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1.  INTRODUCTION

Climate extreme events have devastating impacts
on human society and ecosystems. A better under-
standing of observed changes in climate extremes is
crucial for a reliable future prediction (Kim et al.
2016). To improve our knowledge of extreme events,
it is necessary to study whether the processes that
favor or inhibit their occurrence in the current cli-
mate are the same in the future, when the conse-
quences of global warming are going to be even
more drastic.

Despite the hiatus in the mean surface temperature
recorded in recent years, the frequency of warm ex -
tremes has continued to increase and that of cold
extremes has continued to decrease globally (Alex -
ander 2016). This difference between mean and
extreme temperatures could indicate that the pro-
cesses that drive the mean temperature are not nec-
essarily the same as those that generate the extreme
temperatures. Possible causes include land−sea con-
trast in response to radiative forcing as well as feed-
backs (for example, from decreased soil moisture,
snow, or ice), which further amplifies the changes in
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extreme temperatures in some key regions (Sene -
viratne et al. 2016).

SST in the equatorial Pacific is one of the primary
drivers of the seasonal climate globally (Ropelewski
& Halpert 1987). Kenyon & Hegerl (2008) found that
different phases of ENSO influence temperature ex -
tremes worldwide. Cooler (warmer) extreme maxi-
mum temperatures over Australia, southern Asia,
Canada, and South Africa (North America, Eastern
Europe−Central Asia, northeastern Asia, and south-
ern South America) were observed using gridded
observations and coupled climate model simulations
during strong La Niña events compared to El Niño
events (Arblaster & Alexander 2012, Luo & Lau
2020). Various China regions showed significant
 correlations between summer high-temperature ex -
tremes and 2 ENSO types (Gao et al. 2020). Further-
more, El Niño significantly amplifies the heatwave
activities in most areas of China (Luo & Lau 2019)
and India (Murari et al. 2016).

To understand the variability of extreme tempera-
tures in southern South America under the present
climate, it is necessary to examine their relationship
with the associated atmospheric circulation. Rustic-
ucci et al. (2017) studied the co-variability between
temperature extremes in Argentina and regional cir-
culation. They found that the subtropical jet intensity
presented significant positive (negative) correlations
with the frequency of cold (warm) extremes in many
months. Moreover, Loikith et al. (2017) analyzed the
associations between extreme temperature in South
America and the 4 main modes of climate variability.
In particular, ENSO is the mode that presented the
strongest relationships with all extreme indices. The
most recent advances are de scribed in Collazo et al.
(2019a) and Collazo et al. (2019b), in which predic-
tors of hot days in summer and cold nights in winter,
respectively, were sought. In the first of those stud-
ies, the principal component regression technique
was successfully applied to predict the warm ex -
tremes of the maximum temperature.

Several previous works have found that SST anom-
alies in the equatorial Pacific associated with ENSO
explain much of the interannual variability of the
Southern Hemisphere (Vera et al. 2004 and refer-
ences within). Through teleconnections, the El Niño
phase is associated with an increase in precipitation
over southeastern South America (SESA) (Rope -
lewski & Halpert 1987, Vargas et al. 1999, Grimm et
al. 2000, among others). In terms of mean tempera-
ture, Barros et al. (2002) found positive temperature
anomalies in the SESA region during winter for the
El Niño phase. Opposite temperature patterns tend

to occur in La Niña years over South America. The
relationship between the number of days with frost
and ENSO in the Humid Pampa region was studied
by Müller et al. (2000), who concluded that part of
the variability in the frequency of frost occurrence is
explained by the ENSO cycle, with a lower average
of frost than the climatology during El Niño events.

Among the studies that analyze the ENSO impacts
on temperature extremes in Argentina, Rusticucci &
Vargas (2002) observed more homogeneous effects
over temperature extremes during La Niña episodes
than during the El Niño phase, which makes their
prediction easier, especially for cold events. Kenyon
& Hegerl (2008) analyzed the influence of large-scale
climate variability in extreme summer and winter
temperatures at a global level. In particular, they
found a higher frequency of warm extremes of the
minimum temperature in El Niño years during the
extended winter in Argentina. Furthermore, Gar-
reaud et al. (2009) detected a positive relationship
between temperature anomalies and ENSO phases
over much of South America, i.e. El Niño is associ-
ated with temperatures above normal, while La Niña
is associated with cold anomalies. More recently,
Agosta & Barrucand (2012) described the modulation
of the positive ENSO phase in the frequency of warm
nights over subtropical Argentina. Finally, Rusticucci
et al. (2017) demonstrated that the impact of the El
Niño event on extreme temperatures in Argentina
presents monthly differences, favoring warming dur-
ing winter (more nights and warm days) and colder
conditions in summer (fewer warm days and more
cold days). The opposite pattern occurred during La
Niña; in summer, almost every month exhibited more
(less) frequency of warm (cold) days compared to
their climatology.

