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29

30 ABSTRACT

31 In Argentina, both surface and ground water are used for a diverse priority purposes, such as 

32 drinking and basic hygiene, but they are also utilized as receivers of different types of 

33 industrial and urban and suburban effluents that affect their natural composition. This activity 

34 accompanied by the increase of the population and climate changes have activated the alarms 

35 of organism water management forced to implement strict quality controls previous to its 

36 use. In this work, a systematic evaluation of a set of physicochemical and biological 

37 parameters measured in 19 sampling sites during the period 2017-2019 is presented. Principal 

38 component analysis (PCA) and matrix augmentation-PCA (MA-PCA) were applied as 

39 exploratory analysis tools to visualize and interpret the information contained in the dataset. 

40 Both studies allowed to detect the relevant variables and to differentiate the samples based 

41 on pollution areas. These models led to similar conclusions; nonetheless, MA-PCA provided 

42 a more straightforward overview of the spatiotemporal variation of the samples in 

43 comparison to classical PCA. Finally, a significant and sensitive discriminant model (93% 

44 non-error rate) was developed to analyze and predict the self-depuration of the rivers. The 

45 excellent predictive ability achieved by this model makes its application suitable for the 

46 monitoring of the water quality. 

47

48

49 Keywords: Argentina rivers; surface water quality; chemometric modeling; self-depuration 

50 monitoring; source pollution

51
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53 1. Introduction

54 Currently, by cause of the urbanization and industrialization activities, specific surface 

55 water systems, particularly rivers, are under constant threat by the action of multiple source 

56 pollution having a detrimental effect on the aquatic biodiversity, and compromise the water 

57 safety and river usages [1-4]. The U.S. Environmental Protection Agency (EPA) defines a 

58 non-point source pollution as “a diffuse source that is difficult to measure and is highly 

59 variable due to different rain patterns and other climatic conditions” [5], whereas point 

60 source pollution is an identifiable source from which pollutants are directly discharged into 

61 the environment. Among others, runoff from urban and suburban areas, farming, 

62 manufacturing, agricultural activities, and mining are the most common non-point source 

63 pollution, which is considered as the major cause of water quality degradation [4,6-11]. On 

64 the other hand, some factories, as paper or sugar mills, are common types of point sources. 

65 The introduction of point and non-point source pollutants into waterbodies are of high 

66 social concern since natural water is probably the most appreciated and valuable natural 

67 resources in the world. [12]. Therefore, it is of outstanding importance recognizing the 

68 pollutant sources distribution and their spatiotemporal occurrence in order to find pollution 

69 patterns that aid to stablish accurate procedures for water quality control and environmental 

70 monitoring. To diminish the health risk from water pollution, many countries perform regular 

71 controls of the water quality of their most important water systems [4]. 

72 Argentina is a country with a large number of waterbodies, including rivers, lakes and 

73 ponds, which are the main sources for water supply, whereas, some communities rely on 

74 ground water as water supply. 

75 Both surface and ground water are used for a diverse priority purposes, including 

76 drinking, basic hygiene, in addition to industrial, agricultural, and recreational uses. Despite 
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77 all these benefits, they are also utilized as receivers for different types of industrial and urban 

78 and suburban effluents that affect their natural composition. This activity, accompanied by 

79 the increase of the population and climate, has trigged the alarms in water management 

80 departments. As a result, strict quality controls have been implemented.

81 To perform an extensive and accurate environmental evaluation, the sampling is 

82 accomplished in massive scale and multiple physical, chemical and biological parameters are 

83 evaluated. This procedure generates large-size data of high complexity [13-14], which 

84 usually preclude the right implementation of data analysis and, in consequence, its 

85 interpretation. To overcome this problem, chemometric methods have arisen as power tools 

86 allowing extracting information from diverse data arrays and exploring the underlying 

87 patterns that, otherwise, could become an outstanding challenge. 

88 Chemometric methods would help to find relationships between groups of samples 

89 and/or variables and, eventually, to identify the pollution source that impact on the area under 

90 study. In this regard, principal component analysis (PCA) is one of the most established 

91 techniques utilized in environmental studies since it enables to reduce the dataset 

92 dimensionality, and, then, to provide an easy visualization of the relationships between 

93 variables and samples. Furthermore, important factors explaining the data variability have 

94 been statistically encountered that helped to identify sources of spatial variability in water 

95 quality and to interpret complex environmental monitoring data [4,Error! Bookmark not 

96 defined.14-25]. In general, classical PCA model has been applied for the interpretation of 

97 datasets arranged in two-way arrays. 

98 A variant of PCA, called matrix augmentation-PCA (MA-PCA), has emerged as an 

99 interesting approach providing a comprehensive interpretation of numerous parameters that 

100 can affect the study, in particular, environmental studies. MA-PCA allows handling complex 
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101 data arrays in an easy way concatenating the multiple two-way data arrays one on top of the 

102 other to provide a new augmented two-way data matrix [26,27]. Due to the information in 

103 two modes becomes mixed and the results could be difficult to interpret, the confounded 

104 information is recovered by rearranging each augmented score vector into a matrix and, then, 

105 averaging them in both directions [26,27]. As an additional advantage, it can be mentioned 

106 that MA-PCA can provide some insight into environmental studies which could not be 

107 undertaken using classical N-way methods, since the incomplete environmental data bases 

108 prevent their arrangement in n-arrays [28,29]. MA-PCA has been successfully applied to 

109 model and understand the spatiotemporal variations of polluting substances in the 

110 environment such as water samples from lakes and rivers [4,14,20,30]. Particularly, it 

111 provided the identification of the main sources of the pollutants in river waters from Portugal 

112 and the interpretation according to their chemical characteristics and their geographical and 

113 temporal profiles [27]. Similarly, the temporal evolution of water quality could be related to 

114 seasonal increments of the physicochemical parameters, defining the decomposition of the 

115 organic matter in a local study carried out in rivers of Spain [31]. 

