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Fluctuation-induced forces between rings threaded around a polymer chain under tension
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We characterize the fluctuation properties of a polymer chain under external tension and the fluctuation-
induced forces between two ring molecules threaded around the chain. The problem is relevant in the context
of fluctuation-induced forces in soft-matter systems, features of liquid interfaces, and to describe the properties
of polyrotaxanes and slide-ring materials. We perform molecular-dynamics simulations of the Kremer-Grest
bead-spring model for the polymer and a simple ring-molecule model in the canonical ensemble. We study
transverse fluctuations of the stretched chain as a function of chain stretching and in the presence of ring-shaped
threaded molecules. The fluctuation spectra of the chains are analyzed in equilibrium at constant temperature,
and the differences in the presence of two-ring molecules are compared. For the rings located at fixed distances,
we find an attractive fluctuation-induced force between the rings, proportional to the temperature and decaying
with the ring distance. We characterize this force as a function of ring distance, chain stretching, and ring radius,
and we measure the differences between the free chain spectrum and the fluctuations of the chain constrained
by the rings. We also compare the dependence and range of the force found in the simulations with theoretical
models coming from different fields.
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I. INTRODUCTION

Fluctuation-induced forces have attracted an enormous
amount of attention beginning with the renowned Casimir
effect, which was discovered in the context of quantum elec-
trodynamics [1]. However, the key elements for the existence
of fluctuation-induced forces are present in a broad range of
systems. Those elements are a fluctuating medium and an
external object, whose presence inhibits or hinders the natural
fluctuations of the medium [2]. The first realm of study of
fluctuation-induced forces was given by quantum fluctuations
of the electromagnetic field with restrictions imposed by
perfect parallel conducting plates, as in the seminal work by
Casimir [1,3]. However, forces arising from thermal fluctua-
tions of the electromagnetic field have also been predicted and
measured experimentally [4]. A variety of physical systems
were found to present effective forces of the same origin
due to thermal fluctuations of material fields and molecules.
For example, colloids located at liquid-liquid interfaces act
as physical restrictions of interface fluctuations. Fisher and de
Gennes noted that these interactions should appear in a film of a
binary liquid mixture close to a wall at the critical point, where
the correlation of concentration fluctuations diverges [2,5]. The
objects restricting fluctuations are in this case the interface
with the wall and the gas-liquid film interface, which are
affected by an attractive fluctuation-induced force. This force,
known as the critical Casimir effect, was measured recently
using colloids and total reflection microscopy [6,7]. Beyond
being a fascinating physical effect [8], the fluctuation-induced
forces became relevant in practice due to the miniaturization
and manipulation of matter at the nanoscale. This ranges

*pastor@cnea.gov.ar

from the development of micro- and nanoelectromechanical
systems (MEMS) [3] and the behavior of colloids or proteins
in interfaces and membranes [2,9–12]. The range of the
force is related to the characteristic length of correlation
of fluctuations, which becomes comparable with mesoscopic
distances between colloids, molecules, or aggregates in many
systems. Fluctuation-induced forces have been studied in
superfluid films [13,14], liquid crystals, inclusions or proteins
in membranes [11,15,16], and colloids confined in liquid
interfaces [2,9,10,17,18]. More recently, Casimir-like forces
were studied in out-of equilibrium diffusive systems [19] and
active matter [20,21].

Within the context of soft matter, we study the fluctuation-
induced forces between ring molecules threaded around a
polymer chain under tension at thermal equilibrium. The
system is interesting from a basic point of view, but it can
also be synthesized in the form of supramolecular aggregates,
the so-called polyrotaxanes. A polyrotaxane is formed by
a varying number of ring molecules, usually cyclodextrin,
threaded in a backbone linear polymer chain [22]. The end
groups of the polymer are big enough such that the rings
cannot get out of the chain, or they are called pseudo-rotaxanes,
when the bulkier end beads are not present [22,23]. Novel
materials called topological gels have been produced with
melts of polyrotaxanes by cross-linking two α-cyclodextrin
molecules belonging to different rotaxanes [24]. These eight-
shaped links are then movable through the backbone of
the polymers, unlike the chemical gels, which have fixed
cross-links. Topological gels refer usually to polymer melts in a
solvent, but polyrotaxane aggregates with movable cross-links
can also be produced with a dry polymeric matrix, thus they
are called slide-ring materials [24–26].

