
future internet

Article

A DFT-Based Running Time Prediction Algorithm for
Web Queries

Oscar Rojas 1 , Veronica Gil-Costa 2,* and Mauricio Marin 1,3

����������
�������

Citation: Rojas, O.; Gil-Costa, V.;

Marin, M. A DFT-Based Running

Time Prediction Algorithm for Web

Queries. Future Internet 2021, 13, 204.

https://doi.org/10.3390/fi13080204

Academic Editor: Massimo Cafaro

Received: 26 May 2021

Accepted: 19 June 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CITIAPS, Universidad de Santiago, Santiago 9170020, Chile; oscar.rojas.d@usach.cl (O.R.);
mmarin@usach.cl (M.M.)

2 CONICET, Universidad Nacional de San Luis, San Luis 5700, Argentina
3 CeBiB, Centre for Biotechnology and Bioengineering, Santiago 9170020, Chile
* Correspondence: ggvcosta@gmail.com

Abstract: Web search engines are built from components capable of processing large amounts of
user queries per second in a distributed way. Among them, the index service computes the top-
k documents that best match each incoming query by means of a document ranking operation.
To achieve high performance, dynamic pruning techniques such as the WAND and BM-WAND
algorithms are used to avoid fully processing all of the documents related to a query during the
ranking operation. Additionally, the index service distributes the ranking operations among clusters
of processors wherein in each processor multi-threading is applied to speed up query solution. In
this scenario, a query running time prediction algorithm has practical applications in the efficient
assignment of processors and threads to incoming queries. We propose a prediction algorithm for
the WAND and BM-WAND algorithms. We experimentally show that our proposal is able to achieve
accurate prediction results while significantly reducing execution time and memory consumption
as compared against an alternative prediction algorithm. Our proposal applies the discrete Fourier
transform (DFT) to represent key features affecting query running time whereas the resulting vectors
are used to train a feed-forward neural network with back-propagation.

Keywords: distributed query ranking algorithm; discrete Fourier transform; query scheduling for
multi-core processors

1. Introduction

Query running time prediction is useful for effective resource management, query
optimization, accurate scheduling and user experience management [1]. Some prediction
algorithms have been proposed in the technical literature mainly for database systems [1–7].
In this paper, we focus on query running time prediction in Web search engines (WSE).
Large-scale Web search engines are designed to process hundreds of thousands of queries
per second where each query has to be processed within a fraction of a second. To achieve
this goal, search engines are composed of services capable of processing large amounts
of data. One of these services is the index service which is responsible for calculating
the top-k documents for user queries. The index service executes a ranking algorithm on
a data structure called inverted index or inverted file [8,9]. For each term, the inverted
index keeps a posting list with the document identifiers where the term appears in and
data for document ranking such as the frequency of the term in the document. Document
ranking algorithms compute a similarity score for every document that contains any of the
query terms.

A dynamic pruning technique named Weighted AND (WAND) is a strategy that
first runs a fast-approximate evaluation on candidate documents, and then makes a full
costly evaluation limited to the promising candidates only. This algorithm enables many
documents to be skipped and thereby it is able to achieve efficient performance by reducing
the total number of full document score evaluations. The BM-WAND extends the WAND

Future Internet 2021, 13, 204. https://doi.org/10.3390/fi13080204 https://www.mdpi.com/journal/futureinternet

https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-7754-9996
https://doi.org/10.3390/fi13080204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi13080204
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi13080204?type=check_update&version=1


Future Internet 2021, 13, 204 2 of 21

by skipping consecutive sets of documents by using a block-wise inverted index where
each posting list block has a maximum score.

1.1. Research Objective

In Web search engines, large amounts of computational resources must be dedicated to
execute the document ranking operations for the multiple queries being solved concurrently
by the index service at all times. We aim at reducing the total number of cluster processors
by being efficient in performing multi-threaded query processing at each processor. In our
view, this requires fast prediction of the cost of queries at run time in order to enable
the automatic selection of proper thread scheduling strategies for the incoming queries.
To this end, we propose a query running time prediction algorithm which can be used
as a tool for efficient thread management because it is fast and light in terms of CPU
and memory requirements, respectively. Devising a practical solution for this problem is
challenging since the running time for dynamic pruning techniques such as the WAND
and BM-WAND algorithms are not linear to the size of the associated posting lists [10].
In addition, the computational cost of the thread scheduling strategy must be very low to
prevent it from compromising the efficiency of the response time for the queries solved in
each processor.

1.2. Contribution

We propose an algorithm based on the application of the discrete Fourier transform
(DFT) technique that is able to predict the running time of queries for the index service
of Web search engines. The proposed running time prediction algorithm is more efficient
than alternative algorithms and is general purpose with respect to the document ranking
algorithm used to calculate the query results. The advantage of our proposal is that the
application of the DFT technique significantly reduces the number of descriptors needed to
train the respective machine learning model. We demonstrate its effectiveness for industry
standard document ranking strategies such as the TF-IDF and BM25 document score func-
tions executed either under the WAND or the BM-WAND document ranking algorithms.

A preliminary version of our work was presented in [11] where we described the
application of the DFT technique to predict the running time of the BM-WAND algorithm.
This provided evidence that our DFT based strategy was able to achieve promising results.
In the present paper, we deepen into its design and assessment as follows. We study the
expressiveness of the DFT descriptors by considering both WAND and BM-WAND under
the BM25 and TF-IDF document scoring strategies. We also present a comprehensive
evaluation study involving alternative machine learning methods and comparison against
the state of the art strategy for solving the same problem. The outcome of this study
defines the final tuning of the parameters and machine learning method required by our
prediction algorithm. We also demonstrate its practical utility by considering a use-case in
multi-threaded query processing.

1.3. Outline

To better understand this work, in Table 1, we show a description of the techniques
and the relevant acronyms used in the following sections.

The remaining of this paper is as follows. In Section 2, we describe the background. In
Section 3, we present related previous work. In Section 4, we present our DFT-based query
running time prediction algorithm. In Section 5, we present a comprehensive evaluation
study using different standard benchmark data sets. Finally, our concluding remarks are
presented in Section 6.



Future Internet 2021, 13, 204 3 of 21

Table 1. Description of the technical words.

Tech./Acronym Description

BM25 Ranking function to estimate the relevance of documents.

BM-WAND Block-Max WAND. Optimized pruning technique that discard
not relevant documents for a query.

It uses compressed data organized in blocks.

ClueWeb09 Collection of 428,136,613 unique documents.

CS Cache-Service. It is a service component of a WSE.

DFT Discrete Fourier Transform

FS Front-Service. It is a service component of a WSE.

Gov2 Collection of 25.2 million documents.

IS Index Service. It is a service component of a WSE.

LBM-WAND Local BM-WAND multi-thread strategy.

PSD Power Spectral Density

SBM-WAND Shared BM-WAND multi-thread strategy.

TF-idf Ranking function to estimate the relevance of documents.

top-k Best document results for a query

WAND Weighted AND. Pruning technique used to discard
not relevant documents for a query.

WSE Web Search Engine

2. Background

In this section, we describe the main components of a search engine and focus on the
component for which we propose to quickly predict the running time of each query in
advance at arrival.

2.1. Web Search Engines

Web Search Engines (WSEs) are usually built as a collection of services hosted in large
clusters of multi-core processors wherein each service is deployed on a set of processors
supporting multi-threading. Typically, a WSE is composed of three services: the Front-
Service (FS), the Cache-Service (CS) and the Index-Service (IS) [12,13]. These services are
deployed on clusters of multi-core processors and connected by high-speed communication
networks [14–16]. They are organized on arrays of P× R multi-core processors, where P is
the level of data partitioning and R is the level of data replication.

In Figure 1a, we show the query flow through the three services of a WSE. After a
query arrives to an FS, it routes the query to the CS to determine if the query has been
previously processed (step 2). The CS partition is selected by applying a hash function on
the query terms. The replica is selected in a round-robin way. If the query is found in the
cache memory (step 3), the CS sends the top-k document results identifiers (docIDs) to the
FS, which builds the HTML page. Otherwise, if the query is not found in cache, the CS
sends a miss message to the FS (also step 3). In this last case, the FS sends an index search
request to a single replica of all P partitions of the index service (step 4). The replicas are
selected in a round-robin way for each query. Then, each index service executes a ranking
algorithm to compute the top-k document results and sends them to the FS (step 5). Finally,
the FS merges the partial results, builds the web page for the user (step 7) and sends an
update message to the CS (step 6).

