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We present the calculation for single-inclusive jet production in (longitudinally) polarized deep-inelastic
lepton-nucleon scattering at next-to-next-to leading order (NNLO) accuracy, based on the projection-to-
Born method. As a necessary ingredient to achieve the NNLO results, we also introduce the next-to-
leading-order (NLO) calculation for the production of dijets in polarized DIS. Our dijet calculation is based
on an extension of the dipole subtraction method to account for polarized initial-state partons. We analyze
the phenomenological consequences of higher order QCD corrections for the Electron-Ion Collider
kinematics.
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I. INTRODUCTION

Much progress has been made in our understanding of
the structure of hadrons over the last decades, both from the
theoretical and the experimental sides. The study of the spin
structure of hadrons in terms of its components, particularly
the proton, is, however, still one of the challenges faced
by particle physics. The spin content of the proton can be
codified in terms of the polarized parton distributions of
quarks and gluons, which can be experimentally probed in
high energy collisions processes with polarized nucleons.
Contrary to the case of unpolarized parton distributions,
which have been extensively studied for a wide kinematical
range, based on several complementary measurements
from different observables, our knowledge on the helicity
distributions for partons inside the proton is more limited.
While more than 30 years ago, fixed-target deep-inelastic
scattering (DIS) measurements from EMC refuted the naive
interpretation of the parton model, proving that the amount
of spin carried by quarks and antiquarks is relatively small
[1], the exact decomposition of the proton spin between
quarks, gluons and orbital angular momentum is still
unclear. Polarized proton-proton collisions performed at

the BNL Relativistic Heavy-Ion-Collider (RHIC) [2],
which receive significant contributions from gluon-initiated
processes, improved the description of the gluon spin
distribution, showing that its contribution to the proton
spin is not negligible [3], although providing constraints
only for a reduced range of proton momentum fractions.
Furthermore, the amount of spin carried by the sea quarks
is also still an open question [4,5]. In that sense, the future
U.S.-based Electron-Ion-Collider (EIC), allowing a much
wider kinematical range, and reaching an unprecedented
precision for polarized measurements [6], is expected to
provide new insights on the spin decomposition of the
proton in terms of its fundamental building blocks [7–9].
In addition to high-precision measurements for a wider

range of momentum fractions, the improvement of our
picture of the proton spin will require a consistent increase
in the accuracy of the theoretical description of the
observables to be measured. It is known that leading order
(LO) perturbative calculations Oðα0SÞ in QCD only provide
qualitative descriptions, since higher order corrections in
the strong coupling constant are sizable. Although a
remarkable effort to compute higher order corrections
for unpolarized processes has taken place during the last
30 years, setting next-to-next-to-leading order (NNLO) as
the standard for Large-Hadron-Collider (LHC) calculations
and even reaching the following order for some processes,
the picture for polarized calculations is not as developed.
Polarized calculations in dimensional regularization nec-
essarily involve dealing with extensions of the γ5 matrix
and Levi-Civita tensor to an arbitrary number of dimension,
making the computation much more intricate than its
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unpolarized counterpart. Until recently, NNLO corrections
for polarized processes were only obtained for completely
inclusive Drell-Yan [10] and DIS [11], in addition to the
helicity splitting functions [12–14]. More exclusive observ-
ables provide results that can be directly compared to
experimental data, and could, in principle, be used to
disentangle individual contributions associated to different
partons. In particular, jet production in DIS is an extremely
useful tool to probe the partonic densities, since it can give
a stronger grip on the gluon distribution, while avoiding
nonperturbative corrections associated to final-state hadro-
nization. Developments in techniques for flavor and charge
tagging in jet production could further improve the poten-
tial of jet measurements to disentangle individual flavor
contributions in global analysis [15,16].
Higher order corrections are not only necessary to

improve the accuracy of the theoretical description. It is
also important to check the stability of the perturbative
series, that is, how these corrections affect the resulting
cross sections and spin asymmetries, since only processes
perturbatively well behaved can be used as good probes for
parton distributions, and be utilized for its extraction.
Furthermore, for the specific case of jet production, it is
only at higher orders in QCD that jet structure is fully
developed, allowing us to realistically match the theoretical
description to the experimental data and the cuts imposed in
the jet reconstruction.
In this paper we present the NLO calculation for dijet

production in polarized and unpolarized lepton-nucleon DIS,
based on an extension of the Catani-Seymour dipole sub-
traction method [17] to account for polarized initial particles.
We analyze the structure of higher order corrections in the
Electron-Ion-Collider kinematics, its perturbative stability
and phenomenological implications. Through a detailed
study of the polarized cross sections and asymmetries we
also identify the most important partonic contributions for
different kinematical regions. Additionally, we expand on
our previous results [18] for single-exclusive jet production
in DIS at NNLO, achieved by combining the aforementioned
dijet result with the inclusive polarized NNLO DIS structure
functions [11] through the application of the projection-to-
Born (P2B) method [19]. We analyze the perturbative
stability of the higher order corrections to the cross section
and asymmetries, as well as the contributions from the
different partons to the NNLO corrections. Both the NLO
single- and dijet, as well as the NNLO single-jet calculations
are implemented in our code POLDIS [20].
The remaining of the paper is organized as follow: in

Sec. II we begin by defining the kinematics of both single-
and dijet production in DIS. In Sec. III we detail both our
extension of the dipole subtraction method for polarized
QCD processes, and its use in the P2B method in order to
achieve polarized jet production at NNLO. In Sec. IV we
present the phenomenological results for inclusive NLO
dijet production at the EIC in the Breit-frame, and in Sec. V

we do the same for inclusive NNLO single-jet production
in the laboratory frame. Finally, in Sec. VI we summarize
our work and present our conclusions.

II. JET PRODUCTION KINEMATICS

We start considering the case of inclusive-single jet
production in DIS. Specifically, we study the process

eðkÞ þ PðpÞ → eðk0Þ þ jetðpT; ηÞ þ X;

where k and p are the momenta of the incoming electron
and proton, respectively, and k0 is the momentum of the
outgoing electron. We work in the laboratory frame (L),
where single-jet production receives nonvanishing contri-
butions already at Oðα0SÞ. We only consider, for the time
being, neutral-current processes mediated by the exchange
of a virtual photon, with its momentum q ¼ k − k0 and
virtuality Q2 ¼ −q2 fully determined by the electron
kinematics. The inelasticity y and Bjorken variable x are
then defined as usual by

y ¼ q · p
k · p

; x ¼ Q2

2p · q
: ð1Þ

In addition to the variables commonly used for fully
inclusive DIS, more insight on the underlying partonic
kinematics can be obtained through the study of the final-
state jet, which can be characterized in terms of its
transverse momentum pT with respect to the beam, and
its pseudorapidity η.
At higher orders in αS, the production of multiple final-

state jets becomes available. Dijet production can be better
studied in the Breit frame (B), where there is no contri-
bution of Oðα0SÞ to the production of transverse jets.
Formally, the Breit frame is defined as the one that satisfies
2xp⃗þ q⃗ ¼ 0. Note that for the Oðα0SÞ process, this implies
that the virtual photon and incoming quark collide head-on,
completely reversing the momentum of the quark (hence
the commonly used nickname brick-wall frame), as its
represented schematically in Fig. 1. The first non-vanishing
contribution is then obtained at OðαSÞ, with two final-state
partons with opposed transverse momentum.

FIG. 1. Oðα0SÞ Breit frame kinematics for the process p1ðxpÞþ
γ�ðqÞ → p2ðxpþ qÞ.
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For dijet production, we specify the process

eðkÞ þ PðpÞ → eðk0Þ þ jetðpT;1; η1Þ þ jetðpT;2; η2Þ þ X:

The availability of a second jet allows for a more in-
depth study of the partonic kinematics. As in the H1 [21,22]
and ZEUS [23] experiments, and in addition to the jets
transverse momentum and pseudorapidities, the dijet pro-
duction cross section can be studied in term of the dijet
variables such as the invariant mass M12, the dijet momen-
tum fraction ξ2, as well as the average momentum hpTi2
and pseudorapidity difference η� in the Breit-Frame, which
are defined by

M12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 þ p2Þ2

q
;

hpTi2 ¼
1

2
ðpB

T;1 þ pB
T;2Þ;

η� ¼ jηB1 − ηB2 j;

ξ2 ¼ x

�
1þM2

12

Q2

�
: ð2Þ

It is worth noticing that, at the LO of dijet production, ξ2
is the momentum fraction carried by the incoming parton.