In this work, we study the properties of a fluctuating chain
under tension with and without threaded rings fixed at given
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FIG. 1. Snapshot of the system close to the rings, as given by the
simulations. The rings are fixed at a distance d . The polymer chain
fluctuates at thermal equilibrium in the canonical ensemble. A typical
chain has N = 1024 beads, and the chain ends are connected through
periodic boundary conditions. The links show bond connections for
rings and chain given by the FENE model (see Sec. II).

positions, which act as physical constraints of the fluctuation
of the chains. The physical system we deal with is shown in
Fig. 1, with a typical configuration of the chain-ring system.
For the polymer chain without rings, we find a transversal
fluctuation spectrum compatible with ∼1/q2 dependence at
high stretchings, and a deviation from it at shorter chain
stretchings. We show how this spectrum is modified by the
presence of two rings fixed in space, and the appearance of
an attractive fluctuation-induced force between the rings. The
details of the model and simulation techniques are explained
in Sec. II, and we present the results for the fluctuation
properties of the chain as a function of chain extensions
and temperatures in Sec. III A. We devote Sec. III B to a
characterization of the fluctuation-induced forces between the
rings as a function of chain extension and temperature. We also
compare the dependence of the force with the rings’ distance to
models of different fields, such as classical electromagnetism
and liquid-liquid interfaces. In Sec. IV, we provide a final
discussion and conclusions.

II. MODEL AND SIMULATION TECHNIQUES

We use the widely known and studied Kremer-Grest
model [27,28] for the polymer chain under tension. The
interaction between neighboring beads along the polymer
chain is modeled by a finitely extensible nonlinear elastic
(FENE) potential:

UFENE =
{

− 1
2kR2

0 ln
[
1 − ( rij

R0

)2]
for rij � R0,

∞ for rij > R0,
(1)

where the maximum allowed bond length is R0 = 1.5σ , the
spring constant is k = 30ε/σ 2, and rij = |ri − rj | denotes the
distance between neighboring monomers. Excluded volume
interactions at short distances and van der Waals attractions
between beads are described by a truncated and shifted
Lennard-Jones (LJ) potential:

U (r) = ULJ(r) − ULJ(rc), (2)

with

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
, (3)

where the LJ parameters ε and σ define the units of energy
and length, respectively. Temperature is given in units of
ε/kB , with kB being the Boltzmann constant. ULJ(rc) is the
LJ potential evaluated at the cutoff radius. We used standard
values for the LJ parameters and mass: σ = 1, ε = 1, and
m = 1. The interaction cutoff is located at the minimum of

the LJ potential, rc = 2
1
6 σ , which gives effectively a fully

repulsive potential and is typical of good solvent conditions
when studying polymer melts [29,30]. This model has been
applied to a variety of thermodynamic conditions, chain
lengths, and physical regimes, such as glasses, melts, dilute
solutions, etc. [31–33]. It has also been used for the study
of single polymer chains under tension, in a similar physical
situation to that studied here, with a focus on dynamical and
relaxation properties [34]. The polymer chain was maintained
under tension by connecting beads 1 and N through a
FENE potential. Periodic boundary conditions were applied by
computing the force on each of these beads with the periodic
image of the other one. In this way, the length of the chain is
set with the box dimension Lx in the x̂ direction. In addition,
the center of mass of the chain was kept fixed at the center of
the MD box.

The ring molecules were generated at fixed positions within
the boundaries of the simulation box, and the positions of their
beads were not allowed to evolve in time. They were modeled
by groups of 11 beads, arranged in two parallel circles. This
number was chosen because we found it to be the minimal
number of beads at which the rings did not unthread from
the chain for different chain stretchings and temperatures. We
chose the beads of the rings to be the same size as the beads
of the chain for simplicity. We do not attempt to develop a
detailed model of an annular molecule. The ring molecules
are meant to provide a consistent physical constraint for the
transverse fluctuations of the polymer chain. Beads in the rings
are connected by springs (see Fig. 1) with the same FENE
interactions that we used for the connectivity of the chains.
In the model of the ring molecules, it was necessary to use
two interlocked groups of beads, because setting only one is
prone to unthreading from the chain at high stretchings or
temperatures (see Fig. 1). The excluded volume of beads was
also described by a LJ potential, also with a cutoff of rc =
2

1
6 σ , which keeps only the repulsive part of the LJ potential.

The interaction of the rings with the chain is therefore purely
repulsive, as is the interaction among beads of the rings. This
rules out any direct attractive interaction between rings, which
is important to isolate the effective interaction arising from the
Casimir-like forces.

We used a Langevin thermostat to study the system at
constant temperature. Dissipative and stochastic forces are
added to the conservative forces that are already present in
the standard molecular-dynamics equations of motions. The
dissipative force on particle i is given by FD

i = −γ vi , where
γ is the friction coefficient and vi is the particle velocity.
The random force, FR

i , has zero mean value, and its variance
satisfies [35,36]〈

F R
iμ(t)F R

jν(t ′)
〉 = 2γ T kBδij δμνδ(t − t ′), (4)

where the indices i and j label particles, μ and ν are Cartesian
components, and T is the temperature at which the system is
simulated.

After a thermalization stage of 1×106 MD steps with a time
step of dt = 1×10−5τ , typical simulations were performed
with trajectories of 1×107 MD steps each, with a time
step of dt = 2×10−3τ . The time unit in LJ parameters is
τ = σ (m/ε)1/2. We took averages of physical quantities each
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1000 time steps. The friction constant was set to γ = 0.5ετ/σ 2

for all the simulations except for the initial thermalization
stage, in which the friction constant was set to γ = 50.0ετ/σ 2.
The typical chain was composed of N = 1024 beads, but we
also studied shorter and longer chains when needed. These
cases will be mentioned explicitly in the text. This choice
allowed us to study ring distances in the range 3–60σ in order
to obtain fluctuation-induced force values with a high enough
signal-to-noise ratio.

