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Abstract. Skin wounds have been extensively studied as their
healing represents a critical step towards achieving homeo-
stasis following a traumatic event. Dependent on the severity of
the damage, wounds are categorized as either acute or chronic.
To date, chronic wounds have the highest economic impact
as long term increases wound care costs. Chronic wounds
affect 6.5 million patients in the United States with an annual
estimated expense of $25 billion for the health care system.
Among wound treatment categories, active wound care repre-
sents the fastest-growing category due to its specific actions
and lower costs. Within this category, proteases from various
sources have been used as successful agents in debridement
wound care. The wound healing process is predominantly
mediated by matrix metalloproteinases (MMPs) that, when
dysregulated, result in defective wound healing. Therapeutic
activity has been described for animal secretions including fish
epithelial mucus, maggot secretory products and snake venom,
which contain secreted proteases (SPs). No further alternatives

Correspondence to: Dr Mirna Lorena Sénchez, Laboratorio de
Materiales Biotecnoldgicos, Departamento de Ciencia y Tecnologia,
Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Roque
Sdenz Pefia 352, Bernal, Buenos Aires B1§76BXD, Argentina
E-mail: mirna.sanchez@unq.edu.ar

Dr Jorge Benavides, Tecnologico de Monterrey, Escuela de Ingenierfa
y Ciencias, Av. Eugenio Garza Sada 2501 sur, Monterrey, Nuevo
Ledn 64849, México

E-mail: jorben@tec.mx

Abbreviations: ECM, extracellular matrix; FMC, fish mucus
cathepsin;, FMM, fish mucus meprins; FMMPs, fish matrix
metalloproteinases; FMSP, fish mucus serine proteases; MaPs,
maggot proteases; MMPs, matrix metalloproteases; SPs, secreted
proteases; SVMPs, snake venom metalloproteases; SVSPs, snake
venom serine proteinases; TGF-f31, transforming growth factor-31;
VEGTF, vascular endothelial growth factor

Key words: enzymatic wound treatment, fish epithelial mucus,
maggot secretory products, matrix metalloproteases, snake venom
proteases

for use, sources or types of proteases used for wound healing
have been found in the literature to date. Through the present
review, the context of enzymatic wound care alternatives will
be discussed. In addition, substrate homology of SPs and
human MMPs will be compared and contrasted. The purpose
of these discussions is to identify and propose the stages of
wound healing in which SPs may be used as therapeutic agents
to improve the wound healing process.
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1. Introduction

A wound of the skin is generally described as the interrup-
tion of the epithelial surface caused by a physical or thermal
challenge (1). Skin wounds have been extensively studied as
their healing represents a critical step in achieving homeostasis
following a traumatic event. Dependent on the severity of the
damage, wounds are categorized into either acute or chronic (2).
To date, chronic wounds have the highest economic impact as
long term treatment increases wound care costs (3). It is esti-
mated that 1-2% of the population of the developing world will
experience a chronic wound in their lifetime (4). According to
Brem et al (5),in 2007 chronic wounds had affected 6.5 million
patients in the United States, with an annual estimated health
care expense of $25 billion (6). However, to date, the actual
cost of chronic wound care in the United States is unknown (7).
There has been a relatively high increase in the incidence of
chronic wounds, and this may be closely associated with
the increase in factors which impair wound healing, such as
diabetes, obesity, or therapeutics such as chemotherapy, steroids
and non-steroidal anti-inflammatory drugs (6).
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The cost of chronic wound care represents a complicated
scenario for patients and health care systems, leading to a
necessity for the development of healing solutions which are
both quicker and more cost-effective. To date, the available
wound treatment therapeutics are: dressings, such as antimi-
crobial, films and alginate; hydrocolloids, collagen products,
gauze composites and hydrogels; and active wound care (8).
Active wound care represents the fastest growth category
(20.6% compound annual growth rate between 2016-2022)
as it is an alternative that has a more specific action and is
more cost-effective (9). Within the active wound care category,
proteases from a range of sources have been employed as
successful agents in debridement (10), enhancing wound
healing (11), coagulation (12) and keloid scar treatments (13).
Of these, debridement comprises the principal dermato-
logical application in enzymatic wound care, a proven and
well-established principle (14).