To study future climate projections towards the end
of the century, we must resort to global climate mod-
els (GCMs) that are capable of simulating the entire
Earth System and its interactions. First, GCMs must
be evaluated on their ability to represent the current
climate, which then provides some confidence in
their future projections. Sillmann et al. (2013a) pro-
vide a first overview of the performance of the CGMs
of the penultimate generation, participating in Phase
5 of the Coupled Model Intercomparison Project
(CMIP5), in the simulation of extreme climate indi -
ces. The authors showed that CMIP5 models are gen-
erally capable of simulating climatic extremes and
their trend patterns.

To adequately represent temperature extremes,
models must simulate synoptic-scale phenomena,
low-frequency modes that provide a large-scale
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 me teorological context, small-scale atmospheric pro -
ces ses, and land surface processes that influence
surface heat fluxes (Grotjahn et al. 2016). However,
atmo spheric models have experienced historical dif-
ficulties in representing some types of low-frequen -
cy intra seasonal variability (Black & Evans 1998).
Te deschi & Collins (2016) investigate how CMIP5
models display different types of ENSOs and how
they represent teleconnections with South American
rainfall. They observed that CMIP5 models were
capable of simulating the basic structure of SST
anomalies that occur during different types of
ENSO events and reproducing the correct sign of
precipitation anomalies in northeastern South
America during the southern summer and autumn.
However, in eastern and southeastern South Amer-
ica, many models do not reproduce the correct sig-
nal during ENSO events. Finally, they concluded
that errors in teleconnections are primarily due to
the atmospheric component of the models and not
to the bias in the SST.

Internal variability in the oceans influences the
global climate in diverse ways; nevertheless, to date,
few studies have systematically investigated the role
of SST variability on extreme temperatures and its
representation in GCMs (Dittus et al. 2018). SST vari-
ability could explain approximately 50% of the inter-
annual variability of global averaged extreme tem-
peratures (Donat et al. 2016); thus, it is relevant that
the physical component of the models might be able
to simulate it correctly.

Large-scale atmospheric circulation patterns are
relevant drivers for local and regional extremes,
especially on the interannual time scale (Horton et
al. 2015, Grotjahn et al. 2016, King et al. 2016,
Rusti cucci et al. 2017, Collazo et al. 2019a,b).
Although there is some confidence about future
changes in these patterns (Collins et al. 2010, Guil-
yardi et al. 2012, Kim & Yu 2012, Stevenson 2012,
Christensen et al. 2013, Power et al. 2013, Cai et al.

2014, Perry et al. 2017), little is known about the
projected responses of the extremes caused by
these changes in atmo spheric circulation. The
objective of this initial part of the work is to assess
the representation made by different reanalyses
and GCMs of the relationships between the extreme
temperature indices in southern South America and
SST in the El Niño 3.4 region under the present cli-
mate (1979−2005). The association was evaluated
by correlations and quantile re gression. Ultimately,
the strength of agreement be tween models and ob -
servations was measured by different metrics such
as Taylor diagrams, Cohen’s κ coefficients, and
Mapcurves score.

2.  DATA AND METHODOLOGY

2.1.  Data

To represent extreme temperature events, we
 considered 4 climate indices used internationally
(Table 1), defined by the Expert Team on Climate
Change Detection and Indices, for the period 1979−
2005 in southern South America (20°−60° S, 285°−
310° E). These indices are based on a percentile
threshold, i.e. they describe the exceedance rates
above or below a threshold defined as the 10th or 90th
percentile derived from the 1961−1990 base period.
The validation of climate extremes indices and the
ana lysis of their projected future changes simulated
by the CMIP5 models are presented in Sillmann et al.
(2013a,b). This data is available at http:// climate-
modelling.canada.ca/climatemodeldata/ climdex/clim
dex.shtml (accessed 12 August 2020).

On the other hand, the observed and CMIP5 mod-
eled SST data in the El Niño 3.4 region (SST3.4,
5° N− 5° S, 190°−240° E) was obtained from KNMI Cli-
mate Explorer (https://climexp.knmi.nl/start.cgi, ac -
cessed 12 Aug 2020).
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Label Index name Description

TN10p Cold nights Percentage of days in a month when daily minimum temperature is below 
the 10th percentile centered on a 5 d window

TN90p Warm nights Percentage of days in a month when daily minimum temperature is above
the 90th percentile centered on a 5 d window

TX10p Cold days Percentage of days in a month when daily maximum temperature is below
the 10th percentile centered on a 5 d window

TX90p Warm days Percentage of days in a month when daily maximum temperature is above
the 90th percentile centered on a 5 d window

Table 1. Four extreme temperature indices recommended by the Expert Team on Climate Change Detection and Indices
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2.1.1.  Observations and reanalysis

We used the gridded HadEX3 data set of observa-
tion-based extreme temperature indices (Dunn et al.
2020). HadEX3 indices are calculated directly from
station-based observations and then interpolated to a
global grid only over land on a 1.25° × 1.875° grid
from 1901 to 2018. This data set allows a comparison
be tween model-simulated and observed indices.