116 The aim of this study was to assess the spatiotemporal variations of the water quality 

117 parameters of 6 rivers of Salta province, Argentina, (Arenales, Bermejo, Juramento, 

118 Mojotoro, Rosario and Horcones), which belong to 2 hydrographic basins (Bermejo and 

119 Juramento), in order to evaluate their self-depuration capacity. For this purpose, a systematic 

120 evaluation of a set of physicochemical and biological parameters, measured in 19 sampling 

121 sites during the period 2017-2019, was accomplished. PCA and MA-PCA were applied as 

122 exploratory analysis tools to visualize and interpret the information contained in the dataset. 

123 After determining the anthropogenic impact on the ecosystems, the key challenge was to 

124 obtain a complementary classification model from a PCA-discriminant analysis (PCA-DA) 
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125 that would allow the self-depuration monitoring of the rivers. This work is attempting to 

126 provide a tool that can be used for evaluation of water quality in order to assess the ecosystem 

127 health and to provide early environmental warnings that might indicate adverse effects. 

128

129 2. Materials and methods

130 2.1. General considerations 

131 2.1.1. Study area description

132 The surface water resource in Salta province has an irregular spatial distribution. In 

133 addition to being strongly affected by a deficient and unfavorable temporal distribution, the 

134 rivers present a long and pronounced dry season, in contrast to summer periods [32].

135 Upper Juramento Basin comprises a vast extension of the Argentine province of Salta 

136 (Capital city, Cerrillos, Chicoana, La Viña, Rosario de Lerma, Guachipas, Metán, General 

137 Guemes, Rosario de la Frontera, Anta, La Poma, San Carlos, Molinos, Cafayate y Cachi) 

138 along with other areas belonging to the neighboring provinces of Tucumán and Catamarca. 

139 The Basin physiology presents a clearly distinct asymmetry. To the west, it is framed by 

140 elevations over 4.000 m above sea level with peaks up to 6.700 m above sea level whereas 

141 the Eastern side generally has heights below 2.000 m above sea level, reaching heights of 

142 400 m above sea level in Chaco region. The predominance of arid to semi-arid climates in 

143 the Basin determines the relevance of water resource exploitation. This is due to drought 

144 periods that resent the quality and availability of surface water in the hydrological cycle [33].

145 The main rivers which are part of different sub-basins have a particular rainfall 

146 hydrological system, depending on rainfall seasonality. This occurs during the summer 

147 months of maximum rainfall from January to March, with flooding peaks in the month of 

148 February. Some of the tributaries have a mixed rain-snow system, such as the headwaters of 
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149 Arenales, Rosario and Guachipas rivers which, in turn, are fed by meltwater. The dry season 

150 runs from April to November. The minimum flows are recorded between September and 

151 November. When a large part of these river flows located upstream “Cabra Corral” Dam flow 

152 down into Lerma Valley, they must be injected. This is due to a slope break and a course 

153 granulometry that greatly favors water infiltration [33].

154 Bermejo River Basin extends across an area of approximately 123,000 km2, 

155 developing its natural resources in the Argentine provinces of Salta and Jujuy, as well as in 

156 Tarija city in the neighboring country of Bolivia. It comprises an hydrologically active part 

157 known as the Upper Basin, having watercourses with mountain features. From the 

158 hydrological point of view, Bermejo Basin presents a prolonged period of recession and a 

159 limited high flow period during summer heavy rainfalls. On the other hand, the high 

160 production of sediments in its Basin is the distinctive feature of Bermejo river, which 

161 contributes with 100 million annual tons of sediments to Paraguay- Paraná Delta and Rio de 

162 la Plata system [34].

163

164 2.1.2. Sampling procedure

165 A monitoring program was designed to evaluate the impact of anthropogenic 

166 pollutants and to detect possible pollution patterns in surface water of 6 rivers of Salta 

167 province (north-west Argentina, 24°47′S, 65°25′W). They will henceforth be referred to as 

168 Z1, Z2, Z3, Z4, Z5 and Z6. All samples were collected in each contamination site, to be 

169 evaluated on the river already impacted with the effluent, and also, upstream and downstream 

170 from that specific sites by the drinking water and sewage services staff of Aguas del Norte 

171 COSAySA (Compañía Salteña de Agua y Saneamiento S.A.), Salta, Argentina, following the 

172 protocols developed by its Quality Department. For this study, two sampling at each 
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173 hydrological cycle (high and low flow season) were carried out for 3 years (2017, 2018 and 

174 2019). A total of 19 sampling sites (S1-S19) distributed among Z1-Z6 were chosen for being 

175 representative of the rivers under study and the whole sampling was completed in 11 

176 campaigns (C#, see table S1, supplementary information). In this way, the final set of samples 

177 comprised a total of 190 samples. Figure 1 and table 1 summarize the locations of the 

178 sampling zones (Z#) and the selected sampling site (S#).

179

180
181 Figure 1. Map of the studied sampling zones (Z1: Arenales, Z2: Bermejo, Z3: Juramento, 
182 Z4: Mojotoro, Z5: Rosario and Z6: Horcones rivers) and the selected sampling sites (S1-S19)
183

184 *** Insert Table 1 ***

185

186 All the sampling zones were evaluated at specific locations considering the areas of 

187 pollutant discharge (DP) and the areas upstream and downstream (DU) of the discharge point. 
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188 Upstream areas are considered as reference states of water composition, and downstream, as 

189 index of self-depuration of the river. 