III. RESULTS

A. Properties of the polymer chain under tension

We analyze first the structural and fluctuation properties
of the chain under extensional force, without rings. We
worked with simulations at constant length, giving rise to
a mean constant stretching force. Figure 2 shows typical
configurations of the chains for different extensions. The chain
length is given in units of the maximum extension of the FENE
model chain, Lmax = 1.5Nσ . For the smaller extensions, the
chain starts to show a blob formation. There are local regions of
beads arranged in configurations not very different from that
of isolated chains (Fig. 2, L∗ = 0.4). For larger extensions,
the chain is very stretched, with little freedom for transverse
relative displacement among consecutive beads (Fig. 2, L∗ =
0.70). In this regime, the internal energy of the chain is very
high, and it is dominant compared to configurational entropy.

This behavior can be quantified with the mean bond length
in units of the maximum allowed bond length for the FENE
model (Rmax = 1.5σ ). This is shown in Fig. 3 as a function of
chain stretching, for different temperatures. For stretchings in
the range L∗ < 0.65, the mean bond is marginally dependent

(a) L∗ = 0.40

(b) L∗ = 0.57

(c) L∗ = 0.64

(d) L∗ = 0.70

(e) L∗ = 0.80

(f)L∗ = 0.90

FIG. 2. Snapshots of a fragment of the polymer chain at different
extensions and temperature T = 33.6ε/kB . L∗ accounts for the length
as a fraction of the maximum possible chain extension in the FENE
model, Lmax = 1.5σN .
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FIG. 3. Mean bond length as a function of chain stretching
for different temperatures in units of maximum FENE length. The
dashed line represents bead distance in the limit of kBT = 0 and
no excitations in the chain (athermal limit). The vertical dotted line
indicates the extension at which the bond length increases its rate of
change with chain stretching.

on chain length, and it increases toward the limit L∗ � 0.65.
In this regime, the blobs are dominant and the bond length
values are dominated by the thermal energy of the beads and
the excluded volume, which is given by the Lennard-Jones
potential. In the case L∗ � 0.65, the bonds increase more
pronouncedly with chain stretching. In this limit, each bond
is permanently stretched with respect to the equilibrium bond
length, and the excluded volume is not important for the mean
bond. For very high L∗, the bonds converge to the maximum
value for all the temperatures. The case T = 0 (athermal) is
shown for comparison with a dashed line. This is the limiting
case, in which there is only potential energy in the chain.
This is in agreement with the behavior of the thermal case,
indicating also the two distinctive behaviors. The value rmin ∼
0.65 corresponds to a bond distance d = 0.975σ , where the
Lennard-Jones and bond forces are equal. Figure 4 shows the
bond distance as a function of temperature for different chain
extensions. The mean bond is more dependent on temperature
at shorter chain extensions and lower temperatures. The FENE
contribution of the bond energy is, of course, nonlinear, and
therefore the temperature has a progressively minor effect with
increasing temperatures.

We also calculate the spectra of transverse fluctuations of
the chain (i.e., those perpendicular to the stretching direction
x̂) to characterize the collective vibrations in the limit of high
stretching. We point out that even the lowest stretching case
(L∗ = 0.20) is still very high as compared with a free polymer
chain. We define a discrete function h(xi) = hbin(xi) − h0,
which accounts for the transverse fluctuations. hbin is obtained
by dividing the space along the chain in bins of width 	x = 2σ

and then computing the mean position of the beads that belong
to each bin. This binning procedure was used because for short
chain lengths the beads are grouped in blobs, and taking their
positions directly would give a multivalued function at some
x points. This type of discretization is usual in an analysis of
interface fluctuations [30,38]. h0 is the horizontal along the
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FIG. 4. Mean distance among beads as a function of temperature
for different chain extensions. A saturation at higher temperatures is
observed in accordance with the fast increase of FENE bond energy.

x direction, in which would lie the stretched chain at zero
kinetic energy. For each time step, the Fourier amplitudes are
calculated and averaged over the chain configurations obtained
in the simulations. The fluctuation spectra, given by the square
amplitude of the Fourier modes, are shown in Fig. 5 for some
selected chain lengths. The inset shows the power spectra in
logarithmic scale. The overall magnitude of fluctuations is, as
expected, reduced with chain stretching. The wave amplitudes
also decrease with q number or, equivalently, increase with
wavelength λ.