Reanalyses data sets are also often used for model
evaluation. In this study, we employed extreme tem-
perature indices in southern South America for 3
wide ly used reanalyses: ERA-Interim (Dee et al.
2011), NCEP/NCAR Reanalysis 1 (NCEP1) (Kistler et
al. 2001, Kalnay et al. 1996), and NCEP-DOE Re -
analysis 2 (NCEP2) (Kanamitsu et al. 2002). The
extreme temperature indices estimated from ERA-
Interim are available on a regular 1.5° × 1.5° grid for
the 1979−2019 period. Both NCEP1 and NCEP2 re -
analysis extreme temperature indices are available
for 192 × 94 Gaussian grid points for the years
1948−2020 and 1979−2020, respectively. We consid-
ered both NCEP reanalyses and not just the latest
version because the NCEP1 reanalysis is still widely
used in the meteorological community for its pro-
longed temporal coverage. Moreover, we were also
interested in comparing both performances and
determining if NCEP2 achieves improvements con-
cerning the first version.

The observed monthly average SST data set used
in this work was HadISST version 1.1 (Rayner et al.
2003). HadISST is a combination of monthly globally
complete fields of SST and sea ice concentration for
1871−2019 present on a regular 1° × 1° grid. This
data was spatially averaged in the region 5° N−5° S,
190°−240° E.

2.1.2.  GCMs

The results of the climate model run depend on the
starting point of the calculation, the initialization
method, and the model physics. Ensemble calcula-
tions facilitate quantifying the variability of simula-
tion data concerning a single model. The CMIP is a
standard experimental framework for studying the
output of coupled atmosphere−ocean general circu-
lation models. In the CMIP5 project, the ensembles
include multiple runs from some GCMs, and the sim-
ulations are distinguished by their rip nomenclature,
r for realization, i for initialization method, and p for
physics version followed by an integer, e.g. r1i1p1.
We used extreme temperature indices from 23

CMIP5 GCMs for the experiment r1i1p1 and its
ensemble (Table 2). The historical simulation period
of the CMIP5 models is from about 1850 to 2005.
These simulations employ historical changes in the
atmospheric composition reflecting both anthropo -
genic and natural sources (Sillmann et al. 2013a).

In addition, we used spatially averaged SST in the
El Niño 3.4 region for each GCM and ensemble.

2.2.  Methodology

2.2.1.  Processing

Before any calculation, we regridded the extreme
temperature indices from all the different data sets to
a common grid (2.5° × 2.5°) using a first-order conser-
vative remapping procedure (Jones 1999) imple-
mented in Climate Data Operators version 1.9.6rc3
(https://code.zmaw.de/projects/cdo), following Sill-
mann et al. (2013a). The resulting grid has 10 × 16
points in the southern South America region. This
processing allowed us to compare the different mod-
els and contrast them with the observations. For the
comparison between HadEX3 indices and GCM
indices, only land grid points were considered.

Then, the extreme temperature indices were aver-
aged quarterly to represent the 4 seasons of the year:
summer (DJF), autumn (MAM), winter (JJA), and
spring (SON). The extremes were seasonally ana-
lyzed, as they are often more relevant to impacts
(Menzel et al. 2006, Orlowsky & Seneviratne 2012,
Alexander 2016).

2.2.2.  Association between extreme temperature
indices and El Niño 3.4 SST

Initially, the linear trends of the extreme tempera-
ture indices and the spatial average of the SST in the
central equatorial Pacific were filtered, since we seek
to analyze the component associated with inter -
annual variability instead of long-term forcing. To
achieve this, we subtracted the linear regression
adjusted by least squares.

Subsequently, the Spearman correlation coeffi-
cient (Spearman 1904) and quantile regression for
the 90th percentile (Koenker 2005) were calculated
between SST3.4 and extreme temperature indices
for the 4 seasons. Specifically, HadEX3 and reanaly-
ses indices were correlated with El Niño 3.4 SST
derived from the HadISST1.1 data set and GCM
indices with SST of the model itself. The statistical
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significance of the correlations and regressions was
evaluated at a 95% confidence level.

The Spearman correlation coefficient is a measure
of non-parametric association between 2 continuous
random variables that do not follow a normal distri-
bution. The statistical significance of the correlation
coefficient was tested using the AS 89 algorithm
(Best & Roberts 1975). The null hypothesis states that
no monotonic association exists between the 2 vari-
ables in the population. The alternative hypothesis
affirms that a monotonic correlation is present. We
used this Spearman correlation coefficient instead of
the more traditional Pearson correlation coefficient
because the extreme temperature indices have a
non-Gaussian distribution (Klein Tank et al. 2009).

To assess the impact of one variable on the tails of
the distribution of another, the slope of the 90th per-
centile quantile regression between the extreme tem-
perature indices and SST3.4 was estimated at each
grid point (Mueller & Seneviratne 2012). An advan-
tage of the quantile regression methodology over the
least squares regression is that quantile regression
does not assume a particular parametric distribution
for the response variable nor a constant variance (Ro-
driguez & Yao 2017). Moreover, quantile regression
allows modeling multiple percentiles of the distribu-
tion, which provides a deep understanding of the re-
lationship between the dependent variable and the

predictors. To test the statistical significance, we esti-
mated the SE and the p-value using a bootstrap
method since it does not require any a priori assump-
tion of the data distribution (Hao & Naiman 2007).

2.2.3.  Spatial performance metrics

Comparison of the observed and modeled correla-
tion and slope fields makes it possible to identify
models with the skill to represent the relationship
between SST3.4 and temperature extremes. This
assessment was performed quantitatively by Taylor
diagrams and categorically by Cohen’s kappa coeffi-
cient and Mapcurves score.

