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Abstract

Background: The future productivity of wheat (T. aestivum L.) as the most grown crop worldwide is of utmost
importance for global food security. Thousand kernel weight (TKW) in wheat is closely associated with grain
architecture-related traits, e.g. kernel length (KL), kernel width (KW), kernel area (KA), kernel diameter ratio (KDR), and
factor form density (FFD). Discovering the genetic architecture of natural variation in these traits, identifying QTL
and candidate genes are the main aims of this study. Therefore, grain architecture-related traits in 261 worldwide
winter accessions over three field-year experiments were evaluated.

Results: Genome-wide association analysis using 90K SNP array in FarmCPU model revealed several interesting
genomic regions including 17 significant SNPs passing false discovery rate threshold and strongly associated with
the studied traits. Four of associated SNPs were physically located inside candidate genes within LD interval e.g.
BobWhite_c5872_589 (602,710,399 bp) found to be inside TraesCS6A01G383800 (602,699,767–602,711,726 bp).
Further analysis reveals the four novel candidate genes potentially involved in more than one grain architecture-
related traits with a pleiotropic effects e.g. TraesCS6A01G383800 gene on 6A encoding oxidoreductase activity was
associated with TKW and KA. The allelic variation at the associated SNPs showed significant differences betweeen
the accessions carying the wild and mutated alleles e.g. accessions carying C allele of BobWhite_c5872_589,
TraesCS6A01G383800 had significantly higher TKW than the accessions carying T allele. Interestingly, these genes
were highly expressed in the grain-tissues, demonstrating their pivotal role in controlling the grain architecture.

Conclusions: These results are valuable for identifying regions associated with kernel weight and dimensions and
potentially help breeders in improving kernel weight and architecture-related traits in order to increase wheat yield
potential and end-use quality.

Keywords: Thousand kernel weight, Winter wheat, GWAS, Grain architecture, Candidate genes

Background
Meeting the globally increasing demand for wheat (T.
aestivum L.), the main source of protein and calories in
human food is a major aim to ensure global food

security. By 2050, the world population will reach 9800
billion and the annual rate of food demand will reach
1.6% surpassing the current annual genetic gains of this
crop [1].
The increase in grain yield had been based mainly on

the increase in the number of grains per area [2, 3],
whereas some other traits as thousand-grain weight
(TKW) remained unchanged [4]. However, increasing
grain yield and its potential could be reached through
improving grain architecture-related-traits which helps
in boosting TKW [5, 6].
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Although the trade-off between the grain number and
TKW is well known [7–9], no differences in TKW have
been found in some genotypes with a high spikelet num-
ber [10] indicating that a high TKW can be achieved
keeping the grain number unmodified and potentially in-
creasing grain yield. This suggests that selection for
heavier grains could be highly effective for improving
wheat yields [11]. Therefore, understanding the genetic
basis of grain architecture related-traits is important to
accelerate the genetic gain of wheat grain yield. Never-
theless, TKW and kernel size are complex genetic traits
controlled by multiple loci/genes with the influnce of en-
vironmental cues and genotype × environment (G × E)
interactions [12, 13].
Kernel weight contributes about 20% of the genetic

variation in grain yield. Besides that, kernel weight is a
stable, heritable character, thus suitable to select in seg-
regating generations in plant breeding [14]. Furthermore,
TKW was also reported to increase seedling vigor and
germination [15]. A higher TKW also generates a higher
flour yield [16, 17]. In durum wheat, TKW, kernel vol-
ume and test weight are also associated with semolina
yield [18].
Grain architecture-related traits can also be associated

with milling and processing wheat quality [19, 20]. A
close phenotypic association between TKW with other
kernel size traits such as kernel length (KL), kernel
width (KW), and kernel diameter ratio (KDR) in bread
wheat has been recognized [15] and those traits have
been reported as modifying milling quality [21]. It has
been indicated that grain characteristics are important
attributes for determining the market value of wheat
grain since they influence the specific weight and mill-
ing performance. Moreover, Evers et al. [22] reported
that large and spherical grains optimize grain morph-
ology increasing milling efficiency. For their part, Millar
et al. [23] described that kernel size was associated with
various characteristics of flour, such as protein content
and hydrolytic enzymes activity that are closely related
to baking quality and end-use suitability whereas Mor-
gan et al. [24] reported the association of kernel size
with flour-water dough quality. Despite this, the pheno-
typic and genetic variation of grain morphology is sur-
prisingly understudied compared to other grain yield
components, mainly due to the difficulty in quantifying
this trait [25–28].
Exploration of crop genetic resources is useful to

recognize sources of variation for agronomic and physio-
logical traits and discovery of new alleles for improving
yield potential, their components as well as grain quality
traits [11, 29, 30]. Moreover, quantitative trait loci
(QTL) mapping is a key approach to understand the
genetic architecture of kernel traits. This tool has been
implemented in several crops and generates important