In the limit of very high stretching, the harmonic approxi-
mation should hold due to the small-amplitude oscillations of
the beads, which are effectively trapped in very stiff potential
wells. This can be thought of as an effective Hamiltonian with
quadratic degrees of freedom in coordinates and momenta.
The chain is in a heat bath at constant temperature, and
therefore the equipartition theorem holds, giving a contribution
of 1

2kBT for each degree of freedom to the potential and kinetic
energies. Each normal mode of the chain has the same mean
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FIG. 5. Fourier spectrum of the polymer chain at different lengths
for T = 33.6ε/kB . The inset shows the same data in log-log plot.

potential energy of 1
2kBT , and, by using the relation between

the potential energy of a mode and the amplitude [37], the
harmonic model gives rise to a dependence of the squared
mode amplitude C2 ∼ 1/q2. The same conclusion can be
reached in the realm of soft matter and interfaces for a capillary
wave Hamiltonian. The fluctuating stretched chain projected
in a plane can be thought of as a unidimensional interface
between two immiscible liquids or a liquid-gas interface, and
the modes of the chain can be thought of as the capillary
waves of the interface. The energy cost of a nonflat surface in
comparison to the flat case (of minimum area) can be written as
an effective Hamiltonian of surface fluctuations. This so-called
capillary wave Hamiltonian describes the energy cost of
surface undulations of thermal origin in terms of a function
h(x,y), which accounts for the local position of the interface.
Expressing this Hamiltonian in Fourier space leads to a
quadratic form in the wave vectors q of independent harmonic
oscillators. The application of the equipartition theorem leads
to the dependence C(q) ∼ kBT /q2 for the Fourier amplitudes
of the Fourier modes of the surface [38,39]. This analogy is
very interesting because simulations can test which range of
chain extensions is valid, and it enables the study of interface
fluctuations by carefully simulating a stretched chain. The
chain is, of course, much less demanding of computing power.
The dashed line in the inset of Fig. 5 shows a curve ∼1/q2

for reference. For the higher extensions (L∗ = 0.90 and 0.70),
the chain fluctuations are very close to the harmonic model.
The curves are parallel to 1/q2 for the whole range of q.
Some differences show up for the smaller extension, L∗ =
0.40, which increase appreciably for the lowest stretching,
L∗ = 0.20. This is especially true for the high-q part of the
spectra, i.e., for the shorter-wavelength modes. Interestingly,
this is in line with the idea of the capillary wave Hamiltonian
(also the Helfrich Hamiltonian, for membrane bilayers). These
models are suitable for long-wavelength fluctuations [38,39].
We recall that for the shorter chain lengths, the Lennard-Jones
interaction, i.e., the excluded volume, has a role in the local
dynamics of the beads.

Figure 6 show the decaying exponent of the spectra
for different chain stretchings and temperatures. We fitted
the function f (q) = A0/q

α in the log-form, where A0 and
α are the fitting parameters. A convergence toward α = 2
is observed upon an increase of chain stretching. For the
range of shorter chain stretchings (L∗ < 0.5), the exponent
increases. This means a deeper decay of fluctuations for
smaller wavelengths. For these lower stretchings the polymer
chains are more intertwined, and the vibrational behavior
comes more from groups of beads than from independent beads
themselves. This could be thought of as an effectively shorter
chain (with fewer degrees of freedom, and therefore modes),
and for the same q range of the complete chain it will have a
faster decay.

B. Effect of the rings on the chain and
fluctuation-induced forces

We analyze here the effect of the fixed rings in the natural
fluctuations of the chain, after which we will proceed to
the fluctuation-induced or Casimir-like forces between rings.
Figure 7 shows the fluctuation spectra of the chain with
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FIG. 6. Exponent of the fitted decay of the fluctuation spectrum
as a function of chain length for different temperatures. From
the capillary-wave Hamiltonian, a coefficient α = 2 is expected
(indicated with a dashed line). The exponent gets closer to α = 2
from L∗ = 0.5 toward higher stretching values.

the rings fixed at different distances. The decay range is
similar for the chain with and without rings, but the modes
whose wavelengths are higher than the distance between rings
(λmode > d) are significantly reduced. The power spectrum of
the chain without rings is shown also for comparison.

Figure 8 shows the difference in the power spectrum with
and without rings for different ring distances. The effect of the
rings is clearly observed for the modes that are expected to be
heavily hindered by the rings. The higher effect is observed
for smaller distances in which modes of lower wavelengths
are reduced, starting at λmin = d. It is also observed that
increasing the ring distance changes the cutoff wave number
from which the spectrum is significantly reduced, as compared
to the stretched chain without rings.
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FIG. 7. Fourier spectrum for the chain without rings (open
circles) and with the rings located at different distances (filled
symbols). All the cases correspond to T = 33.6ε/kB and L∗ = 0.70.
The effect of the rings is only noticeable at small q (long wavelengths)
and it becomes unnoticeable at high q values.
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FIG. 8. Difference of Fourier coefficient normalized sum for the
case of the chain with rings (C2

r ) and the chains without rings (C2
f c).

The legends show the distance between rings at which the spectra
were calculated. The vertical line indicates the q value (λ ∼ 67σ )
below which the presence of rings begins to influence the amplitude
of the chain modes. The cutoff of modes at q � 2π/d produced by
the presence of the rings is clearly appreciated.