Taylor diagrams (Taylor 2001) provide a visual
frame work and a concise statistical summary of how
well patterns match each other in terms of their cor-
relation, their root mean square error, and the ratio of
their variances. The Taylor diagram allows compar-
ing a suite of variables from 1 or more test data sets to
1 or more reference data sets. Commonly, the test
data sets are model experiments, while the reference
data set is a control experiment or some reference
observations. All variables must be on the same grid,
so regridding may be necessary. The Taylor diagram
is very useful for evaluating climate models and has
been used extensively in model assessment and
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             Model                                   Institution, country                          Atmospheric                    Reference
                                                                                                            resolution (°long × °lat)            

1          ACCESS 1.0                         CSIRO-BOM, Australia                   1.875 × 1.25                     Bi et al. (2013)
2          bcc-csm1-1-m                      BCC-CMA, China                              2.81 × 2.79                     Wu et al. (2014)
3          bcc-csm1-1                           BCC-CMA, China                              2.81 × 2.79                     Xin et al. (2013)
4          CanESM2                             CCCMA, Canada                              2.81 × 2.79                     Arora et al. (2011)
5          CCSM4                                 NCAR, USA                                        1.25 × 0.94                     Gent et al. (2011)
6          CMCC-CM                          CMCC, Italy                                       0.75 × 0.75                     Scoccimarro et al. (2011)
7          CMCC-CMS                        CMCC, Italy                                       3.75 × 3.71                     CMCC (2013)
8          CNRM-CM5                        CNRM-CERFACS, France                1.41 × 1.40                     Voldoire et al. (2013)
9          CSIRO-Mk3-6-0                  CSIRO-QCCCE, Australia                1.88 × 1.87                     Rotstayn et al. (2010)

10          GFDL-CM3                          NOAA GFDL, USA                            2.50 × 2.00                     Donner et al. (2011)
11          GFDL-ESM2G                     NOAA GFDL, USA                            2.00 × 2.02                    Dunne et al. (2012)
12          GFDL-ESM2M                     NOAA GFDL, USA                            2.50 × 2.02                     Dunne et al. (2012)
13          HadGEM2-CC                     MOHC, UK                                         1.88 × 1.25                     Collins et al. (2011)
14          HadGEM2-ES                      MOHC, UK                                         1.88 × 1.25                     Collins et al. (2011)
15          inmcm4                                 INM, Russia                                        2.00 × 1.50                     Volodin et al. (2010)
16          IPSL-CM5A-LR                    IPSL, France                                       3.75 × 1.89                     Dufresne et al. (2013)
17          IPSL-CM5A-MR                  IPSL, France                                       2.50 × 1.25                     Dufresne et al. (2013)
18          IPSL-CM5B-LR                    IPSL, France                                       3.75 × 1.89                     Dufresne et al. (2013)
19          MIROC5                               MIROC, Japan                                   1.41 × 1.40                     Watanabe et al. (2010)
20          MPI-ESM-LR                       MPI-M, Germany                               1.88 × 1.87                     Zanchettin et al. (2013)
21          MPI-ESM-MR                      MPI-M, Germany                               1.88 × 1.87                     Zanchettin et al. (2013)
22          MRI-CGCM3                       MRI, Japan                                         1.13 × 1.12                     Yukimoto et al. (2012)
23          NorESM1-M                        NCC, Norway                                      2.5 × 1.89                     Bentsen et al. (2013)

Table 2. List of CMIP5 models used in this work
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intercomparison studies in recent years (e.g. Hell-
ström & Chen 2003, Töyrä et al. 2005, Giorgi &
Gutowski 2015, Jiang et al. 2015, Katragkou et al.
2015, Tang et al. 2016, Tencer et al. 2016, Lovino et
al. 2018, Molina & Bernhofer 2019).

In the categorical approach, we evaluated whether
the statistically significant regions coincide, as well
as their sign. These fields can be analyzed as cate-
gorical maps (with positive and significant, negative
and significant, and non-significant regions) with 2
types of errors (Pontius 2000): (1) the quantization
error that occurs when the number of cells of a partic-
ular category in one map is different from the num-
ber of cells in that category on the other map, and (2)
the location error that occurs when the location of a
category on one map is different from the location of
that category on the other map.

The most direct comparison involves determining
whether each of the grid points is in the same cate-
gory as the one observed. This analysis is useful for
the construction of contingency tables (Congalton &
Green 1993). From the contingency tables, Cohen’s
kappa coefficient was calculated. This coefficient
adjusts the effect of chance in the proportion of cor-
rect answers for categorical variables (Cohen 1960).

Cohen’s kappa (κ) statistic is a chance-corrected
method for assessing agreement (rather than associ-
ation) among raters (DeVellis 2005). κ is defined as
follows (Eq. 1):

(1)

where p0 is the observed proportion of agreements
be tween raters, and pe is the probability of agree-
ments expected by chance. In this case, one rater is
the observations, and the other rater is each model.
The probability p0 is the hit ratio (number of hits
divided by the total number of observations).