progress in identifying major QTL and isolating under-
lying genes for grain weight and size in rice, maize,
and barley [31–33]. For bread wheat, several QTL
associated with kernel morphology have been reported
in recombinant inbred lines (RIL) populations such as
qTKW-1A.1, qTKW-2D.4 and QTkw.ncl-5B.2 on chro-
mosomes 1A, 2D and 5B, respectively [20, 21, 32, 34,
35], doubled-haploid (DH) populations like Xgwm234,
XwPt0052 and XwPt9824 on chromosomes 5B, 6B and
7A, respectively [15, 21, 36–38] and F2 populations
containing synthetic hexaploid wheat lines such as
Xcfd282-Xbarc62, Xhbe341-Xbarc225 and Xhbd166-
Xcfd81 on chromosomes 1D, 4D and 5D, respectively
[39]. Genome-wide association scan (GWAS) has been
used to detect several genomic regions and candidate
genes underlying the natural variation of TKW and
other grain yield components [9, 11, 14, 25, 40–43].
Up to now, QTL associated with grain architecture traits
in winter wheat have been reported (e.g., AX_111147652
on 1B; AX_110046841 on 4A; AX_110713957 on 4B;
AX_110958315 on 5A; IWB50649 on 5B) but new efforts
are required exploring different environments and
germplasm from different origins in order to enhance
grain yield and quality.
In addition, most of what is known about genetic

control of TKW had been carried out using bi-
parental populations which present some limitations
[34, 38, 44]. Several candidate genes have been associ-
ated with TKW and related traits QTLs [14, 41, 42].
For example, a pseudo-response regulator (Ppd-A1) at
2A (TRITD2Av1G019250), TRITD4Bv1G171270 at 4B
encoding a Big Grain 1 protein, and two other candi-
date genes at 6B (TRITD6Bv1G005370 and
TRITD6Bv1G005450) encoding an acid β-
fructofuranosidase have been detected within QTL for
KL and TKW in recombinant inbred lines (RILs)
population [45]. Interestingly, QTL for KA with can-
didate genes involved in auxin were detected, for in-
stance, TRITD1Bv1G118820, TRITD2Av1G189400 and
TRITD7Bv1G173200 encoding auxin response while
TRITD4Bv1G175480 involved in auxin signaling and
TRITD3Av1G012070, encoding for a Flavin-containing
monooxygenase as an auxin biosynthesis. Moreover,
candidate genes encoding for cytochrome P450 were
found in most of the TKW QTL [45].
Other candidate genes as TraesCS4A02G229100

which is an auxin-regulated gene involved in organ
size and TraesCS4A02G2 corresponding to a polyga-
lacturonase involved in carbohydrate metabolic
process increasing kernel size and TKW [43] were
found on chromosome 4AL. However, associations
varied according to the environments and genotypes,
indicating that new studies in different environments
and germplasm should be carried out.
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Therefore, to gain deeper insights into the genetic
basis of grain architecture-related-traits that could be of
interest for the future improvement of grain yield and
quality, a GWAS was undertaken in a diverse winter
wheat panel of 261 genotypes tested during 3 years. For
this purpose, 17,093 SNPs markers with recently known
physical position were used to detect the most signifi-
cant and effective SNP and for the identification of can-
didate genes underlying the studied traits. Our results
showed 17 highly associated SNPs across 9 chromo-
somes of which four multi-traits associated SNPs were
reported on chromosomes 1B, 2A, 5B, and 6A. These
SNPs were located within the physical positions of can-
didate genes which are potentially associated with grain
architecture-related traits and potentially involved in im-
proving grain weight and size.

Results
Population structure and SNP coverage
The markers were distributed within the whole genome.
The highest coverage of markers (51.5%) was on genome
B with 8809 SNPs, genome A was covered by 38.6% of
the whole markers with 6595 SNPs, while D genome
presented the lowest coverage, 9.9% (1689 SNPs). The
homoeologous group 1 chromosome had the highest
number of SNPs (17.96%), while the chromosomes of
group 4 presented only 7.02%. Chromosome 5B har-
boured the highest number of SNPs with 1784 markers,
while chromosome 4D held only 46 SNPs (Supplemen-
tary Fig. S2).
Based on the PCA, the panel clustered in three groups

strongly according to their different origins: 66 geno-
types from Central-Northern Europe (25.2%), 146 geno-
types from Eastern Europe-Western Asia (55.6%), and
42 North-American accessions (16%) (Table S1; Supple-
mentary Fig. S3). Heatmaps kinship matrix with dendro-
grams confirmed that there are clusters among the
accessions based on the used SNPs (Supplementary Fig.
S4). The mean r2 values for the whole wheat genome de-
creased with increasing distance between SNPs as Mbp.