III. CALCULATION OF HIGHER ORDER
CORRECTIONS

Calculations beyond the leading order in QCD neces-
sarily involves cancellations between the individually
divergent pieces coming from infrared real emission and
virtual diagrams, in addition to the factorization contribu-
tions. In the dimensional regularization scheme the number
of dimensions is set to D ¼ 4 − 2ϵ, and those divergences
then appear as poles in ϵ. The cancellation between those
poles can only be achieved after the integration of each of
the divergent parts over its appropriate phase space, thus
impeding a direct numerical calculation.
Several methods to numerically compute higher order

corrections were developed over the last three decades. The
two main approaches are based on either limiting the phase
space integration (phase space slicing) in order to avoid the
divergent regions, or generating appropriate counterterms
(subtraction) to cancel the singularities in each of the pieces
of the calculation. For the latter, the proposed counterterm
should have the same divergent behavior as the real and
collinear parts, while being simple enough to be integrated
analytically in order to cancel the poles coming from the
virtual diagrams.
Many general methods for constructing NLO counter-

terms were proposed. Among them, the dipole subtraction
method developed by Catani and Seymour, and based on
the dipole factorization formula, allows to calculate any jet
production cross section at NLO accuracy. The landscape
for the following order is complicated due to the

appearance of many more singular configurations, but
several methods of varying generality are also available
for the computation of NNLO calculations [19,24–31]. In
particular, for processes where the Born kinematic can be
inferred from external non-QCD particles, the P2B method
[19] allows to obtain NkLO differential calculations for a jet
observable O, given that the NkLO inclusive cross section
and the differential Nk−1LO for Oþ jet are known.
Consequently, given a NLO dijet production in polarized
DIS calculation and the polarized NNLO structure func-
tions, we can then compute the NNLO exclusive single jet
cross section. A similar approach was used in unpolarized
DIS for the calculation of the N3LO corrections to single-
jet production [32], using the previous NNLO dijet pro-
duction results based on the antenna subtraction formalism
[33] and the N3LO DIS structure functions [34].
This exclusive NNLO single-jet calculation is imple-

mented in our code POLDIS for both polarized and unpo-
larized DIS. It allows to compute any infrared safe
observable related to single-jet production at NNLO
accuracy in the laboratory, as well as to single- and dijet
production in the Breit-frame with NLO precision. The
code is partially based on DISENT, which implements the
Catani-Seymour dipole subtraction method to obtain
the NLO single- and dijet cross sections in unpolarized
DIS. Mayor modifications were made in order to include
the polarized dijet computation, using an extended version
of the dipole subtraction to account for initial-state
polarized particles, as well as the implementation of the
P2B subtraction in order to obtain NNLO results. Note
that the previously reported bug in DISENT in the gluon
channel [35–38] was fixed along with the modifications
(see Appendix A).
Both the extension of the dipole subtraction as well

as the P2B method will be discussed in more detail in
Secs. III A and III B.

A. The dipole subtraction method
for polarized processes

For processes involving (polarized) unpolarized initial-
state hadrons, QCD calculations necessarily involve con-
volutions between partonic cross sections and (helicity)
parton distribution functions, (p)PDFs, codifying the (spin)
momentum distribution of partons inside that hadron. In the
case of DIS scattering, the (polarized) unpolarized hadronic
cross sections can be written perturbatively as:

ðΔÞσðpÞ ¼
X
a

Z
1

0

dzðΔÞfaðz; μ2FÞ½ðΔÞσ̂LOa ðzpÞ

þ ðΔÞσ̂NLOa ðzp; μ2FÞ þ � � ��; ð3Þ

where … denotes higher order corrections. The helicity
pPDF for a parton a carrying a fraction z of the proton’s
momentum p is defined as Δfaðz; μ2FÞ≡ fþðzÞ − f−ðzÞ,
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with fþðzÞðf−ðzÞÞ denoting the density of partons of type a
and momentum fraction z, with their helicities aligned
(anti-aligned) with that of the proton. On the other hand,
the polarized partonic cross section Δσ̂ ≡ 1

2
½σ̂þþ − σ̂þ−� is

defined in terms of the difference between the cross
sections with the incoming lepton and hadron polarized
parallel and antiparallel. Up to NLO, the (polarized)
unpolarized m-parton cross section is given by

ðΔÞσ̂LOa ðpÞ ¼
Z
m
dðΔÞσ̂Ba ðpÞ; ð4Þ

ðΔÞσ̂NLOa ðp; μ2FÞ ¼
Z
mþ1

dðΔÞσ̂Ra ðpÞ þ
Z
m
dðΔÞσ̂Va ðpÞ

þ
Z
m
dðΔÞσ̂Ca ðpÞ; ð5Þ

where dðΔÞσ̂B is the (polarized) unpolarized partonic Born
cross section, and dðΔÞσ̂R and dðΔÞσ̂V stand for the NLO
partonic real-emission and virtual matrix elements, respec-
tively. The last term in Eq. (5) is associated to the collinear
factorization that must be introduced in the case of cross
sections involving initial hadrons, to account for the
divergences arising from initial-state radiation.
It is worth noticing that we are working in D ¼ 4 − 2ϵ

dimensions, and that each of the integrals in Eq. (5) is
separately divergent in the limit ϵ → 0. The calculation of
polarized cross sections in dimensional regularization is
more involved than its unpolarized counterpart, since the
extension of the γ5 matrix and the Levi-Civita tensor ϵμνσρ

appearing in the helicity projection operators in D dimen-
sions is far from trivial. One way to consistently treat γ5
and ϵμνσρ is in the HVBM (’t Hooft-Veltman-Breitenlohner-
Maison) scheme [39,40], in which the D-dimensional space
is separated in the standard four-dimensional subspace, and a
(D − 4)-dimensional subspace. In this scheme, ϵμνσρ is
treated as a genuinely four-dimensional tensor, while γ5 is
such that fγ5;γμg¼ 0 for μ ¼ 0, 1, 2, 3, and ½γ5; γμ� ¼ 0
otherwise.
An alternative to numerically compute the partonic cross

section in Eq. (5) is the so-called dipole subtraction
method, introduced by Catani and Seymour [17] as a
general framework for the calculation of NLO jet cross
sections. This is the method used to compute the NLO
corrections of jet observables in both DISENT and POLDIS.
As in other subtraction-based approaches, the idea behind
the procedure is to cancel the infrared singularities that
appear in the real, virtual and collinear-factorization pieces
of the (polarized) unpolarized cross section, which are
integrated in different phase spaces (m particles for the
virtual diagrams and mþ 1 for the real-emission dia-
grams), already at the integral level. That cancellation of
divergences is achieved through the introduction of a
counterterm dðΔÞσA that has the same infrared behavior
(in D dimensions) as dðΔÞσR. By adding and subtracting
this term, the NLO calculation can be rewritten as

Z
dðΔÞσ̂NLO ¼

Z
mþ1

ðdðΔÞσ̂R − dðΔÞσ̂AÞ

þ
Z
m

�
dðΔÞσ̂V þ dðΔÞσ̂C þ

Z
1

dðΔÞσ̂A
�
:

ð6Þ

In Eq. (6) the first integral can be numerically performed
in four-dimensions since dðΔÞσA acts as a local counter-
term of dðΔÞσR. In the second term the cancellation of ϵ
poles requires the integrals to be performed analytically.
Clearly, the key of the subtraction method lies in the

construction of dðΔÞσA, which in addition to reproduce the
divergent behavior of dðΔÞσR should be simple enough to
be analytically integrated. In this case the term is con-
structed by the use of the dipole factorization formula

dðΔÞσ̂A ¼
X
dipoles

dðΔÞσ̂B ⊗ dðΔÞVdipole ð7Þ

in the collinear and soft limits, where ⊗ stands for the
appropriate phase space convolution and sums over color
and spin indices. The ðΔÞVdipole are the universal dipole
factors that match the infrared singular behavior of dðΔÞσR.
Note that these terms need to be analytically integrable if
D-dimensions over the single-parton spaces related to soft
and collinear divergences in order to make use Eq. (6). The
construction of these dipole factors for the unpolarized case
was already outlined in detail in Catani and Seymour’s
paper. We now discuss the extension to the particular case
of cross sections with one initial-state polarized parton,
required for the calculation of the polarized DIS process.
Following the same notation introduced by Catani and