190 Three locations were sampled at Arenales river (Z1), one of them is located at the 

191 South Treatment Plant outlet of Salta city, which constantly receives urban waste, urban and 

192 industrial sewage effluents from this discharge site. The 2 remaining sites are located 

193 upstream (after the junction of the Arias and Arenales rivers) and downstream from the 

194 discharge site. Bermejo River (Z2) does not include a specific DP site, but 2 locations were 

195 sampled near to urban areas (Aguas Blancas city, Embarcación city) in order to evaluate the 

196 impact of point and non-point source pollutions. Juramento basin (Z3) receives raw sewage 

197 effluents discharge from the El Galpón city and the effluents of agricultural activities from 

198 the surrounded rural areas. Mojotoro river (Z4) was studied at 5 different sites: 2 DP and the 

199 corresponding upstream and downstream areas. These DPs receive direct contributions of 

200 urban effluents and sewage from Capital and Campo Santo cities and industrial effluents 

201 from the Industrial Park of Güemes, Salta, Argentina. Rosario river (Z5) was sampled along 

202 3 locations; one of them receives contributions of sewage effluents from stabilization ponds 

203 in the city of Rosario de Lerma. Horcones river (Z6) receives sewage discharges from the 

204 city Rosario de la Frontera and contributions from agro-industrial activities in the area.

205

206 2.2.  Sampling procedure and sample preparation

207 For metal analysis, samples were collected in 1L polyethylene containers, previously 

208 washed with analytical quality nitric acid, and rinsed with distilled water. After arrival to the 

209 laboratory, 50 mL was taken for boron (B) analysis and the remaining volume was filtered 

210 through fiberglass paper (Whatman 934-AH), which was finally preserved with nitric acid 

211 1:1. 
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212 For physicochemical and microbiological analysis, samples were collected in 2L 

213 polyethylene containers, previously washed with sodium hypochlorite solution, rinsed with 

214 water, then, 1: 1 HCl solution and finally rinsed with distilled water. All the samples were 

215 storaged in the dark at 4ºC until the analyses were performed. 

216

217 2.3. Analytical procedures for water quality parameter determination

218 For each sample, 27 water quality parameters were measured: 1)- water temperature 

219 (WT); 2)- pH; 3)- conductivity (C); 4)-settleable solids 10 min (SS10); 5)- settleable solids 

220 2 h (SS2); 6)-oxygen dissolved (OD); 7)- sulfide (S); 8)- total nitrogen (TKN); 9)- ammonia 

221 nitrogen (NH4); 10)- organic nitrogen (Norg); 11)- biological oxygen demand (BOD); 12)-

222 chemical oxygen demand (COD); 13)- phenols (Phen); 14)- total phosphorus (TP); 15)- fecal 

223 coliforms (FC); 16)- total coliforms (TC); 17)- boron (B); 18)- iron (Fe); 19)- manganese 

224 (Mn); 20)- chromium (Cr); 21)- zinc (Zn); 22)- cadmium (Cd); 23)- copper (Cu); 24)- lead 

225 (Pb); 25)- mercury (Hg); 26)- arsenic (As) and 27)- selenium (Se). All the analytical 

226 determinations were performed according to the Standard Methods for the Examination of 

227 Water and Wastewater [35]. Table 2 summarizes water quality parameters, analytical 

228 techniques, methods and instruments implemented for the assay. In all cases, calibration, 

229 recovery tests, blank measurement and correction procedures were accomplished. All the 

230 experiments were performed in duplicates.

231

232 *** Insert Table 2 ***

233

234 2.4. Data analysis 
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235 The resulting dataset for spatiotemporal assessment of water quality of Salta rivers 

236 consisted in 19 sampling sites with 27 measured parameters, monitored at every hydrological 

237 cycle for 3 years. For chemometric analysis, several strategies were implemented by using 

238 different data structures. Prior to chemometric modeling, various preprocessing methods 

239 were tested and autoscaling was selected. Although it led to models explaining low raw 

240 variance, it achieved simpler chemical interpretations with reasonable groups of samples and 

241 their loadings become easier to interpret. 

242

243 2.4.1. Exploratory Data Analysis

244 2.4.1.1. Principal component analysis 

245 To identify the correlations between the multiple parameters and to consistently 

246 evaluate the water quality, PCA was conducted. PCA is a useful tool that help elucidating 

247 the complex nature of multivariate relationships and comprehending the structure of 

248 multivariate complex datasets by revealing intrinsic hidden patterns [36]. In the present case, 

249 similarities and differences among samples were analyzed by visual inspection of the 

250 achieved principal components (PC) scores, and the relevance of the variables were evaluated 

251 through the loading plots.

252 On one hand, to ascertain the most appropriate data pre-treatment procedure and to 

253 find outliers and main patterns, PCA models were developed for a set of samples belonging 

254 to the same Z# set. Thus, 6 PCA models were built and a comparative evaluation was done 

255 (PCAZ). On the other hand, in order to assess similarities among Z# pattern behaviors and to 

256 examine the temporal distribution of the pollution patterns, PCA models were developed for 

257 each C# (PCAC). This analysis enabled to understand the correlations among the multiple 

258 studied parameters and to consistently obtain water quality patterns. 
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259

260 2.4.1.2. Principal component analysis, matrix augmentation MA-PCA

261 Even though the main application of classical PCA is for two-dimensional dataset, it 

262 can be easily extended to the simultaneous analysis of multiple datasets through matrix 

263 augmentation. This matrix augmentation consists of arranging a three-dimensional X object 

264 (S# × variables × C#) into a two-dimensional Xaug array ((S# × C#) × variables). In the 

265 present case, an augmented matrix comprising 19 × 11 = 209 rows (S# × C#) and 23 columns 

266 (variables) was built and subjected to MA-PCA.

