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ABSTRACT: Honey is a natural food that is valued worldwide for its nutritional and therapeutic values. Therefore, 

authentication of honey according to the geographical origin is a guarantee of the genuine properties of honey. In this article, an 

evaluation of spark discharge-assisted laser-induced breakdown spectroscopy (SD-LIBS) for certification of the geographical origin 

of honey is reported. Forty-nine samples of multifloral honey produced in four Argentine provinces were considered. The results 

showed the best classification performance was obtained using smoothing, generalized least squares weighting (GLSW) and mean 

centering for spectral preprocessing, added to the k-nearest 

neighbor (k-NN) or Support Vector Machine (SVM) 

classification algorithms, which provided 100% of correct 

classification. More importantly, the results of Partial Least 

Squares – Discriminant Analysis (PLS-DA) pointed to N, Ca, 

K, Cu, Fe and Mn as key elements for the certification of 

geographical origin. In addition, the greatest potential of N 

stands out for the discrimination of the origin of honey. These 

findings confirm SD-LIBS as a promising tool for 

authentication of honey quality, providing a simple, fast and 

environmentally friendly solution. The method can be useful 

for industry, the market and others related to food authenticity.  
 

INTRODUCTION 

Consumers’ lifestyle inquires certificates to prove genuine 

characteristics of food. Some differentiated foods are labeled by 

protected geographical identification (PGI) and protected 

designation of origin (PGO) that requires a premium price for 

products. Food fraud covers cases where there is a violation of 

food law, which is intentionally committed to obtain a financial 

gain through consumer deception.1 

Honey is the third most adulterated food in the world.2 Produced 

by bees from the nectar of plants, honey is a naturally sweet food 

valued worldwide for its nutritional and therapeutic values2. The 

properties mentioned are intrinsically related to the geographical 

origin of honey.3,4 Therefore, authentication of honey according to 

its origin is an important requirement that demands reliable, fast 

and reproducible analytical methods. 

The method traditionally used to determine botanical and 

geographical origin of honey is the pollen analysis which reflects 

the type of vegetation from which the nectar was collected by the 

bees.5 The method mentioned is time-consuming and requires 

great skill and technical experience in pollen morphology.6 In 

addition, if honey undergoes a filtration process this type of 
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analysis becomes infeasible. 

In order to simplify the determination of the origin of the honey, 

methods based on the elemental analysis of the honey composition 

have been proposed.7-15 These methods use analytical techniques, 

such as atomic absorption spectrometry (AAS), inductively 

coupled plasma optical emission spectroscopy (ICP-OES) and 

inductively coupled plasma mass spectrometry (ICP-MS) 

combined with multivariate data analysis. The disadvantages of 

the aforementioned techniques are the high cost per analysis, since 

they require gases and high-purity reagents, in addition to the time 

for the sample pretreatment. Particularly for honey samples, 

analytical difficulties may arise due to its high carbohydrates 

content, which influence the performance of the mentioned 

analytical techniques.16 Sample pretreatment by wet digestion 

using concentrated acid and heating17 or dry ashing followed by 

ash dissolution in concentrated nitric acid18 are time-consuming 

and costly procedures besides not being environmentally friendly. 

In contrast, the direct analysis of diluted samples using techniques 

that depend on the nebulization of the sample, such as flame 

atomic absorption spectrometry (FAAS), ICP-OES and ICP-MS 

is critically affected by the effects of transport. Considering these 

disadvantages, direct analysis techniques such as Raman, infrared 

and some sensors have been explored for classification of honey.19-

22 However, the elemental composition of the samples cannot be 

accessed by these techniques. 

Laser-induced breakdown spectroscopy (LIBS) is an analytical 

technique capable of performing direct and fast multielement 

analysis with minimal or no sample preparation, without the use 

of chemical consumables, such as solvents and gases. LIBS is 

based on the measurements of atomic and ionic emission of 

elemental sample constituents excited in a plasma. A single LIBS 

analysis takes a few seconds to perform. In addition to the 

elemental analysis, the correlation between spectral fingerprint 

and other samples properties is also possible.23,24 Due to its 

potential, LIBS has been successfully applied to detect food 

fraud.25,26 Despite the attractive analytical characteristics, LIBS 

shows low detectability, which makes some types of application 

difficult. For this reason, some strategies have been developed to 

improve the sensitivity of the LIBS, such as the spark discharge-

assisted LIBS (SD-LIBS), which increases emission intensities by 

reheating the plasma.27 

Recently, Zhao et al. (2020)28 achieved good results for the 

classification of honey according to geographical origin. The 

authors used a LIBS system composed by a high-energy laser 

operating at 532 nm, a high-resolution spectrometer and an 

intensified detector. In contrast, low-cost LIBS systems have 

received great attention and expanding the applicability of the 

technique.29-30 The low sensitivity and spectral resolution of these 

instruments have been circumvented using some simple devices to 

increase sensitivity and applying different spectral processing to 

extract the appropriate analytical information.30-32 

In this work, a low-cost LIBS system coupled with a spark-

discharge (SD) for authentication of geographical origin of honey 

was evaluated, taking advantage of the speed and reliability of the 

LIBS and aiming to provide an accessible device for 

authentication and traceability of honey. 

