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The principle of maximum entropy explains the cores
observed in the mass distribution of dwarf galaxies
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ABSTRACT

Cold dark matter (CDM) simulations predict a central cusp in the mass distribution of galaxies. This prediction is in stark contrast
with observations of dwarf galaxies that show a central plateau or ”core” in their density distribution. The proposed solutions to
this core-cusp problem can be classified into two types. One invokes feedback mechanisms produced by the baryonic component
of the galaxies and the other assumes that the properties of the dark matter (DM) particle depart from the CDM hypothesis. Here
we propose an alternative yet complementary explanation. We argue that cores are unavoidable in the self-gravitating systems of
maximum entropy that result from non-extensive statistical mechanics. Their structure follows from the Tsallis entropy, which is
attributed to systems with long-range interactions. Strikingly, the mass density profiles predicted by such thermodynamic equilibrium
match the observed cores without any adjustment or tuning. Thus, the principle of maximum Tsallis entropy explains the presence of
cores in dwarf galaxies.
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1. Introduction

The total mass density of low-mass galaxies flattens up at their
center, showing what is known as a core. This observational
fact has been noted as a long-standing problem of the Λ CDM
paradigm (e.g., see recent reviews by Weinberg et al. 2015 and
Del Popolo & Le Delliou 2017) since early dark-matter-only
numerical simulations predicted the existence of density cusps,
rather than cores, in the inner regions of galaxies (Moore 1994).
A popular explanation of the so-called ”core-cusp problem” re-
lies on the inclusion of baryon physics in the simulations, which,
through gravity, couples baryon processes with DM. Explosive
baryon-driven events at the center of the galaxies produce sud-
den changes in the gravitational potential which, integrated over
time, turn the DM distribution from cusp to core (Governato
et al. 2010). Alternatively, the core-cusp problem may also point
out a failure of the cold DM hypothesis (Weinberg et al. 2015;
Del Popolo & Le Delliou 2017). Solutions include consider-
ing warm DM, whose free-streaming velocities erase primordial
fluctuations on small scales (Colín et al. 2000), or by assum-
ing self-interacting DM, where the scattering between DM par-
ticles redistributes energy and momentum generating inner cores
(Spergel & Steinhardt 2000).

Here, we propose an alternative solution to the core-cusp
problem based on the principle of maximum Tsallis entropy and
the polytropes it leads to. For theoretical reasons (presented in
Sect. 2) polytropes may provide a good representation for the
distribution of mass within galaxies and they all have cores.
Therefore, the question arises as to whether the cores of the poly-
tropes reproduce the cores observed in the matter distribution
of dwarf galaxies. Here, we show that they do so without any

free parameter (Sect. 3). Polytropes describe thermodynamic (or
meta-stable) equilibrium configurations of self-gravitating sys-
tems under special conditions. Thus, our result suggests that
these conditions are met in dwarf galaxies and may drive their
internal structure (Sect. 4).

2. Maximum-entropy self-gravitating systems and
polytropes

Galaxies are self-gravitating structures which, among all possi-
ble equilibrium configurations, end up having only those that are
consistent with a stellar mass surface density profile resembling
a Sérsic function (e.g., Blanton et al. 2003; van der Wel et al.
2012)1. Their settling into this particular configuration could be
due either to some fundamental physical process (as it happens
with the velocities of the molecules in a gas) or to the initial
conditions that had given rise to the system (Binney & Tremaine
2008). The mass distribution in galaxies is currently explained
as the outcome of the initial conditions (Cen 2014; Nipoti 2015;
Ludlow & Angulo 2017; Brown et al. 2020). The option of a
fundamental process determining the configuration is tradition-
ally discredited because, in following the principles of statistical
physics, it should correspond to the most probable configuration
of a self-gravitating system and, thus, it should result from max-
imizing the entropy. The use of the classical Boltzmann-Gibbs