In Fig. 9, the mean number density of the chain is presented.
Panel (a) shows the chain without rings, while panels (b)
and (c) present the changes for rings located at distances
30σ and 6σ , respectively. We obtained the histograms from
a square binning in two dimensions with a bin lateral size of
	r = 0.25σ , and a Bessel smoothing function was used for
the color plots. The spatial zone at which the beads have access

(a)

(b)

(c)

FIG. 9. Color plot of the number density for the central zone of
the chain. Panel (a) presents the chain without rings. The density with
rings at distance d = 30σ is presented in panel (b), and the density
with rings at d = 6σ is presented in panel (c).
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is significantly reduced by the presence of the rings. This is
in line with the suppression of modes of higher amplitude in
the presence of rings. For the zone between rings, the bead
distribution is similar to the outer zone for high ring distances
[panel (b), d = 30σ ], but with reduced amplitudes. For rings
very close [panel (c), d = 6σ ], the inner zone presents beads
only very close to the rings. The outer zone, however, presents
monomers in a slightly wider zone as compared to the case of
rings located at higher distances [see panel (b) in Fig. 9],
compatible with the fact that the outer zone of the chain
can have modes of very high wavelength and amplitude (see
Sec. III A) when the rings are very close to each other.

In addition to the fluctuation properties of the chain, we
found another interesting aspect that changes in the presence
of fixed ring molecules. We studied the mean bond length for
all the chain bonds, considering separately the bonds lying
between the rings and those in the outer region. Figure 10
depicts the mean bond lengths obtained from the mean bond
value over neighboring beads in the chain. The pair number
is defined such that pair number i indicates the bond between
beads i + 1 and i. Figure 10 provides an example of what
we have observed for all the cases. First, there is a significant
stretching of the bonds that are directly exposed to the fixed
rings. This can be expected: as the chain fluctuates, the bonds
will scatter against the beads of the rings, producing a high
stretching of these bonds. There is also a much more subtle and
interesting effect, which we noticed for different stretchings
and temperatures. Namely, the bonds between rings are slightly
stretched on average. This can be observed in the center points
of Fig. 10, which are systematically above the dashed line.
This indicates the mean bond value for the bonds in the outer
region of the chains (those in the regions of bond numbers
1–503 and 522–1023). The chain is more stretched between
rings. From a mechanical viewpoint, we attribute this to the
action-reaction principle. As will be shown next, the chain is
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1.28

1.2805

1.281

<
Δx

>
 (

un
it

s 
of

σ)

Rings position
Mean bond distance outside rings

FIG. 10. Mean bond lengths 〈	x〉 as a function of bond number
for different polymer lengths. The rings are located at d = 15σ with a
chain stretching of L∗ = 0.8 and temperature T = 15ε/kB . The bond
number is labeled such that the bond number bi is the bond distance
between beads i + 1 and i. Vertical dot-dashed lines indicate the
approximate position of the rings. The error bars are almost the same
size as the symbols.

effectively producing a mean force between rings, and there
should be a force equal in magnitude that the rings exert on the
chain, giving rise to this slight increase of the bond length in
the zone between rings. This interesting characteristic could
be explored further, but this is beyond the scope of the present
work.

The nature and characteristics of the effective forces
between rings are one of the main results and motivations
of our study. We compute the mean force on each bead of the
rings, averaged over each MD step. This quantity is the mean
force on the ring due to the interaction with the chain. We
recall that ring-ring interaction is neglected because we used
a cutoff for the ring-ring interaction of Rc = 1.12σ among
beads of the same and different rings. We kept only the
repulsive part of the Lennard-Jones potential, which means
that only the excluded volume is considered. As rings were
fixed at distances d � 3σ , direct interactions between rings
are disregarded by design. We show in Fig. 11 one of the
main results of this work, namely the existence of an effective
force between rings that can only arise through interactions
mediated by the chain. Furthermore, the rings are able to hinder
transverse fluctuations of the chains, but not longitudinal
waves, since the effective ring diameter is bigger than the bead
diameter of the chain (1σ ). We conclude that this effective
interaction is the expected fluctuation-induced force due to
the disturbance of the natural fluctuations of the stretched
unconstrained chain by the presence of the rings. They have
a range clearly larger than the ring size (∼6σ ). Another
qualitatively important aspect is that the interaction is attractive
for all the studied cases. We point out also that the nature of the
system disregards other types of effective interactions, such as,
for example, depletion interactions, which are usually present
together with fluctuation-induced forces in many systems [40].
From a thermodynamic viewpoint, the system minimizes free
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FIG. 11. Total mean force on rings 〈f (x)
ring〉 in the chain direction

as a function of ring distance. Each annular molecule is composed
of two rings formed by 11 LJ particles located on a circle of radius
1.5σ . The sample was set at T = 33.6ε/kB and L∗ = 0.70. These
are the fluctuation-induced or Casimir-like forces from the chain on
the annular molecules, due to the restrictions that they impose in the
natural fluctuations of the chain. For a given distance, the rings hinder
the fluctuations of the chain with modes of wavelength λ > d.
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FIG. 12. Mean force between rings vs distance for different ring
radius r . The parameters were set as L∗ = 0.70 and T = 33.6ε/kB .
The inset shows a magnification of the case r = 6σ , for which
the minimal restrictions imposed by this big ring radius reduce
significantly the fluctuation-induced force.