The average LD decay distance for the whole genome
was approximately 2 Mbp (Supplementary Fig. S5).

Variation in seed size-related traits and correlations
Data analysis revealed extensive phenotypic variation in
all studied traits suggesting the suitability of the used
panel for association genetic studies. Phenotypic values
for each of the six traits were found normally distrib-
uted. All variables analyzed were significantly influenced
by the years, genotypes, and G × Y (environment) inter-
actions (p < 0.001) (Table 1). Broad-sense heritability
was high ranging from 0.87 (Factor form density) to 0.93
(Kernel length). The main results and summary statistics
are indicated in Table S2.
For TKW, BLUEs values across the three field environ-

ments (years) varied from 31.06 to 60.16 g, showing
ranges of 29.08 to 61.11 g (2016), 31.15 to 60.37 g
(2017), and 31.04 to 63.05 g (2018) as shown in Table S2
and Fig. 1. The KL means ranged from 5.60 to 7.54 mm.
Values ranged from 5.57 to 7.70 mm (2016), 5.62 to 7.60
mm (2017), and 5.54 to 7.44 mm in 2018. Kernel width
(KW) varied from 3.10 to 4.06 mm (2016); 3.06 to
3.96 mm (2017); 3.05 to 3.97 mm (2018) and 3.14 to
3.88 mm (BLUEs). Variations in KA fluctuated be-
tween 13.05–22.23 mm2 (2016), 13.10–21.92 mm2

(2017), 12.81–21.75 mm2 (2018) and 13.26–21.52 mm2

(BLUEs). KDR ranged from 1.58 to 2.15 (2016); 1.60
to 2.15 (2017); 1.58 to 2.07 (2018) and 1.59 to 2.11
(BLUEs). BLUEs values for FFD ranged from 1.66 to
2.13. FFD varied between 1.58–2.12 (2016), 1.63–2.12
(2017) and 1.66–2.13 (2018) (Table S2; Fig. 1; Supple-
mentary Fig. S6). Boxplots showing natural pheno-
typic variation among genotypes across years are
indicated in Fig. 1. The evaluated traits showed high
heritability (> 0.87) over the 3 years, indicating that
most of the traits were stable and largely determined
by genetic factors (Table 1 Supplementary Fig. S6).
TKW showed significant (P < 0.001) and positive cor-

relation with KA (0.91), KW (0.82), KL (0.78), FFD
(0.68) and a weaker association with KDR (0.13). The
KA revealed a strong correlation with KL (0.90), KW

Table 1 P values and broad sense heritability of Thousand-kernel weight (TKW), Kernel length (KL), Kernel width (KW), Kernel area
(KA), Kernel diameter ratio (KDR) and Factor form density (FFD) in an experiment with 261 wheat genotypes evaluated during three
years

Trait Year Genotype Genotype×Year H2

Thousand kernel weight (TKW) *** *** *** 0.90

Kernel length (KL) *** *** *** 0.93

Kernel width (KW) *** *** *** 0.88

Kernel area (KA) *** *** *** 0.90

Kernel diameter ratio (KDR) *** *** *** 0.92

Factor form density (FFD) *** *** *** 0.87

H2: broad-sense heritability. *** indicate significance P < 0.001
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(0.84) while weaker associations were detected for KDR
(0.24) and FFD (0.33). The KL and KW presented a posi-
tive correlation (0.55), while a negative association was
reported for KW and KDR (− 0.31) and KDR with FFD
(− 0.14) (Fig. 2). The correlation values suggesting that
common genetic factors controlling more than two traits
are expected to be detected in the current study.
Important differences in these traits were detected

when the different origins of the genotypes were con-
trasted. In this sense, those cultivars from East Europe-
Western Asia (e.g., Russia, Kazakhstan, Kirgizstan,

Ukraine) presented higher TKW (48.18 g) and KA
(18.28mm2) compared to those from Central and
Northern Europe (45.36 g; 17.81 mm2) (France, Poland,
Germany, UK, Romania, Sweden, Finland, etc.) and
North America which presented the lowest values
(41.41 g; 16.32 mm2) (Supplementary Fig. S7).