The wound healing process is predominantly mediated by
matrix metalloproteinases (MMPs) (15-17). Dysregulation of
MMPs results in defective wound healing, which has made
them targets of study in cases of chronic wounds, diabetic foot
injury, keloid healing and burned skin (10). The topical appli-
cation of non-human proteases has demonstrated beneficial
therapeutic effects in events where MMPs fail due to dysregu-
lation, for example in hemostasis (18), wound closure (19) and
debridement (20).

Debridement is the most widely explored enzymatic wound
care application, in which the most frequently used proteases
are collagenases, serine proteases and cysteine proteases. The
therapeutic activity of animal secretions from fish epithelial
mucus (21), maggot (Lucilia sericata) secretory products (22)
and snake venom (23) have also been demonstrated. These
secretions contain different types of proteases capable of
degrading the same substrates as MMPs. Besides these, no
further use cases, sources or types of proteases for wound
healing were found based on the currently available literature.

Through the present review, the context of enzymatic
wound care alternatives will be discussed, along with a
comparison of substrate homology of secreted proteases (SPs)
and human MMPs. This review will aid in the identification of
which stages of the wound healing process SPs may be used as
therapeutic agents.

2. Chronic wound healing management: Practical context
of traditional and enzymatically based debridement
approaches

Debridement is the first step to enhance repair of chronic
wounds. According to the European Wound Management
Association, this procedure is considered a basic necessity to
induce the physiological process of tissue repair (24). Through
debridement, necrotic tissue is removed by external means
to create a stable and healthy scaffold for re-epithelializa-
tion (25). In healthy individuals under normal circumstances,
debridement is performed naturally following clot formation
by neutrophil-derived MMPs and other components (26).
However, when the MMP machinery fails, there is an accumu-
lation of devitalized tissue. As a consequence, the steadiness
of prolonged catabolism diminishes re-epithelialization and
results in chronic wounding (27).

This failure represents an important baseline to treat
chronic wounds, as devitalized epithelium builds up a physical
barrier that precludes the healing process by interfering
with the repair machinery, mimicking signs of infection,
providing nutrients to anaerobic pathogenic agents, such as
Clostridium perfringens or Bacteroides sp., and promoting
cytokine production that in severe cases generates a septic
response (28).

Debridement can be performed through autolytic, surgical,
biological or enzymatic means (28). Of these, autolytic debride-
ment is the most conservative treatment strategy. It enhances
the action of endogenous phagocytic cells and proteases such
as MMPs through dressings that provide the ideal catalytic
conditions for removal of necrotic tissue (29). Among the
dressings available for autolysis, films (polydimethylsiloxane),
gauzes, hydrocolloids, hydrogels, alginates, hydrofibers and
foams have been proposed (25,30). This strategy is selec-
tive, painless, inexpensive and suitable for most types of
wounds (31). However, this process is slow, dependent on
suitable reaction conditions and on the physiological response
of the patient, and carries the risk of skin degradation due to
prolonged exposure to moisture (maceration) (32) within the
surrounding skin (28).

Surgical debridement strategies are performed by excising
necrotic tissue until only healthy skin regions are exposed (33).
Available variants of surgical debridement include ultrasound
debridement, plasma-mediated bipolar radio-frequency abla-
tion, versa-jet (fluid jet technology) and hydrosurgery (34,35).
Surgical debridement is the fastest and most effective route of
treatment, but is an expensive method that requires a sterile
surgical environment, trained practitioners, and specific
instruments, and is contraindicated for patients with clotting
disorders (28,36).