EXPERIMENTAL 

Samples. For this study, forty-nine samples of multifloral honey 

collected in harvesting season between 2015 and 2016, from four 

provinces of the Northeast region of Argentina (Fig.1), were used. 

The extraction and mixing of honey were carried out in an 

extraction room authorized by the National Service for Agri-food 

Health and Quality. Each sample corresponded to a composite 

sample, prepared from the mixture of samples extracted from ten 

beehives. The use of composite sample was chosen because it 

provides an unbiased estimation of the population average. Thus, 

eleven composite samples were obtained from the province of 

Formosa (F), ten from Chaco (CH), fourteen from Corrientes (C), 

and fourteen from Misiones (M). The honey samples were stored 

in polypropylene flasks at room temperature until analysis. 

LIBS analysis. The spectra were acquired using a LIBS system 

designed for direct analysis of solids, which is equipped with a Q-

switched laser Nd:YAG 1064 nm Big Sky Ultra 50 (Quantel, Co., 

Bozeman, MT, USA), an optical fiber bundle, and four 

spectrometers HR2000+ (Ocean Optics Co., Dunedin, FL, USA), 

featuring an optical resolution of 0.1 nm (full width at half 

maximum) and a spectral range from 200 nm to 630 nm. The laser  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Geographical location of the Argentine regions producing the studied 

honey samples. 
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with pulse duration of 8 ns was operated with a maximum power 

energy of 50 mJ. The integration time and the Q-Switched delay 

used for the acquisition of spectra were 1 ms and 2.5 μs, 

respectively. 

  The samples were placed in polyethylene sampling flasks until 

filling out their capacity (around 1 mL). The flask was placed in 

the sample holder of LIBS system, which can be moved in the x-

y directions. The sampling chamber is equipped with video 

camera to monitor the analyses. A spark discharge device was 

coupled with LIBS to increase the detectability of emission lines. 

The spark discharge was obtained using two cylindrical pure 

tungsten electrodes fixing 4 mm between them and 2 mm above 

the sample surface. The DC voltage signal was 4300 V. More 

details on the electric discharge system can be found in Vieira et 

al. (2018).33 Twenty spectra were measured for each sample by 

spreading lasers pulses on the surface of the sample. 

Chemometric analysis. All chemometric analysis were 

performed using MATLAB 2013a (MathWorks Inc., Natick, MA, 

USA) with PLS toolbox 7.3.1. (Eigenvector Research Inc., WA, 

USA). The spectral profile of all samples was first evaluated to 

detect outliers. Spectra showing an anomalous profile, evidenced 

by the absence of emission signals in any wavelength range, were 

discarded. Thereafter, each individual spectrum was processed by 

Whittaker filter for baseline fitting and multiplicative scatter 

correction (MSC) to normalize the effects of fluctuations, which is 

common in the LIBS analysis26,34. A principal component analysis 

(PCA) was performed using each preprocessed spectrum. The 

spectrum that showed scores values beyond the confidence limits 

(95% level) in the first principal component was excluded. Finally, 

the spectra corresponding to each sample were averaged. 

Afterward, the spectrum set was divided into subsets for 

calibration and validation: two-thirds of the samples were 

considered for calibration (9 C, 7 CH, 7 F, and 9 M), and one-third 

for external validation (5 C, 3 CH, 4 F, and 5 M). 

Three methods of classification were evaluated, Partial Least 

Squares Discriminant Analysis (PLS-DA),35 k-nearest neighbor 

(k-NN),36 and Support Vector Machine (SVM).37 The number of 

latent variables (LV) used in the PLS-DA model and the number 

of nearest neighbors (k) were chosen according to the number of 

correct classifications of the calibration samples during cross-

validation. The SVM model was developed using the radial basis 

kernel type. The values of the SVM parameters (ν and γ) were 

automatically optimized during cross-validation. The SVMs used 

for binary classification within a multiclass strategy were based on 

0 and 1, with a threshold of 0.5. 