Candidate genes underlying grain architecture-related
traits in wheat
The highly significant SNP markers which passed the
FDR threshold and associated with more than one trait

Fig. 1 Boxplot for a Thousand kernel weight (TKW-g), b Kernel area (mm2), c Kernel width (mm), d Kernel length (mm), e Kernel diameter ratio
and f Factor form density in 261 winter wheat genotypes during three years and BLUEs
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were selected for detecting putative candidate genes.
One hundred forty-nine high confidence candidate genes
were fallen within the LD interval (2Mbp) (Table 2;
Table S4). Some of these genes were found to encode
proteins with known functions, however, other genes
showed unknown functions. Four SNPs were found to
be inside the physical position of four novel candidate
genes those were selected according to their annotation
and association with several grain architecture traits.
The candidate gene TraesCS1B01G303200 on chromo-

some 1B (position 524,153,507–524,155,132 bp) was an-
notated as a protein of unknown function DUF1677 in
rice (O. sativa). The candidate gene TraesC-
S2A01G136800 is located on chromosome 2A (position
82,349,905–82,354,821 bp) and has a role in Heat shock
protein DnaJ, cysteine-rich domain. The alleles of SNP
Excalibur_c12169_1088 (position 82,350,252–82,350,352
bp) which is located within the interval of the previous
candidate gene did not show a significant effect on the
associated traits as shown in Fig. 4. On chromosome 5B,

SNP RAC875_c9150_2945 (position 459,477,406–
459,477,506 bp) is co-located within the candidate gene
TraesCS5B01G274000 (position 459,476,178–
459,493,013 bp); the carrying alleles are C and T where
allele C affect significantly KA and KL (p < 0.05) (Fig. 4).
The candidate gene annotates P-loop containing nucleo-
side triphosphate hydrolase. The last identified candidate
gene TraesCS6A01G383800 is located on chromosome
6A (position 602,699,767–602,711,726 bp) and en-
codes an oxidoreductase activity, acting on a sulfur
group of donors, NAD(P) as acceptor. The SNP Bob-
White_c5872_589 located within the gene (position
602,710,319–602,710,419 bp) held C and T alleles, where
allele C affected TKW significantly (p < 0.01) but had no
significant effect on KA.
The expression analysis of candidate genes in different

grain tissues showed a wide range of expression for the
genes (Fig. 5). In general terms, gene TraesC-
S6A01G383800 shows the highest expression in most of
the grain tissues (grain, aleurone layer, starchy

Fig. 2 Pearson Correlation Coefficient values in wheat genotypes based on BLUEs value. The degree of significance for all correlations was p <
0.001. The color and size of the ellipse reflect the strength of the correlation
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endosperm and the seed coat, endosperm, grain transfer
cells, and whole endosperm) while genes
TraesCS1B01G303200 and TraesCS2A01G136800 also
showed high values. For their part,
TraesCS5B01G274000 gene had very low expression
compared with the other three but showed high expres-
sion values for embryo proper (Fig. 5).
Interestingly in Chromosome 1A, the SNP TA001286–

0611-w showed a significant association with TKW and
a weaker association with KA (LOD = 3.18). This region
harbors the candidate gene TraesCS1A01G007200 (pos-
ition 3,776,265–3,777,399 bp) which annotates Gliadin/
LMW glutenin/Bifunctional inhibitor/plant lipid transfer
protein/seed storage helical domain (Table S3). The ana-
lysis of SNP allele variation in marker TA001286–0611-
w (position 3,777,195–3,777,321 bp) showed that allele C
has a significant impact on TKW (p < 0.01) but had no
effect on KA compared to allele T (Data not shown).

GWAS results
In total, 17 MTAs across 9 chromosomes related to
grain architecture related-traits were detected above the
false discovery rate (FDR) threshold (−log10 > FDR). FDR
threshold was above than -log10 > 4.2 for the studied
traits. Therefore, we reduced the number of spurious as-
sociations by only considering those SNPs, which
exceeded the FDR. Markers were identified on chromo-
somes 1A (1), 1B (2), 2A (2), 2B (3), 3A (1), 4B (1), 5B
(4), 6A (2), 6B (1) (Fig. 3, Supplementary Fig. S8 and
Table S3).
For TKW, seven MTAs were identified and present on

chromosomes 1A (1), 2A (1), 2B (2), 6A (1) and 6B (1).
Four of these markers located on chromosomes 2A, 2B,

6A, and 6B showed highly significant associations
(−log10 > 5). The most significant marker (−log10 = 6.91)
was Excalibur_c12169_1088 located in chromosome 2A
and affected this trait by + 2.176 g (R2 = 5.2%). The
phenotypic variation explained by markers (R2) ranged
between 3.2 to 5.2% (Supplementary Table S3).
For kernel area, seven MTAs on chromosomes 1B (1),