Seymour, the complete polarized local counterterm dΔσ̂Aa is

dΔσ̂Aa ¼ N in
1

ncðaÞΦðpaÞ
X
fmþ1g

dϕmþ1ðp1;…; pmþ1;paÞ

×
1

Sfmþ1g

� X
pairs i;j

X
k≠i;j

ΔDij;kðp1;…; pmþ1;paÞ

þ
X

pairs i;j

ΔDa
ijðp1;…; pmþ1;paÞ

þ
X
i

X
k≠i

ΔDai
k ðp1;…; pmþ1;paÞ

�
; ð8Þ

where the terms ΔDij;k, ΔDa
ij and ΔDai

k represent the
dipole subtraction terms for final-state singularities with a
final-state spectator, final-state singularities with an initial-
state spectator, and initial-state singularities, respectively.
The sum is performed over all the possiblemþ 1 final-state
partons configurations, with dϕmþ1 denoting the corre-
sponding phase space. Additionally, the 1=nc accounts
for the average over the initial-state colors, ΦðpaÞ is flux

BORSA, DE FLORIAN, and PEDRON PHYS. REV. D 103, 014008 (2021)

014008-4



factor, and Sfmg is the Bose symmetry factor for identical
particles in the final-state. In N in the rest of the QCD-
independent factors are included.
It is important to note that to create local counter-terms

for the polarized DIS NLO cross section, only the polari-
zation of the initial-state parton needs to be considered. In
this case, instead of taking the average of its polarizations,
the difference between them is used. Spin states of final-
state parton are summed over and therefore they are treated
as unpolarized. Thus, the dipole subtraction terms ΔDij;k

and ΔDa
ij, associated to final-state singularities, are con-

structed as in ref. [17] (using the corresponding polarized
Born cross section). New expressions for the dipole
formulas are therefore only needed in the case of initial-
state singularities with one initial-state parton, represented
by ΔDai

k .
As in the case of the unpolarized cross sections, the terms

ΔDai
k can be obtained from the dipole factorization for-

mula. In the limit pa · pi → 0, where pa is the moment of
the initial-state parton and pi a final-state one, the dipole
factorization formula for the polarized (mþ 1)-parton
matrix element can be expressed as

mþ1;ah1;…; mþ 1;Δajj1;…; mþ 1;Δaimþ1;a

¼
X
k≠i

ΔDai
k ðp1;…; pmþ1;paÞ þ � � � ; ð9Þ

where j1;…; m;Δaim;a represents anm-particle state in the
color and helicity space, with Δa denoting that the differ-
ence between the incoming parton polarizations is consid-
ered. The

P
k ΔDai

k stands for the sum of the polarized

dipole contributions, in which the partons a and i act as a
single initial-state parton eai, the “emitter,” and the final-
state parton k acts as the “spectator” k̃. The… stands for the
other nonsingular terms in the pa · pi → 0 limit. Each
dipole contribution is given by

ΔDai
k ðp1;…; pmþ1;paÞ

¼ −
1

2pa · pi

1

xik;a
· m;ah1;…; k̃;…; mþ 1;Δãij

×
Tk · Tai

T2
ai

ΔVai
k j1;…; k̃;…; mþ 1;Δãiim;a: ð10Þ

The T are the color charge operators corresponding
to each parton. The emitter and spectator momenta are
given respectively by p̃μ

ai ¼ xik;ap
μ
a and p̃μ

k ¼ pμ
k þ pμ

i −
ð1 − xik;aÞpμ

a, where

xik;a ¼
pkpa þ pipa − pipk

pkpa þ pipa
: ð11Þ

The splitting functions ΔVai
k are the only new blocks

needed for the extension of the dipole subtraction formal-
ism to the polarized case. They are constructed so that they
give the correct eikonal factors in the soft limits, and the
correct D-dimensional polarized Altarelli-Parisi splitting
functions ΔPij in the corresponding collinear limits.
Similarly to ΔPij, ΔVai

k are matrices in the helicity space

of the emitter parton eai, and their expression in
given by:

hsjΔVqagi
k js0i ¼ 8πμ2ϵαsCF

�
2

1 − xik;a þ ui
− ð1þ xik;aÞ þ 3ϵð1 − xik;aÞ

�
δss0 ; ð12Þ

hsjΔVgaq̄i
k js0i ¼ 8πμ2ϵαsTR½2xik;a − 1 − 2ϵð1 − xik;aÞ�δss0 ; ð13Þ

hμjΔVqaqi
k jνi ¼ 8πμ2ϵαsCF

�
i
ð1 − uiÞ
papk

½xik;a þ 2ð1 − xik;aÞð1þ ϵÞ�ϵαβμνðpα
i þ pα

kÞpβ
a

�
; ð14Þ

hμjΔVgagi
k jνi ¼ 16πμ2ϵαsCA

�
i
ð1 − uiÞ
papk

�
1

1 − xik;a þ ui
− 1þ 2ð1 − xik;aÞð1þ ϵÞ

�
ϵαβμνðpα

i þ pα
kÞpβ

a

�
; ð15Þ

where ui ¼ papi=ðpapi þ papkÞ.
Notice, however, that these expressions of the splitting

functions ΔVai
k as matrices in the helicity states of eai are

not really needed in the polarized case since the spin
structure is trivial for both quarks and gluons. This is
due to the fact that the spin correlation terms cancel out
due to parity conservation in polarized processes (See

Appendix B). Therefore, only the difference between the
possible spin states of the emitter parton eai are required
to perform the subtraction. In the case of a gluon emitter,
this accounts for the contraction with the tensor
iϵρσμνpρ

anσ=ð2pa · nÞ, where n is any lightlike vector that
satisfies n · pa ≠ 0, while for a quark emitter the tensor
δs s

0
=2 is used. The resulting kernels are
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ΔVqagi
k ðx; uÞ

8παsμ
2ϵ ¼ CF

�
2

1 − xþ u
− ð1þ xÞ þ 3ϵð1 − xÞ

�
;

ð16Þ

ΔVgaq̄i
k ðxÞ

8παsμ
2ϵ ¼ TR½2x − 1 − 2ϵð1 − xÞ�; ð17Þ

ΔVqaqi
k ðxÞ

8παsμ
2ϵ ¼ CF½xþ 2ð1 − xÞð1þ ϵÞ�; ð18Þ

ΔVgagi
k ðx; uÞ

8παsμ
2ϵ ¼ 2CA

�
1

1 − xþ u
− 1þ 2ð1 − xÞð1þ ϵÞ

�
:

ð19Þ

In order to integrate the dipole subtraction term,R
mþ1 dσ

A, the D-dimensional integrals of the ΔVai
k terms

over the dipole phase space dpiðp̃k;pa; xÞ are needed. The

procedure to obtain them is the same one outlined by Catani
and Seymour. The resulting expressions ΔVa;ai are

ΔVqgðx; ϵÞ ¼ −
1

ϵ
ΔPgqðx; 0Þ þ ΔPgqðx; 0Þ lnð1 − xÞ

− 2CFð1 − xÞ þOðϵÞ; ð20Þ

ΔVgqðx; ϵÞ ¼ −
1

ϵ
ΔPqgðx; 0Þ þ ΔPqgðx; 0Þ lnð1 − xÞ

þ 2TRð1 − xÞ þOðϵÞ; ð21Þ

ΔVqqðx; ϵÞ ¼ −
1

ϵ
ΔPqqðx; 0Þ þ δð1 − xÞCF

�
1

ϵ2
þ 3

2ϵ
þ π2

6

�

þ CF

�
−
�

4

1 − x
ln

1

1 − x

�
þ
−

2

1 − x
lnð2 − xÞ

− 3ð1 − xÞ − ð1þ xÞ lnð1 − xÞ
�
þOðϵÞ;

ð22Þ

ΔVggðx; ϵÞ ¼ −
1

ϵ
ΔPggðx; 0Þ þ δð1 − xÞ

�
CA

�
1

ϵ2
þ 11

6ϵ
þ π2

6

�
þ NfTR

�
−

2

3ϵ

��

þ CA

�
−
�

4

1 − x
ln

1

1 − x

�
þ
−

2

1 − x
lnð2 − xÞ − 4ð1 − xÞ

þ 2

�
−1þ xð1 − xÞ þ 1 − x

x
−
ð1 − xÞ3

x

�
lnð1 − xÞ

�
þOðϵÞ; ð23Þ

where x is the phase space convolution variable and the
ΔPabðx; 0Þ are the aforementioned polarized four-dimen-
sional Altarelli-Parisi kernels. In the HVBM scheme they
are given by [41]:

ΔPqqðx; ϵÞ ¼ CF

�
2

ð1 − xÞþ
− ð1þ xÞ þ 3ϵð1 − xÞ

þ 3þ ϵ

2
δð1 − xÞ

�
; ð24Þ

ΔPqgðx; ϵÞ ¼ TR½2x − 1 − 2ϵð1 − xÞ�; ð25Þ

ΔPgqðx; ϵÞ ¼ CF½2 − xþ 2ϵð1 − xÞ�; ð26Þ

ΔPggðx; ϵÞ ¼ 2CA

�
1

ð1 − xÞþ
− 2xþ 1þ 2ϵð1 − xÞ

�

þ
�
β0
2
þ CA

6
ϵ

�
δð1 − xÞ: ð27Þ

A final remark must be made about the polarized
factorization counterterms dΔσ̂Ca in Eq. (5). These counter-
terms are explicitly written as:

dΔσ̂Ca ¼ −
αS
2π

1

Γð1 − ϵÞ
X
b

Z
1

0

dz

�
−
1

ϵ

�
4πμ2

μ2F

�
ϵ

ΔPabðz; ϵÞ

þ ΔKab
F:S

�
dσBb ðzpÞ; ð28Þ

where the value of ΔKab
F:S determines the factorization

scheme. We work in the conventional polarized MS
factorization scheme in which one needs to compensate
for the difference between the polarized and unpolarized
quark splitting functions (ΔPqqðx; ϵÞ and Pqqðx; ϵÞ, respec-
tively) in D–dimensions. Since the difference between
the two kernels is given by ΔPqqðx; ϵÞ − Pqqðx; ϵÞ ¼
4ϵCFð1 − xÞ, this is equivalent to setting ΔKqq

F:S ¼
4CFð1 − xÞ and ΔKab

F:S ¼ 0 otherwise in Eq. (28).

B. The projection-to-Born method

As it was mentioned, the P2B method allows to obtain
the NkLO calculation for a differential observable, provided
that its inclusive cross section at that order, as well as the
differential cross section for the observable plus a jet are
known at Nk−1LO. The idea behind the method is to cancel
the most divergent parts by simply using the full matrix
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element at each phase space point as a counterterm, but
binning it in an equivalent Born-projected kinematics of
the leading order process (hence the name “projection-to-
Born”). That is, for each event with weightw, a counterterm
with weight −w is generated, but with the measurement
function evaluated in the kinematics of an equivalent
leading order process. Note that this requires the Born
kinematics to be fully determined by external non-QCD
particles.
The differential cross section for an observable O at

NkLO accuracy can be written as:

dσN
kLO

O ¼ dσN
k−1LO

Oþjet − dσN
k−1LO

OP2Bþjet þ dσN
kLO

Oincl ; ð29Þ

where in dσN
k−1LO

Oþjet infrared cancellation at the Nk−1LO level
has already taken place (numerical implementations
beyond leading-order thus require the use of an additional
subtraction method). It should be noted that as the final-
state partons approach the most singular regions, they are
clustered in a jet configuration with Born kinematics, and
thus the born-projected counterterms exactly cancel the
divergent behavior of the cross section. The appearance of
the inclusive term in Eq. (29) is due to the fact that the sum
of all the projected events in a given Born phase space point
is equivalent to the integration of the additional final-state
partons associated with real emission. Thus, the combina-
tion of the Born-projected terms along with the k-loop
virtual diagrams results in the full contribution of the
inclusive NkLO cross section to the observable under
consideration.

Clearly, the key of the P2B method lies in the kinemati-
cal mapping O → OP2B. In the Born level DIS kinematics
the momenta of the incoming and outgoing partons are
fully determined by the lepton kinematics. The incoming
parton has momenta p ¼ xP, and the outgoing one
p0 ¼ xPþ q. So the mapping to the Born kinematics is
given by using these parton momenta to evaluate the
measurement function for the born-projected counterterms.
Note that this mapping only works in jet production in the
laboratory frame, since in the Breit-frame the first non-
vanishing contributions starts at order OðαsÞ, with two
final-state partons (and hence no mapping is possible in
terms of P, x, and q).
In the particular case of single jet production in unpo-

larized (polarized) DIS at NNLO, the corresponding
counterterms are generated from the double-real and
one-loop real radiation matrix elements. The combination
of those counterterms with the two-loop matrix elements is
then equal to the unpolarized (polarized) DIS inclusive
cross section at NNLO [11,34,42]. As mentioned, a
numerical implementation of the calculation has yet to
deal with the subleading divergences coming from the
single-real radiation and one-loop diagrams contributing
to the unpolarized (polarized) dijet cross section at NLO.
Those missing blocks can then be calculated with the
implementation of the Catani-Seymour dipole formalism,
whose extension to the polarized case was discussed in
III A. We can then rewrite Eq. (29) for the production of jets
in unpolarized (polarized) DIS at NNLO in terms of the
counterterms of Eq. (6) as:

ðΔÞσ̂NNLOO ¼ ðΔÞσ̂NLOOþjet− ðΔÞσ̂NLOOP2BþjetþðΔÞσ̂NNLOOincl

¼
Z
mþ1

h
dðΔÞσ̂ROþjet −dðΔÞσ̂AOþjet

i
þ
Z
m

�
dðΔÞσ̂VOþjetþdðΔÞσ̂COþjetþ

Z
1

dðΔÞσ̂AOþjet

�

−
Z
mþ1

h
dðΔÞσ̂ROP2Bþjet−dðΔÞσ̂AOP2Bþjet

i
−
Z
m

�
dðΔÞσ̂VOP2BþjetþdðΔÞσ̂COP2Bþjetþ

Z
1

dðΔÞσ̂AOP2Bþjet

�
þðΔÞσ̂NNLOOincl ;

ð30Þ

where we have used that the inclusive part can be expressed
in terms of the P2B counterterms and the double-virtual
matrix element for the observable O as:

ðΔÞσ̂NNLOOincl ¼
Z
mþ1

dðΔÞσ̂ROP2Bþjet

þ
Z
m

h
dðΔÞσ̂VOP2Bþjet þ dðΔÞσ̂COP2Bþjet

i
þ
Z
m−1

dðΔÞσ̂VVO : ð31Þ

In addition, the complete expression for the counterterm
dðΔÞσ̂AOþjet is that given by Eq. (8).

IV. RESULTS OF POLARIZED NLO DIJET
PRODUCTION

The first step to reach NNLO accuracy for jet production
in DIS lies in the calculation of the NLO dijet cross section.
Precisely, in this section we present our results for polarized
inclusive dijet production at NLO in the Breit frame (B).
We consider the Electron-Ion Collider kinematics, with
beam energies of Ee ¼ 18 GeV and Ep ¼ 275 GeV, and
reconstruct the jets with the anti-kT algorithm and
E-scheme recombination (R ¼ 1). Furthermore, for dijet
production we fix the normalization and factorization
scales central values as μ2F ¼ μ2R ¼ 1

2
ðQ2 þ hpB

Ti22Þ≡ μ20,
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with αs evaluated at NLO accuracy with αsðMzÞ ¼ 0.118,
and require that the pair of leading jets satisfy the
kinematical cuts:

pB
T;1 > 5 GeV;

pB
T;2 > 4 GeV;

jηLj < 3.5; ð32Þ

with the η cut imposed in the laboratory frame, while the
lepton kinematics is restricted by

0.2 < y < 0.6;

25 GeV2 < Q2 < 2500 GeV2: ð33Þ

The parton distributions sets used were the
NLOPDF4LHC15 [43] and DSSV [3,44] for the unpolar-
ized and polarized case, respectively.