By contrast, biological debridement promotes the removal
of devitalized epithelium through the digestive action of
Lucilia sericata sterile maggots (31). Maggots are caged
in wound-sized hydrocolloid dressings that are placed in
the affected area (37). The secretion of several components
including proteolytic enzymes, such as trypsin and chymo-
trypsin serine proteases, then catalyze non-viable skin into a
liquid feedstock that facilitates maggot feed (38). This alter-
native has proved to be efficient in several types of chronic
wounds (39) and ulcers (40,41) by providing quick wound
debridement, reduction in the use of biofilms, disinfection from
bacteria (40,42-45) and improved pain control (46). However,
due to the negative image several societies impose on maggots,
this alternative has not been well accepted by patients and
practitioners (47). Furthermore, it is contraindicated for the
treatment of fistulae, exposed vessels and wounds in proximity
to vital organs (42).

A potential compromise is enzymatic debridement, in
which proteases from different sources (bacterial, vegetal or
animal) is applied to the wounded area to remove necrotic
tissue (48,49). Enzymatic debridement is selective and suit-
able for infected wounds (36), without the need for complex
equipment or application procedures. This alternative also
takes less time and requires fewer applications to accomplish
debridement compared with dressings used for autolytic
treatments (50). Other reported enzymatic wound healing
approaches are anti- or pro-coagulation through venom toxins
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from Bothrops sp. (51,52). These enzymes may frequently
be inhibited by salts, temperature and hydrogen peroxide,
which are common elements of aseptic solutions. A stinging
sensation and exudate may also be observed as an after-effect
of enzymatic treatment (36).

From these four mentioned alternatives, three are directly
dependent on proteases to perform the debriding activity.
The direct or indirect use of proteases is therefore the second
most commonly used tool after surgical debridement. In
the current literature, the most commonly used proteases
in direct enzymatic debridement are bromelain, papain
and bacterial collagenases (53). Other enzymes have been
demonstrated to intervene as anti- or pro-coagulation agents
and in non-specific wound healing from animal secretions.
The most common commercially and non-commercially
available proteases associated with wound healing are listed
in Table I.

Animal secretions with high quantities of protease content,
including fish epithelial mucus and snake venom, have been
reported to enhance wound healing. Wound healing proper-
ties were reported for the secreted mucus of the fish species
Netuma barba (54), Channa striatus (55) and Clarias gari-
epinus (56). A reduction in healing time of almost 60% was
achieved following the topical application of mucus prepara-
tions in the wounds of mice, rats, guinea pigs and humans (57).
For snake venom, anti- or pro-coagulation and epithelial cell
migration properties were observed with the toxins from the
venom of Bothrops moojeni, B. atrox (51), B. alternatus (18)
and B. jararaca (58).

Thus far, the primary application of proteases in wound
treatment has been debridement. Information regarding the use
of proteases being used for other wound healing treatments is
scarce, suggesting that relatively little attempt has been made
to propose the use of proteases in different stages of the wound
healing process (57,59). Several therapeutic benefits have been
described from animal secretions, but studies on their possible
use in wound healing stages are limited. It may be beneficial to
determine whether the existing types of SPs present in animal
secretions with reported therapeutic effects (maggots, fish and
snakes), can mimic human MMPs.

3.MMPs in skin wound healing: Comparison and substrate
homology with proteases secreted from other animals

Wound healing is the process by which an epithelial
discontinuity is closed and is divided into four major steps:
Hemostasis, inflammation, cell migration-proliferation and
skin remodeling (60,61). The interaction and co-ordination of
several elements such as cytokines, growth factors, coagulation
elements, extracellular matrix (ECM) components, paren-
chymal cells and MMPs (62,63) enable the correct progression
of these major steps (Fig. 1).

It has been reported that MMPs predominantly mediate
the wound healing process and are involved in several events
in each stage, including ECM degradation (64), cell prolifera-
tion/migration, mesenchymal cell differentiation (65), wound
contraction, angiogenesis and re-epithelialization (66-68). At
present, 25 different MMP variants have been identified in the
human genome (64,69). Of these, 11 are responsible for skin
remodeling and wound healing (Table II).

The presence of SPs has been reported in the secretions of
fish (70), maggots (71,72) and snake venom (73). As MMPs are
one of the primary participants of the wound healing process,
a similarity may exist in the catalytic mechanisms of SPs and
MMPs. This similarity may explain the therapeutic effect
provided by these secretions.