2A (1), 2B (1), 3A (1), 4B (1), 5B (1) and 6A (1) were re-
ported. Six of these MTAs located on 1B, 2A, 2B, 3A, 5B
and 6A showed -log10 > 5. For this trait, markers
Tdurum_contig59780_988 located on chromosome 2B
(−log10 = 6.88, Effect = − 0.408 mm2, R2 = 2.8%), Excali-
bur_c12169_1088 on chromosome 2A (−log10 = 5.76, Ef-
fect = + 0.576 mm2; R2 = 1.9%) and wsnp_Ex_c1600_
3051075 on chromosome 1B (−log10 = 5.66, Effect = +
0.605 mm2, R2 = 1.9%) were the most significant ones de-
tected. Marker effects oscillated between 1.9 to 2.6%
(Supplementary Table S3).
Three MTAs related to kernel length were detected on

chromosome5B (RAC875_c9150_2945, Excalibur_
c23709_938 and Kukri_c10530_1013) that showed high
effects in these traits. R2 reached values of 2.0 to 2.2%.
No MTAs were detected for FFD, KDR and KL when

the -log10 > FDR threshold was used. Conversely, several
MTAs were reported between the -log10 > 3 and
-log10 < FDR range: 5 (KA), 2 (FFD), 19 (KDR), 3 (KA),
1 (TKW), 23 (KL). Information about SNP detected for
each trait, their physical position, −log10, MAF, effect,
related candidate genes, and their functions are shown
in Supplementary Table S3.
For all of these markers associated with the studied

traits, we detected the closest candidate genes based on
the physical position within local blocks of LD. Our

Table 2 Distribution of pleiotropic loci associated with two or more grain architecture related traits

Chr Marker Trait/Effect/
−log10(p-
value)

Marker
Position (bp)
and alelles

Candidate gene-
Genomic location

Annotation

1B wsnp_Ex_
c1600_3051075
(IWA2084)

TKW (+
1.611) 4.20
KA (+ 0.134)
5.66

524,154,547–
524,154,747
T-G

TraesCS1B01G303200
(524153507–
524,155,132)

Protein of unknown function DUF1677, O. sativa

2A Excalibur_
c12169_1088
(IWB22047)

TKW (+
2.176) 6.91
KA (+ 0.576)
5.76

82,350,252–
82,350,352
A-G

TraesCS2A01G136800
(82349905–
82,354,821)

Heat shock protein binding (Gos)
Heat shock protein DnaJ, cysteine-rich domain (interpros)

5B RAC875_c9150_
2945
(IWB61034)

KA (− 0.318)
5.23
KL (− 0.110)
4.20

459,477,406–
459,477,506
C-T

TraesCS5B01G274000
(459476178–
459,493,013)

P-loop containing nucleoside triphosphate hydrolase
(interpros)

6A BobWhite_
c5872_589
(IWB4014)

TKW
(−1.755)
6.34
KA (−0.516)
5.70

602,710,319–
602,710,419
C-T

TraesCS6A01G383800
(602699767–
602,711,726)

Oxidation-reduction process/MF: oxidoreductase activity/MF:
NADP binding/MF: oxidoreductase activity, acting on a sulfur
group of donors, NAD(P) as acceptor/BP: cell redox
homeostasis/MF: flavin adenine dinucleotide binding/MF:
glutathione-disulfide reductase activity/BP: glutathione meta-
bolic process

TKW Thousand-kernel weight, KL Kernel length and KA Kernel area, Chr Chromosome, Position (Physical, bp); −log10 (p-value (SNP))
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results showed that four MTAs across four chromo-
somes are associated with more than one trait. Those
MTAs were detected on 1B (TKW-KA), 2A (TKW-KA),
5B (KA-KL) and 6A (TKW-KA) (Table 2).

Discussion
Genotypic variability in grain architecture traits
The identification of factors affecting grain weight and
grain architecture is of major importance to accelerate
the rate of genetic gain of wheat and increase grain qual-
ity. Despite the high number of identified QTL control-
ling grain morphology in wheat, the implemented
studies are scarce or have been carried out partially
using bi-parental populations e.g., DH, RILs, and F2 pop-
ulations [14, 15, 21, 26, 27, 34, 37, 38, 44, 46]. This study
explores the power of GWAS to identify genomic re-
gions associated with six-grain architecture related-traits
in a novel set of 261 winter wheat genotypes, using
17,093 SNP markers in three environments. Our results
indicate an extensive phenotypic variation in all traits
evaluated across the genotypes. A high heritability
(0.87–0.93) and high correlation among environments
was observed, indicating the feasibility of this panel for
selection of traits related to grain yield and quality im-
provement [47]. Our results indicate the usefulness of
the population used for GWAS studies. In addition, the

high diversity of these genotypes can provide more valu-
able inference compared to bi-parental populations by
taking advantage of maximum allelic diversity as was
suggested by several authors [48, 49]. Furthermore, the
variation on grain architecture-related traits based on
population structure presented significant differences
among geographical regions showing that those cultivars
from Eastern Europe-Western Asia had higher TKW
and KA compared to those from Central-Northern Eur-
ope and North America.