We begin by presenting the LO and NLO results for the
unpolarized and polarized cross sections in Fig. 2, in terms
of the leading and subleading jet transverse momentum,
pB
T;1 and pB

T;2, respectively. The lower inset in each plot
shows the corresponding K-factor, defined as the ratio to
the LO cross section σLO, in order to quantify the effect
of the NLO corrections. The bands presented in Fig. 2
represent the estimation for the theoretical uncertainties,
obtained by independently varying the renormalization and
factorization scales as μR; μF ¼ ½1=2; 2�μ0 (with the addi-
tional constrain 1=2 ≤ μF=μR ≤ 2).
For all the distributions, rather large NLO corrections are

obtained, particularly for the low pB
T bins. These sizable

corrections are associated to the asymmetric cuts chosen for
the pB

T of the leading and subleading jets, which can already
be noted in the different coverage of each of the distribu-
tions. It is also worth noticing the difference in sign of
the NLO corrections, which enhance the distributions of
the leading jet, while suppressing the subleading jet

FIG. 2. Inclusive dijet production distributions as a function of the leading and sub-leading jet transverse momentum, pB
T;1 and pB

T;2,
respectively, for both the polarized and unpolarized cases. The bands reflect the seven point variation in the cross section when
independently changing the scales as μR; μF ¼ ½1=2; 2� 1

2
μ0. The lower inset for each plot depicts the K-factor, defined as the ratio to the

LO cross section.
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distributions. Similar comments can be made for the
polarized distributions in Fig. 2. Compared with the
unpolarized case, they show a milder enhancement of
the leading jet distribution and a stronger suppression of
the subleading jet distribution.
While single-jet production can be described in terms

of the jet pseudorapidity and transverse momentum, the
availability of a second jet allows to define more kinemati-
cal observables to analyze the underlying partonic kin-
ematics in detail. In that sense, it is instructive to study the
unpolarized cross section as a function of the usual dijet
kinematical observables hpB

Ti2, M12, η� and ξ2, defined in
Sec. II, as presented in Fig. 3.
As it was noted for the kinematics of HERA [33], higher

order corrections are sizable for all the variables under
consideration. The scale variations of the NLO calculation
are as large as the LO ones, or even larger, in the lower
bins of the M12, hpB

Ti2 and ξ2 distributions, as the infrared
limit is approached. As mentioned, this behavior is mainly
due to the asymmetrical cuts in pT imposed to the two jets.
In the Breit frame, LO kinematics implies that the two
outgoing partons generating the jets have opposite trans-
verse momentum, and therefore the region with hpB

Ti2 <
5 GeV is not accessible at that order. A similar argument

can be used to show that new regions of M12 < 10 GeV
and low ξ2 become accessible only at NLO. This discrep-
ancy in the available phase space at different orders is
known to cause instabilities in the perturbative expansion
[45]. Actually, for that forbidden phase space region the
calculation is effectively a LO one. Note, however, that the
use of symmetric cuts in pT leads to even worse perturba-
tive problems, due to the enhancement of large logarithmic
contributions related to the back-to-back configuration that
can completely spoil the convergence of the expansion
[33,46]. The NLO corrections show a clear pattern, shifting
the distributions to lower values of hpB

Ti2 < 5 GeV, which
are in turn correlated to lower values of M12 and ξ2, and
higher values of η�.
In Fig. 4 we show the same distributions of Fig. 3 but for

the polarized cross section. In addition to the uncertainty
associated to the scale variation, Fig. 4 also presents the
uncertainty associated to the polarized PDFs, estimated
using the DSSV set of PDFs replicas from [44]. Compared
to the unpolarized case, for lowM12, hpB

Ti2, η� and ξ2 it can
be seen that while the NLO corrections follow the same
pattern, they are generally milder, with lower K-factors.
There is also a difference in the behavior of the second
order corrections for higher values of M12, η� and ξ2,

FIG. 3. Inclusive dijet production distributions as a function of the variables hpB
Ti2, M12, η� and log10ðξ2Þ. The lower boxes show the

K-factor for each distribution.
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resulting in stronger suppressions than the ones observed in
the unpolarized case. The ξ2 distribution is particularly
shifted toward higher momentum fractions. The same
considerations regarding theoretical uncertainties apply
to the polarized case, leading to the strong NLO scale-
dependence. For most of the kinematical range, the PDFs
uncertainty is comparable to the scale variation bands,
highlighting the importance that higher order corrections
will have in more precise extraction of partonic distribu-
tions based on EIC observables.
The somewhat big NLO corrections, and the differences

between the unpolarized and polarized cases, can be better
understood by analysing the previous distribution at differ-
ent values ofQ2. As an example, in Figs. 5 and 6 we present
the unpolarized and polarized double-differential distribu-
tion, i.e., in bins of Q2 and log10ðξ2Þ, respectively.
Regarding the unpolarized distributions of Fig. 5 it can
be noted that, as expected, lowerQ2 values are correlated to
smaller momentum fractions, from which the cross section
receives its most important contributions. Dijet production
measurements at the EIC are therefore expected to explore
the mid-x region, 10−2 < x < 10−1. The NLO cross sec-
tions for the high Q2 bins are in good agreement with
the LO calculations and show small scale dependence,

indicating good convergence of the perturbative series.
In addition to the complementary constraints on the
quarks polarized and unpolarized distribution functions,
restrictions coming from this region on the gluon helicity
distribution, which is mainly probed down to x ∼ 5 × 10−2

by RHIC data, will be specially important. On the other
hand, in Fig. 5 it can be seen that both the K-factors and
theoretical uncertainties increase as lower Q2 values are
considered. This is consistent with the aforementioned
population of the new phase space region at low ξ2
becoming available at NLO.
Compared to the unpolarized case, the polarized dis-

tributions of Fig. 6 present two striking features: they
decrease at lower Q2, and they also display significant
differences in shape between LO and NLO results in that
region. Both features can be explained by the analysis of
the contributions from the quark and gluon channels to the
polarized cross section. In Fig. 7 we present, precisely, the
dijet double-differential polarized and unpolarized distri-
bution as a function of Q2 and log10ðξ2Þ, distinguishing the
contributions initiated by the quark and gluon channels.
In this case, the lower insets in the plot depict the ratio
between the gluon- and quark-initiated differential cross
sections. Compared to the unpolarized case, for which both

FIG. 4. Same as Fig. 3, but for the polarized case. The uncertainty associated the polarized PDFs is depicted with black error bars, in
addition to the theoretical uncertainty from scale variations.
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the gluon and quark-initiated contributions are positive,
the peculiar behavior of the polarized cross sections as a
function ofQ2 can be traced back to the negative sign of the
gluon contribution below Q2 ¼ 600 GeV, which becomes
more significant for lower values of Q2, as shown in the
ratio between the gluon and quark contributions. The
enhancement of the negative contribution from the gluonic
channel at low-Q2 leads to strong cancellations against the
positive quark contributions, and therefore to a reduction in
the polarized cross section. At the same time, this reduction
leads to larger relative theoretical uncertainties. The can-
cellation between channels is also responsible for the
change in the behavior observed in the ξ2 distributions
in Figs. 4 and 6 with respect to the unpolarized case, the
different shapes of the NLO corrections in the distributions
of the other kinematical variables and the somewhat large
uncertainty arising from the polarized partonic distribu-
tions. Fig. 7 also shows that the NLO shift in the polarized

ξ2 distribution of Fig. 4 is mostly associated to a shift in the
quark contribution toward lower momentum fractions.
The most relevant observables in polarized processes are

the double spin asymmetries, defined as the ratio of the
polarized and unpolarized cross sections ALL ¼ Δσ=σ,
since the cancellation of systematic uncertainties is
expected to happen in the quotient. In Fig. 8 we show
the double spin asymmetries and the associated theoretical
uncertainties for hpB

Ti2, M12, η� and ξ2, obtained perform-
ing simultaneous scale variations in both the numerator and
the denominator. The asymmetries values are typically of
order ∼ð1–10%Þ in the relevant regions, with a significant
reduction in the NLO values due to the higher K-factors
observed in the unpolarized cross sections. The only
exception is the ξ2 distribution, where the unusual behavior
due to gluon cancellation and the shift in the quark
contribution to the polarized cross section leads to an
enhancement in the asymmetry at lower momentum

FIG. 5. Inclusive dijet production unpolarized cross sections in bins of Q2, as a function of log10ðξ2Þ. The LO and NLO uncertainty
bands are obtained as in Fig. 4. The lower panels display the K-factors to the LO calculation.

FIG. 6. Same as Fig. 5, but for the polarized case.
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fractions, albeit the very small values of the asymmetry in
that region.
Once again, the behavior of the asymmetries can be better

understood by studying the double-differential Q2 depend-
ence of the distributions. Figure 9 depicts the double spin
asymmetry as a function of bothQ2 and ξ2. The reduction of
the polarized cross sections for low values of Q2 due to the
negative gluonic contribution leads to a sizable suppression
of the asymmetry in those bins for ξ2 ≳ 10−1. As expected, a
stronger dependence on the renormalization and factoriza-
tion scales is observed in the low Q2 region, while a better
convergence of the perturbative series is obtained as higher
values ofQ2 are approached. It is worth mentioning that, for
the first two bins of Q2, the significant shift in the NLO
quark contribution toward lower momentum fractions shown
in Fig. 7 results in an enhancement of the asymmetries for
ξ2 ≲ 10−1. The clear pattern of the NLO corrections to the
asymmetries can be easily understood by the direct com-
parison of the Figs. 5 and 6: high Q2 bins show K-factors
close to 1, due to the smaller corrections observed for both
the polarized and unpolarized distributions. The difference in

sign of the NLO corrections for each case in the high
momentum fraction region results in the reduction of the
asymmetries shown in Fig. 9, which becomes more impor-
tant as lower values of Q2 are reached. This very same
behavior has been seen for the other kinematical observables
M12, hpB

Ti2 and η�.