267 As a result, an augmented score matrix containing information about geographical 

268 and temporal distribution of river pollution patterns is acquired. Notwithstanding loadings 

269 provide useful insights about the relationships among variables, the information comprised 

270 into the two other dimensions or modes (spatial and temporal) is intertwined in the scores, 

271 which is hardly interpretable and may hinder the usefulness of MA-PCA. Therefore, to 

272 overcome this difficulty, a strategy based on refolding the scores is applied allowing direct 

273 access to information [26-31]. For that, each column of augmented score matrix is refolded 

274 to give a new score matrix, where the columns would correspond to C# and the rows to sites#. 

275 If they are row-wise averaged, the resulting vector will represent the time-averaged 

276 geographical distribution of the corresponding PC of the augmented score matrix. On the 

277 other hand, if column-wise averages are calculated, the obtained vector will indicate the 

278 temporal evolution of such PC.

279

280 2.4.2. Classification by discriminant analysis 

281 Discriminant analysis (DA) operates a strict classification by associating each of the 

282 samples with one and only one of the possible classes. DA approaches operate by partitioning 
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283 the variable hyperspace into as many regions as the number of categories, calculating 

284 decision surfaces minimizing some sort of error criterion for the training samples being the 

285 most common the overall classification error. [37]. Its implementation requires data 

286 compression; hence, it is possible to use PC scores previous obtained from PCA.

287 In the present work, PCA model was first applied as a data reduction tool to extract 

288 the score values of the individual components and, then, they were used for DA [36]. Prior 

289 to classification model, the original dataset was divided into two datasets: training and test 

290 set, with 75% and 25% of samples, respectively. The split between training and test sets was 

291 done by keeping the samples ratio of each class equal to the original dataset [38]. Finally, 

292 PCA-DA was applied on the training set to develop a model that permit to classify the classes 

293 previously observed. 

294

295 2.4.2.1. Evaluation of the built model

296 The built classification model was internally validated by using venetian blind cross-

297 validation (VBCV) and the final model performance was confirmed through test set 

298 validation (TV). The quality of the model was assessed by its prediction capability. The 

299 optimal conditions were chosen by using primary measures related to single classes, as 

300 sensitivity (S), specificity (SP) and precision (PR) of the calibration and prediction stages, 

301 which were calculated on each class encoding different classification aspects. Additionally, 

302 to provide an overall evaluation of the classification quality, the global indices derived from 

303 the primary class measures, such as average sensitivity (non-error rate -NER) and average 

304 precision (AC) were also calculated [39,40].

305

306 2.5. Software 
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307 Data preprocessing and PCA were performed by using in-house codes written in 

308 MATLAB 9.2 (R2017a) (The Mathworks, Natick, MA, USA). PCA-DA classification 

309 models were calculated with the Classification toolbox for MATLAB [41].

310

311 3. Results and discussion

312 3.1. Physicochemical and microbiological parameters in surface water - General 

313 considerations.

314 Table 3 summarizes the dataset generated throughout this study, showing the 

315 minimum and maximum values detected for water quality variables. Se, Phen and S were not 

316 considered in the study inasmuch as they were not detected in the analyzed samples. 

317 Additionally, despite WT was measured for all samples, it was not considered as a variable 

318 since it strongly depends on the season and it would not represent a pollution parameter (min 

319 annual WT: 9.5ºC - max annual WT: 33.5ºC). In this way, 23 parameters were finally 

320 considered for the quality water assessment. As can be noticed, wide variation ranges for 

321 some variables were observed, which may be associated to the sampling site or to the 

322 seasonal variations in climate (temperature, precipitation, etc.). 

323 Most of the parameter values obtained for DP samples exceed the limits established 

324 for the quality standards for the discharges of liquid and/or industrial residual effluents of 

325 receiving bodies [42], who reports that the surface water samples that outstrip the critical 

326 values of SS10, SS2, COD, BOD, NH4, Norg, TKN, C, TC and FC poses a health risk for 

327 human (Table 3). The higher values acquired for these variables can be a consequence of the 

328 organic matter decomposition that is discarded from DP. It is noteworthy that total COD and 

329 NH4 are typical indicators of organic matter decomposition (leaves, grass, algae or some sort 

330 of wastes). Moreover, these variables can also be related to agricultural, household and 
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331 industrial activities as well as urban and domestic waste. In this context, the increase of N 

332 and P pollution density relates primarily to the excessive use of fertilizers and agrochemicals 

333 in rural areas, together with livestock and poultry farming wastes.

334 Metals and metalloids are released into the environment through natural processes 

335 and human activities. The weathering of parent rocks and soil particles are natural sources of 

336 metals, while urban runoff, municipal sewage discharges, agricultural and industrial activities 

337 represent anthropogenic sources [43]. Certain metals, such as Zn, Pb and Cu, are typical 

338 anthropogenic pollutants. Cu is mainly used in wiring, electronics circuits and plumbing and 

339 other uses like healthcare (bactericides) and pesticide manufacturing (fungicides and 

340 algaecides). Pb is utilized for manufacturing batteries, ammunition and ceramics and as a 

341 paint pigment. Zn is widely used in the steel industry for Zn-Fe protective coatings. These 

342 elements are introduced into water bodies by urban runoff, sewage disposal and industrial 

343 dumping; all pathways are possible in the sampled areas of Salta province since rainwater is 

344 usually discharged either direct to surface water or introduced into sewage treatment plants 

345 to achieve dilution, even though plant capacity is sometimes exceeded in the rainy season.  