1 The Sérsic functions include exponential disks, observed in dwarf
galaxies (e.g., de Jong & van der Kruit 1994), and de Vaucouleurs
1/4-profiles, characteristic of massive ellipticals (e.g., de Vaucouleurs
1948).
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entropy leads to a distribution with infinity mass and energy
(Binney & Tremaine 2008; Padmanabhan 2008), disfavoring this
explanation. In the standard Boltzmann-Gibbs approach, how-
ever, the long-range forces that govern self-gravitating systems
are not properly taken into account. Systems with long-range in-
teractions admit long-lasting meta-stable states described by a
maximum entropy formalism based on Tsallis (S q) non-additive
entropies (Tsallis 1988, 2009, and references therein). Observa-
tional evidence for the S q statistics has been found in connec-
tion with various astrophysical problems (Livadiotis & McCo-
mas 2013; Silva et al. 2013). In particular, the maximization
under suitable constraints of the Tsallis entropy of a Newto-
nian self-gravitating N-body system leads to a polytropic dis-
tributions (Plastino & Plastino 1993; Lima & de Souza 2005),
which has finite mass and a shape closely resembling the DM
distribution found in numerical simulations of galaxy formation
(Navarro et al. 2004; Calvo et al. 2009). In the current cosmolog-
ical model, DM provides most of the gravitational pull needed
for the ordinary matter to collapse and form visible galaxies, and
thus, polytropes can approximately describe the gravitational po-
tential of galaxies. As we show below, the mass density associ-
ated with a polytrope always has a core. The question arises as to
whether the cores of the polytropes reproduce the cores observed
in the matter distribution of dwarf galaxies, thus providing an al-
ternative view for solving the core-cusp problem (Sect. 1).

A polytrope of index m is defined as the spherically-
symmetric self-gravitating structure resulting from the solution
of the Lane-Emden equation for the (normalized) gravitational
potential ψ (Chandrasekhar 1967; Binney & Tremaine 2008),

1
s2

d
ds

(
s2 dψ

ds

)
=

{
−3ψm ψ > 0,
0 ψ ≤ 0.

(1)

The symbol s stands for the scaled radial distance in the 3D space
and the mass volume density is recovered from ψ as

ρ(r) = ρ(0)ψ(s)m, (2)

r = b s, (3)

where r stands for the physical radial distance and ρ(0) and b are
two arbitrary constants. Equation (1) is solved under the initial
conditions ψ(0) = 1 and dψ(0)/ds = 0 2. Figure 1 illustrates
the variety of physically admissible polytropes, with the range
of polytropic indexes

3/2 ≤ m ≤ 5, (4)

set because polytropes with m ≤ 3/2 are unstable or have infi-
nite density and those with m > 5 have infinite mass (Plastino &
Plastino 1993; Binney & Tremaine 2008). In order to compute
the polytropes in Fig. 1, Eq. (1) was split into a system of two
first-order differential equations for ψ and dψ/ds, which were
integrated from s = 0 using Lsoda (Hindmarsh 2019), as imple-
mented in python (scipy.odeint).

We note that all polytropes have cores, in the sense that
d ln ρ/d ln r → 0 when r → 0. This property follows from the
initial condition dψ(0)/ds = 0 and Eq.(2). It is shown by the
density profiles displayed in Fig. 1.

3. Results

Figure 2 shows the state-of-the-art observation of galaxy cores in
dwarf galaxies by Oh et al. (2015), which is based on 26 galax-
2 Equation (1) also admits solutions with dψ(0)/ds , 0, but those are
discarded because they have infinite central density and total mass (e.g.,
Binney & Tremaine 2008).
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Fig. 1. Mass volume density resulting from the numerical solutions of
the Lane-Emden equation (polytropes). Polytropes are self-gravitating
systems having maximum Tsallis entropy. The curves are normalized
to the central density and to the half-mass radius (r1/2). The examples
show the range of physically plausible solutions, with the corresponding
polytropic index given in the inset.
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Fig. 2. Density profile observed in the inner regions of the 26 "Little
Things" galaxies from Oh et al. (2015) (blue symbols and blue region
give the mean and the root mean square (RMS) dispersion among the
different objects). To reduce scatter, the observed densities and radii are
normalized to the density and radius where the logarithmic derivative
of the circular velocity equals 0.3 (d log vc/d log r = 0.3), denoted as
ρ0.3 and r0.3, respectively. Polytropes are parameter-free in this repre-
sentation (solid lines with the corresponding indexes given in the inset).
The dashed line gives a best-fit to the observed density using a Navarro-
Frenk-White (NFW) profile (Oh et al. 2015), which does not follow the
observed core.