Maggot therapy efficiency in the treatment of necrotic,
infected chronic wounds is due to the activity of several SPs.
This secretion consists of serine proteases (trypsin-like and
chymotrypsin-like) and metalloproteases (71,72). As a secre-
tion, maggot proteases (MaPs) contribute to the wound healing
process, primarily in fibroblast stimulation and bacterial
disinfection. MaPs degrade fibrin clots and fibronectin (74),
enhancing fibroblast metabolism and migration (22,75). In
addition, MaPs increase TGF-f3 (transforming growth factor-f3)
signaling in wounds treated with maggots (76), which enhances
endothelial cell and keratinocyte migration, thus promoting
wound closure. Furthermore, MaPs inhibit neutrophil
migration and decrease the production of pro-inflammatory
mediators in neutrophils and monocytes (44,77), leading to
recruitment of pro-angiogenic growth factors (78) and healthy
granulation tissue (79). MaPs are also considered antimicrobial
enzymes (80), capable of eliminating Staphylococcus aureus
and Pseudomonas aeruginosa (44,81) as well as degradation
of biofilms produced by S. epidermidis and S. aureus (41).

From MaPs, only a chymotrypsin-like protease has been
isolated from maggot secretions, which exhibited clotting
and proteolytic activity in fibronectin, suggesting its use in
hemostasis and for temporary collagen-rich replacement of
ECM (74,82). These proteases also reduce biofilms in patients
with leg ulcers (40.41).

Similar to maggot secretions, fish mucus and snake venom
have been hypothesized as wound healing treatment agents.
In traditional medicine, they have been used as a therapy for
skin burns and hemostasis (51,55,56,83). Fish epithelial mucus
consists primarily of glycoproteins and immune biomol-
ecules (84). Immune components, metalloproteases, serine
proteases, and cathepsins B, D and L, have been identified in
fish epithelial mucus (85,86). Enzymatic components from
crude secretions contribute to accelerated clot formation and
agglutination of red cells (87).

In the case of metalloproteases, fish matrix metallopro-
teinases (FMMPs) 9 and 13 and fish mucus meprins (FMM)
have been described as components of fish mucosal secre-
tions (88,89). FMMPs 9 and 13 have analogous variants in
human tissue, which participate in wound contraction and
re-epithelialization (66,90). FMMs can degrade collagen 1V,
fibrillar procollagen and fibronectin (91-93), which are also
degraded by MMPs 3, 10, 11 and 12 (Table IT). These proteases
are involved in wound contraction, monocyte/macrophage
metabolism and re-epithelialization (66).

Cathepsins are a family of proteases that have been
identified in fish epithelial mucus, and these cathepsins in
fish mucus have not been characterized. It is hypothesized
that the cathepsins in fish mucus may exhibit a therapeutic
effect on wound healing based on the available data regarding
their properties on human skin. These proteases are normally
present in lysosomal vesicles, but their presence has also been
demonstrated extracellularly (94). In human physiology, they
participate in wound healing during hemostasis (95), ECM
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Table I. Applications of proteases in wound healing treatments classified by their reported therapeutic effect.