346 Presence of As and B in surface water of the Andean region of Salta arises from natural 

347 sources, such as mining, thermal springs or volcanic ashes. In the study area, As may be 

348 found in groundwater because of the sedimentary profile of soils, but the presence of both 

349 elements in surface water is mainly due to B processing in industrial plants located near the 

350 riverbanks. Moreover, leaching and runoff from tailing dumps in mining areas are also 

351 sources of metal pollution; some tributaries of Bermejo river collect mining disposals 

352 originated in Bolivia. Thus, due to the many possible pollution sources, several metals and 

353 metalloids such Mn, Cr, Cu, Pb, Hg and As were found exceeding the respective maximum 

354 tolerable limit.
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355 It is worth noticing that the relationship between samples and variables for different 

356 S# and C# is complex and difficult to interpret. For this reason, multivariate approaches were 

357 conducted and they are described in the following sections.

358

359 *** Insert Table 3***

360

361

362 3.2. PCA analysis

363 3.2.1. PCAZ: analysis for sampling zone 

364 Due to high data variability, an independent PCA was conducted to evaluate 

365 individual Z# aiming to find the main points of pollution and to evaluate their own trophic 

366 state. The individual matrices corresponding to each Z# were subjected to PCA analysis. For 

367 this, an individual matrix (S# x variable) of dimension (32 × 23), (21 × 23), (29 × 23), (46 × 

368 23), (29 × 23) and (33 × 23) for each Z# was build. As it can be noticed, Z# comprises a 

369 different number of S#, as local climatic conditions and river drought prevent the continuous 

370 sampling procedure on these respective site (for more details, see table S1, supplementary 

371 information). 

372 As a result, the first 2 PCs were selected to represent the data variability. Figure S1 

373 (Supplementary information) shows the scores and loading plots of each dataset defined by 

374 PC1 against PC2. The percentage of the explained variance for the individual components is 

375 shown on each axis. It is clear to observe that all the Z# behave similarly. The score plots 

376 evidence 2 groups that correspond to the DP samples and the DU samples. Thus, for all cases, 

377 PC1 clearly describes the separation of DU samples, on the negative side, from DP samples 
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378 on the positive side. Furthermore, it could be observed that throughout the PC2, samples are 

379 scattered within each group. 

380 Despite the different geographical localization of the S#; DU samples were located 

381 on the negative quadrant of PC1 as a unique group indicating that there were not significant 

382 differences in water quality between upstream and downstream samples.

383 One of the outcomes arisen from an in-depth evaluation of the loadings on PC1 is the 

384 relevance of the parameter DO for all the evaluated Z#, for which the higher levels were 

385 encountered in the Z# that does not have DP samples. SS10 and SS2 are common variables 

386 that exhibit, at low values, a significant correlation with the admissible water conditions [4]. 

387 For Z1 and Z3, pH was also an additional important parameter to define water quality. The 

388 variables responsible for this discrimination are mainly microbiological (such as TC and FC), 

389 organic matter indicators (COD, BOD, Norg, NH4, TKN) and mineral indicators (B, Fe, Mn, 

390 Zn, TP and C). It is worth to highlight, that all these Z#, in particular, Z1, Z3 and Z5, receive 

391 large amounts of organic pollutants from identified sources, such as urban waste, domestic 

392 sewage and hatcheries and poultry farms effluents. The obtained results are in accordance 

393 with the previous observation and they reflect the impacts of these sources on the water 

394 quality, e.g., changes on the pH value, low DO concentration, high Norg, all these, as 

395 consequence of the fermentation processes of the organic matter. 

396 All zones include DP samples and constitute well-discriminated groups with scores 

397 that are extensively shifted towards high values according to PC1. On the contrary, as 

398 expected for Z2, similar scores scattering were obtained from both downstream and upstream 

399 site samples. However, analyzing each zone from these individual PCAs, it was not possible 
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400 to find some trends over time on the score plots when the samples were identified by their 

401 corresponding campaign (data not shown).

402

403 3.2.2. PCAC: analysis for sampling campaign 

404 In order to evaluate the behavior of the Z# at the same C#, PCA models were built 

405 considering individual sampling campaigns. To accomplish the analysis, 11 datasets with 

406 their corresponding S# taken from each C# (autumn, winter, summer and spring for the 

407 period 2017-2019) were built together with the 23 analyzed variables. Then, the matrices 

408 were subjected to PCA decomposition. According to the obtained results, the first three PCs 

409 were necessary to observe a clear differentiation among samples, with a >70% of the total 

410 data variability for all models. Figure 2 depicts the obtained results for the S# at C#, defined 

411 by the score on PC1, PC2 and PC3. 

412
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413

414 Figure 2. Score plots of the first 3 PCs obtained from PCAC applied to the 11 datasets 
415 corresponding to each C#. The samples are shown according to the S# nature: DU samples 
416 (green) and DP samples (red). The three-dimensional projection of the confidence ellipsoids 
417 by applying the Student’s t-distribution at 95% confidence level is included to facilitate 
418 visualization. Explained variance values of PC1, PC2 and PC3 in % are in table S2, 
419 supplementary information.
420

421 Strong similarities are clearly observed between upstream and downstream samples. 

422 Then the samples can be grouped into the same cluster. A distinguishable characteristic arose 

423 from the score plots, is the wide dispersion among the DP sample group for all the C#. On 

424 the other hand, in most cases, DU sample group showed a low dispersion indicating that the 

425 quality parameters remain stable regardless of their sampling point. 

426 In addition, the obtained loadings behave similar to those acquired from PCAZ. Figure 

427 S2 shows the loading plots of the first 3 PCs obtained from PCAC applied to the 11 datasets 

428 corresponding to each C#. In general terms, several common variables in the different C# are 
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429 responsible of samples discrimination. For all the C#, OD and pH seem to be the most 

430 relevant variable describing DU samples on PC1 and, particularly for C1, C3, C4, C5 and 

431 C9, some metals, such as Cr, Pb, Cr, Cu, Mn and Zn, display contributions on 3 PCs for this 

432 group of samples. According to the aforementioned for PCAz, the main variables associated 

433 to DP cluster were TC, FC, COD, BOD, Norg, NH4, TKN, TP. All of them showed slight 

434 variations between campaigns. 