For k categories, N observations to categorize and
nki the number of times rater i predicted category k
(Eq. 2):

(2)

Cohen’s κ is always less than or equal to 1. Values
of zero or less indicate the classifier is useless, i.e. the
observations and models agreed less than would be
expected just by chance. A value of 1 im plies perfect
agreement, and values less than 1 imply less than
perfect agreement. Landis & Koch (1977) provide a
way to characterize values. According to their
scheme, a value <0 indicates no agreement, 0−0.20
slight agreement, 0.21−0.40 fair agreement, 0.41−
0.60 moderate agreement, 0.61−0.80 substantial
agreement, and 0.81−1 almost perfect agreement.

The κ coefficient was also tested by consid ering a
2-tailed Z-test with a 5% significance level (Eq. 3).
The null hypothesis states that the empirical κ̂ coeffi-
cient is equal to a population κ. In this work, we con-
sidered κ0 = 0, because a negative value of κ does not
normally have a meaningful interpretation (Sim &
Wright 2005):

(3)

where 

The κ coefficient was previously used to evaluate
the performance of regional and global climate mod-
els in simulating the climate classifications (Sparovek
et al. 2007, Tapiador et al. 2019) and to measure the
agreement between predicted and observed classes
of wet days (Poggio & Gimona 2015).

Contingency table methods fail to distinguish be -
tween a near miss and a far miss and are not de -
signed to account for partial success (Hargrove et al.
2006). To complement the information provided by
the κ coefficient, a Mapcurves score was estimated.
Mapcurves make it possible to unequivocally deter-
mine the degree of spatial agreement between 2 or
more categorical maps (Hargrove et al. 2006), i.e.
Mapcurves are a measure of goodness of fit (GOF)
(Demirel et al. 2018). The Mapcurves score has an
optimal value of 1, whereas the lowest value is zero
since it represents the proportion of GOF. In this
study, the function ‘Mapcurves (x,y)’ available in the
‘sabre’ package version 0.3.2 (Nowosad & Stepinski
2018), written in the R programming language, was
used for estimating Mapcurves values. R version
3.6.0 was employed for the calculations. In that equa-
tion, x and y are vectors representing the categorical
values of historical observed data and categorical
values of simulated data by a GCM, respectively
(Ahmed et al. 2019). The Mapcurves value (MCX) is
calculated by Eq. (4):

(4)

where A is the total area of a given class X on the
map being compared, B is the total area of a given
class Y on the observed map, C is the area of inter-
section between X and Y when the maps are over-
laid, and n is the number of classes in the observed
map.
There are different sources of error in the GCMs that
can derive good and bad performance in simulating
the correlations between SST3.4 and ex treme
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indices. One of the most prominent errors is a poor
representation of the teleconnections by the models.
To analyze this source of uncertainty, we must con-
sider the physical processes which may be respons -
ible for the occurrence of extreme temperatures.

Minimum and maximum temperatures are sensitive
to cloudiness. Radiative cooling is reduced under
cloudy nights, since some of the heat emitted from the
earth’s surface is trapped by the clouds and re emitted
back towards the surface. During a cloudy day, less of
the sun’s energy is able to reach the earth’s surface,
which causes the surface to heat up more slowly. In
this sense, El Niño events favor the higher occurrence
of rainfall in SESA. Silvestri (2005) shows that winter
precipitation during the El Niño phase is significantly
higher than La Niña and in neutral cases in SESA.
More recently, Tedeschi & Collins (2016) showed that
canonical El Niño produces positive precipitation
anomalies and precipitation events more extreme
than the climatology over SESA in the JJA season.
Likewise, several authors found an increase in precip-
itation in SESA during El Niño years in spring (Vargas
et al. 1999, Grimm et al. 2000, Grimm & Tedeschi
2009). This increase in precipitation and cloud cover
could be the reason for warmer conditions at night
and cooler conditions during diurnal hours. Therefore,
we decided to evaluate how GCMs represent the
anomalies of sea level pressure in the Southern Hemi-
sphere and precipitation in southern South America
by comparing them against ERA-Interim fields. For
this purpose, the de trended SST3.4 index was stan-
dardized, and a thres hold of ±0.5 was considered to
select El Niño and La Niña events.

3.  RESULTS AND DISCUSSION

3.1.  Observed association between SST3.4 and
extreme temperature indices

The warm night index shows the largest region
with significant correlations with SST3.4. During
autumn, significant positive correlations are predom-
inantly located in Chile and western Argentina
(Fig. 1). In winter and spring, the direct correlations
imply that warmer SSTs are associated with a higher
frequency of warm nights in northern and central
Argentina and Chile, Uruguay, Paraguay, and south-
ern Brazil. In addition, during the spring, negative
correlations are observed in southern Argentina.
Warm days show a similar pattern in SON, but the
negative correlations are more extended to the north,
and the positive correlations are confined to the

northwest region. In contrast, cold nights presented
negative correlations mainly in northwestern Argen -
tina, and cold days are positively correlated with
SST3.4 in Patagonia in SON. The opposite response
to SST was observed between the cold and warm
extremes in MAM and SON. A similar pattern was
identified by Rusticucci et al. (2017) in central and
northern Argentina during September and by Ke -
nyon & Hegerl (2008) in winter. The ENSO impacts
over southern South America by an extratropical
teleconnection through a pattern of stationary Ross -
by wave trains which is most pronounced during
SON. During an El Niño event, the atmospheric pat-
tern culminates in negative and positive pressure
anomalies over the eastern mid-latitudes and eastern
subtropical South America, respectively (Cai et al.
2020). These atmospheric circulation anomalies favor
northwesterly advection of moist warm air into SESA
and an increase in precipitation (Silva & Ambrizzi
2006, Viale et al. 2018, Montini et al. 2019). In SESA,
we only found a significant association between
SST3.4 and warm nights, i.e. warm advection and an
enhanced cloud cover during El Niño favor warmer
minimum temperature.