A, Debridement and skin burns

Author, year Enzyme Source (Refs.)
Ford et al, 2006 Papain + urea (Accuzyme SE) Carica papaya (152)
Ford et al, 2006 Papain, Urea, Chlorophyllin Copper (152)
Complex Sodium (Panafil SE)
Muhammad et al, 2014; Papain/Chymopapain (20,153)
Yaakobi et al, 2007
Klasen, 2000 Collagenase Clostridium sp. (14)
Smith & Nephew, Inc., 2014 Collagenase (Santyl®) C. histolyticum (154)
Giudice et al, 2017 Bromelain (NexoBrid) Ananas comosus (155)
Gorecki and Toren, 2005 Bromelain cysteine protease (156)
Klein and Houck, 1980 Bromelain cysteine protease (157)
Niehaus ez al, 2012 Debrilase Lucilia sericata (158)
Niehaus ez al, 2012 Serine protease (159)
Rosenberg, 2012 Bromelain, trypsin enzyme H-4, collagenase, Several (160)
papain/papain-urea
Freeman et al, 2012 Collagenase, elastase, papain, bromelain, (161)
hydrolase, streptokinase
B, Anticoagulation and procoagulation
Author, year Enzyme Source (Refs.)
Waheed et al, 2017 Moojenin (Defibrase®) Bothrops moojeni (G2))
Wabheed et al, 2017 Batroxobin (Reptilase) B. atrox (51)
Chan et al, 2016 Thromboplastin-like and thrombin-like (52)
(Hemocoagulase)
De Marco Almeida et al, 2015 Venom B. alternatus (18)
Yaakobi et al, 2004 Collagenase Non specified (162)
Rodeheaver et al, 1974 Trypsin/ADAMS SVMP Bovine (163)
Glyantsev et al, 1996 Collagenase Crab (specie non specified) 27
Ferreira et al, 2017 Buffalo cryoprecipitate and Serine protease Crotalus durissus terrificus (59)
C, Enhancing wound healing
Author, year Enzyme Source (Refs.)
Fierro-Arias et al, 2017 Collagenase C. histolyticum (13)
Gao et al, 2015 rMMPS8 and MMP?9 inhibitor Non specified (164)
Pasha et al, 2015 Cream/composite Channa striatus (143)
Rilley and Herman, 2005 Collagenase Clostridium sp. (19)
Ferreira et al, 2018 Jararhagin B. jararaca (58)
Mukherjee et al, 2017 Mucus Echinoida sp. (83)
Costa-Neto, 2004 Globe eye Netuma barba (54)
Manan Mat Jais, 2007 Mucus C. striatus (55)

MMP, matrix metalloproteinase; SVMP snake venom metalloprotease; rMMP, recombinant MMP.

remodeling (96) and keratinocyte migration (97). Cathepsin-L
substrate affinity has been described for laminins, fibronectin,
elastin and collagen (98,99). Cathepsin-D has affinity for

fibronectin, proteoglycans, and collagens I and II (100), while
substrate affinity of Cathepsin-B has been described primarily
for collagen II, IX and XI (101). These substrates are also
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Figure 1. Simplified diagram of the interactions between different cell types during wound healing, the contribution of MMPs and proposed wound healing
mechanisms of SPs. Skin injury repair begins with hemostasis, a process which stops blood loss and provides a temporary matrix facilitating further steps in
wound healing. Fibrin-rich ECM formation stimulates neutrophil-activated monocyte recruitment through TNF-a and PDGF. Both neutrophils and monocytes
produce several growth factors, such as TNF-a, TGF-a, TGF-f, EGF and FGF, to enhance migration and proliferation of fibroblasts, endothelial cells, and
keratinocytes to the site of injury. Fibroblasts stimulate other cells to produce collagen deposits in the ECM, wound contraction, angiogenesis and re-epitheli-
zation. Studies suggest that SPs, such as FMC, FMMP, FMM, FMSP, MaP, SVMP and SVSP, may behave similarly to endogenous MMPs during these stages.
Ang, angiopoietin; CTGF, connective tissue growth factor; Col, collagen; ECM, extracellular matrix; EGF, epidermal growth factor; FGF, fibroblast growth
factor; FMC, fish mucus cathepsin; FMMP, fish mucus matrix metalloprotease; FMM, fish mucus meprin; FMSP, fish mucus serine protease; FN, fibronectin;
Hy, hyaluronan; IL-1, interleukin-1; MaP, maggot protease; MMP, matrix metalloproteinase; PDGF, platelet-derived growth factor; PG, proteoglycan; SVMP,
snake venom metalloprotease; SVSP, snake proteinase; TGF, transforming growth factor; TNF-o., tumor necrosis factor-a; VEGF, vascular endothelial growth

factor.

target proteins for MMPs 1, 8, 13 and 14 (66,102), which
supports the reported role of cathepsins in wound contraction
and hemostasis.