energy with the rings as close as possible to each other. This
allows for modes with longer λ in the outer region. However,
as we have the chain in a thermal bath (a canonical ensemble),
the mean internal energy of the chain is the same for all the
cases. Therefore, the Casimir-like force arises in particular
from the maximization of entropy, which is obtained when the
rings are together. Entropy is maximized when the maximum
possible number of modes are active, particularly those of
higher amplitude (high λ; see Sec. III A). As we showed earlier,
these modes are hindered when the rings are placed at higher
distances.

The ring molecules are of course physical constraints and
not mathematical nodes imposed on the chain. It is helpful
to analyze the fluctuation-induced force as a function of ring
radius. This is done in Fig. 12, where we plot force versus
ring distance for different ring radii. The force is present in
all cases, but it is greatly reduced for larger ring radii. The
inset shows a zoom of the larger radius (rring = 6σ ), which is
barely noticeable in the scale of the main graph. As the ring
radius increases, the rings are unable to hinder the fluctuations
of middle to small wavelength, which are progressively of
smaller amplitude as λ decreases. The ring radius modifies
significantly the strength of the fluctuation-induced force.

We present in Fig. 13 the force strength between rings for
different chain stretchings and temperatures as a function of
distance. Panel (a) presents the force intensity versus distance.
The force is long range as compared to bead size. We resolve
nonzero force values up to d � 48σ for a chain length of
L = 1076σ and 1024 beads. The force is non-negligible
approximately for distances in a range of 5% of the chain
length. For short ring distances, Fig. 13 shows that the strength
of the force is highly influenced by the amplitude of the chain
modes of higher wavelength. As was shown for the fluctuations
of the chain without rings (see Fig. 5), less stretching increases
considerably the amplitude of the modes in the small q

range (longer wavelengths). With higher chain stretchings,
for instance L∗ = 0.8 in Fig. 13(a), an oscillation of the force
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FIG. 13. Upper panel: mean force vs ring distance for different
chain stretchings and temperatures. The dashed line represents
the harmonic model for the force f ∼ 1/d . It indicates only the
power-law decay. Lower panel: log-log plot for the same cases. The
dashed line shows an idealized theoretical model that is consistent
for medium to high stretching (see the text).

occurs, which is noticeable at shorter ring distances. We will
analyze this further in the next paragraphs.

Comparison with theoretical models

To compare the force with analytical models, we provide
a log-log plot of the force scaled with the temperature in
Fig. 13(b). First, we fitted the force between rings as a function
of distance as a power law of the form F (d) = A(T )/dα .
A log-log plot should present a linear dependence, which is
approximately the case in Fig. 13(b). The exponent α changes
with chain stretching, growing for smaller L∗. The dashed
line represents the case α = 1, which can be obtained analyt-
ically with a harmonic approximation of independent normal
modes [41,42]. Boyer discusses the standard Casimir effect
from zero-point energy fluctuations of the electromagnetic
field and thermal fluctuations of the classical electromagnetic
field in a unified way [41,42]. The latter case is equivalent
to the chain in a thermal bath. The system is described as a
one-dimensional cavity at a given temperature, with a partition
inside the cavity at position x. He calculates the total force on
the partition due to the restriction of modes in the cavity.
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Considering harmonic modes, the equipartition limit gives
rise to a contribution to the force of each normal mode of
fmode(ω,L,T ) = kBT

L
, where L is the length of the cavity.

Adding up over all the modes, the total force on the partition
at position x is

f (x,L,T ) = −kBT

2

(
1

x
− 1

L − x

)
,

where the two terms indicate attractions to each one of the wall
cavities [42]. In our case, the boundary condition is periodic
and the force between rings is mapped to the force between the
partition and one of the walls. If the partition is close to one
of the walls, the interaction with the other one is negligible.
This would be the limit of two rings at short distance in
comparison with chain length (d 	 L), which we use in the
simulations. The ring distance varies in a range 2-60σ in a
chain of typical length L = 1076σ . We also add a factor 2 due
to two independent fluctuation directions for the chain (ŷ and
ẑ), which are locally constrained by the presence of the rings.
We end up, therefore, with a force dependence given by

Fx(d) ≡ fring(d) = kBT

d
,

which is plotted in Fig. 13 by a dashed line.
Interestingly, the theory agrees fairly well with our results

for relatively high chain stretchings (L∗ � 0.67) and for
all the studied temperatures. At very high chain stretching,
L∗ > 0.7, there are force oscillations at short ring distances
(considered later on), but we have again good agreement with
the theoretical model at longer ring distances. It should be
noted that the interactions of individual bonds are nonharmonic
elastic terms, given by the FENE potential [see Eq. (1)].
However, in the limit of high stretching, we consider that
the harmonic approximation is reasonable. We think that this
is because each bead of the chain is trapped in a very stiff
potential well, which for moderate temperatures could be
well approximated by a Taylor expansion of second order.
This is in the same spirit of the small-amplitude harmonic
approximation of vibrational modes in a solid at relatively low
temperature [43].