The influence of SST on the highest values of the
extreme indices is even more localized than what we
observe for the correlations, even though the sign of
the association remains (Fig. 2). The observed slopes
tend to be smaller than 10% °C−1 in absolute value,
i.e. for a positive trend, an increase of 1° in SST3.4 is
associated with an increase less than 10% in the 90th
percentile of the extreme temperature indices.

3.2.  Reanalyses performance assessment

To sum up the analysis, we focus the evaluation on
the warm nights index in the winter (JJA) and spring
(SON) seasons because they presented the most
extended area with significant associations. Fig. 3
shows that ERA-Interim presents difficulties repre-
senting significant positive correlations in central
Argentina for both seasons. NCEP1 and HadEX3
have a similar pattern of significant correlations in
JJA, while NCEP1 performs poorly in western and
southern Argentina in SON. Finally, the performance
of NCEP2 is worse than NCEP1 in JJA and similar to
its predecessor reanalysis in SON.

The slope of the quantile regressions between ob -
served SST3.4 and the 90th percentile of observa-
tions and reanalyses can be found in Fig. 4. This fig-
ure  shows a good agreement in JJA for NCEP2, but
the reanalyses were unable to represent the signifi-
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cant slopes observed in northern and western
Argentina in SON.

The performance of the reanalyses was objectively
quantified through 2 metrics (Cohen’s κ coefficient
and Mapcurves values). Fig. 5 shows that the per-
formance of the reanalysis varies considerably
according to the season and the metric applied. Both
metrics agree the NCEP1 is the best in representing

the observed correlations in JJA. Moreover, both
NCEP reanalyses show a moderate performance for
the slopes of the quantile regression in winter. Dur-
ing the spring, the metrics do not agree on what the
best reanalysis is, even though all the reanalyses
show a significant κ coefficient. The slight strength of
agreement and the Mapcurves values below 0.5 are
indicative of the poor performance of the reanalyses
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in estimating the slopes of the 90th percentile in
SON. In general, for all extreme indices and seasons,
the reanalyses are more efficient in re presenting cor-
relations than slopes of the 90th percentile, which
might be caused by an incorrect de piction of the
right tail of the distribution of the extreme indices.

A priori, we expected to obtain more similar results
between the different reanalyses and observations;
however, the discrepancies were substantial, indi -

cating considerable uncertainties regarding their
simulation of extremes. Sillmann et al. (2013a) ar -
rived at a similar conclusion and affirmed that re -
analyses might be affected by, for instance, inaccu-
rate representation of surface and boundary layer
processes, convection, and its spinup. Moreover, we
agree with Angélil et al. (2016) about the importance
of using multiple reanalyses and observation prod-
ucts for attribution studies.
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Fig. 3. Correlation between observed SST in the El Niño 3.4 region and warm nights index of HadEX3 and reanalyses (dotted 
regions indicate significant correlation at the 0.05 significance level)

Fig. 4. Slope of the quantile regression for the 90th percentile between observed SST in the El Niño 3.4 region and warm
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3.3.  GCM performance

Figs. 6−9 show simulations by the GCMs of the cor-
relations and slopes of the 90th percentile be tween
SST3.4 and TN90p in the JJA and SON seasons.
Highly varied results were found between the mod-
els. The GCMs that could simulate with some preci-
sion the significant positive correlations ob served in
JJA in central and northern Argentina and Chile,
Uruguay, Paraguay, and southern Brazil are
CanESM2, CSIRO-Mk3-6-0, GFDL-ESM2G, GFDL-
ESM2M, IPSL-CM5A-LR, IPSL-CM5B-LR, MPI-ESM-
LR, MPI-ESM-MR, and NorESM1-M (Fig. 6). These
models were capable of detecting that warmer SST
conditions in the equatorial Pacific are associated
with a higher frequency of warm nights in the men-
tioned region. The only model that represented op -
posite conditions to those observed is CMCC-CMS,
with significant negative correlations in eastern Ar -
gentina. On the other hand, the ensemble mean only
shows significant positive correlations in the north of
the study region.

In SON, only the CNRM-CM5 model was able to
simulate the observed dipole of correlation with neg-

ative correlations in southern Argentina and positive
correlations in central and northern Argentina, even
though this model did not simulate the relationship
between SST3.4 and TN90p in central Argentina and
Chile (Fig. 7). Associated with the poor representa-
tion of the models, the ensemble mean of the models
cannot achieve an adequate representation of the
correlations, even though it can successfully simulate
the negative correlations in southern Argentina.
Finally, among the worst models are bcc-csm1-1-m,
IPSL-CM55A-LR, and MIROC5, since they represent
an opposite pattern to what was observed.