Additionally, fish mucus serine proteases (FMSPs) are
present in mucosal secretions (103), albeit with only poor
substrate characterization thus far. Nevertheless, this family
of proteases has reported activity on collagen, elastin, fibrin
and fibrinogen (104,105). Thus, this protease may be useful
during hemostasis, generating platelet aggregation and fibrin
clot formation (106). Additionally, FMSPs degrade fibrin,
which may assist in the change of ECM from temporary
to collagen-rich, resulting in cellular proliferation and
migration (107). This family of enzymes also interferes
with the maturation of MMPs (66) and the desquamation
processes (108).

Snake venoms, particularly from the Viperidae family, are
rich in proteases. There secretion is comprised of two types of

proteases: Snake venom metalloproteases (SVMPs) and snake
venom serine proteinases (SVSPs) (73). These enzymes cata-
lyze a broad range of ECM components, coagulation factors
and proteins involved in platelet aggregation (109,110).
SVMPs can intervene in hemostasis, as these hydro-
lyze glycoprotein Ib and factor X, which promote
coagulation (110-112) and platelet aggregation (113,114),
respectively. During inflammation, SVMPs enhance the infil-
tration of inflammatory cells (115,116) as well as increasing
neutrophil and macrophage numbers (117-119), which
increases soluble collagen levels and enhances angiogenesis
through increasing vascular endothelial growth factor (VEGF)
and TGF-fI release (58). During cell migration and prolifera-
tion, it has been demonstrated that SVMPs degrade fibrin and
fibronectin (112,120), resulting in the change from temporary
to collagen-rich ECM. SVMPs also activate migration of
skin fibroblasts (121) and endothelial cells (111,122-124). In
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Table II. Continued.

Substrates Dysregulation effects (Refs.)

Source

Function

Type

Family

(173,177,

Increased angiogenesis
because of decreased

Collagen (1,1V),
angiotensin

Elastin degradation and Macrophages
microphage migration

12

Other MMPs

179-182)

elastin, fibronectin,

laminin, vitronectin,

proteoglycan

MMP, metalloproteinase; HB-EGF, Heparin-binding EGF-like growth factor; FGF, fibroblast growth factor; KFG, KGF, Keratinocyte growth factor.
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addition, SVSPs exhibit proteolytic activity on Factor V and
fibrinogen, promoting fibrin clot formation (125-127). SVSPs
also promote aggregation of platelets (128).

Following analysis of reported interventions of SPs in
wound healing, it could be presumed that they can intervene
as helpers in several intermediate steps of the wound healing
processes including coagulation, ECM degradation for
re-epithelialization, or wound contraction, among other steps.
The hypothesized mechanisms of SPs during the process of
wound healing are presented in Fig. 1. Study of these variants
may assist in the development of novel specific alternatives for
active chronic wound healing care.

4. Potential of SPs as novel alternatives for wound healing
care

Substrate homology analysis among MMPs and SPs suggest
that animal enzymes may act similarly to the ones physiologi-
cally present in human skin. As presented in Fig. 1, previously
compared SPs may be used to facilitate several steps involved
in the process of wound healing, or to compensate for the
physiological variants when they do not function properly. To
understand this from a clearer perspective, it is important to
comprehend in which of the most common chronic wounds
types SPs may serve as suitable co-adjuvants.

Inthe current literature, chronic wounds have been classified
into pressure ulcers, venous ulcers or diabetic ulcers (129,130).
Pressure ulcers are caused by pressure, shear force, friction or
a combination of these (131). The prevention and cure of pres-
sure ulcers is associated with daily movement of extremities
and frequent body positioning during hospitalization (132). In
this case, the use of proteases may serve as palliative care in
bed preparation for wounded patients as opposed to assisting
the metabolic processes of wound healing.

Chronic venous ulcers are associated with inflamma-
tion, mechanical damage and erratic structural remodeling
of the vein. Pathological hemodynamics results in changes
to microcirculation; this produces thrombosis, proinflam-
matory activity and impaired MMP-3 activity (133), leading
to cell dysfunction and finally to ulceration (134). For
ulceration and potential necrosis, maggot therapy has shown
efficacy (40,41) by decreasing inflammation and neutrophil
migration (77,135). It also degrades eschar, debrides the wound
and serves as a bacterial disinfectant (40,42-45). Furthermore,
fish mucus proteases have been shown to exhibit antibacterial
activity (55,136), which may be useful for bacterial disinfec-
tion of ulcers.