435
436 3.3. MA-PCA to evaluate spatiotemporal variability of the water quality 

437 Spatiotemporal variability patterns of the full dataset were simultaneously studied by 

438 MA-PCA. For this purpose, an augmented matrix of dimension 190×23 was built. 

439 Here, it is noteworthy that a number of factors as low as possible is required to 

440 facilitate the analysis understanding. Through a comprehensive comparison of only a few 

441 PCs, it was possible to explain the total variability of the original dataset. The first 3 PCs 

442 (47% variability) were considered to visualize the relationships between samples and 

443 variables. 

444 Figure 3A and 3B display the score plot (PC2 vs. PC1) for S# samples and the 

445 corresponding loading plot for the first 2 PCs. As can be observed in Figure 3A, a clear 

446 division along the PC1 axis is obtained, with the DP samples on positive PC1 side and DU 

447 samples on the negative side; however, PC2 does not seem to contribute to a group 

448 differentiation. By a comparison of the groups, it is possible to conclude that, at 95% 

449 confidence level for PCA, some of the evaluated samples behave as outliers (see figure 3A). 

450 Nonetheless, they were included in the subsequent analysis. For instance, S7 (DP) displayed 

451 high PC1 values, which can be associated to the large discharge of wastes that are directly 

452 unloaded into the river, without any prior treatment. 



21

453 Otherwise, S4, S14 and S16 (DU) exhibited higher values on the PC2 axes. These 3 

454 samples were collected in the campaign C5, in autumn 2018, where two rivers (Z2 and Z5) 

455 presented a substantial decrease in their water volume, probably producing a concentration 

456 effect on the studied parameters.

457
458 Figure 3. (A) Score plot acquired from MA-PCA. DP and DU samples are represented as 
459 red diamonds and green squares, respectively. The bi-dimensional projection of the 
460 confidence ellipse at 95% level for each class and for the global dataset (dashed light blue 
461 line) are included. (B) Loading plot obtained from MA-PCA. (C) Temporally averaged 
462 geographic scores after refolding of PC1 and (D) spatial averaged temporal scores after 
463 refolding of PC1 obtained from the simultaneous analysis of the 11 C# applying MA-PCA. 
464
465

466 By inspection of the loading plot (Figure 3B), it is possible to observe that PC1 has 

467 highly positive values, being larger for NH4, TKN, TP, BOD and COD, while SS10, FC, TC, 
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468 Norg and C presented moderate positive contribution. On the contrary, pH and DO have 

469 relevant negative contributions to PC1. These results are in accordance with previous 

470 publications, reporting that PC1 can be associated to the simultaneous contribution of the DO 

471 and pH parameter [4,12,31]. This phenomenon reveals that both parameters tend to decrease 

472 with increasing anthropogenic water pollution. The rest of the parameters have negligible 

473 contributions of this component.

474 In order to assess the spatiotemporal variability of water quality, the scores estimated 

475 by MA-PCA were refolded according to the methodology proposed by Felipe-Sotelo et al. 

476 [31]. Figure 3C displays a bar plot built with the temporally averaged geographical MA-PC1 

477 scores. This graph exposes a clear differentiation between the two groups of samples, DP and 

478 DU, with positive and negative values, respectively. Notwithstanding this conclusion arose 

479 from the MA-PCA plots (figure 3C and 3D), with this approach it is possible to make two 

480 inferences regarding the spatial variation of the water quality parameters. It can be seen that 

481 the source pollution impact is higher in 2017 period, while the parameters remain constant 

482 over period 2018-2019. Then, regarding DU samples, non-significant differences were 

483 observed between them, which led to the conclusion that rivers are able to return to the initial 

484 stage throughout natural processes. Figure 3D shows the representation of the spatially 

485 averaged temporal scores considering each season of the period 2017-2019. It can be noticed 

486 that the different C# showed different patterns, with strong dependence on the S#. The 

487 samples corresponding to autumn and winter 2017, autumn and spring 2018 and summer 

488 2019, showed the stronger dependence on the S#. 

489 Considering all the aforementioned observations, it can be concluded that the use of 

490 MA-PCA with refolded scores yields simple and straightforward representation that 

491 facilitates a quick and comprehensive understanding of spatial and temporal information. 
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492 An issue to highlight from the obtained results is the fact that downstream samples 

493 present similar characteristics to upstream samples. This allowed to assume that the rivers 

494 are capable to reach their initial natural quality. Along the river, waste and sewage discharges 

495 have direct detrimental impact on water quality. However, these results unravel the river 

496 ability to recover its water quality after passing through a pollution zone, i.e., water quality 

497 seems to be restored due to self-purification. This outcome is in accordance to a recent report 

498 that demonstrates that the water quality can be recovered in downstream sites of cities due to 

499 self-purification of surface waters [43]. However, it is not in agreement with the results 

500 reported by Daou et al. [19], who observed a significant downstream impact due to runoff 

501 arriving from some specific sources of pollution.

502

503 3.4. Self-depuration monitoring through a classification model

504 The results achieved by the different PCA models demonstrated the feasibility to 

505 build a model that permits classifying DP samples from the rest, and inferring about the self-

506 depuration of the rivers under study. To corroborate this fact, an embedded method applying 

507 PCA-DA as classifier was performed. The motivation for the use of this kind of method arises 

508 from demand to ensure the most relevant variables in model. 

509 First, the entire dataset (n = 190) was split into training (n = 128) and test (n = 62) 

510 subsets. Then, PCA-DA was applied as binary classification model on the training set by 

511 grouping the samples into 2 classes: DP and DU. Then, the optimum number of factors was 

512 determined by using VBCV. The optimal number of factors was chosen based on the lower 

513 error rate, being 3 the selected number for this analysis. 