In the lower range of chain stretchings (L∗ < 0.65), we do
not observe a dependence ∼1/d. We note that in this regime,
not all the degrees of freedom of the chain are taking part of
the vibrations. The low stretching produces local clusters of
beads, closer to equilibrium than to bond stretched states [see
Fig. 2(a)]. We attribute to this effective reduction of vibrational
modes a steeper decay of the interaction, as compared to the
cases of higher stretchings, where the harmonic approximation
holds. It is also interesting to note that in this region, the range
of the fluctuation-induced force is reduced, but its absolute
value at short ring distance increases. We assume that this
happens because the amplitude of long-wavelength modes
increases significantly for shorter chain stretchings (see Fig. 5).
It is worth noticing that the fluctuations of the chain without
rings are still closer to ∼1/q2, characteristic of the capillary
wave Hamiltonian. Lehle et al. [9] obtained analytical results
for the dependence of effective forces in interfaces, induced
by capillary wavelike fluctuations. They analyzed colloids
trapped in a liquid-liquid interface with different boundary
conditions of the colloid-interface and different degrees of

freedom of the colloids. They also treated different shapes as
spherical, janus colloids, or disks. The different cases included
totally fixed colloids pinned in the interface, colloids allowed
to move vertically, and colloids allowed to move vertically and
also to tilt. The case closer to the system considered here is
the fluctuation-induced force between disk colloids of radius
r0, pinned in the interface at distance d. For the limiting case
d � r0, they find the following expression for the fluctuation
induced force [see Eq. (7) in Ref. [9]]:

Fx(d) = −kBT

2

1

d ln(d/r0)
+ O(d−3). (5)

We fitted Eq. (5) with a multiplicative constant A and
c1 ≡ 1/r0 as fitting parameters, and we found very good
agreement for the smaller chain stretchings (L∗ < 0.65) at
different temperatures. Two examples are provided in Fig. 14
for chain lengths of L∗ = 0.4 [panel (a)] and L∗ = 0.5 [panel
(b)]. The lateral extension of the rings, which can be regarded
as the colloid radius r0, is small compared to the typical ring
distance in the simulations, fulfilling the conditions for this
limiting case. The fitting parameters are around A0 � 4 for
the multiplicative constant of the force and r0 � 0.36 (with
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FIG. 14. Fit of the fluctuation-induced forces vs distance for
low stretching. They were adjusted with the model of Eq. (5)
by Lehle et al. [9]. Panel (a) corresponds to the case L∗ = 0.4
and T = 5.05ε/kB , while panel (b) corresponds to L∗ = 0.5 and
T = 15.0ε/kB .
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r0 = 0.14 and 0.55 as the minimum and maximum values for
all the fits). This mean value seems a bit smaller than the
effective ring width (in its part exposed to the chain), but it is
indeed in the order of magnitude of the effective ring width.

We also studied the dependence of the fluctuation-induced
force with the temperature. Figure 15 shows the fluctuation-
induced force between rings located at a distance of d = 6σ for
different chain lengths. The curves present a linear behavior.
This is expected, because the fluctuation-induced interactions
are proportional to the driving energy of fluctuations, kBT

in our case [44]. We observe also a smaller slope of the
curves for higher chain stretching. This fact can be rationalized
by considering two facts. On the one hand, the nonlinearity
of the bond potential make the bonds effectively stiffer for
higher stretching. The rate of increase of mode amplitudes
upon an increase in temperature is therefore lower for more
stretched chains. On the other hand, the hindering of modes
of higher amplitude (low q) seems to be the most important
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is N = 1024. The lines are linear fits of the data for each case.

2 4 6 8 10 12 14
d (units of σ)

0

4

8

12

16

F
x

(u
ni

ts
 o

f
ε/

σ)

0 8 16 24 32 40 48 56
0

2

4

6

8

10

12

14

16

18

F
x

(u
ni

ts
 o

f
ε/

σ)

T = 67.2
T = 33.6
T = 05.5

i) ii)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
d (units of σ)

d (units of σ)

0

1

2

3

4

5

6

7

8

9

10

F
x (

un
it

s 
of

ε/
σ)

N=512
N=1024
N=2048

0 2 4 6 8 10 12 14 16
d (units of σ)

0

2

4

6

8

F
x (

un
it

s 
of

ε/
σ)

N=512
N=1024
N=2048

(a)

(b)

FIG. 17. (a) Force vs distance for different numbers of beads in
the chain at the same chain stretching L∗ = 0.80. (b) Fx as a function
of distance for L∗ = 0.8 at different temperatures. The insets in both
panels show a detailed view of Fx for short distances.

contribution to the fluctuation-induced force. This can be
observed in Fig. 13 (d � 6σ ), where at equal temperature,
the force is higher for shorter chains, i.e., for chains of higher
low-amplitude modes (see also Fig. 5). These two facts may
give rise to the smaller dependence with temperature of more
stretched chains observed in Fig. 15.