Marker-traits association related to grain architecture
Our analysis detected 17 marker-trait associations re-
lated to grain architecture traits across 9 chromosomes,
indicates that these are quantitative traits under poly-
genic control as was reported [26]. These SNPs were
passed FDR analysis that provided highly significant
true associations (P-values ≥ FDR) which can be used in
further analysis.
In this study, TKW among 261 winter wheat geno-

types showed variability from 31 to 60 g and 7 MTAs re-
lated to this trait were detected on chromosomes 1A,
2A, 2B, 5B, 6A, and 6B. Previous studies identified QTL
on chromosomes 1A [50], 2A [9, 26, 42, 51], 2B [9, 40,
52], 3A [40, 52–54], 5B [53], 6A [9, 50, 51] and 6B [9,
26, 53]. To the best of our knowledge, the identified

Fig. 3 Manhattan plots showing significant marker-trait associations for six traits related to grain architecture in 261 winter wheat genotypes
using BLUEs values. Red dots indicate significant markers (p < 0.001; −log10 > FDR)
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MTAs for TKW in this study have not been reported
yet and they are potentially novel MTAs responsible for
this trait. In addition, candidate genes for TKW have
also been identified by several authors [43, 45, 55] but as
far as we know, none of them are coincident with the
ones reported in this work and its corresponding func-
tions (Table 2).
In the same way, extensive genotypic variation and

significant G × E interactions were reported for KA,
KL, KW, FFD, and KDR. Although previous studies
reported QTL associated with KA [26, 51, 56], KL
[26, 51, 57–59], KW [59], FFD [58], KDR [20, 58, 60],
these markers have been documented in different po-
sitions to those found in our work, indicating that the
associations reported in our work are novel for these
traits. Moreover, four novel MTAs across and related
to more than one trait (pleiotropic effects) were de-
tected on chromosomes 1B (TKW-KA), 2A (TKW-
KA), 5B (KA-KL), and 6A (TKW-KA) (Table 2; Fig. 4
and Supplementary Fig. S8).
The identification of underlying genes with annota-

tions related to the grain architecture traits provides fur-
ther reliability for the MTAs identified in the current
study. Although high number of candidate genes have
been detected, of which four HC candidate genes re-
ported in our work have shown effects in other agrono-
mical traits, none of them have been documented as
effective on the size, shape, and weight of the grain and
can be considered novel.

In this work, we found that the allelic variation at the
locus of the gene TraesCS1B01G303200 (chromosome
1B) that annotated as Protein of unknown function
DUF1677 (O. sativa) showed its influence on TKW and
KA. Even though Gerard et al. [61] documented an ef-
fect of this gene on yield-related traits such as grains per
spike, the relationship of this gene with grain architec-
ture has not been previously reported.
The candidate gene TraesCS2A01G136800 on

chromosome 2A has a role in Heat shock protein (HSP)
DnaJ, a cysteine-rich domain, which is a major protein
in response to stresses ([62], Preprint). The only protein
of known function from plants that contains the Cys-
rich domain of DnaJ-like proteins is maize BSD2 [63].
The DnaJ-like proteins with other HSP are considered
important components in the cytosol and organelles for
protein metabolism [64]. Heat stress during the grain
filling stage affects the translocation of photosynthates
to the grains and the synthesis and deposition of starch
[65], resulting in TKW reductions and alterations in the
grain morphology. The recent report mention that, the
growing season 2017/2018 was the mostest dryness sea-
son in IPK since long-ago that influnce spikelet develop-
ment and abortion in barley [66], that can also explain
the effect of heat (high temperture) on the TKW. The
synthesis of HSPs is believed to play an important role
either in preventing or minimizing the negative effects
of high temperature both at the cellular and molecular
levels. This gene was related to TKW and KA suggesting

Fig. 4 The structure of the candidate genes with the position of the co-located SNPs within the gene and SNP-gene haplotype analysis. The
degree of significance is indicated as *p < 0.05; **p < 0.01; ns: not significant

Schierenbeck et al. BMC Plant Biology          (2021) 21:417 Page 8 of 14



its important role in controlling grain weight and archi-
tecture that needs further molecular validation. A recent
report from Hu et al. [67] documented 3 QTLs associ-
ated with heading date (QHD-2A.1), spikelet per spike
(QSPS-2A.3), and flag leaf area (QFLA-2A.1) in this re-
gion but no effects on grain characteristics have been
documented so far.
The candidate gene TraesCS5B01G274000 on chromo-

some 5B, annotates P-loop containing nucleoside tri-
phosphate hydrolase (NTPase) which is the most
common domain of many nucleotide-binding protein
folds. The energy from NTP hydrolysis is typically uti-
lized to induce conformational changes in other mole-
cules, which constitutes the basis of the biological
functions of most P-loop NTPases. P-loop NTPases
show substantial substrate preference for either ATP or
GTP [68]. Although this gene was linked to KA and KL
and its role in those important biological functions may
derive from this association with grain morphology, its
relationship with these treatments has not been previ-
ously documented.
The last identified candidate gene TraesC-