514 The scores on the first canonical variable of each S# are plotted in Figure 4, in which 

515 a clear discrimination between both groups is observed. In addition, this differentiation has 
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516 an evidently linear behavior that was previously assessed with PCA models. Hence, a linear 

517 fitting function was implemented to build the model. 

518

519 Figure 4. Projections of S# scores on first canonical variable for the PCA-DA model from 
520 linear decision boundary, showing the classification of the 2 evaluated sample class, DU and 
521 DP, for train and prediction subsets. 
522
523 As result, this classifier only assigns each sample to a unique class. Under this 

524 condition, a well-known confusion matrix could be built from classification results, including 

525 information about actual and predicted classes disposed in rows and columns, respectively. 

526 The diagonal elements of the matrix contain the number of correctly classified samples, while 

527 off-diagonal elements include the number of misclassified samples. Table 4 summarize the 

528 confusion matrix built for VBCV and the statistical performance parameters of the 

529 classification model related to single classes. The classification results are expressed as the 

530 percentage of correct classification and the number of misclassified samples for each class. 

531 According to this binary classification task, several indices can be defined in terms of 

532 true/false positive/negative values to evaluate the model performance. The global parameters 

533 obtained for training stage were 0.93 and 0.95 for NER and AC, respectively. 
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534 *** Insert table 4 ***

535

536 Here, it is important to mention that the most useful indexes utilized to analyze 

537 samples and classes are sensitivity (S), which describes the ability of the model to correctly 

538 recognize samples belonging to a class, and specificity (SP), which characterizes the ability 

539 of a class to reject the samples of all the other. These indices have values ranging between 0 

540 and 1 for non-class classification and perfect class classification, respectively. In the present 

541 study, the values obtained for S and SP to each class indicate meaningful model performance 

542 in this stage. However, it can be appreciated that 4 samples belonging to DP class and 2 

543 samples of DU class were misclassified.

544 The predictive ability of the model was evaluated by analyzing classification indices 

545 from an independent test set. This prediction stage achieved NER and AC values of 0.96 and 

546 0.96, respectively, which were better than those obtained from calibration stage.

547 In addition, only two samples of the DP group and four in the DU group were 

548 misclassified. Referring to DP samples (S10-C5 and S7-C3), despite these results can be 

549 undesired from the health and security standpoints, it is important to highlight that the 

550 parameters of the misclassified were below the maximum permissible. On the other hand, 

551 the fact that four DU samples (S17-C1, S4-C5, S14-C5 and S16-C5) were classified as 

552 sources of pollution indicates the lack of sewage treatment in many of the rural areas, cattle 

553 and human disposals spill directly into the water resource, being more perceptible in dry 

554 seasons (C1, C3 and C5).     

555 Moreover, some implication on hydrological changes related to these results can be 

556 mention. All evaluated rivers have some common features: they run through low to medium 

557 slope terrain, carry great load of organic matter and silt and greatly increase their flow during 
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558 summer. Downstream sample sites are located from 4 to 70 km away from the point source; 

559 only Juramento river (Z3) should not be considered since downstream sample is taken from 

560 a dam discharge, and so, after a dilution effect.  High concentration of organic matter and silt 

561 help to remove heavy metals by suspension and precipitation; moreover, turbulent flows 

562 oxygenate water. On the other hand, eutrophication occurs in some extent, diminishing 

563 concentration of nutrients. However, self-recovery in a 4 km distance is quite remarkable.  

564 Under this scenario, it can be concluded that the selected model was able to classify 

565 samples according to the proposed classes. Furthermore, classification results are in 

566 agreement with those reached from PCA models, i.e., misclassified samples were the same 

567 that behaved differently to the rest. In addition, it can be observed that OD, BOD, COD, TP, 

568 NH4 and TKN were responsible of this discrimination. These variables were the same than 

569 those that presented higher variation in MA-PCA. The excellent predictive ability of the 

570 developed classification model makes it suitable for the water quality evaluation and for 

571 verification of self-recovery ability of the rivers by considering only a scarce number of 

572 parameters.

573

574 4. Conclusions

575 In this work, the application of chemometric techniques to model spatiotemporal 

576 water quality variations of Salta rivers, in the northwest area of Argentina, is presented. 

577 Although it can be considered as a case study, chemometric methodology can be used in 

578 similar studies where detection and characterization of point source pollution and self-

579 recovery monitoring of the water resource are required. Twenty-seven physicochemical, 

580 chemical and biological parameters were quantified in 190 surface water samples collected 

581 during 11 sampling campaigns in the period 2017–2019. After a preliminary evaluation, 23 
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582 parameters were considered relevant to the study, from which, it can be concluded that 

583 samples from discharge areas can be considered as point source pollution according to the 

584 relevance of their load in organic matter, since that most of these quality parameters values 

585 were higher than those established as maximum tolerable limits. 

586 PCA and MA-PCA were implemented as exploratory techniques for data recognition, 

587 and PCA-DA classification model was successfully built to predict the self-depuration 

588 capability of rivers. 

589 Multivariate statistical techniques represent powerful and useful tool to understand 

590 the spatiotemporal variations of river water quality, as well as to identify main patterns arisen 

591 from the analyzed variables. It has proved that rivers are able to self-purify pollutants and 

592 return to an initial state of equilibrium in a distance that range from 4 to 70 km from the DP. 

593 This phenomenon sheds light on the fact that the physicochemical and biological 

594 environmental synergy aids the river to recover its water quality, ensuring the sustainability 

595 of future supplies. When using PCA-DA as classification model, not only was possible to 

596 point out pollution sources and establish self-recovery of resources, but also highlight events, 

597 such as satisfactory sewage treatment and diffuse organic pollution, represented by the 

598 misclassified samples founded.  