The classification methods described were evaluated in 

combination with the following preprocessing techniques: 

baseline correction by Whittaker filter, first and second derivatives 

(15 variables per window), Savitzky-Golay smoothing, MSC by 

mean, MSC by median, normalization by area, Standard Normal 

Variate (SNV), Pareto scaling, Poisson scaling, generalized least 

squares weighting (GLSW), and external parameter 

orthogonalization (EPO)38-40. After the application of each 

preprocessing, the data were mean centered or autoscaled. 

RESULTS AND DISCUSSION 

The experimental data were first submitted to the removal of 

outliers. Thereafter, the remaining spectra were evaluated by PCA, 

and the scores plot (PC1 versus samples) was used as a control 

chart. Spectra showing scores values out of the confidence limits 

(95% level) were excluded. The observed outliers may be due to 

the honey meniscus formed in the sampling flask, which provided 

different laser focal distance in relation to sample surface, 

considering the center and the edges of the flask. These differences 

led to the exclusion of 19% of the spectra. Therefore, the replicates 

for each sample ranged from 5 to 20. The useful spectra from each 

sample were adjusted to the baseline, normalized, and averaged. 

The classification models were developed using the average 

spectra of each sample. The first step of the modeling was to 

determine the most suitable spectral preprocessing for each 

classification method (PLS-DA, k-NN and SVM). The results of 

correct classifications for thirteen preprocessing strategies and 30 

combinations are shown in Table 1. The mean centering does not 

influence k-NN and SVM modeling, so this preprocessing was 

only maintained by convention. Consequently, autoscaling had the 

same effect as variance scaling using these methods. The 

combination of smoothing, GLSW, and mean centering provided 

the highest number of correct classifications for the three methods 

performed. Since the GLSW attenuates spectral variables that vary 

in the same class, variables correlated to the classes present greater 

weight in the modeling. Therefore, this preprocessing was the 

most important to provide correct classifications. In addition, the 

Savitzky-Golay smoothing reduced the spectral noise, made 

emission peaks more defined, and increased model fit. The three 

methods evaluated for honey classification were able to separate 

the four classes: the k-NN (k=3) and SVM (ν=0.5, γ=10-6) models 

provided 100% correct classification for the external validation set, 

and PLS-DA (9 LV) model provided 94% of correct classification 

(Table 1). 

SVM and k-NN methods do not allow a visualization of the 

relationship between spectral variables and the class clusters. Thus, 

the PLS-DA method was used for such visualization and 

interpretation. The scores plot (Fig. 2) shows the separation of the 

four honey classes in the first three LVs. The PLS-DA model 

classified correctly all validation samples, except for a F sample, 

which was classified as region C honey. 

The correlation between the spectral variables and the honey 

classes was assessed using loading and scores values. This analysis 

reveals that M samples were separated by the 1st LV (positive 

values), the CH samples by the 2nd LV (negative values), and the 

C and F samples were separated by the 3rd LV (C with negative 
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Table 1. Evaluation of Preprocessing Strategy for Each Classification Method 