S6A01G383800 (chromosome 6A) encodes oxidoreduc-
tase activity, acting on a sulfur group of donors, NAD(P)
as acceptor. It has been reported that GSH-dependent
protein-disulphide oxidoreductase (TPDO) increases the
activity in a period of maximum synthesis of storage
proteins in wheat grains, which is the third week after
anthesis. There is a correlation between TPDO activity

in maturing grains and dough extensibility as the en-
zyme reduces SS bonds in high-molecular-weight poly-
mers [69]. This higher accumulation could result in
TKW and KA increases. Effects of this gene were re-
ported on grain quality traits such as Falling Number
and root architecture of durum wheat [70] but no asso-
ciation with TKW and KA was reported previously. The
high expression of these four candidate genes in differ-
ent grain related-tissues indicates their important bio-
logical role in variables connected to grain architecture-
related traits (Fig. 5).
As was previously described, we found that the

TraesCS1A01G007200 gene located on chromosome 1A
associated with TKW and with a weaker association with
KA has a nutrient reservoir activity molecular function
and annotates Gliadin/LMW glutenin//Bifunctional in-
hibitor/plant lipid transfer protein/seed storage helical
domain. It is known that gliadin and glutenin proteins
have a major role in grain quality determination [71]. Its
role is explained as gliadins and glutenins are the major
reserve proteins in wheat [72], forming the gluten and
contributing to TKW. Although recent studies reported
effects of this gene on gliadin synthesis in durum wheat
and heading-anthesis date in hexaploid wheat [73, 74],
its effect on traits related to grain architecture and TKW
has not been reported so far.
The highly significant SNPs within the candidate genes

were analyzed using statistical comparison of alleles at
each SNP with the associated traits. This approach have

Fig. 5 Expression value log2 TPM (Transcripts Per Kilobase Million) of candidate genes in different grain tissues
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been used recently to explore the alleles for enhancing
agronomic traits and abiotic tolerance [12, 75, 76]. The
results showed that some SNPs within the candidate
genes showed significant differences between alleles of
each associated trait considered. Accessions were differ-
entiated according to the alleles which demonstrate their
impact on grain architecture-related traits. For example,
the allelic variation (C, T) at SNPs BobWhite_c5872_589
underlying the genes TraesCS6A01G383800, respect-
ively, showed the importance of allele C in increasing
TKW, where most of the accessions carried allele C
originated mainly from Central-Northern European
countries.

Conclusions
To our knowledge, our study involves the first GWAS
analysis performed by FARM-CPU algorithm to identify
several key genomic regions associated with TKW and
five other grain architecture traits in a new and wide
winter wheat panel consisting of 261 genotypes from 30
countries during three years. Genome-wide association
analysis using 90 K SNP array revealed many MTAs in-
cluding 17 highly associated SNPs across 9 chromo-
somes of which four multi-traits associated SNPs were
found on chromosomes 1B, 2A, 5B, and 6A. We re-
ported four novel candidate genes related to these traits
showing high expression values in different grain tissues.
Future studies should deepen the relationships be-

tween the function of these genes and their effect on
grain architecture. These results will be valuable for
identifying regions associated with kernel weight and its
dimensions and could be useful for providing further in-
sights for increasing grain quality, milling performance,
and grain yield.

Methods
Plant materials
In the current study, a winter wheat panel was used
comprising 261 accessions including 196 cultivars, 55
breeding lines, and 10 doubled haploids originated from
30 countries worldwide. The seeds of these genotypes
were obtained from the Genebank, IPK-Gatersleben,
Germany. The accessions were selected based on pre-
existing knowledge regarding their performance under
different growing conditions during winter time, for in-
stance, high latitude and continental European winter
wheat collections as well as Russian and North Ameri-
can cultivars. Furthermore, parts of the core collection
of the Institute of Field and Vegetable Crops (IFVCNS),
Novi Sad, Serbia and parental lines of Western European
hybrid breeding programs were also included in this set
([77]; Supplementary Fig. S1; Table S1).