Figure 16 shows the force at different ring distances as a
function of temperature for a fixed chain stretching of L∗ =
0.56. A linear dependence is also observed in this rather narrow
temperature interval. This indicates that the change of the force
is dominated by the number of modes, which is the same at
larger temperatures, increasing the modes’ amplitudes. In a
thermodynamic framework, the term T 	S of the free energy
depends on temperature basically only through the explicit T

dependence, and not in 	S.
Finally, we discuss in more detail the oscillations of

the fluctuation-induced force versus distance at very high
stretching observed in Fig. 13. In Fig. 17, we show the
force versus ring distance for L∗ = 0.8 for different chain
lengths [panel (a)] and different temperatures [panel (b)]. A
clear modulation of the force shows up for short distances
up to d � 16σ . This was observed in the high stretching
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limit L∗ � 0.8 for all the studied cases. We recall that the
maximum physical length that the FENE chain can have is
L∗ = 1, which is quite close to these cases. The beads are rather
separated, and the centers of the bonds have a clearly reduced
excluded volume compared to positions closer to the center
of the beads. In these conditions, for a given ring distance, it
makes a significative difference if the rings are located very
close to a bead [see inset (i) in Fig. 17] or in the central region
of the bond [see inset (ii) in Fig. 17]. In the second case, the
chain can have fluctuations of higher amplitude inside the ring,
giving rise to a lower fluctuation-induced force. This is also
facilitated by the fact that the bond-length lateral fluctuation
is rather low due to the high stretching of the polymer and the
high internal energy of the bond. We confirmed this by scaling
the ring distance with the mean bond distance 〈lbond〉 for each
case. Plotting Fx versus d/〈lbond〉, we observe a period for the
modulation of one bond length (not shown). The modulation
smudges at longer ring distances, where lateral displacements
of the beads close to the rings are much larger.

While these stretching values are rather extreme and might
not be feasible experimentally, they draw attention to the
fact that the structure of the bond, and the details of the
polymer structure at the chemical level, could have a role in
the modulation of fluctuation-induced forces in experiments.

IV. DISCUSSION AND CONCLUSIONS

In this work, we studied the fluctuation properties of
a polymer chain under tension and the characteristics of
the fluctuation-induced forces between two ring molecules
threaded around the polymer and fixed in the space. In this
way, the rings alter the natural fluctuations of a stretched chain
giving rise to the observed Casimir-like forces. The system
could be considered as a model of a pseudo-rotaxane under
tension, which could be studied experimentally as an isolated
entity, or as a component of a slide-ring material under tension.

The unconstrained chain under tension presents a fluc-
tuation spectrum compatible with a ∼1/q2 law for a wide
range of studied chain stretchings, which deviates from the
behavior for lower chain lengths. Interestingly, the behavior
at high stretching is similar to a capillary wave spectrum of
a liquid-vapor interface or that of two immiscible liquids, in
spite of the nonlinearity of the chain connectivity.

We observed an attractive fluctuation-induced force be-
tween the rings for all the studied cases. We characterize these
forces as a function of chain stretching, temperature, and ring
radius, i.e., the properties of the physical constraint imposed

on the chain. For higher stretching, we found a dependence
of ∼1/d of the fluctuation-induced force, which is similar to
that found in the context of a harmonic approximation for
classical electromagnetic fields at thermal equilibrium [41],
and the 2D Ising model of a pinned magnetic interface [45]. We
observed a linear dependence of the force with the temperature,
which is expected from an entropy-driven force of this type,
if the entropy differences between the constraint and the
unconstrained chains are not dependent on temperature.

At lower stretchings, in which not all the degrees of freedom
of the chain are vibrating, we observe a deviation from this
limiting behavior. In this case, the force versus distance is
adjusted very well with a dependence ∼1/d ln(c1d). This
behavior was also found theoretically in the exact results
for interfaces of 3D Ising systems [45] and for colloids
pinned in liquid-liquid interfaces [9]. We also characterized
fluctuations of the force at very high stretchings, coming from
the discreteness of the beads and variations of the excluded
volume of the chain along the bonds.

In addition to the results found for polymers under tension,
we consider the system as a relatively simple model to
study fluctuation-induced forces in different contexts. We are
planning to continue this work by studying the dynamics of
rings that are allowed to move in the direction of the chain, and
also by considering semiflexible polymers with local flexural
rigidity, reminiscent of biofilaments. For this case, there is an
increment in the length of bond correlations, which could be
very interesting. We are also planning to study the aggregation
of ring molecules threaded in the chain, in a system closer to
a polyrotaxane. Finally, we think that the direct measurement
of these forces with optical tweezers is plausible, or via a
potential of mean force in fluorescence experiments [46,47].
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