ies with stellar masses of 6.5 ≤ log(M?/M�) ≤ 8.2 (blue sym-
bols with the blue region giving the RMS dispersion among the
different objects). The total density is inferred from the circular-
speed, vc, measured in the 21-cm hydrogen line which, for axi-
symmetric systems, is related to vc as (e.g., de Blok et al. 2001):

ρ(r) =
1

4πG

[vc

r

]2 [
1 + 2

d log vc

d log r

]
, (5)

were G is the gravitational constant. The scatter of the 26 density
profiles gets largely reduced when each individual profile is nor-
malized to the radius and density where d log vc/d log r = 0.3,
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denoted as r0.3 and ρ0.3, respectively (Oh et al. 2015). In addition
to reducing the observational scatter, this normalization makes
the comparison with polytropes parameter-free. The density ρ(r)
consistent with a polytrope of index m (Eq. [2]) depends on two
parameters ρ(0) and b. Using Eqs.(3) and Eq. (5), it can be shown
that

ρ(x r0.3)
/
ρ0.3 = ψm(x s0.3)

/
ψm(s0.3), (6)

where x = r/r0.3 and s0.3 is the value for r0.3 obtained from ψ(s).
The right-hand side of Eq. (6) does not depend on ρ(0) or b,
indicating that the same happens with the normalized density
(the left-hand side of the equation) which, consequently, has no
freedom in Fig. 2. Thus, the agreement between the observed
and the predicted cores is particularly revealing, suggesting a
true connection between polytropes and the inner structure of
dwarf galaxies.

4. Conclusions

In this work, we show that the polytropes, resulting from the
principle of maximum Tsallis entropy, reproduce without any
tuning the cores observed in the matter distribution of dwarf
galaxies. The genesis of these cores is currently interpreted as
being driven by the interplay between baryons and DM, such
that repetitive baryon motions modify the overall gravitational
potential and the associated matter distribution (Sect. 1). We note
that the two explanations are not in opposition; in fact, they are
consistent if the baryon driven motions simply shorten the time-
scale needed to thermalize the global gravitational potential into
a polytrope.

Our study is focused on the central regions of the galax-
ies, but polytropes also work well in the outskirts (e.g., Saxton
& Ferreras 2010). The outer parts are fully dominated by DM
and it has repeatedly been shown that polytropes can be fit with
Einasto profiles (e.g., Zavala et al. 2006; Salvador-Solé et al.
2012), which fit well the outer parts of the DM profiles found in
cosmological numerical simulations (e.g., Navarro et al. 2004;
Merritt et al. 2005; Calvo et al. 2009). In support of this, Frige-
rio Martins et al. (2015) employ the maximum Tsallis entropy
formalism to fit the radial dependence of vc in 24 galaxies with
8 ≤ log(M?/M�) ≤ 11. The two variables vc(r) and ρ(r) are in-
terchangeable (Eq. [5]), so that the goodness of the fit at all radial
distances also applies to ρ(r) – although Frigerio Martins et al.
do not specifically consider the cores we cover in this work.

The association between dwarf galaxies and maximum Tsal-
lis entropy opens up the possibility of using the well-proven
tool-kit of statistical mechanics to understand them (Padman-
abhan 2008; Pontzen & Governato 2013; Saxton 2013). Identi-
fying galaxies with polytropes has a number of additional im-
plications. Accurate mass profiles are needed in planning and
interpreting the astrophysical experiments for disclosing the na-
ture of DM. The DM annihilation cross-sections depend on halo
shape (e.g., Zhao et al. 2018) and precise DM profiles, along
with their time evolution, should help us to distinguish between
cold, warm, or self-interacting DM (e.g., Weinberg et al. 2015;
Ludlow et al. 2016). The suite of mass models currently used
in gravitational lensing studies does not include polytropes (e.g.,
Keeton 2001), but subtle details in the mass model are critically
important when precise magnifications are needed, or when lens-
ing is used to derive cosmological parameters (Knudson et al.
2001; Elíasdóttir & Möller 2007).

The ability of polytropes to reproduce observed galaxy prop-
erties also has an impact on the side of statistical mechanics. A

comparison with the cosmic evolution of astronomical objects
will shed new light on whether the S q entropies, in addition to
providing H-funtionals that are capable of selecting particular
steady-state solutions of the Vlasov equation (Chavanis & Sire
2005), would also have a deeper thermodynamical significance
for self-gravitating systems.
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