Diabetic foot ulcers are wounds that manifest after a
cascade of metabolic dysregulations initiated by long-term
hyperglycemia (137). As a result of prolonged exposure to high
blood sugar levels, there is a decrease in fibrinolytic activity,
thus increasing blood viscosity and coagulation in this type of
wound (138). In addition, hyperglycemia results in a reduction
of growth factors and receptor levels (such as TGF-f1), accom-
panied by a prolonged inflammatory phase due to upregulation
of MMP-9 (139,140), which interrupts the inflammatory and
proliferative phases of wound healing (141).

As an alternative therapy for diabetic foot ulcers, maggot
treatment has demonstrated improved efficacy and efficiency
compared with conventional methods (142). Furthermore,
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MaPs (74), FMMPs (91) and a certain type of SVMP (112,120)
have been reported to exhibit fibrinolytic activity which may
ameliorate the characteristic viscosity of diabetic ulcers.
Additionally, it has been reported that TGF-f signaling is
increased in the presence of MaPs (76) and SVMPs (58),and this
may also assist wound healing in this type of ulcer. However,
certain SVMPs can promote coagulation (110-112,120); thus,
meticulous care must be taken to separate and study each
component embedded within the secretion instead of applying
it as a whole.

In another report, fish mucus application enhanced the
healing of laparotomy wounds (143). Therefore, SPs may be
used to reduce the time taken for wound healing or for the
removal of necrotic tissue, depending on the wound patho-
physiology.

Despite the positive effects of SPs in wound healing, further
research must be performed to determine the specific mecha-
nisms of action, regulation, site delivery and bioavailability
of proposed proteases before they may be recommended as
feasible pharmacological candidates for treatment of chronic
wounds. The application of SPs may be limited however, as
its use for treatment of burn wounds exhibits highly variable
results in patients (14).

It is also important to determine how SPs may affect
other wound healing mechanisms when used as an adjuvant
with other healing methods such as skin transplants. In this
procedure, lost skin is covered with healthy tissue or artificial
composites (144,145) that provide the necessary elements
(cells, growth factors, MMPs and scaffolds) for the healing
process (146). The success of a skin transplant is primarily
dependent on angiogenesis between the skin graft and the
injury, which is predominantly mediated by MMP-2, 9 and
14 (147). Thus, SPs have been proposed as potential adjuvants
to increase tissue compatibility during skin transplants.

Nevertheless, studies on SP-aided transplants is still
ambiguous. For example, the use of botulinum toxin A during
skin transplantation in murine models enhances the expression
of VEGF and prolonged the survival of skin grafts (148). By
contrast, Kucukkaya et al (149) demonstrated that the same
toxin reduces wound-graft contraction. Thus, the effects of SPs
on skin transplants requires additional studies to determine its
benefits during skin transplantation.

5. Future perspectives

Studies and development of less expensive wound healing
treatment alternatives must be encouraged. Treatment of all
types of even the most common chronic wounds still incur
a high cost, and the reported care expenses are $50,000 for
a diabetic ulcer (25), $500-$70,000 dollars for a pressure
ulcer (150) and $390-$50,967 dollars per venous ulcer (151).
The proposal of proteases obtained from animal secretions is
a promising area to explore, as these act on specific substrates
involved in the wound healing process. Furthermore, it is
important to determine the molecular events specific to each
chronic wound case, as these may represent key tags on how
the proposed SPs may intervene. Under these conditions, active
wound care represents a viable solution if its use is based on
specific requirements. Importantly, SP characterization is
crucial to dispense with the use of secretions in wound repair,

and instead use only the SPs. This may also allow heterologous
production, immobilization or improvement of the therapeutic
properties of the characterized SPs through mutagenesis. In
addition, time-efficient diagnostic tests on for detection of
molecular targets in skin wound healing may be developed
to guide practitioners on which tool to use for chronic wound
care, resulting in improved wound healing and thus restoration
of homeostasis.
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