were favored by temperatures near those found in their natural 
environment (animal host or human) and not by temperatures that 
would constitute a stress condition.

Another variable that can influence the development of biofilms 
is the culture medium. Several studies evaluated STEC biofilms in 
mediums with different nutrient availability, from minimal medium 
to food products fluids such as milk, minced meat, meat juice etc., and 
demonstrated that there was a greater biofilm formation in nutrient 
medium than in minimal or diluted medium [38,42]. Other studies 

have evaluated the bacteriostatic effects of organic acid solutions 
on pathogenic strains such as Escherichia coli and Salmonella spp. 
on cattle carcasses surfaces, and they have found that lactic acid 
was more effective than acetic acid [45,46]. The ability to survive 
in solutions with low concentrations of acid and alcohol allows the 
biofilm development on surfaces commonly used in industry and 
the domestic environment, constituting a risk to underestimate the 
presence of STEC or aEPEC in foods. Biofilm studies in EPEC strains 
are limited to use minimal medium such as DMEM or nutritive such 
as LB, since the study of biofilms in this pathotype, especially atypical 
EPEC, is quite recent [30,31,47-49]. 

In this study, STEC and aEPEC strains were subjected to different 
medium with pH and chemical composition (low pH, presence 
of acetic acid and alcohol). No significant differences were found 
in biofilm formation under standard culture medium condition 
and its acid and alcoholic variants, although STEC has been able 
to grow and survive for more than 24 h at the same acetic acid and 
ethyl alcohol concentrations [27]. The behavior of the strains was 
very variable within each E. coli group. It was observed that certain 
serotypes such as O108:H9 (aEPEC), O91:H21 and O157:H7 (eae-
negative and eae-positive STEC, respectively) were the best biofilm 
formers on polystyrene surface. This is in agreement with results 
obtained by Wang, et al. [50], who showed that eae-negative O113 
and O91 serogroups exhibited a greatest potential to form biofilms 
and by Molina, et al [27] who found that STEC O91:H21 was the most 
resistant serotype against acidity conditions. STEC O145:NM formed 
more biofilm under standard, acidic and alcoholic conditions on 
stainless steel than the other strains. Among the eae-negative STEC, 
O8:H19 was the serotype that formed the greater biofilm in the three 
conditions studied on stainless steel, however this serotype was one 
of the lowest biofilm-forming on polystyrene. STEC O157:H7 is the 
most frequently serotype used as a reference for the development of 

E. Coli group Serotype

Incubation temperatures

37°C ≈20°C

Curli expression Biofilm formation Classification Curli expression Biofilm formation Classification

eae-positive STEC

O103:H2 saw-sar 0,610 MBF sar 0,267 WBF

O111:NM saw 0,171 WBF saw 0,050 WBF

O145:NM saw 0,331 WBF saw 0,038 WBF

O26:H11 saw-sar 0,480 MBF sar 0,085 WBF

O157:H7 saw 0,150 WBF saw 0,046 WBF

EDL933 saw 0,288 WBF sar 0,062 WBF

eae-negative  STEC

O91:H21 saw 0,663 MBF sar 0,446 MBF

O113:H21 saw 0,631 MBF sar 0,419 MBF

O130:H11 saw 0,562 MBF saw 0,263 WBF

O178:H19 saw 0,609 MBF sar 0,479 MBF

O8:H19 saw 0,676 SBF sar 0,400 MBF

aEPEC

O19:H11 saw 0,415 MBF sar 0,508 MBF

O130:H11 saw-sar 0,779 SBF sar 0,128 WBF

O40:NM saw-sar 0,677 SBF sar 0,461 MBF

O40:H10 sar 0,387 MBF sar 0,395 MBF

O108:H9 saw-sar 0,564 MBF rdar 0,198 WBF

Table 3: The estimated biofilm formation (OD570) and fimbria curli expression under different temperatures of incubation.
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control and thermal inactivation protocols of STEC in food [51,52]. 
In this study, this serotype showed a differently behavior according 
to its origin: the bovine strain was more biofilm former than the 
reference strain EDL933 O157:H7 isolated from human. 

During the adhesion to the surface and maturation of the 
biofilm, the fimbria curli plays an important role in favoring cell 
aggregation and interaction with cellulose to create hydrophobic 
networks in the extracellular matrix [53]. Curli has been studied 
in the biofilm formation of E. coli, especially in STEC O157:H7, on 
surfaces commonly used in the food industry such as stainless steel, 
polystyrene, glass and rubber [54], finding that the production of 
this fimbria is more favored by temperatures below 30°C, varying not 
only according to the serotype, but within the same serotype [39,55]. 
Curli expression and biofilm formation at different temperatures 
from colonies incubated in CRA at 37°C and 20°C were compared. 
The results showed that most STEC and aEPEC strains were curli-
negative at 37°C, but 12 of 16 strains (mostly eae-STEC and aEPEC) 
were moderate or strong biofilm. However, at 20°C, most of the strains 
were curli-positive (“sar” or “rdar”) but they were weak biofilm-
forming. These results differ with those found by other authors where 
a relationship between curli expression and biofilm formation could 
be established [41,56,57]. However, other authors did not find a 
clear association between curli production and an increased biofilm 
formation [22,47]. In agreement with others studies, we suggest that 
curli could need more time of incubation to play an important role 
in the adhesion and maturation of biofilm under certain laboratory 
conditions [58]. The production of curli, cellulose, or both, may 
not be an indispensable factor to form biofilm, however they were 
suggested as important contributing factors [39,59]. 

Conclusion
Native STEC and aEPEC strains demonstrated to be able to 

form biofilm and produce fimbria curli under different conditions of 
culture medium and temperature. This is important because of the 
risk of transmission and survival of these pathogens from reservoirs 
and food to humans. The recreation of food industry environment 
into the laboratory result a useful tool to understand the behavior 
of these foodborne pathogens and to find new strategies for their 
prevention and control.
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