599 This report is the first systematic study on Salta rivers and contains valuable 

600 information that can be established as a basis for future studies. 

601
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TABLES

Table 1. Details of the studied sampling zones and sites.

Sampling zone Sampling site Sample Location Description

S1 Upstream S2 8 km upstream 
discharge point

S2 South Treatment Plant of 
Salta city discharge

Discharge of urban 
effluents

Z1
(Arenales river)

S3 Downstream S2 Entrance to the Cabra 
Corral Dam

S4 Near to Aguas Blancas city Urban region
Z2

(Bermejo river) S5
In the catchment of the water 

treatment plant in 
Embarcación city

Drinking water source

Z3
(Juramento S6 Upstream S7 52 km upstream 

discharge point
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S7 El Galpón city discharge Discharge of urban 
effluents

basin)

S8 Downstream S7 Exit of El Tunal Dam 

S9 Upstream S10 4 km upstream 
discharge point

S10 Capital and Capo Santo cities 
discharge

Discharge of urban 
effluents

S11 Downstream of S10 10 km downstream 
discharge point

S12 Downstream of S11 Discharge of urban 
effluents

Z4
(Mojotoro river)

S13 Industrial Park of Güemes 
discharge

8 km downstream 
discharge point

S14 Upstream S15 1 km upstream 
discharge point

S15 Rosario de Lerma city Discharge of urban 
effluents

Z5 
(Rosario river)

S16 Downstream S15 3 km downstream 
discharge point

S17 Upstream S18 1 km upstream 
unloading

S18 Rosario de la Frontera city Discharge of urban 
effluents

Z6 
(Horcones river)

S19 Downstream S18
Agricultural area. 12 

km downstream 
discharge point

Table 2. Water quality parameters, analytical methods and instrumentation.
 

Parameter Coded analytical 
method * Analytical technique Materials and 

instruments

WT SM 2550B Direct measurement Stainless steel digital 
thermometer

pH SM 4500 B Potentiometry pH-meter HACH 
sensION pH1

C SM 2510B Conductimetry Conductivity meter 
HACH sensION EC5 

SS10 SM 2540 F Volumetry
SS2h SM 2540 F Volumetry  Imhoff Cones

OD SM 4500 G Potentiometry ISE Oximeter HACH 
sensION DO6

S SM 4500 F Iodometry
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TKN SM 4500 Norg B, C 
(TKN) Titration

NH4 SM 4500 NH3, C Titration

Norg SM 4500 Norg B, C Titration
BOD SM 5210 B Dilution BOD Incubator

COD SM 5220 D
Molecular absorption 

spectroscopy (Colorimetry 
at 600 nm)

Phen SM 5530 B, D
Molecular absorption 

spectroscopy (Colorimetry 
at 500 nm)

TP SM 4500 C
Molecular absorption 

spectroscopy (Colorimetry 
at 800 nm)

Spectrophotometer UV-
Vis HACH DR5000

FC and TC SM 9221 B, C, E Multiple tube fermentation 
technique

Test and durham tubes, 
water bath

B SON-A-1982-1323
Molecular absorption 

spectroscopy (Colorimetry 
at 414 nm)

Spectrophotometer UV-
Vis Cintra GBC UV

Fe, Mn, Cr, 
Zn, Cd, Cu 

and Pb;
SM  3111B

Flame Spectrometry 
Atomic Absorption 

(FSAA)

Atomic absorption 
spectrophotometer 
Agilent AA 55B

Hg SM 3112B

Cold Vapor-Hydride 
Generator-Spectrometry 
Atomic Absorption (CV-

HG-SAA)

As and Se SM  3114C Hydride Generator- FSAA 
(HG-FSAA)

Atomic absorption 
spectrophotometer GBC 

AA 904 coupled to a 
hydride generator GBC 

HG3000

*SM: Standard Methods for the Examination of Water and Wastewater, 23nd edition. [27]
SON: State official newsletter. Official methods of water analysis. Spain [43].
Table 3. Minimum and maximum limits obtained for the physiochemical and 
microbiological parameters of the Salta rivers and the standard water quality recommended 
by [42].

Variable Unit Minimum Maximum Maximum 
permissible

pH 6.12 9.33 6.5-10
C µS cm-1 105 2250

SS10 mL L-1 ND 2.5 Absence
SS2 mL L-1 ND 12.5  1.0
DO mg L-1 ND 12.5

TKN mg L-1 ND 65.1  10
NH4 mg L-1 ND 58.8  50
Norg mg L-1 ND 11.34
BOD mg L-1 ND 209  25
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COD mg L-1 1 623  250
TP mg L-1 ND 4.5  10
FC MPNb/100 mL ND 90000000  2000
TC MPNb/100 mL ND 90000000
B mg L-1 0.03 1.22  2.0
Fe mg L-1 ND 1.5  2.0
Mn mg L-1 ND 1.28  0.5
Cr mg L-1 ND 0.12  0.1
Zn mg L-1 ND 0.31  2.0
Cd mg L-1 ND 0.03  0.1
Cu mg L-1 ND 0.17  1.0
Pb mg L-1 ND 0.18  0.1
Hg mg L-1 ND 8  0.005
As µg L-1 ND 5  0.5

a ND: Not detected (˂ Detection limit)
b MPN: Most probable number

Table 4. Confusion matrices corresponding to PCA-DA and sensitivity (S), specificity (SP) 
and precision (PR) resulting from training and prediction sets. 

Real/Predicted DU* DP* Sensitivity Specificity Precision
DU* 88 2 0.98 0.89 0.95Training 

set (CV) DP* 4 39 0.89 0.98 0.95

DU* 38 0 1 0.89 0.95Prediction 
set DP* 2 17 0.89 1 1

*Upstream and downstream (DU) from discharge point (DP).