Correct Classification 

Preprocessing 
PLS-DA  k-NN 

 SVM 

Cal Val   Cal Val  Cal Val 

MC 87% 46%  33% 57%  46% 45% 

BC+MC 84% 46%  33% 57%  64% 53% 

1st der+MC 91% 60%  32% 41% 
 

28% 40% 

2nd der+MC 87% 60%  29% 26% 
 

36% 58% 

Sm+MC 97% 78%  37% 46%  71% 64% 

Sm+1st der+MC 94% 75%  42% 46% 
 

50% 50% 

Sm+2nd der+MC 91% 55%  37% 52% 
 

36% 40% 

MSC(mean)+MC 88% 28%  17% 31%  0% 25% 

MSC(median)+MC 88% 52%  31% 33%  53% 36% 

Norm.+MC 94% 47%  21% 37%  25% 25% 

SNV+MC 88% 23%  17% 31%  17% 20% 

GLSW+MC 100% 89%  100% 95%  100% 89% 

Sm+GLSW+MC 100% 94%  100% 100%  100% 100% 

EPO+MC 100% 59%  42% 56%  33% 35% 

Pareto Scaling+MC 100% 88%  24% 36%  61% 62% 

Poisson Scaling+MC 100% 69%   27% 31%   33% 40% 

AS 100% 71%  37% 40%  64% 62% 

BC+AS 100% 74%  32% 23%  0% 20% 

1st der+AS 100% 69%  26% 41%  25% 45% 

2nd der+AS 100% 74%  32% 51%  0% 15% 

Sm+AS 100% 88%  29% 30%  54% 58% 

Sm+1st der+AS 100% 69%  33% 51%  25% 50% 

Sm+2nd der+AS 100% 69%  33% 46%  36% 45% 

MSC(mean)+MC 100% 68%  14% 15%  0% 11% 

MSC(median)+MC 100% 46%  17% 45%  0% 10% 

Norm+AS 100% 56%  21% 31%  0% 20% 

SNV+AS 100% 73%  17% 26%  28% 35% 

GLSW+AS 100% 48%  100% 66%  100% 94% 

Sm+GLSW+AS 100% 51%  100% 88%  100% 94% 

EPO+AS 100% 74%   41% 50%   53% 43% 

Note: Calibration set (Cal), external validation set (Val), mean centering (MC), baseline correction by Whittaker filter (BC), first derivative (1st der), second derivative (2nd der), smoothing (Sm), 

multiplicative scatter correction (MSC), normalization by area (Norm.), standard normal variate (SNV), generalized least squares weighting (GLSW), external parameter orthogonalization (EPO), 

and autoscaling (AS). 

 

 

 

 

 

 

 

 

 

Fig. 2 Score plot of the PLS-DA model (only validation samples). 

and F with positive values). The score plot also shows a greater 

separation of class M from the others, while classes C and F were 

more similar. These results corroborate the elemental composition 

of samples (Table 2), obtained by assigning spectral emission lines 

according to the NIST LIBS database.41 A typical LIBS spectrum 

of a honey sample showing the emission lines that influenced class 

discrimination is shown in Fig. 3. 

Class M samples had a relatively lower N content, while C and 

F samples showed the relatively higher content of this element, 

suggesting that C and F honey have a high protein content in 

contrast to M honey. In addition, the C samples showed the 

relatively higher Ca content, resulting in the separation of this 

class by the 3rd LV of the model, and the medium K and Fe content 

provided the separation of the F samples. The CH samples were 
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Table 2. Emission Lines Related to Each Class 

Class Peak (nm) 
NIST  

assignments 

Intensity  

among classes 

Misiones 

499.5  N II (499.6 nm) lowest 

552.9  N I (553.0 nm) lowest 

553.5  N II  (553.5 nm) lowest 

567.6  N II (567.6 nm) lowest 

568.5  N II (568.6 nm) lowest 

Chaco 

324.7  Cu I (324.7 nm) highest 

404.1  Mn I (404.1 nm) medium 

434.7  Mn II (434.6 nm) medium 

Corrientes 

396.9  Ca II (396.9 nm) highest 

422.8  Ca I (422.7 nm) highest 

466.2  N I (466.2 nm) highest 

Formosa 

404.2  K I (404.4 nm) medium 

439.7  Fe II (439.8 nm) medium 

464.3  N II (464.3 nm) highest 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Typical LIBS spectrum of a honey sample with emission line 

assignments related to the studied classes. 

distinguished from the others by their relative higher levels of Cu 

and medium levels of Mn, and N did not show significant 

influence on segregation. 

Three class of samples were separated according to the N 

content, suggesting that N plays a fundamental role in 

discriminating the geographical origin of honey. According to 

Imdorf et al.,42 bees feed mainly on nectar and pollen, the latter 

being the main source of protein for the entire colony. Thus, the 

supply and quality of pollen, which directly influence the amount 

of N, could be related to the geographical production of honey. 

Furthermore, Fechner et al.10 using ICP-MS data from the same 

samples used here, obtained a classification method for 

geographical origin reaching 76% of prediction accuracy. These 

results suggest that the absence of N in the data set may decrease 

the accuracy of the predictions. SD-LIBS presented attractive 

features for authentication of honey in terms of cost and 

performance, in addition to the ability to measure N, which is not 

feasible with ICP-MS. Thus, the methods developed provide new 

horizons for honey quality analysis. 

CONCLUSIONS 

Authentication of geographical origin of Argentine honey was 

assessed using a low-cost SD-LIBS and chemometric tools. 

Adequate spectral preprocessing provided k-NN and SVM 

models capable of accurately classifying honey according to their 

production regions. The results suggested N as the most important 

element to discriminate the studied classes. Complementary 

contributions from Ca, K, Cu, Fe, and Mn were also important for 

geographical discrimination of honey. Considering the possibility 

of measuring N and the importance of this element for 

geographical discrimination of honey samples, the proposed 

methods place LIBS in a prominent position in comparison with 

the conventional atomic techniques generally used for 

geographical analysis of honey (e.g. FAAS, ICP-OES and ICP-

MS). Furthermore, the use of SD-LIBS provides fast, clean and 

direct analysis, providing a low-cost device for the control of food 

quality. 
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