The computation of the top-k documents results for user queries is a high-computational
demanding operation executed by the IS. A ranking algorithm is executed on an inverted
index or inverted file [8]. The index is built from a large set of web documents. The index is
composed of a vocabulary table (which contains the C distinct relevant terms found in the



Future Internet 2021, 13, 204 4 of 21

document collection) and a set of posting lists. For each term c, there is a list of data items
(called postings) storing the identifiers of the documents that contain the term c, along with
additional data used for ranking purposes. Figure 1b shows the main steps executed inside
an IS processor to process an user query [15]. First, a local top-k cache is used to search
for pre-computed queries inside each IS processor. Then, an intersection cache—which
keeps the documents belonging to the intersection of posting lists of previously processed
query terms—and the inverted index are used to quickly determine the list of documents
that contain the query terms. Finally, the IS computes the ranking of the resulting set
of documents.

top-k cache

Intersection 
    cache

Inverted index 
      cache   R

Index Service 
Processors

new query

(1)

(2)

Ranking Algorithm

(a)                                                   (b)

P
P CS Partitions

R
CS Replicas

Front 
Service 

Cache Service 

Index Service 

R
IS Replicas

P 
IS Partitions

2) Query

3) Hit/Miss

6) Update

4) Query

5) Results

7) Results

1) New query

Figure 1. (a) Query processing in a WSE and (b) inside an index service processor.

2.2. The WAND and BM-WAND Dynamic Pruning Techniques

Ranking algorithms return the top-k documents for user queries. To quickly process
large inverted indices, these algorithms use dynamic pruning techniques to allow efficient
retrieval by not fully scoring all postings of the documents matching a query. In this paper,
we focus on the WAND [17] and the BM-WAND [18] techniques because they present
significant benefits by avoiding the scoring of documents that cannot make the top-k
retrieved documents set [18].

The WAND strategy processes each query by looking for query terms in the inverted
index and retrieving each posting list. Documents retrieved from the intersection of the
posting lists allow us to answer conjunctive queries (AND bag of word query), and docu-
ments retrieved at least from one posting list allow us to answer disjunctive queries (OR
bag of word query). It is based on two levels. In the first level, some potential documents
are selected as results using an approximate evaluation. Then, in the second level, those
potential documents are fully evaluated (e.g., using scoring functions such as the BM25
or the vector model) to obtain their scores. A heap keeps the current top-k documents
where in the root is located the document with least score. The root score provides a
threshold value which is used to decide whether to evaluate the full score of the remaining
documents in the posting lists associated with the query terms.

The Block-Max WAND (BM-WAND) technique [18] uses compressed posting lists
organized in blocks. Each block stores the upper bound of the scores (Block max) for the
documents inside that block in uncompressed form, thus enabling to skip large parts of the
posting lists by skipping blocks. This reduces the cost of the WAND but does not guarantee
correctness because some relevant documents could be lost. This problem is solved in [18]
with an algorithm that moves forward and backwards in the posting lists to ensure that no
documents are missed. Independently, the same idea was presented in [19].

2.3. Challenges for Query Running Time Prediction

In this section, we expose the difficulty in predicting query running time for the
WAND and BM-WAND techniques. The datasets used in the following experiments are
described below in Section 5. In particular, the ClueWeb09 and the Gov2 Web collections
are considered standard collections for comparative performance evaluation.



Future Internet 2021, 13, 204 5 of 21

In Figure 2, we show running times in milliseconds achieved by both ranking algo-
rithms with different values of k for the top-k documents using the ClueWeb09 collection.
Over a large set of input queries, the results show that for each k the average running
time values do not increase linearly with k. As the value of k increases, both techniques
present nearly logarithmic increasing running times. This is because the heap used to
keep the current top-k documents is larger as more documents are kept inside the heap
until the algorithm finishes query processing. The probability of finding a document more
relevant than those currently stored in the heap is also higher so that more insertions and
eliminations are performed on average. The results show that the BM-WAND algorithm
presents lower running times than the WAND algorithm. In Figure 2a, the WAND al-
gorithm presents about twice the time reported by the BM-WAND algorithm for small
values of k. For large values of k, the difference reported by both algorithms is 23% on
average. However, the results in Figure 2b, obtained with the Gov2 collection, show that
the difference between both dynamic pruning techniques tends to be smaller.

The challenge is to predict the behaviour of individual queries whilst performing
thread management at run time. The results in Figure 2 show that this is at least depen-
dent on the document collection and the combination of algorithms used to perform the
document ranking process.

(a) (b)

Figure 2. Average execution time in milliseconds (ms) reported by the WAND and the BM-WAND
algorithms with the (a) ClueWeb09 and the (b) Gov2 Web collections.

In Figure 3, we show the running time in milliseconds required to process 15,000 queries
from the query log, using the ClueWeb09 and the Gov2 Web collections. We also show
results with the BM25 and TF-IDF document scoring algorithms. We set k = 1000. The x-
axis represents the 15,000 queries sorted by their running time from low to high values.
The y-axis shows the running time of the individual queries in log scale. In Figure 3a, we
show the results obtained with the WAND strategy. The BM25 scoring algorithm tends to
present lower running times than the TF-IDF scoring algorithm. This is counter intuitive
since BM25 demands more computations than TF-IDF per processed document. The reason
for this behaviour is the effect that the calculated document score values have on the heap
used to hold the current top-k documents. In Figure 3b, we show results obtained with
the BM-WAND algorithm. In this case, all curves tend to be almost overlapped. However,
the query running times obtained with the ClueWeb09 collection and the BM25 document
scoring algorithm tend to be slightly higher. As in practice the index service, at single
processor level, must solve each query from the input stream in least than, say, 50 or 100 ms
on commodity hardware, Figure 3 shows that it is relevant to reduce individual running
times by means of multi-threading. In this case, the challenge is to determine at run time
what strategy to apply to perform multi-threaded query processing.



Future Internet 2021, 13, 204 6 of 21

(a) (b)

Figure 3. Running time of individual queries in milliseconds sorted from low to high values.
(a) Results obtained with the WAND algorithm. (b) Results obtained with the BM-WAND algorithm.

The results presented in this section show that the running times reported by the
WAND and BM-WAND are highly influenced by a few parameters such as the number of
document score evaluations, the specific query contents and the features of the document
collection. The proposed prediction algorithm is designed to properly consider these
parameters and their impact on the query running time.

3. Related Work

Query running time prediction is a challenging task widely used in database manage-
ment systems [1–7]. In the context of Web search engines, query running time prediction
deals with additional challenges such as dynamic pruning techniques. Dynamic pruning
techniques such as the WAND or the BM-WAND can improve the efficiency of queries,
but they can take different amounts of time for different queries. That is because their cost
is not directly related to the posting list lengths of the query terms as many documents
can be skipped. In this context and under different incoming user query rates, query
running time prediction algorithms based on machine learning techniques can be useful to
determine in advance which resources can be allocated to a given query.

The work in [20] presented a query running time prediction algorithm that aggregates
the terms features into statistics related to the query. The results of the aggregations are
used as input to a learned regression model. This work showed promising initial results
for disk-based indices. Later, the work in [21] applied the prediction algorithm presented
in [20] for evenly distributing the query workload across processors acting as replicas for
each partition of the document collection. The work in [22] presented an algorithm which is
based on the relative entropy between a query language and the corresponding collection
language model.

The work in [10] specifically presented a query running time predictor for the WAND
technique. The proposed predictor is designed for distributed search engines. The authors
propose to use a vector with 42 descriptors to represent different features of the queries and
the respective posting lists. To estimate the query running time, the proposed algorithm
uses a linear regression method which has been trained from the statistics obtained by
the aggregations of the terms features. The work in [23] improves the accuracy of [10] by
including additional data on the query terms for the prediction of the running time. More
recently, the authors in [24] proposed to use index synopses which are stochastic samples
of the full index for attaining accurate timing predictions.

The work in [25] proposed to model the complexity of query features by using a
personalization method. This approach outperformed existing predictors in terms of
accuracy and memory consumption. The query running time predictor was used to decide



Future Internet 2021, 13, 204 7 of 21

on whether to process a single query with multiple threads (the ones with predicted large
running times) or a single thread (the ones with predicted small running times). The work
in [26] determined the most relevant parameters used in [10] and based on that finding
proposed to optimize memory usage on heterogeneous hardware. The authors proposed a
predictor named Delayed, Dynamic, and Selective (DDS). First, queries are executed for
a short period of time D so short-running queries can be completed without prediction
overhead. Then, the algorithm collects 10 features of the query after running it during the
first step. In the final step, the algorithm classifies the queries as long or medium using
a threshold value. This work was extended in [27] by presenting more comprehensive
experimental evaluation.

The work in [28] aimed to achieve a minimum query response time when query traffic
is high. The algorithm is configured to prune more or less aggressively, depending on the
expected duration of the query. The value of k is also estimated in [29]. Nevertheless, in [29]
the effectiveness of the search engine is not compromised as it ensures the retrieval of the
actual top-k document results. The work in [30] presented a scheduler to process queries
concurrently by using multi-threading. It also allows to execute updates in the posting lists.
Queries are decomposed into work units that are assigned to different threads. The authors
use the number of query terms and the sum of lengths of the respective posting lists for
performing the classification required to set the number of threads to be assigned to each
co-occurring query.