The comparison for the quantile regression shows
that the ensemble mean and several models simu-
lated significant positive slopes in northern Chile and
western Argentina in JJA as the observations (Fig. 8).
In the spring, the results are more variable between
models, being difficult to visually identify which was
the best (Fig. 9).

The objective comparison between observations
and simulations through Taylor diagrams is shown in
Fig. 10 for TN90p in JJA and SON. In addition, in the
Supplement (available at www. int-res. com/ articles/
suppl/ c083 p111 _ supp. pdf), the Taylor diagrams and
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Fig. 6. Correlation between modeled SST in the El Niño 3.4 region and warm nights index of global climate models in JJA 
(dotted regions indicate significant correlation at the 0.05 significance level)
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Fig. 7. Same as Fig. 6 but for SON
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index of global climate models in JJA (% °C−1) (dotted regions indicate significant correlation at the 0.05 significance level)
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other metrics are presented for all seasons and
extreme indices (Figs. S1−S4). Moreover, in the Sup-
plement, we evaluated the skill of the GCMs in rep-
resenting the individual variability of the SST3.4 and
extreme indices (Text S1, Table S1, Figs. S5 & S6).
We found the correlations between SST3.4 and warm
days were correctly simulated for many models and
the ensembles in DJF and MAM, with similar per-
formances according to the metrics (Figs. S1 & S2).
This result will allow more robust analysis of the
future projections of these relationships.

Among the models identified with correlation pat-
terns similar to the observed, CSIRO-Mk3-6-0 is
highlighted for presenting the best performance,
taking into account the Taylor diagram and the other
metrics. Furthermore, the model has a similar skill to
the ERA-Interim and NCEP1 reanalyses. Other GCMs

which maintain a substantial agreement between
observed and modeled correlations for TN90p in JJA
are NorESM1-M, HadGEM2-CC, IPSL-CM5B-LR,
and CanESM2. On the other hand, MPI-ESM-LR
showed higher values of the κ coefficient, map -
curves, and spatial correlation but presented an SD
higher than the observed, as shown in the Taylor dia-
gram. In spring, the visual analysis matched with the
quantitative analysis well, since both analyses indi-
cated that the CNRM-CM5 model has the most out-
standing performance.

The GCMs presented even more difficulties in rep-
resenting the link between the higher frequencies of
occurrences of extreme indices and SST3.4 (Fig. 10,
Figs. S3 & S4). The regressions for the warm days
and warm nights indices in autumn and winter, res -
pectively, were best simulated by the models. As we
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mentioned before, several models could represent
the observed pattern of the slopes for TN90p in JJA.
However, we found some differences according to
the metrics, e.g. the Taylor diagram showed a good
performance of NorESM1-M, while the κ coefficient
and Mapcurves indicated a fair strength of agree-
ment. The reanalyses also present discrepancies
among metrics since the Taylor diagram represents
negative spatial correlations. In SON, on the con-
trary, fewer models presented significant κ coeffi-
cients, and only MPI-ESM-LR had a moderate
strength of agreement; nevertheless, the Taylor dia-
gram indicates several GCMs and the ensemble with
a good performance, e.g. GFDL-ESM2M, GFDL-
ESM 2G, and CNRM-CM5, among others.

As we mentioned before, 1 source of error in the
GCMs that can lead to a bad performance in simulat-
ing the correlations between SST3.4 and extreme
indices is a poor representation of the teleconnec-
tions, as Tedeschi & Collins (2016) concluded. In this
case, it is to be expected that the GCM presented a
poor representation of the correlations for all ex -
treme indices.

Fig. 11 shows the difference in sea level pressure
anomalies (SLPAs) between La Niña and El Niño
events, estimated for the ERA-Interim reanalysis.
Cyclonic anomalies predominate in the South Pa -
cific (centered at 60° S−250° E) during La Niña
events, with an opposite pattern during El Niño.
SLPAs are particularly intense during the winter
and spring, which coincides with the previously
detected seasons with a higher ENSO signal. For
these seasons, the GCMs were able to simulate the
atmospheric circulation pattern in the Southern He -
misphere, except HadGEM2-ES. Among the GCMs
which were able to correctly simulate the correla-
tion between SST3.4 and JJA TN90p, HadGEM2-
CC, IPSL-CM5B-LR, and NorESM1-M stand out for
their highest agreement of the spatial atmospheric
circulation pattern in the Southern Hemisphere.
During SON, CNRM-CM5 adequately simulates
the Southern Hemisphere circulation. When we
focus on how the GCMs represent the atmospheric
circulation in southern South America, the per-
formance of the models declines, and some cannot
even represent it, e.g. IPSL-CM5A-LR in JJA. How-

127

−70
−50
−30
−10

−70
−50
−30
−10

−70
−50
−30
−10

150 200 250 300
−70
−50
−30
−10

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−0.5

0.0

0.5

1.0

AC
CE

SS
1.