Grain architecture traits assessments/phenotyping/
measurements
Field experiments were carried out at Leibniz Institute
of Plant Genetics and Crop Plant Research -IPK- (Gate-
rsleben, Germany) over three consecutive years (2015/
2016, 2016/2017 and 2017/2018) with three replicated
blocks in 5 m2 plots for each accession.
After harvesting, 200 random kernels of each plot (per

accession and year) were used to assess kernel size traits
including, kernel length (KL; mm), kernel width (KW;
mm), kernel area (KA; mm2) and TKW (g) using the
MARVIN Digital Seed Analyser (MARViTECH GmbH,
Germany). In addition, to evaluate the differences in
grain density and the deviation of a shape from a cylin-
drical form, the factor form density (FFD) and kernel
diameter ratio (KDR) were calculated according to Giura
and Saulescu [13] and Gegas et al. [15] using the follow-
ing equations:

FFD ¼ TKW= KL�KWð Þ
KDR ¼ KL=KW

Statistical analysis
Analysis of variance (ANOVA) for all measured traits
was performed and broad-sense heritability (H2) for each
trait over years was calculated using the following equa-
tion, all these calculations were accomplished using
Genstat 19:

H2 ¼ σg2=
σgy2

y
þ σe2

ry

� �

where σg2, σgy2, and σe2 are mean squares for genotype,
genotype × year (environment) interaction and residual
error, respectively, y is the number of years and r repre-
sent the replicates. Summary statistics across different
years were corroborated by mean, minimum, maximum,
standard deviation and coefficient of variation using Gen-
stat 19 software. A correlation matrix between traits and
boxplots of each trait and differences among geographical
regions were performed using MVApp v2.0.
The restricted maximum likelihood (REML) algorithm

was applied to calculate the Best Linear Unbiased Estima-
tors (BLUEs) for each trait in each accession across the
years by considering the accession as a fixed effect and the
environment as a random using Linear and Nonlinear
Mixed Effects Models (nlme) package in R [78].

Genotyping and population structure
The panel was genotyped by TraitGenetics GmbH
(http://www.traitgenetics.com) the 90 K iSELECT chip
[79]. After removing markers with > 10% missing data
and those with the minor allele frequency < 5%, 17,093
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SNPs remained (Supplementary Fig. S2). These markers
were mapped according to their physical position based
on IWGSC RefSeq v1.1 (http://www.wheatgenome.org/,
IWGSC RefSeq v1.1) and then used to determine the
population structure, linkage disequilibrium (LD) and
for GWAS calculation. The genome-wide pairwise esti-
mates of LD were calculated as a squared correlation be-
tween pairs of polymorphic SNPs (r2) for the whole-
genome using GenStat 18 [80]. Finally, LD decay pat-
terns were visualized as the plot for the LD estimated
the (r2) vs. the distance between pairs of polymorphic
SNPs (Mbp) using R-package GGPLOT2 [81]. The aver-
age genome-wide LD decay at r2 = 0.2 is approximately
2.0 Mbp and we used this window to discover the candi-
date genes with a reasonable distance as suggested by 3.
The genetic relationships among genotypes as the popu-
lation structure were revealed by principal component
analysis (PCA), using Genomic Association and Predic-
tion Integrated Tool (GAPIT 3) package in R [82, 83]. In
the present study, the population structure of a diverse
panel of 261 wheat genotypes was investigated using the
basis of a 90 K SNP chip to specify the number of princi-
pal components (PCs) to be included in the GWAS
model (Supplementary Fig. S3).

Genome-wide association study and identifying putative
candidate genes
GWAS was performed using BLUEs values in each ac-
cession for each trait applying different statistical models
through GAPIT in R. FARM-CPU model was applied by
considering the random effect model (REM) and the
fixed effect model (FEM) iteratively and associated
markers as a cofactor that empowered us to avoid any
false-negative and control the false positive associations
by preventing model overfitting [27, 40, 57, 84–86].
FarmCPU joins the advantages of the mixed linear
model and stepwise regression (fixed-effect model) and
overcomes their disadvantages by using them iteratively.
FarmCPU has higher power and fewer false positives
than either MLM or stepwise regression. The detected
associations which are passed the threshold of FDR at
0.01 (−log10 P-values ≥ FDR) were considered as signifi-
cant marker-trait associations (MTAs). FDR was calcu-
lated for each trait separately at the significance level of
0.01 and used in further analyses as recommended by
Alqudah et al. [75].
Those highly significant MTAs based on their physical

positions were further used to identify the high-
confidence (HC) putative candidate genes, based on
their physical positions within the LD ± 2 Mbp window,
using the reference genome sequence of Chinese Spring
by blasting against IWGSC RefSeq annotation v1.1
(http://www.wheatgenome.org/, IWGSC RefSeq v1.1).
Because, each block of LD contains high number of

candidate genes, we have selected the candidate genes
which have SNPs within their physical positions. Wheat-
Mine platform (https://urgi.versailles.inra.fr/WheatMine/
begin.do) was used to search for the gene ontologies
(GO) and InterPro number and description. The under-
lying genes were further examined for their association
with grain architecture traits using previously published
literature.
In-silico gene expression analysis in different grain tis-

sues of the multi-traits candidate genes was analyzed
using RNA-Seq expression data from Wheat Expression
Browser (http://www.wheat-expression.com/).
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