The work in [31] proposed a prediction algorithm for multi-stage retrieval systems
where an initial document candidate generation stage is followed by one or more re-
rankers. The work in [32] proposed an analytical performance modeling framework for
user queries. The overhead introduced by the proposed analytical model varies between
5% and 6% depending of the particular test. More recently, the work in [33] proposed
a reinforcement learning based approach for search engines. During query evaluation,
the query is classified using pre-defined categories, and consequently a match plan is
selected. The authors proposed a method to predict which match plan to employ for each
incoming query.

The Discrete Fourier Transform (DFT) technique has been previously used in contexts
such as patterns recognition in data mining [34,35], and to predict the popularity of videos
by analyzing videos view count traces in the frequency domain [36]. In the Web search
engine application domain, it has been used for determining (i) document relevance [37],
(ii) document semantic representation [38] and (iii) document classification [39]. In this
paper, we show that the DFT technique can also be useful for predicting the running time
of query processing algorithms.

4. A DFT-Based Query Running Time Prediction Algorithm

Query running time prediction has practical applications in the efficient assignment
of resources. In particular, in this paper, we show its benefits for an efficient assignment
of threads to incoming queries. The DFT-based algorithm can be used by a scheduler to
decide for each query at runtime, whether to assign to it a single thread or more than one
thread to process it depending on the estimated time. Furthermore, the scheduler can
determine the number of threads to allocate to each query using the predictions provided
by our algorithm. An efficient allocation of threads allows to obtain a better utilization of
the resources and reduces the latencies of query execution times [10].

The algorithm proposed in this work uses a new approach to describe user queries
with low-dimensional vectors. Our approach allows us to drastically reduce the compu-
tational cost without compromising the accuracy of the top-k document results. The cost
of predicting a query running time is directly proportional to the number of inputs to
the prediction algorithm, regardless of the particular document ranking algorithm be-
ing used. Any regression model with several independent variables xi with an output
dependent variable y, must process the entire input vector x = {x1, x2, . . . , xp} of p de-
scriptors. In particular, a basic regression model of several variables can be defined as



Future Internet 2021, 13, 204 8 of 21

y = β0 + ∑
p
i=1 βixi + ε, which corresponds to a multiple linear regression model where βi

is the correlation coefficient to be obtained, β0 is the slope of the regression line and ε is
the error.

To predict the query running time, we propose to use the Discrete Fourier Transform
(DFT). The DFT is an approximation of the Fourier Transform and is used to find the
content in the frequency of signals that are periodic and discrete, which implies that in
the domain of frequency they will also be periodic and discrete. The DFT includes in its
descriptor signal data such as the variance, the arithmetic means, and factors associated
with the continuity of the signal and its density. The signal obtained with the DFT satisfies
the symmetry property [40]. Therefore, it allows us to use only half the components of
the vector.

These properties allow us to obtain a good characterization of the posting, since it
includes in its signal (output of the DFT) descriptive information of an input signal. Thus,
using the DFT allows to reduce the number of descriptors used to represent the information
while remaining representative for each posting list.

In particular, we use the DFT to:

• Describe the distribution of scores of each document in the posting list of the terms
and to determine how is the distribution of the scores of the documents with higher
probability of being part of the top-k- document results. In this way, we describe the
search space of each posting list.

• Describe the variation of the running time of different queries as we retrieve a larger
number of top-k document results.

In this work, the distribution of the weights w(d, t) of the posting lists are treated as
signals of the DFT, where these signals are the function of independent variables given by
the random distribution of w(d, t) and determined by the order of the documents identifiers
(docIDs). Low DFT frequencies are used to describe how the high values of w(d, t) are
distributed (because they appear less frequently in the posting list according to the Zipf
law [8]) and high DFT frequencies are used to describe the distribution of low values of
w(d, t) (because they appear more frequently in the posting lists).

Our DFT-based algorithm builds a query-vector in two stages as illustrated in Figure 4.
During the off-line stage (Figure 4 on top), our proposal builds a five-dimensional term-
vector to represent the posting lists of the terms stored in the inverted index. Three
descriptors of the term-vector are obtained with the DFT which calculates the spectrum
of the posting lists. The two remaining descriptors of the term-vector correspond to
the characterization of the threshold for a given value of top-k (e.g., top-10) and the
posting list size. The term-vectors are used later during the on-line stage, as illustrated
in Figure 4 at bottom, to build a six-dimensional vector representing the incoming user
queries. The query-vector feeds a feed-forward neural network with back-propagation
which estimates the query running time. In the following, we present the technical details.

4.1. Term Coefficients

Given a query q containing the terms tl with l ≥ 1, where each term has a posting
list Lt containing pairs < d, w(d, t) > where d is the document identifier and w(d, t) is the
score of the term in the document (e.g., the frequency of occurrence of the term t in the
document d), our DFT-based algorithm works as follows. We use information regarding
the frequency spectrum of density functions Φt obtained from the posting lists of the terms
tl ∈ q, and the information related to the spectrum of frequency of the processing time
T(tl , k) for each term tl required to retrieve the top-k document results. The spectrum of
frequencies is obtained with the discrete Fourier transform (DFT). In addition, we use:
(a) the size of each posting list st = |Lt| (i.e., the number of documents where the term
appears), (b) the processing time for T(t, 10), T(t, 100), T(t, 1000) and for T (t, 10,000),
and (c) the threshold value for the top-k document. Then, we describe each term with a
five dimension vector ψ :< ψ0, ψ1, ψ2, ψ3, ψ4 >.



Future Internet 2021, 13, 204 9 of 21

off-line stage

(1,14.5) (6,9.1) (2,1.1)

(3,9.5)(1,4.4)

(2,12.5)(22,7.4)(45,1.1) (50,0.5)

(10,22.6)(5,10.5)

DFT

term-vector

<v0,v1v2,v3,v4>

compute the 

spectrums

Compute v5  and 

obtain the query-vector

<v0,v1,v2,v3,v4,v5>

on-line stage
predict 

query running 

timeincoming

queries

Inverted index

Figure 4. Scheme of the DFT-based query running time prediction algorithm.

The density function XDFT of the posting lists of the term tl , describes the search space
Ωt of the posting list Lt. The XDFT of the processing time functions T(t, k) describes the
differences of the times required to process the posting list of a term t with different k
values. In practice, the values of XDFT [u] are the u-th coefficients of Fourier and express the
frequency content of a function or a signal. In this analysis, the DFT of Φt can be considered
as a characterization of the distribution of the values w(d, t) and, therefore, it can be seen
as a function of bulk density in the frequency domain.

We use the spectral power density of XDFT over w(d, t), because it represents the cost
of processing the signal in the frequency domain. It shows how the power is scattered as
a function of the frequency F = 1/10, which is the minimum frequency (or fundamental
frequency) of the DFT. The fundamental frequency F = 1/10 describes the density of
posting lists by using the convolution of the broader sinusoidal signal. Thus, it allows us to
describe well the posting lists that have a higher density. We also use the magnitude of the
spectrum of the fundamental frequency F = 1/4 of the DFT for the posting lists and for
the processing times obtained for each term T(t, k), which describes the difference between
the processing times as the value of k increases in a quadratic way. Table 2 summarizes the
descriptors used in the proposed prediction algorithm.

PSD of Φt at a frequency 1/10: ψ0 is the Power Spectral Density (PSD) of the DFT of
Φt in the fundamental frequency F = 1/10. The calculation is |XDFT [u]{Φt}|2, u = 1. Φt
(Equation (1)) is a vector containing the cumulative sums of ΦG (Equation (2)) of scores
w(d, t) of each document d ∈ Lt inside the intervals Ij. Each j-th interval I is equi-spaced at
the rate of #Postings/10 items. If there are empty intervals, the cumulative sum is zero in
those positions. Each value of Φt,i is obtained with Equation (3).

Φt =< Φt,1, Φt,2, . . . , Φt,i, . . . Φt,10 > (1)

ΦG = max{∑
d∈Lt

w(d, t)}, t ∈ Inverted Index (2)

Φt,i =
1

ΦG
∑
d∈Ii

w(d, t) (3)

We set the number of intervals I = 10 because a greater number of intervals implies a
distribution of the average power of the signal in a greater number of frequencies of the
DFT. In other words, by increasing the number of intervals the percentage of documents
that quantify the density of w(d, t) decreases inside each interval. On the other hand, if the
number of intervals is decreased, the power spectral density values tend to increase close



Future Internet 2021, 13, 204 10 of 21

to the average value of the signal power and the characterization of the density distribution
in the frequency domain is decreased. Then, for the purposes of characterizing how the
accumulated sum is distributed (density of values of w(d, t) in each interval) and specifically
to describe the posting lists that have higher density and, therefore, a higher cost of
processing, it is not necessary to use a large number of intervals. Therefore, we define I = 10
to keep an accumulated density of scores w(d, t) of 10% of the documents (for posting lists
of 10 or more documents), which is a representative percentage to characterize the density
of w(d, t) in different parts of the posting lists. Additionally, we have experimentally found
I = 10 to be a value that produces accurate results.