V. POLARIZED NNLO INCLUSIVE-JET
PRODUCTION

Having discussed our NLO dijet production calculation,
we can now turn to the NNLO corrections for single jet
production, obtained through the application of the P2B
method. In this section, we present our results for polarized
single-inclusive jet production at NNLO in the laboratory
frame (L), for the Electron-Ion-Collider kinematics.
Similarly to [18], the default distributions are obtained
reconstructing the jets with the anti-kT algorithm and
ET-scheme recombination, using a jet radius R ¼ 0.8,
and fixing the normalization and factorization scales central
values as μ2F ¼ μ2R ¼ Q2 ≡ μ20. As in the previous section,
αs is evaluated at NLO accuracy with αsðMzÞ ¼ 0.118.

FIG. 7. Same as Figs. 5 and 6, but separating the contributions initiated by quarks and gluons to the dijet cross section, both at LO
(dashed lines) and at NLO (solid lines). The lower insets show the ratio between the gluonic and quark contributions to the cross section.
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The reconstructed jet in the laboratory frame is then
required to satisfy:

5 GeV < pL
T < 36 GeV;

jηLj < 3; ð34Þ

while on the leptonic side we impose the additional cuts:

0.04 < y < 0.95;

25 GeV2 < Q2 < 1000 GeV2: ð35Þ

FIG. 8. Double spin asymmetries for dijet production, as a function of hpB
Ti2,M12, η� and ξ2. The lower boxes depict the K-factors to

the LO calculation.

FIG. 9. Double spin asymmetry as a function of log10ðξ2Þ andQ2. As in the previous cases, the inset lower boxes show the K-factor to
the LO asymmetry.
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The lower cut in Q2 was chosen to avoid differences in the
phase space available at different orders. Note that at LO
the transverse momentum of the jet in the laboratory frame
is given by ðpL

TÞ2 ¼ Q2ð1 − yÞ, and thus the region Q2 ≲
25 GeV2 is kinematically forbidden for the specified cuts in
pL
T . Since there is no NNLO global fit of polarized PDFs

available, the parton distributions sets used were, once
again, the NLO extractions NLOPDF4LHC15 [43] and
DSSV [3,44] for the unpolarized and polarized case,
respectively.
In Fig. 10 we present the cross section for single-

inclusive jet production in polarized DIS, as a function
of the jet transverse momentum pL

T , its pseudorapidity ηL,
and in terms of Q2 and x, calculated at LO, NLO and
NNLO accuracy. The lower insets in Fig. 10 show the
K-factors, defined as the ratios to the previous order, that
is, KNNLO ¼ σNNLO=σNLO and KNLO ¼ σNLO=σLO. As in
the case of dijet production, the theoretical uncertainty
bands were obtained performing a seven-point independent

variation of the renormalization and factorization scales as
μR; μF ¼ ½1

2
; 2�μ0. The uncertainty associated to the polar-

ized parton distributions was estimated using the DSSV set
of PDFs replicas. Note that due to the unavailability of
proper polarized NNLO PDF, this bands should be taken
only as a first attempt to quantify the nonperturbative errors
in the NNLO cross section. The same NLO PDFs were
used at all orders so as to quantify only the variations
arising from the perturbative calculation.
As it can be seen in Fig. 10, the main effect of higher

order corrections is to shift these distributions toward
higher values of pseudorapidity and lower values of
transverse momentum, since more jets originating from
the emission of additional partons become available in
those regions. In the case of the pseudorapidity distribution,
this is translated into high values of the NLO K-factor in
the forward region (ηL > 1), while a strong suppression
in the backward region (ηL < −1) is observed. NNLO
corrections have the same behavior, albeit with lower

FIG. 10. Polarized single-jet cross section, as distributions in transverse momentum pL
T , pseudorapidity η, photon virtuality Q2 and

Bjorken variable x at LO, NLO and NNLO. The bands reflect the seven point variation in the cross section when independently changing
the scales as μR; μF ¼ ½1=2; 2�μ0. The error bars correspond to the PDF’s errors in the NNLO result. The lower inset shows the
corresponding K-factors, as defined in the main text.
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values of K-factor. Similar comments can be made regard-
ing the transverse momentum distribution, which is
enhanced for lower values of pL

T .
For the pT distribution, the NNLO corrections are

typically of order 10%, while for the η distributions they
are of order 5%. It should be noted that while there is good
agreement between the NLO and NNLO calculations, with
overlapping bands throughout the kinematical range, antici-
pating convergence of the perturbative series, the scale
bands for the NNLO distributions are still somewhat large
in certain bins compared with those of the NLO. This effect
is associated with the kinematical suppression of the LO
contributions in some regions due to the cut enforced in y
and pL

T , which spoils the accuracy of the perturbative series
in that region. This can be better observed in the Q2 and x
distributions in Fig. 10. At low values of Q2 and x the
suppression of the Born cross section clearly correlates
with higher K-factors and scale bands, especially for
x≲ 5 × 10−3, where the LO is completely forbidden.
Other choices of the renormalization and factorization
scales central values, e.g., μ20 ¼ ðQ2 þ ðpL

TÞ2Þ=2, lead to
a similar behavior of the scale bands. The same effect

is also present in the unpolarized case for the aforemen-
tioned regions.
Even though the growth of the uncertainty bands at

NNLO in the pL
T and η distributions originates from the

difference in the available phase space at each order, the
sizes of the bands in this region are further enhanced in
the polarized case compared to the unpolarized one. This
results in bigger NNLO bands in pL

T and ηL distributions, as
observed in [18]. This enhancement is related to the fact
that in the polarized case there are cancellations between
processes initiated by different partons. To highlight this
point, in Figs. 11 and 12 we present the contributions of the
most relevant parton channels to the polarized and unpo-
larized cross section, respectively. In the polarized case, for
most of the explored Q2 and x values, the cross section is
dominated by initial u quark contribution. However, as
lower values of both Q2 and x are reached, there are
significant cancellations between the u quark channel and
the negative contribution of the d quark and gluon
channels, which accounts for higher relative uncertainties
once the sum over of all the initial parton contributions is
taken (the s quark also has a negative contribution, but it is

FIG. 11. Same as Fig. 10, but discriminating the contributions to the cross section coming from initial quarks and gluons.
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negligible). Since low Q2 and x correlate with low pL
T and

ηL ≳ 0, those same cancellations are translated into the
sizable NNLO scale bands in Fig. 10 in those ranges. The
unpolarized distributions in Fig. 12, by contrast, do not
show such cancellations, since all the quark flavors
contribute positively to the cross section and, most impor-
tantly, even though the gluon contribution is negative for
some portions of the phase space due to collinear factori-
zation counterterms, it is positive at low x, where the
contribution is most relevant.
For the polarized case, it is worth noticing that, even

though it is expected to have a greater gluon contribution at
low pL

T, since that region correlates with low Q2, the first
bin of the pL

T distribution is very small and slightly positive
(as opposed to the u and d quarks contributions). This is
related to the fact that the gluon contribution to the structure
function is positive below x ∼ 2 × 10−2. Since the structure
function is obtained by the integration over all the pL

T range,
as lower values of pL

T are reached the pL
T distribution must

become positive at some point.
Regarding the uncertainty associated to the PDFs in

Fig. 10, it is typically of order 5%–10% for the region of

fpL
T; η

Lg studied. Though this uncertainty is comparable
to the NNLO corrections for most of the kinematical
range, it should be noted that for the low pL

T region, it
becomes smaller than the NNLO corrections, highlighting
the relevance that NNLO extractions will have in order
to match the accuracy of the perturbative side. As in the
case of the scale-variations bands, the PDF uncertainty
becomes larger as lower values of x and Q2 are
approached, since the cancellation between the different
partonic channels for those bins is sensitive to changes in
the partonic distributions.
In the upper panels of Fig. 13 we present the double spin

asymmetries as a function of pL
T and ηL. Once again, the

scale bands are obtained by the simultaneous seven-point
variation of the scales in both cross sections. Its most
striking feature is the important NNLO suppression of the
asymmetry in the high pseudorapidity region, with milder
corrections for intermediate ηL. The different behavior of
the NNLO corrections to the asymmetry can be traced back
to the change of sign of the gluon-initiated contributions for
the polarized and unpolarized cross sections, which start at
OðαSÞ. To highlight this point, in the lower panels of