0
bc

c.c
sm

1.
1

bc
c.c

sm
1.

1.
m

Ca
nE

SM
2

CC
SM

4
CM

CC
.C

M
CM

CC
.C

M
S

CN
RM

.C
M

5
CS

IR
O.

M
k3

.6
.0

GF
DL

.C
M

3
GF

DL
.E

SM
2G

GF
DL

.E
SM

2M
Ha

dG
EM

2.
CC

Ha
dG

EM
2.

ES
inm

cm
4

IP
SL

.C
M

5A
.L

R
IP

SL
.C

M
5A

.M
R

IP
SL

.C
M

5B
.L

R
M

IR
OC

5
M

PI
.E

SM
.L

R
M

PI
.E

SM
.M

R
M

RI
.C

GC
M

3
No

rE
SM

1.
M

En
se

m
ble

.m
ea

n

−10 −5 0
Difference in pressure anomaly (hPa)

5 10
Fig. 11. Difference in the anomalies of sea level pressure (hPa) between La Niña
and El Niño events for the ERA-Interim reanalysis (left panels). Spatial correla-
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level pressure anomalies in the Southern Hemisphere (middle panels) and only
over southern South America is indicated with a red rectangle (right panels)
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ever, all the GCMs which presented a good per-
formance, according to the Taylor diagrams, have a
significant spatial correlation of the SLPA pattern
in southern South America.

According to ERA-Interim, less precipitation is ob -
served during La Niña events in southern Brazil,
northeastern Argentina, and Uruguay compared
with El Niño events (Fig. 12). The performance of the
GCMs in representing the precipitation pattern va -
ries according to the season. In particular, the model
IPSL-CM5B-LR, which simulates well both the corre-
lation between SST3.4 and JJA TN90p and the JJA
SLPA patterns, fails to represent the precipitation
field. A possible hypothesis about its good perform-
ance in simulating the relationship between SST3.4
and JJA TN90p is that this model simulates well the
presence of some cloudiness, since it manages to rep-
resent the SLPAs but fails with the associated precip-
itation. Since minimum temperatures are influenced
by cloud cover, IPSL-CM5B-LR manages to capture
the association between warm nights and ENSO
events.

4.  CONCLUSIONS

In this work, we evaluated GCM performance in
representing the joint variability between El Niño 3.4
SST and different extreme temperature indices. This
type of analysis is of vital importance to determine
whether the models simulate the occurrence of ex -
treme events for the correct reasons, i.e. whether
they occur in response to different physical proces -
ses, such as teleconnections.

ENSO is one of the main drivers of global circu -
lation. We found that SST3.4 is mainly associated
with the observed warm nights in winter and
spring, and this result was consistent for the 2
methodologies: correlations and quantile regres-
sions. Warmer conditions in the equatorial Pacific
are associated with warmer nights in central and
northern Argentina and Chile through teleconnec-
tions. We also observe discrepancies in the repre-
sentation of these relationships between the differ-
ent reanalyses. In this sense, we cannot determine
which of the reanalyses is more similar to the
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observed patterns because it depends on the sea-
son and methodology applied.

The performance of the GCMs in representing the
associations between SST3.4 and temperature ex -
tremes was assessed through Taylor diagrams and 2
metrics: Cohen’s κ coefficients and Mapcurves val-
ues. Most of the models were able to adequately sim-
ulate the correlations between SST3.4 and TX90p.
For TN90p in JJA and SON, several models had
acceptable performances, especially CNRM-CM5,
CSIRO-MK3-6-0, HadGEM2-CC, and NorESM1-M.
Moreover, we observed that these models were able
to simulate the atmospheric circulation and precipi-
tation patterns during ENSO events.

In general, the ensemble mean does not have an
outstanding performance or clearly superior per-
formance compared to an individual model, probably
because the ensemble tends to underestimate the
variability of both SST3.4 and the extreme indices
(Table S1, Figs. S5 & S6).

The results achieved in this work allowed us to
identify the models that can accurately simulate
the link between temperature extremes and equa-
torial Pacific SST. However, we could not deter-
mine a single set of models with the best skills
because these vary according to the extreme index
and the season that is being considered. An ade-
quate representation of the present climate pro-
vides higher reliability in future projections. In the
second part of this study, these relationships will
be analyzed in the future climate under different
scenarios.

Moreover, additional research is pending to eval-
uate and compare these relationships with the new
generation of CMIP6 models and considering dif-
ferent types of ENSO events. Several of the new
CMIP6 models are more sensitive to greenhouse
gas emissions than the previous generation of mod-
els. To karska et al. (2020) found that the models
tend to overestimate recent global warming, which
means that their sensitivity may be too high. These
discrepancies between the CMIP5 and CMIP6
models make it necessary to evaluate and contrast
both projections. In addition, other forcings can be
as sessed, for example, soil moisture conditions,
which are strongly associated with the warm ex -
tremes of maximum temperature (Hirschi et al.
2011, Mueller & Seneviratne 2012, Whan et al.
2015, Collazo et al. 2019a). These types of studies
are crucial to understanding whether climate mod-
els simulate temperature ex tremes, driven by phys-
ical processes, which provide higher confidence in
their future projections.
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