DFT magnitude of Rank-Score of frequency 1/4: ψ1 is the magnitude of the fre-
quency spectrum of the DFT in the fundamental frequency F = 1/4 of the distribution of
cumulative density of the documents scores from k = 1 to k = {10; 100; 1000; 10,000}. We
set F = 1/4 to quantify the accumulated density distribution of the high values of w(d, t)
of the documents that are more likely to match the query terms.

#Postings: ψ2 is the number of documents where the term appears.
DFT magnitude of processing times: ψ3 is the magnitude of the frequency spectrum

of the DFT obtained for the vector containing the processing times T(t, k) of a term t at fre-
quency T = 1/4. The elements of the vector are <T(t, 10), T(t, 100), T(t, 1000), T(t, 10,000)>.
T(t, k) is the running time required to retrieve the top-k documents results for the term t.

Threshold: ψ4 score value (threshold) for the k-th document (top-k). If the list has less
than k documents, then ψ4 = 0.

Table 2. Term-vector and query-vector descriptors.

Descriptors for Term t

1. ψ0: PSD of Φt at a frequency 1/10.
2. ψ1: DFT magnitude of Rank-Score at a frequency 1/4.
3. ψ2: #Postings
4. ψ3: DFT magnitude for the processing times.
5. ψ4: score value for the k-th document in the term list (score (k, t)).

Query Descriptors Ψq

1. x0: ∑t∈q tψ0

2. x1: ∑t∈q tψ1

3. x2: ∑t∈q tψ2

4. x3: ∑t∈q tψ3

5. x4: maxt∈q{tψ1 }
6. x5: maxt∈q{tψ4 }

4.2. Query Coefficients

To predict the query running time, we compute the query descriptor Ψq as a six-
dimensional vector <x0, x1, x2, x3, x4, x5> as follows. For each term t ∈ q, we add the
corresponding descriptors tψ0 , tψ1 , tψ2 and tψ3 of each term in q, so we obtain an initial
query vector with dimension four. Then, we include two additional descriptors computed
as the max{tψ2} and max{tψ4} for each t ∈ q. All vectors ψt are calculated off-line, while
Ψq is obtained at query run time.

For a given query q, the descriptors <x0, x1, x3> represent the sum of integrals obtained
with the DFT and the descriptor x2 represents the sum of all documents where the query
terms appears, which gives an approximation to the search space of q. We do not compute
the sum of ψ4 for each term of the query because it is a lower bound of the score of the top-k
and if there are several term lists with high scores, the sum of those scores will increase the
value of ψ4 and it will lose its characteristic of lower bound. We also use the maximum
values of ψ1 and ψ4 that are minimum bounds.

All of the DFT descriptors are based on the use the fundamental frequency F which
depends on the period P of the input signal. That is, the distributions of w(d, t) with
period of P = 10, the distributions of the cumulative density with period of P = 4, and the



Future Internet 2021, 13, 204 11 of 21

distributions of processing time with period of P = 4 where the fundamental frequency
is F = 1/P. As we explained above, we use the fundamental frequency to quantify how
is the distribution of the high values of the input signal. In our case, high values of the
magnitudes of the DFT represent a higher list processing cost.

5. Experimental Evaluation
5.1. Data Collection and Methodology

The research was conducted using a query log and two document collections of
different sizes. We build an inverted index for each one of these collections by using the
Terrier IR platform (http://terrier.org/, accessed on 19 June 2021). We pruned the index
to keep only the data related to the terms of the query log. Once the indexes were built,
we processed the query log using these indexes to retrieve the most relevant document
results for each query. In this section, we will further describe the query log, the document
collection, the hardware, deployment details and the baseline algorithm used to compare
the results obtained by our DFT-based query time prediction algorithm.

In the following sections, we first evaluate the accuracy of the prediction algorithm
with different machine learning methods. We show that the best accuracy is obtained with
a feed-forward neural network with back-propagation using five neurons in the hidden
layer. Then, we present the accuracy and the performance evaluation for our proposal
and the baseline algorithm. Finally, we show the benefits of our proposal to facilitate the
assignment of threads to incoming queries.

Query log: We use a query log containing 20,000 queries in English selected from the
TrecMillion Query Track (https://trec.nist.gov/data/million.query09.html, accessed on
19 June 2021). The query log is a list of text query like “used car parts”, “poker tournaments”
and “lake links”. From this dataset we selected unique queries with two or more terms
and removed the stopwords (e.g., this, that, these, etc.). The resulting query log has
15,000 queries.

ClueWeb09 Dataset: We use a 50.2 million document collection from the TREC ClueWeb09
dataset (category B) (http://www.lemurproject.org/clueweb09.php/, accessed on 19 June
2021). This collection has a total of 428,136,613 unique documents. The resulting index size
for this collection is 60.2 GB with 10,230 different terms.

Gov2 Dataset: We use a second collection named TREC Gov2 with 25.2 million documents
crawled from .gov sites (http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm, ac-
cessed on 19 June 2021). It includes html and text, plus the extracted text of pdf, word and
postscript. The resulting index size is 13.7 GB with 12,062 different terms.

Hardware and Deployment Details: The running time of each query includes the pre-
processing of uppers bounds plus the time required by the WAND or the BM-WAND
iterators to process the query. The running times for the actual execution of the query pro-
cessing strategies were obtained on an Intel Processor Core i7-3820 with 4 Cores (8 threads)
and 32 GB RAM. All the experiments were performed with the whole inverted index loaded
into main memory. In the case of the ClueWeb09, due to the index size is larger than the
size of the main memory of the hardware, we performed the experiments with batches of
500 queries each. Only the posting lists associated with the terms present in each batch
are loaded into the main memory using on average 22 GB of memory space. The average
execution time of each query is measured independently one by one. The code of the
algorithms presented in this paper are available at https://github.com/neurovisionhub/
dft-running-time-prediction, accessed on 19 June 2021.

Baseline Algorithm: In the experimentation, we evaluate the performance of our DFT-
based algorithm for query running time prediction by using the WAND and the BM-WAND
dynamic pruning techniques executed under the BM25 and the TF-IDF document scoring
methods. We compare the proposed prediction algorithm against the approach proposed
in [10]. We selected this algorithm as our baseline for comparison purposes since it is

http://terrier.org/
https://trec.nist.gov/data/million.query09.html
http://www.lemurproject.org/clueweb09.php/
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
https://github.com/neurovisionhub/dft-running-time-prediction
https://github.com/neurovisionhub/dft-running-time-prediction


Future Internet 2021, 13, 204 12 of 21

suitable for predicting the running time of queries solved with the WAND and BM-WAND
algorithms for either conjunctive or disjunctive queries.

Evaluation Metrics: The main performance metrics used in our experiments are (i) the
Pearson correlation among the predicted query running times yj and the actual running
times xj obtained from the real execution of each query solution strategy; (ii) the root-mean-
square error (RMSE)

√
( 1

n ∑n
j=1 (yj − xj)

2), where n is the number of queries considered in
each run; (iii) the variation coefficient relative to the mean value calculated as VC = σ

ȳ × 100;
(iv) the average absolute error (AAE) defined as (sum|xi − yi|)/n; and (v) the maximum
absolute error maxe observed from the differences between the actual and predicted values
(max |xi − yi|).

5.2. Learning Methods

In this section, we evaluate the accuracy of the prediction algorithm for query solution
running time when implemented with different machine learning methods. We tested
several methods such as the linear regression, the multivariate linear regression (MV),
the extreme machine learning (EML-5) with five neurons in the hidden layer, the feed-
forward neural network with back-propagation (BP-5) using five neurons in the hidden
layer, the Random Forest (RF) and the support vector machine (SVM). In the following, we
present the accuracy achieved with each learning method under the BM-WAND dynamic
pruning algorithm. Similar results were obtained with the WAND strategy. We use the
BM25 and TF-IDF scoring algorithms on both Web collections, namely the ClueWeb09 and
the Gov2.

The BP-5 has six input neurons, one for each descriptor of the six-dimensional char-
acteristic vector ψ and one output. For the purpose of this section, we show results with
five neurons in the hidden layer. However, we conducted experiments with 1, 5, 10, 25 and
50 neurons in the hidden layer and the best results were obtained with 5 neurons as we
show in the next section. We used the log-Sigmoid transfer function in the hidden layer
and a linear transfer function in the output layer.

We evaluated the accuracy of the learning methods by applying a swap c-fold cross
validation with c = {2,3,5,10}. In other words, we inverted the size of the c-folds. For c = 2,
both training and test folds have the same size (50–50%). For c = 3, the training fold has
33.3% of the data and the test fold has 66.3% of the data, and so on.

Table 3 shows the results reported by the query running time prediction algorithm
when executing the learning methods listed above. We show the RMSE, the coefficient of
variation (VC) and the Pearson correlation (PrC) obtained with different Web collections
and the BM-WAND technique. The results show that VC tends to be small in all cases,
meaning that the values are well represented by the mean. The linear and multivariate
methods show low accuracy (high RMSE values) because the distribution of the running
times of queries is not linear neither a combination of variables. The distribution of the
actual query running times tends to be like an inverse of the Zipf’s law. The BP-5 and
the Random Forest methods achieve the best results in almost all cases as they achieve
low RMSE and high PrC values. However, the Random Forest method tends to create
many branches and long paths when the curve representing the execution time for different
queries has many inflections.