FIG. 12. Same as Fig. 11, but for the unpolarized case.
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Fig. 13 we also present the quark and gluon-initiated
contributions to the double spin asymmetry in pL

T and ηL.
The decomposition in partonic channels is made at the
numerator level, i.e., setting to zero the gluon or quark
polarization, but keeping all the contributions in the
denominator. While there are cancellations already present
at NLO at the higher pseudorapidities, the NNLO enhance-
ment of the gluon-initiated contribution to the cross section
(which is, effectively, a NLO one) for ηL ≳ 1, is translated
in a reduction of the quark contributions to the asymmetry
for that region and results in the foregoing suppression of
the double spin asymmetry. Note that higher values of
pseudorapidity are correlated to low x, where the gluon
contribution is most relevant and resummation of large
logarithmic corrections would be needed. It is also worth
mentioning that, although milder, sizable corrections are
obtained for ηL ≲ 1 and the low pL

T region.
Another feature associated to cancellation between

partonic channels in the polarized cross section is the
reduced dependence on the parameters of the jet-
reconstruction algorithm, compared to the unpolarized

case. To emphasize this point, in Fig. 14, we present the
NNLO cross sections as a distribution of both pL

T and ηL,
for different values of the jet radius R ¼ 0.5, 0.8, 1 used in
the anti-kT algorithm. In both cases, higher values of jet
radius correspond to larger cross sections in the whole
kinematical range due to the inclusion of more jets that
satisfy the imposed cuts. However, the polarized case
shows a reduced dependence in R at low pL

T and the
intermediate ηL values, precisely where the stronger can-
cellations between channels take place. This results in an
overall reduction of the dependence of the polarized cross
section on the jet parameter. It is worth noticing that while
the total cross section is affected by these strong cancella-
tions between channels, with the use of jet tagging
techniques [15,16] it could be possible to noticeably
modify the shape of the distributions, enhancing the
contributions from different partons.
The difference of sensitivity to changes in the jet radius

will in turn modify the behavior of the double spin
asymmetries. In Fig. 15 we present the NNLO double
spin asymmetries in the pL

T and ηL distributions for the R

FIG. 13. Double spin asymmetries and theoretical uncertainties up to NNLO (upper panels) and separation into partonic channels
(lower panels) as distributions of pL

T and η. For the upper panels the insets shows the corresponding K-factors, as defined in the main
text, while for the lower ones, the insets present the ratio between the gluonic and quark contributions to the asymmetry.

INCLUSIVE-JET AND DIJET PRODUCTION IN POLARIZED … PHYS. REV. D 103, 014008 (2021)

014008-17



values used before. As expected, a larger dependence on R
is obtained in those regions where the cancellation between
channels for the polarized cross sections are more impor-
tant. For those regions, the increase in R leads to a relative
increase of the unpolarized cross section, and consequently

to a reduction in the spin asymmetry. Conversely, lower
values of R produce an increment of the asymmetry in the
same regions. Figure 15 also shows the LO and NLO
asymmetries for R ¼ 0.8. Note that for ηL ≲ 1 and
pT ≲ 10, the variations with the jet radius are greater than

FIG. 14. NNLO polarized and unpolarized cross sections as a distribution of pL
T and ηL for different choices of the jet radius R value.

FIG. 15. NNLO double spin asymmetries as a distribution of pL
T and η for different choices of the jet radius R value.
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those coming from the perturbative series. The jet param-
eters are therefore expected to have sizable impact in the
double spin asymmetries in regions where cancellation
between partonic contributions take place in the polarized
cross section.

VI. CONCLUSIONS

In this paper we have presented the NLO calculation for
the production of dijets in polarized and unpolarized
lepton-nucleon DIS in the Breit frame, for the EIC
kinematics. Our calculation is based in a generalization
of the dipole subtraction method to handle the polarization
of initial-state particles, which is discussed in detail. The
cross sections were studied as functions of the leading jets
transverse momenta pB

T;1 and p
B
T;2, invariant mass of the jets

M12, the mean transverse momentum hpB
Ti2, the difference

in pseudorapidities η� and the dijet momentum fraction ξ2.
Additionally, the double-differential distributions inQ2 and
ξ2 were analyzed. Both for the polarized and unpolarized
cross sections, the differential distributions show important
NLO corrections, particularly for low values ofM12 and ξ2,
and higher values of η�, associated to differences in the
phase space available at each order. While the NLO
corrections obtained show good agreement with the LO
calculations and reduced dependence on the choice for the
factorization and renormalization scales, for values of Q2

above 250 GeV, anticipating convergence of the perturba-
tive expansion, the distributions for lower values of Q2

present sizable corrections as well as a strong dependence
on the scale choice. We noted that this effect is further
enhanced in the polarized cross sections, due to the non-
negligible negative contribution of the gluon-initiated
channel, producing noticeable differences between the
polarized results and their unpolarized counterparts. This
difference in behavior is translated to the double spin
asymmetries, with significant suppression in M12, η� and
hpB

Ti2. Once again, the corrections are more significant as
lower values of Q2 are approached.
The dijet calculation was in turn used to obtain the

polarized NNLO single-inclusive jet production cross-
section in the laboratory frame via the P2B method [18],
which combines the exclusive NLO dijet cross section
along with the inclusive NNLO polarized structure func-
tion. We expanded on our previous results to include a
better estimate of the theoretical uncertainty, as well as the
dependence on the jet radius. Good agreement was found
between the NLO and NNLO results for the range studied
in pL

T and ηL. The somewhat large size of some of the
NNLO uncertainty bands was linked to a combination of
the effects due to the difference in phase space available at
LO at lowQ2 and x, also present in the unpolarized case, as
well as the cancellation between partonic channels in the
polarized cross section. This channel cancellation also
leads to a reduced dependence of the polarized cross

section in the jet radius R, which in turn produces a more
noticeable dependence of the double spin asymmetries in R
in the regions of low pL

T and intermediate values of ηL. This
hints toward a sizable dependence of the polarized cross
section and asymmetries with the jet parameters in those
regions, as well as important sensibility to the recently
proposed jet-tagging techniques.
The results presented on this paper highlight the rel-

evance that higher order QCD corrections will have in the
precise description of the jet observables to be obtained in
the future EIC, as well as the potential of those measure-
ments to further improve our understanding of the spin
structure of the proton and, particularly, in the precise
extraction of polarized parton distributions.
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APPENDIX A: DIPOLE BUG IN DISENT

The presence of a bug in the gluon channel in DISENT

was reported long ago in [35–38], particularly while
studying the event shape distributions in DIS. After a
careful analysis, along with an extensive comparison with
DISASTER [47] (a code which showed good agreement with
resummed event shape calculations), and also by writing
independent codes, we found that the Born matrix element
used in one of the dipole subtraction terms in the gluon
channel had the momentum of two final-state partons
interchanged, leading to the reported discrepancies. Due
to the nature of the bug, it turns out to produce noticeable
differences only in certain extreme regions of the phase
space, and remains within the typical statistical uncertain-
ties of the calculations in many others.
We have checked that the fixed counterterm actually

corrects the reported disagreement between DISENT and
DISASTER in the event shapes, as well as the differences
between DISENT and the analytical calculation for logarith-
mically enhanced terms. As an example, we present in
Fig. 16 the difference between theOðα2SÞ coefficient for the
fixed-order Monte Carlo calculation and the expansion of
the resummed calculation for the gluonic contribution to
τzE , using DISASTER, the v0.1 version of DISENT and its
fixed version. The event shape presented was calculated (at
xbj ¼ 0.0039, Q2 ¼ 7.5 GeV and y ¼ 0.001) with the
programs Dispatch and DISresum, written by Salam et al.
[35,36,48]. Similar results are obtained in the case of τzQ .
We also found agreement between DISASTER and the
modified version of DISENT for the quark channel, and
for other event shapes.
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APPENDIX B: SPIN CORRELATIONS

As it was pointed out in Sec. III A, while, in principle,
the initial-state dipole factorization formula for an n-parton
scattering involves spin correlations between spin-
dependent kernels and (n − 1)-particle matrix elements,
those correlations cancel in polarized cross sections. The
appearance of such correlations, as well as their cancella-
tion in the polarized case, are simpler to deduce within the
helicity amplitudes formalism. Since the calculation of
polarized cross sections involve differences between the
helicity states of incoming particles, we consider an
n-particle scattering of the form

pλa
a þ pλ1

1 → pλ2
2 þ X

fλXf g
f ;

with p1 and p2 representing an incoming and an outgoing
parton, respectively. The superscript λi is used to indicate
the helicity state of the ith particle. pa represents an
additional incoming particle, while Xf is used for the
remaining n − 3 particles involved in the scattering. In the
collinear limit between the partons 1 and 2, and following
the notation from [49], the n-particle amplitude satisfies the
strict factorization formula

Mnðλ1; λ2; λa; fλXf
gÞ →1k2 gs

X
ce

X
λe

Cðce; c1; c2ÞSλ1;λ2;λe1e ðzÞ

×Mn−1ðλe; λa; fλXf
gÞ; ðB1Þ

where Sλ1;λ2;λe1e represents the splitting function with fixed
helicities for the process p1 → p2 þ pe, and Cðce; c1; c2Þ is
the associated color structure. Schematically, the collinear
limit can be represented as in Fig. 17.