The EML-5 method presents lower accuracy than the BP-5. That is, the EML-5 presents
higher RMSE and lower PrC values than the respective values of the BP-5 method. We
conducted additional experiments which showed that the EML-5 requires a larger number
of neurons in the hidden layer between 20 and 25, to achieve similar results than the ones
achieved by the BP-5 method. Finally, the SVM method tends to be over-fitting to the
training set. In our application case (fast Web query solution using inverted indexes) most
query running time are very low, thus the SVM is not capable of estimating long query
running times. Therefore, in the following sections, we use the BP-5 learning method
for the query running time prediction algorithms. We experimentally tested that similar



Future Internet 2021, 13, 204 13 of 21

conclusion holds for the baseline prediction algorithm as it only differs from our DFT-based
algorithm in the specific attribute vectors used to train the learning method.

Table 3. Accuracy obtained by the proposed DFT-based query running time prediction algorithm using different machine
learning methods.

CueWeb09 Gov2

BM25 TF-IDF BM25 TF-IDF

RMSE VC PrC RMSE VC PrC RMSE VC PrC RMSE VC PrC

10-folds

Linear 0.15 1.1% 0.88 0.10 1.7% 0.94 0.12 2.2% 0.88 0.14 0.8% 0.96

MV 0.05 4.0% 0.88 0.02 6.8% 0.94 0.04 4.3% 0.88 0.04 2.7% 0.96

EML-5 0.06 12.5% 0.83 0.03 12.2% 0.93 0.05 8.3% 0.83 0.03 14.3% 0.94

BP-5 0.04 5.5% 0.93 0.01 11.4% 0.98 0.03 5.4% 0.94 0.02 8.5% 0.98

RF 0.04 5.2% 0.93 0.01 15.2% 0.98 0.03 9.7% 0.95 0.02 8.2% 0.98

SVM 0.15 0.9% 0.92 0.10 2.0% 0.96 0.12 1.6% 0.93 0.14 1.2% 0.95

5-folds

Linear 0.15 0.3% 0.88 0.10 0.9% 0.94 0.12 1.9% 0.88 0.14 1.0% 0.96

MV 0.05 2.04% 0.88 0.02 4.0% 0.94 0.04 2.2% 0.88 0.04 2.8% 0.96

EML-5 0.07 18.9% 0.79 0.03 9.4% 0.92 0.05 10.0% 0.8 0.04 17.4% 0.93

BP-5 0.04 4.0% 0.92 0.01 7.1% 0.98 0.03 6.2% 0.93 0.02 3.2% 0.98

RF 0.04 3.8% 0.93 0.02 11.7% 0.98 0.03 5.5% 0.95 0.02 6.3% 0.98

SVM 0.15 0.7% 0.92 0.10 1.0% 0.95 0.12 0.9% 0.93 0.14 0.5% 0.95

3-folds

Linear 0.15 1.1% 0.88 0.10 0.7% 0.94 0.12 0.9% 0.88 0.14 0.3% 0.96

MV 0.05 0.9% 0.88 0.02 2.3% 0.94 0.04 1.2% 0.88 0.04 2.0% 0.96

EML-5 0.06 4.0% 0.85 0.03 4.3% 0.93 0.04 7.4% 0.87 0.03 10.6% 0.94

BP-5 0.04 1.9% 0.92 0.01 1.1% 0.98 0.03 3.3% 0.93 0.02 4.4% 0.98

RF 0.04 2.1% 0.93 0.02 8.7% 0.98 0.03 5.8% 0.94 0.02 3.9% 0.98

SVM 0.15 0.4% 0.92 0.10 0.6% 0.95 0.12 0.8% 0.92 0.14 0.5% 0.95

2-folds

Linear 0.15 0.2% 0.88 0.10 0.3% 0.94 0.12 0.3% 0.88 0.14 0.3% 0.96

MV 0.05 0.6% 0.88 0.02 0.9% 0.94 0.04 3.1% 0.88 0.04 0.4% 0.96

EML-5 0.06 5.0% 0.84 0.02 4.7% 0.94 0.05 6.5% 0.84 0.03 0.8% 0.95

BP-5 0.04 2.1% 0.92 0.02 4.1% 0.98 0.03 4.6% 0.93 0.02 2.3% 0.98

RF 0.04 2.0% 0.93 0.02 7.3% 0.97 0.03 5.3% 0.94 0.02 5.8% 0.98

SVM 0.15 0.2% 0.92 0.10 0.2% 0.95 0.12 0.8% 0.92 0.14 1.1% 0.94

5.3. Accuracy Evaluation

In this section, we evaluate the accuracy of the query running time prediction algo-
rithms. We train the respective neural network with 60% of the queries and we use 40%
of the remaining queries for the experiments. We evaluate accuracy with 1, 5, 10, 25 and
50 neurons in the hidden layer where we use the log-Sigmoid transfer function in the
hidden layer and the linear transfer function in the output layer.

Table 4 shows the accuracy achieved by the query running time prediction algorithms.
Numbers in bold font denote the best accuracy results in each case. Our DFT-based



Future Internet 2021, 13, 204 14 of 21

algorithm achieves the lowest RSME values and the highest Pearson correlation (PrC)
values in most cases. The baseline approach outperforms our proposal only for the BM-
WAND with TF-IDF and using the Gov2 Web collection. However, the difference is very
small. Table 4 also shows that the best results are obtained with 5 and 10 neurons in the
hidden layer. With more than five neurons, results show no improvement and with more
than 10 neurons both approaches tend to lose accuracy.

In Table 5, we show results obtained with (1) the real execution of the query processing
strategies for different datasets, (2) the proposed query running time prediction algorithm,
and (3) the baseline query running time prediction algorithm, both operating with five neu-
rons in the hidden layer. In the columns, QRT is the average query running time and maxt
is the maximum query running time observed in the set of processed queries. AAE is the
average absolute error and maxe is the maximum error observed in the predicted running
times for the set of processed queries.

Table 4. Accuracy for a training fold of 60% and a test fold of 40% with 1, 5, 10, 25 and 50 neurons in the hidden layer.

Neurons in the Hidden Layer

1 5 10 25 50
PrC RMSE PrC RMSE PrC RMSE PrC RMSE PrC RMSE

WAND

ClueWeb09 BM25

Baseline 0.919 0.032 0.969 0.020 0.966 0.022 0.964 0.022 0.956 0.025
DFT-based 0.769 0.052 0.979 0.017 0.979 0.017 0.979 0.017 0.975 0.018

Gov2 BM25

Baseline 0.860 0.039 0.925 0.030 0.923 0.030 0.895 0.035 0.874 0.038
DFT-based 0.593 0.062 0.947 0.025 0.949 0.024 0.948 0.024 0.947 0.025

ClueWeb09 TF-IDF

Baseline 0.990 0.017 0.993 0.015 0.988 0.019 0.983 0.024 0.979 0.026
DFT-based 0.989 0.018 0.994 0.013 0.994 0.013 0.993 0.014 0.991 0.017

Gov2 TF-IDF

Baseline 0.961 0.029 0.960 0.030 0.966 0.027 0.962 0.030 0.945 0.035
DFT-based 0.955 0.032 0.971 0.025 0.973 0.024 0.972 0.025 0.967 0.027

BM-WAND

ClueWeb09 BM25

Baseline 0.898 0.049 0.923 0.043 0.908 0.047 0.862 0.059 0.844 0.063
DFT-based 0.886 0.052 0.930 0.041 0.928 0.042 0.925 0.043 0.919 0.044

Gov2 BM25

Baseline 0.898 0.039 0.924 0.034 0.911 0.038 0.877 0.046 0.872 0.049
DFT-based 0.885 0.042 0.937 0.031 0.928 0.034 0.920 0.036 0.918 0.037

ClueWeb09 TF-IDF

Baseline 0.966 0.018 0.975 0.016 0.978 0.015 0.976 0.016 0.973 0.018
DFT-based 0.971 0.017 0.979 0.014 0.978 0.015 0.977 0.015 0.975 0.016

Gov2 TF-IDF

Baseline 0.968 0.026 0.983 0.018 0.976 0.022 0.973 0.023 0.963 0.028
DFT-based 0.961 0.028 0.980 0.020 0.980 0.020 0.977 0.022 0.975 0.023



Future Internet 2021, 13, 204 15 of 21

Table 5. Query running time in seconds obtained with the real execution, the baseline and the proposed prediction
algorithms. Numbers in bold font indicate better results.

Data-Scoring
Real Baseline DFT-Based

QRT maxt QRT maxt AAE maxe QRT maxt AAE maxe

WAND

ClueWeb09—BM25 0.197 3.030 0.197 2.602 0.034 1.444 0.197 2.901 0.030 0.731
Gov2—BM25 0.107 1.772 0.108 1.740 0.028 1.738 0.107 1.501 0.024 0.609
ClueWeb09—TF-IDF 0.731 4.867 0.734 4.867 0.033 4.094 0.730 4.077 0.030 1.075
Gov2—TF-IDF 0.370 3.486 0.371 3.486 0.032 3.166 0.369 2.847 0.029 1.034

BM-WAND

ClueWeb09—BM25 0.133 1.062 0.133 0.839 0.025 0.376 0.134 0.909 0.025 0.370
Gov2—BM25 0.074 0.881 0.075 0.811 0.015 0.750 0.075 0.563 0.014 0.362
ClueWeb09—TF-IDF 0.064 0.692 0.064 0.492 0.006 0.309 0.064 0.599 0.005 0.253
Gov2—TF-IDF 0.066 0.411 0.066 0.336 0.005 0.098 0.066 0.383 0.005 0.178

In general, the results in Table 5 show that both approaches are able to make excellent
prediction of the QRT values. The proposed algorithm presents smaller error values
than the baseline algorithm (numbers in bold font in the table). For the AAE metric,
the reduction is in the range between 5% and 15%, whereas for maxe the reduction is in
the range between 49% and 74% for WAND and between 1.6% and 52% for BM-WAND.
The maxt value indicates the single query that demands the maximum running time.
For this case, both approaches outperform each other depending on the dataset and query
processing strategy. For WAND, the baseline algorithm achieves better overall predictions
where it underestimates the exact value by 4% on average whereas the proposed algorithm
underestimates the exact value by 14% on average. In this case the baseline algorithm is
able to predict the exact values for two maximum queries. Furthermore, the computations
associated with the TF-IDF method are much lighter than the BM25 ones which increases
the linear effect. For BM-WAND, this underestimation is similar in both approaches with
19% for the baseline algorithm and 18% for the proposed algorithm.

To evaluate the effect of the index size on our DFT-based method, Table 5 shows that
the maxe reported with the ClueWeb09 tends to be 10% higher when executing the WAND
and 15% higher when executing the BM-WAND. This is mainly because as we increase
the number of documents some posting lists tend to be significantly larger, which tends to
increase the maximum error in of the prediction algorithm. However, the AAE increases
only 0.0035 s for the WAND and 0.0055 s for the MB-WAND. Notice that when using the
BM-WAND and the TF-IDF, there is no difference between the AAE reported with both
datasets. In other words, with a larger dataset, the maximum errors increase by 15% at
most, but the average of the absolute error reported by our DFT-based algorithm are very
similar.

5.4. Performance Evaluation

In this section, we evaluate the execution time and the memory consumption of the
query running time prediction algorithms. At run time, for each incoming query, Table 6
shows (i) the average execution time required to compute the vectors for queries with two
and five terms and (ii) the average execution time required by the neural network that
predicts the running time of queries. We present results for a neuronal network with 5,
10, 25 and 50 neurons in the hidden layer. The results show that the proposed algorithm
reduces the on-line query vector construction time in a significant manner (90–92%) as
it handles a smaller number of attributes than the baseline algorithm (6 vs. 42 attributes,
respectively). Furthermore, the proposed algorithm is able to reduce in at least 32% the
execution time of the neuronal network that uses the small query vector to predict each
query running time. In total, considering the query vector construction time and its use
in the neural network for predicting the respective query running time, the improvement



Future Internet 2021, 13, 204 16 of 21

in execution time of the proposed algorithm over the baseline algorithm is in the range
77–82%.

Table 6. Running time in nanoseconds reported by both the proposed algorithm and the baseline algorithm. The best results
are highlighted in boldface type.

Vector Construction Time Neuronal Network

Algorithm 2 terms 5 terms 5 neurons 10 neurons 25 neurons 50 neurons

Baseline 22,129 ns 31,429 ns 6844 ns 9150 ns 14,108 ns 23,397 ns
DFT-based 2095 ns 2376 ns 4610 ns 5238 ns 6984 ns 8894 ns

Table 7 shows the memory consumption in bytes required to store (1) the descriptors
of the term-vector and (2) the descriptor of the query-vector for each query being solved in
the processor. As expected, the proposed algorithm also reduces the memory consumption
requirements of each incoming query in a significant manner in about 70%.

Table 7. Memory consumption per query in bytes required to store the descriptors of the term-vectors
and the query-vectors.

Term-Vector Query-Vector Total

Baseline 92 Bytes 213 Bytes 305 Bytes

DFT-based 45 Bytes 46 Bytes 91 Bytes

5.5. An Application Case for Query Running Time Prediction

In this section, we describe two multi-threaded query processing strategies [29] as an
application case for the query running time prediction algorithm presented in the paper.
In the first strategy, called Local BM-WAND (LBM-WAND), each thread keeps a local heap
to hold the top-k documents calculated by the thread. The posting lists of the documents
index are distributed among a total of T threads using the rule docID mod T. This posting
list partition rule ensures that any given document is always assigned to the same thread.
Then, each thread processes the query using its own local inverted index. At the end of
the query processing process, we merge the local heaps of each thread to select the top-k
document results. To this end, a synchronization barrier is executed before the merge
operation. The second strategy, called Shared BM-WAND(SBM-WAND), uses the same
index partition scheme as the LBM-WAND but all threads update a single global heap
of size k holding the top-k results. Therefore, the SBM-WAND strategy does not perform
a merge of partial document results at the end of the process as it already contains the
top-k results. A lock operation is executed to guarantee exclusive access to the shared heap
during updates to prevent from read-write conflicts. Figure 5 describes these two parallel
strategies for query processing.

Experimentally, we have found [29] that the LBM-WAND strategy performs better
than the SBM-WAND strategy when the sequential query running time is below a given
β value. The SBM-WAND strategy outperforms the LBM-WAND strategy for queries
demanding running times larger than β. In practice, the value of β can be calculated
as a part of the training process for the DFT algorithm. Thus, for each incoming query,
a scheduler uses the proposed DFT-based algorithm to decide on which strategy to apply
at run time.

The number of threads T required for solving single queries is determined as the
minimum necessary to ensure that no query is solved beyond an upper bound for the
response time in the index service. In this way, the total number of threads available
for query processing can be grouped into a set of T-threads units capable of using either
LBM-WAND or SBM-WAND for solving single queries in parallel. In practice, for our Web
collections and test processor, with T = 8 threads is sufficient for achieving query response
times below 50 ms which is a standard upper bound for search engines.



Future Internet 2021, 13, 204 17 of 21

Figure 5. At left side is the LBM-WAND strategy. At right side is the SBM-WAND strategy where all
threads share a global heap.

5.5.1. Accuracy Evaluation of the DFT-Based Algorithm under Multi-Threaded
Query Processing

We evaluate the predictive ability of the algorithm to determine the query running
time for a given number of threads. This prediction is challenging since the running
time does not decrease linearly with the number of threads. Table 8 shows the Pearson
correlation (PrC) and the error RMSE obtained by both prediction algorithms for different
number of neurons in the hidden layer and different number of threads (1, 2, 4 and 8).
The correlation and error are evaluated against the actual execution of each multi-threading
strategy (LBM-WAND and SBM-WAND). As we increase the number of threads, both
prediction algorithms achieve a more accurate prediction of the query running time. This
is mainly because the differences between the maximum and minimum query running
times tend to be smaller with thread increase. The baseline prediction algorithm presents
better prediction accuracy than our DFT-based algorithm for the case of a single neuron in
the hidden layer. The results show that the proposed algorithm achieves more accurate
predictions than the baseline algorithm with five and more neurons in the hidden layer.
The SBM-WAND strategy presents relatively larger error values (RMSE) because in this
case it is more difficult for the algorithm to predict the number of locks executed to control
the accesses to the shared heap.

Table 9 shows the query running times for 1, 2, 4 and 8 threads obtained with (i) the
actual execution of the LBM-WAND (L) and SBM-WAND (S) strategies, (ii) the respective
query running times predicted by the proposed algorithm and (iii) the respective query
running times predicted by the baseline algorithm, both using 5 neurons in the hidden
layer. The results show that the proposed algorithm reduces the absolute error (AAE)
by 7% on average whereas the maximum absolute error (maxe) is reduced by 26% on
average. For the single query demanding the maximum running time (maxt) the baseline
algorithm underestimates its value by 16% on average, whereas the proposed algorithm is
less effective in this case as it underestimates its value by 28% on average.

Notice that the results in Table 9 show that the LBM-WAND strategy is 29% less
efficient than the SBM-WAND strategy on average. This is true for the average values taken
by considering the whole set of queries used in the experiments. However, for the same
test dataset, LBM-WAND is on average 10% more efficient than SBM-WAND for a small
subset of queries (5%). In practice, the size of this subset depends on the specific query
contents and how frequently they occur in the dynamic incoming stream of user queries.