It should be noted that, even after fixing all the external
particles helicities, the factorization at the amplitude level
involves the summation over the helicity states λe of the
intermediate parton. The case in which pe is a quark is
trivial, since helicity conservation at the vertex implies that
one of the terms in the sum over λe is zero. The case with an
intermediate gluon is, however, more involved. The exact
factorization is lost at the squared-amplitude level, through
the appearance of interference terms between the different
helicities in the propagator. Those interference terms give
rise to, precisely, the spin correlations noted in the dipole
factorization formula. The exact form of the correlation
terms can be easily obtained by squaring Eq. (B1):

jMnðλ1; λ2; λa; fλXf
gÞj2 !1k2 jN nðλ1; λ2; λa; fλXf

gÞj2
þRðλ1; λ2; λa; fλXf

gÞ; ðB2Þ

where

jN nðλ1; λ2; λa; fλXf
gÞj2

¼ g2SCjSλ1λ2þ1g ðzÞj2jMn−1ðþ; λa; fλXf
gÞj2

þ g2SCjSλ1λ2−1g ðzÞj2jMn−1ð−; λa; fλXf
gÞj2; ðB3Þ

and the interference term is given by

Rðλ1; λ2; λa; fλXf
gÞ

¼ 2g2S CRefSλ1λ2þ1g ðzÞðSλ1λ2−1g ðzÞÞ�
×Mn−1ðþ; λa; fλXf

gÞðMn−1ð−; λa; fλXf
gÞÞ�g:

ðB4Þ

In Eqs. (B3) and (B4) we introduced the short-hand
notation for the color factor

C ¼
X

c1;c2;ce;ce0

1

Nc1

Cðce; c1; c2ÞC�ðce0 ; c1; c2Þ; ðB5Þ

with 1=Nc1 denoting the average over the initial parton
colors. For the relevant cases, and using the normalization
from [50], C can take the values 2CA and CF, for an initial
gluon and quark, respectively. Notice that the interference

FIG. 17. Collinear behavior for the n-particle amplitude Mn in
the limit 1k2.

FIG. 16. Difference between the Oðα2SÞ coefficient for the
fixed-order Monte Carlo calculation and the expansion of the
resummed calculation for the gluonic contribution to τzE , using
DISASTER, the original version of DISENT and its fixed version.
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term depends on the initial parton helicity λ1 only through the spin-dependent kernels Sλ1λ2λe1g . In the calculation of the
unpolarized (polarized) cross section, we can then write:

ðΔÞσ ¼
X

λ2;λa;fλXf g

ðλaÞ
4

× ½jMnðþ; λ2; λa; fλXf
gÞj2 þ ð−ÞjMnð−; λ2; λa; fλXf

gÞj2�; ðB6Þ

where the helicity factor ðλaÞ should only be considered in the polarized case. Using Eq. (B2), the unpolarized (polarized)
cross section can in turn be expressed as

ðΔÞσ ¼
X

λ2;λa;fλXf g

ðλaÞ
4

× ½jN nðþ; λ2; λa; fλXf
gÞj2 þ ð−ÞjN nð−; λ2; λa; fλXf

gÞj2

þRðþ; λ2; λa; fλXf
gÞ þ ð−ÞRð−; λ2; λa; fλXf

gÞ�: ðB7Þ
We can then write explicitly the correlation terms in the second line of Eq. (B7) and sum over the polarizations of the

final-state particles XfX
λ2;fλXf g

½Rðþ; λ2; λa; fλXf
gÞ þ ð−ÞRð−; λ2; λa; fλXf

gÞ�

¼ 2g2S CRefSþ−þ
1g ðzÞðSþ−−

1g ðzÞÞ� ×Mn−1ðþ; λaÞðMn−1ð−; λaÞÞ�g
þ 2g2S CRefSþþþ

1g ðzÞðSþþ−
1g ðzÞÞ� ×Mn−1ðþ; λaÞðMn−1ð−; λaÞÞ�g

þ ð−Þ2g2S CRefS−þþ
1g ðzÞðS−þ−

1g ðzÞÞ� ×Mn−1ðþ; λaÞðMn−1ð−; λaÞÞ�g
þ ð−Þ2g2S CRefS−−þ1g ðzÞðS−−−1g ðzÞÞ� ×Mn−1ðþ; λaÞðMn−1ð−; λaÞÞ�g

¼
�
4g2S CRefðSþ−þ

1g ðzÞðSþ−−
1g ðzÞÞ� þ Sþþþ

1g ðzÞðSþþ−
1g ðzÞÞ�Þ ×Mn−1ðþ; λaÞðMn−1ð−; λaÞÞ�g unpolarized

0 polarized
: ðB8Þ

In the last step we used that parity conservation implies that

Sþþ−
1g ðzÞ ¼ ðS−−þ1g ðzÞÞ�; Sþ−þ

1g ðzÞ ¼ ðS−þ−
1g ðzÞÞ�;

Sþþþ
1g ðzÞ ¼ ðS−−−1g ðzÞÞ�; Sþ−−

1g ðzÞ ¼ ðS−þþ
1g ðzÞÞ�; ðB9Þ

so all the interference terms in Eq. (B8) cancel each other in the polarized cross section. Thus, in the polarized case we
simply obtain

Δσ ¼
X

λ2;λa;fλXf g

λa
4
½jN nðþ; λ2; λa; fλXf

gÞj2 − jN nð−; λ2; λa; fλXf
gÞj2�

¼
X

λ2;λa;fλXf g

λa
4
½g2SCjSþλ2þ

1g ðzÞj2jMn−1ðþ; λa; fλXf
gÞj2 þ g2SCjSþλ2−

1g ðzÞj2jMn−1ð−; λa; fλXf
gÞj2

− g2SCjS−λ2þ1g ðzÞj2jMn−1ðþ; λa; fλXf
gÞj2 − g2SCjS−λ2−1g ðzÞj2jMn−1ð−; λa; fλXf

gÞj2�

¼
X
fλXf g

4πα2S
p1 · p2

ΔP<
1gðzÞjΔMn−1ðfλXf

gÞj2 ¼ 4πα2S
p1 · p2

ΔP<
1gðzÞjΔMn−1j2; ðB10Þ

where we have used that the polarized Altarelli-Parisi kernels for z < 1, ΔP<
1jðzÞ, can be obtained from the helicity-

dependent kernels as

1

2pi · pj
ΔP<

ijðzÞ ¼
X
λi;λj

λiλjjSλiþλj
ij ðzÞj2 ¼

X
λi;λj

λiλjjSλi−λjij ðzÞj2; ðB11Þ

and defined
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jΔMn−1j2 ≡ X
λe;λa;fλXf g

λeλa
4

jMn−1ðλe; λa; fλXf
gÞj2: ðB12Þ

For the unpolarized cross section, a similar procedure
leads to [49]:

σ ¼ 4πα2S
p1 · p2

P<
1gðzÞjMn−1j2 þ 4πα2S

p1 · p2

Q<
1gðzÞjM̃n−1j2;

ðB13Þ

where in the second term, the one that originates from spin
correlations, we defined

jM̃n−1j2¼Re

�h12i
½12�×

X
λa

1

2
Mn−1ðþ;λaÞðMn−1ð−;λaÞÞ�

�
;

ðB14Þ

while the factor Q<
1gðzÞ takes the values −4CAzð1 − zÞ and

4TRzð1 − zÞ for an initial gluon and quark, respectively.
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