Future Internet 2021, 13, 204 18 of 21

Table 8. Prediction ability of the baseline and proposed algorithms for query running time prediction under two multi-
threaded query processing strategies for different number of threads. For each case the best value for Pearson Correlation
(PrC) and error RMSE are indicated in boldface type. The smallest RMSE values are indicated with *. The correlation and
error values are obtained by comparing against the actual implementation of each multi-threaded query processing strategy:
LBM-WAND (L) and SBM-WAND (S) both executed under ClueWeb09-BM25.

Neurons in the Hidden Layer

1 5 10 25 50
PrC RMSE PrC RMSE PrC RMSE PrC RMSE PrC RMSE

LBM-WAND (L)/SBM-WAND (S)

1 thread

Baseline-L/S 0.898 0.049 0.923 0.043 0.908 0.047 0.862 0.059 0.844 0.063
DFT-based-L/S 0.886 0.052 0.930 * 0.041 0.928 0.042 0.925 0.043 0.919 0.044

2 threads

Baseline-L 0.912 0.047 0.932 0.042 0.925 0.044 0.894 0.052 0.876 0.058
DFT-based-L 0.896 0.051 0.944 * 0.038 0.940 0.039 0.941 0.039 0.918 0.046

Baseline-S 0.897 0.051 0.901 0.050 0.891 0.054 0.861 0.062 0.813 0.074
DFT-based-S 0.880 0.055 0.926 * 0.043 0.929 0.043 0.906 0.049 0.903 0.050

4 threads

Baseline-L 0.920 0.044 0.945 0.037 0.928 0.043 0.921 0.045 0.884 0.055
DFT-based-L 0.902 0.048 0.948 0.035 0.951 * 0.034 0.949 0.035 0.928 0.042

Baseline-S 0.897 0.052 0.905 0.050 0.901 0.051 0.865 0.061 0.853 0.064
DFT-based-S 0.875 0.056 0.926 * 0.044 0.927 0.044 0.925 0.044 0.918 0.047

8 threads

Baseline-L 0.939 0.035 0.955 0.031 0.954 0.031 0.948 0.034 0.922 0.042
DFT-based-L 0.927 0.039 0.956 0.030 0.963 0.028 0.967 * 0.026 0.954 0.031

Baseline-S 0.913 0.050 0.936 0.043 0.927 0.046 0.902 0.053 0.891 0.057
DFT-based-S 0.892 0.055 0.938 * 0.042 0.938 0.042 0.925 0.047 0.919 0.048

Table 9. Results obtained under ClueWeb09-BM25 with the actual execution of the multi-threaded query solution algorithms
LBM-WAND (L) and SBM-WAND (S), and the respective query running time predictions delivered by the proposed and
baseline algorithms.

5 Neurons in the Hidden Layer

Real Baseline DFT-Based
Threads QRT maxt QRT maxt AAE maxe QRT maxt AAE maxe

1T-L/S 0.133 1.062 0.133 0.839 0.025 0.376 0.134 0.909 0.025 0.370

2T-L 0.091 0.668 0.091 0.506 0.016 0.283 0.091 0.492 0.014 0.256
2T-S 0.075 0.586 0.076 0.422 0.015 0.489 0.075 0.364 0.014 0.222

4T-L 0.062 0.424 0.062 0.356 0.009 0.191 0.061 0.353 0.008 0.148
4T-S 0.043 0.323 0.043 0.263 0.008 0.305 0.043 0.195 0.008 0.132

8T-L 0.057 0.406 0.056 0.403 0.007 0.204 0.056 0.296 0.006 0.196
8T-S 0.036 0.256 0.035 0.240 0.006 0.104 0.034 0.206 0.006 0.093

Finally, we show in Figure 6 the Pearson correlation reported by the baseline and
the DFT-based algorithm with different values for top-k document results and different
number of threads. The y-axis (left) shows the number of threads ranging from 1 to 8.
The y-axis (right) shows the Pearson correlation from 80% to 100%. The x-axis shows the k
values from 10 to 10,000. We show results obtained with the LMB-WAND strategy. Similar
results were obtained for the SBM-WAND strategy. For k = 10, both prediction algorithms
report similar results. With a larger k value, the DFT-based algorithm reports better results.



Future Internet 2021, 13, 204 19 of 21

On the other hand, as we increase the number of threads the Pearson correlation reported
by both algorithms is slightly reduced. However, the lost in the correlation is very small,
less than 5%.

(a) (b)

Figure 6. Pearson Correlation reported by the baseline and the DFT-based prediction algorithm
with the LBM-WAND multi-thread strategy and (a) the Baseline prediction algorithm and (b) the
DFT-Based prediction algorithm.

5.5.2. Performance Evaluation of the DFT-Based Algorithm under Multi-Threaded
Query Processing

In this section, we present the efficiency reported by the LBM-WAND, the LBM-
WAND multi-thread strategies and a DFT-based scheduler as described in previous section.
The Scheduler uses the DFT-based algorithm to estimate the query running time to decide
whether to use the LBM-WAND or the SBM-WAND strategy. We show results for different
number of threads ranging from 1 to 8, for the BM-WAND pruning algorithm and the
ClueWeb09 dataset.

Figure 7a shows that the speedup reported by the SBM-WAND drastically improves
the speedup reported by the LBM-WAND strategy. For eight threads, the SBM-WAND
almost doubles the speed-up reported by the LSB-WAND. Additionally, the DFT-based
Scheduler algorithm reports speedups slightly higher than the SBM-WAND.

Finally, in Figure 7b, we present the execution times in seconds with different number
of threads. The x-axis shows the queries identifiers ordered according to their execution
time from lowest (left) to highest (right). Results show that query execution times tends to
decrease with a larger number of threads.

(a) (b)

Figure 7. (a) Speedup reported by the LBM-WAND, the SBM-WAND query processing strategies
and the DFT-based scheduler. (b) Execution time in seconds reported with up to 8 threads by the
DFT-based scheduler.



Future Internet 2021, 13, 204 20 of 21

6. Conclusions

We have presented a new query running time prediction algorithm based on the DFT
for the WAND and BM-WAND document ranking algorithms. The design of the proposed
predictor is based on the application of the discrete Fourier transform (DFT) to describe
the key features affecting the query running time in the frequency domain. The DFT is
executed off-line to compute a total of five descriptor attributes for each posting list in the
inverted index. At run time, a query content attribute is computed to extend the respective
five posting list attributes and to form a 6-dimensional vector which is then used as an
input for a feed-forward neural network with back-propagation to estimate the query
running time.

We evaluated the DFT-based prediction algorithm with different learning methods
and also under the effects of concurrency control for accesses to shared data in two multi-
threaded query processing strategies that may be used in combination. The results show
that the proposed prediction algorithm is more efficient in running time and memory
consumption than the baseline algorithm and it is able to achieve average reductions of
(i) 7% for the average absolute error between the actual running time and the predicted
running time, and (ii) 26% for the maximum absolute error.

Author Contributions: Investigation, V.G.-C.; Software, O.R.; Supervision, M.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work has been partially funded by the Chilean Agency for Research and Development
(ANID) under grant Basal Centre CeBiB code FB0001.

Data Availability Statement: Not Applicable, the study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Akdere, M.; Çetintemel, U.; Riondato, M.; Upfal, E.; Zdonik, S.B. Learning-based Query Performance Modeling and Prediction.

In Proceedings of the IEEE International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; pp. 390–401.
2. Ganapathi, A.; Kuno, H.; Dayal, U.; Wiener, J.L.; Fox, A.; Jordan, M.; Patterson, D. Predicting Multiple Metrics for Queries:

Better Decisions Enabled by Machine Learning. In Proceedings of the Conference on Data Engineering, Shanghai, China,
29 March–2 April 2009; pp. 592–603.

3. Gupta, C.; Mehta, A.; Dayal, U. PQR: Predicting Query Execution Times for Autonomous Workload Management. In Proceedings
of the Conference on Autonomic Computing, Chicago, IL, USA, 2–6 June 2008; pp. 13–22.

4. Kleerekoper, A.; Navaridas, J.; Luján, M. Can the Optimizer Cost be Used to Predict Query Execution Times? arXiv 2019,
arXiv:1905.00774.

5. Li, J.; König, A.C.; Narasayya, V.; Chaudhuri, S. Robust Estimation of Resource Consumption for SQL Queries Using Statistical
Techniques. Very Large Data Base Endow. 2012, 5, 1555–1566. [CrossRef]

6. Singhal, R.; Nambiar, M. Predicting SQL Query Execution Time for Large Data Volume. In Proceedings of the International
Database Engineering Applications Symposium, Montreal, QC, Canada, 11–13 July 2016; pp. 378–385.

7. Wu, W.; Chi, Y.; Zhu, S.; Tatemura, J.; Hacigümüs, H.; Naughton, J.F. Predicting query execution time: Are optimizer cost models
really unusable? In Proceedings of the International Conference on Data Engineering, Brisbane, QLD, Australia, 8–12 April 2013;
pp. 1081–1092.

8. Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval; ACM Press/Addison-Wesley: Boston, MA, USA, 1999.
9. Zobel, J.; Moffat, A. Inverted files for text search engines. ACM Comput. Surv. 2006, 38, 1–56. [CrossRef]
10. Macdonald, C.; Tonellotto, N.; Ounis, I. Learning to Predict Response Times for Online Query Scheduling. In Proceedings of

the ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, OR, USA, 12–16 August 2012;
pp. 621–630.

11. Rojas, O.; Gil-Costa, V.; Marin, M. Running Time Prediction for Web Search Queries. In Proceedings of the Parallel Processing
and Applied Mathematics, Krakow, Poland, 6–9 September 2015; pp. 210–220.

12. Badue, C.S.; Almeida, J.M.; Almeida, V.; Baeza-Yates, R.A.; Ribeiro-Neto, B.A.; Ziviani, A.; Ziviani, N. Capacity Planning for
Vertical Search Engines. arXiv 2010, arXiv:1006.5059.

13. Gil-Costa, V.; Inostrosa-Psijas, A.; Marin, M.; Feuestein, E. Service Deployment Algorithms for Vertical Search Engines. In
Proceedings of the Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Belfast, UK,
27 February–1 March 2013; pp. 140–147.

14. Barroso, L.A.; Dean, J.; Hölzle, U. Web Search for a Planet: The Google Cluster Architecture. IEEE Micro 2003, 23, 22–28.
[CrossRef]

http://doi.org/10.14778/2350229.2350269
http://dx.doi.org/10.1145/1132956.1132959
http://dx.doi.org/10.1109/MM.2003.1196112


Future Internet 2021, 13, 204 21 of 21

15. Marin, M.; Gil-Costa, V.; Gomez-Pantoja, C. New caching techniques for web search engines. In Proceedings of the HPDC,
Chicago, IL, USA, 21–25 June 2010; pp. 215–226.

16. Marin, M.; Gil-Costa, V.; Bonacic, C.; Inostrosa-Psijas, A. Simulating Search Engines. Comput. Sci. Eng. 2017, 19, 62–73. [CrossRef]
17. Broder, A.Z.; Carmel, D.; Herscovici, M.; Soffer, A.; Zien, J.Y. Efficient query evaluation using a two-level retrieval process.

In Proceedings of the Conference on Information and Knowledge Management, New Orleans, LA, USA 3–8 November 2003;
pp. 426–434.

18. Ding, S.; Suel, T. Faster top-k document retrieval using block-max indexes. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, Beijing, China, 24–28 July 2011; pp. 993–1002.

19. Chakrabarti, K.; Chaudhuri, S.; Ganti, V. Interval-based pruning for top-k processing over compressed lists. In Proceedings of the
International Conference on Data Engineering, Hannover, Germany, 11–16 April 2011; pp. 709–720.

20. Tonellotto, N.; Macdonald, C.; Ounis, I. Query Efficiency Prediction for Dynamic Pruning. In Proceedings of the Large-Scale and
Distributed Informational Retrieval, Glasgow, UK, 28 October 2011; pp. 3–8.

21. Freire, A.; Macdonald, C.; Tonellotto, N.; Ounis, I.; Cacheda, F. Scheduling Queries Across Replicas. In Proceedings of the ACM
SIGIR Conference on Research and Development in Information Retrieval, Portland, OR, USA, 12–16 August 2012; pp. 1139–1140.

22. Cronen-Townsend, S.; Zhou, Y.; Croft, W.B. Predicting Query Performance. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, Tampere, Finland, 11–15 August 2002; pp. 299–306.

23. Peng, Z.; Plale, B. A Multi-tenant Fair Share Approach to Full-text Search Engine. In Proceedings of the Data-Intensive Computing
in the Cloud, Salt Lake City, UT, USA, 14 November 2016; pp. 45–50.

24. Tonellotto, N.; Macdonald, C. Using an Inverted Index Synopsis for Query Latency and Performance Prediction. ACM Trans. Inf.
Syst. 2020, 38, 1–33. [CrossRef]

25. Jeon, M.; Kim, S.; Hwang, S.W.; He, Y.; Elnikety, S.; Cox, A.L.; Rixner, S. Predictive Parallelization: Taming Tail Latencies in Web
Search. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, QLD,
Australia, 6–11 July 2014; pp. 253–262.

26. Kim, S.; He, Y.; Hwang, S.W.; Elnikety, S.; Choi, S. Delayed-Dynamic-Selective (DDS) Prediction for Reducing Extreme Tail
Latency in Web Search. In Proceedings of the Conference on Web Search and Data Mining, Shanghai, China, 2–6 February 2015;
pp. 7–16.

27. Hwang, S.W.; Kim, S.; He, Y.; Elnikety, S.; Choi, S. Prediction and Predictability for Search Query Acceleration. ACM Trans. Web
2016, 10, 19:1–19:28. [CrossRef]

28. Tonellotto, N.; Macdonald, C.; Ounis, I. Efficient and Effective Retrieval Using Selective Pruning. In Proceedings of the ACM
International Conference on Web Search and Data Mining, Rome, Italy, 4–8 February 2013; pp. 63–72.

29. Rojas, O.; Gil-Costa, V.; Marin, M. Efficient Parallel Block-Max WAND Algorithm. In Proceedings of the Euro-Par, Aachen,
Germany, 26–30 August 2013; pp. 394–405.

30. Bonacic, C.; Bustos, D.; Gil-Costa, V.; Marin, M.; Sepulveda, V. Multithreaded Processing in Dynamic Inverted Indexes for Web
Search Engines. In Proceedings of the Large-Scale and Distributed Systems for IR, Melbourne, VIC, Australia, 23 October 2015;
pp. 15–20.

31. Culpepper, J.S.; Clarke, C.L.A.; Lin, J. Dynamic Cutoff Prediction in Multi-Stage Retrieval Systems. In Proceedings of the
Australasian Document Computing Symposium, Caulfield, VIC, Australia, 5–7 December 2016; pp. 17–24.

32. Wu, H.; Fang, H. Analytical Performance Modeling for Top-K Query Processing. In Proceedings of the Information and
Knowledge Management, Shanghai, China, 3–7 November 2014; pp. 1619–1628.

33. Rosset, C.; Jose, D.; Ghosh, G.; Mitra, B.; Tiwary, S. Optimizing Query Evaluations Using Reinforcement Learning for Web Search.
In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, MI, USA,
8–12 July 2018; pp. 1193–1196.

34. Doudpota, S.; Guha, S.; Baber, J. Mining movies for song sequences with video based music genre identification system. Inf.
Process. Manag. 2013, 49, 529–544. [CrossRef]

35. Warren Liao, T. Clustering of Time Series Data-a Survey. Pattern Recogn. 2005, 38, 1857–1874. [CrossRef]
36. Zhou, Y.; Wu, Z.; Zhou, Y.; Hu, M.; Yang, C.; Qin, J. Exploring Popularity Predictability of Online Videos With Fourier Transform.

IEEE Access 2019, 7, 41823–41834. [CrossRef]
37. Park, L.A.F.; Ramamohanarao, K.; Palaniswami, M. Fourier domain scoring: A novel document ranking method. IEEE Trans.

Knowl. Data Eng. 2004, 16, 529–539. [CrossRef]
38. Zhang, H.; Bie, S.; Luo, B. Classifying web documents using term spectral transforms and Multi-Dimensional Latent Semantic

representation. In Proceedings of the Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; pp. 1320–1327.
39. Pryczek, M.; Szczepaniak, P.S. On Textual Documents Classification Using Fourier Domain Scoring. In Proceedings of the Web

Intelligence, Hong Kong, China, 18–22 December 2006; pp. 773–777.
40. Ambardar, A. Analog and Digital Signal Processing, 2nd ed.; Thomson: Singapore, 1999.

http://dx.doi.org/10.1109/MCSE.2017.8
http://dx.doi.org/10.1145/3389795
http://dx.doi.org/10.1145/2943784
http://dx.doi.org/10.1016/j.ipm.2012.09.005
http://dx.doi.org/10.1016/j.patcog.2005.01.025
http://dx.doi.org/10.1109/ACCESS.2019.2907929
http://dx.doi.org/10.1109/TKDE.2004.1277815

	Introduction
	Research Objective
	Contribution
	Outline

	Background
	Web Search Engines
	The WAND and BM-WAND Dynamic Pruning Techniques
	Challenges for Query Running Time Prediction

	Related Work
	A DFT-Based Query Running Time Prediction Algorithm
	Term Coefficients
	Query Coefficients

	Experimental Evaluation
	Data Collection and Methodology
	Learning Methods
	Accuracy Evaluation
	Performance Evaluation
	An Application Case for Query Running Time Prediction
	Accuracy Evaluation of the DFT-Based Algorithm under Multi-Threaded Query Processing
	Performance Evaluation of the DFT-Based Algorithm under Multi-Threaded Query Processing


	Conclusions
	References

