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Abstract 21 

The large-scale application of organophosphate esters (OPEs) as flame-retardants and plasticizers 22 

has led to their ubiquitous occurrences in the environment with still unknown environmental 23 

impacts.  This review summarizes current knowledge on the transport, biogeochemistry and effects 24 

of OPEs in the marine environment, including polar regions.  Atmospheric long-range transport 25 

and Ocean currents are responsible for the regional and global distribution of OPEs from 26 

industrialized regions to open oceans. During transport, a number of biogeochemical processes 27 

such as degradation, settling to deep waters, modulate the OPEs concentrations and ultimately 28 

their impact and sinks. Trans-ocean studies provide evidence of the importance of air-water 29 

interactions, although the impact of this anthropogenic input of organic phosphorous has yet to be 30 

constrained. Moreover, the potential for bioaccumulation and biomagnification of OPEs have been 31 

investigated for different marine species, and OPEs can give rise to toxic effects. Future research 32 

needs to be focused on the biogeochemistry of OPEs in the water column, deep ocean sediments 33 

and organisms, on a better characterization of the total anthropogenic organic phosphorus, and to 34 

understand the impacts of a changing climate and human activities to the environmental fate, 35 

relevance and ocean health impacts of OPEs.  36 
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Key points 37 

OPEs have been transported from continental sources to the ocean via both atmosphere and 38 

riverine discharge. 39 

Air-water exchange and atmospheric deposition affect the cycling of OPEs from the coastal area 40 

to the remote ocean.  41 

Re-emission of OPEs from melting snow and ice in the polar regions can impact their levels in the 42 

water columns in the high Arctic and the Southern Ocean. 43 

Parent OPEs and their transformation products, especially their presence in marine mammals and 44 

fish, have become emerging concerns for the oceanic ecosystem, therefore international strategies 45 

are required to eliminate their environmental emissions. 46 

 47 

1. Introduction 48 

Organophosphate esters (OPEs) are synthesized organic chemicals used on large scale as flame-49 

retardants, plasticizers and additives in industry production, electronics, household consumer 50 

products and personal care products.8 The increased demand for alternative flame-retardants due 51 

to the regulation applied to polybrominated diphenyl ethers (PBDEs) in 2003, has driven the 52 

rapidly increasing consumption volume of OPEs.8 Over the past 20 years, the annual worldwide 53 

use of OPEs increased from 300 kilotons in 2004 to 620 kilotons in 201314,15. It is estimated that 54 

the OPEs market grew by 5.2% from 2016 to 202116. Presently, OPEs account for approximately 55 

15% of the total volume for flame retardants employed globally14,24 56 

Because of the risk that pose to human reproductive, genetic, and developmental functions, 57 

tris(2-chloroethyl) phosphate (TCEP) is now included in the European Commission (EC) second 58 
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priority list of chemicals developed within the EU-Strategy for Endocrine Disruptors25. Some 59 

OPEs such as TCEP, tributyl phosphate (TBP), and tris-(2-butoxyethyl) phosphate (TBEP) are 60 

also registered as high production volume (HPV, more than 1000 tons each year) chemicals under 61 

European REACH (Registration, Evaluation, Authorization and Restriction of Chemicals)26. 62 

However, there is no international regulation existing to tackler the increasing pressure from the 63 

OPEs emissions. Together with high level of usage and potential toxic risk to human being and 64 

ecosystems have made OPEs gain considerable prominence in recent international research.8,27,28 65 

The broad application for OPEs and their use as additives in plastic products have contributed 66 

to their diffusive release and high environmental mobility, mainly by volatilization, leaching and 67 

abrasion29,30. For example, more than 44.7 million tons of electronic waste (e-waste) were 68 

generated worldwide in 2016, and most them were treated for re-cycling along the coastal cities, 69 

especially in developing countries31. The most commonly found flame retardants in older 70 

electronics are polybrominated diphenyl ethers (PBDEs), which were superseded in newer 71 

electronics by non-PBDE brominated flame retardants and OPEs32-34. Open air burning e-wastes 72 

may directly release organic additives including OPEs in ambient air35. For instance, OPE 73 

concentrations reached 740-1000 ng/m3 in in ambient air of Canadian e-waste recycling facilities,30 74 

and 3.8–57.7 ng/m3 in the rural e-waste recycling area in south China36. The air mass back 75 

trajectories (BTs) from for the coastal sampling site37, demonstrated regional atmospheric 76 

transport of OPEs adsorbed to fine particulate matter (PM 2.5) from both industrial cities and the 77 

e-waste recycling region36. A number of studies have shown river to sea fluxes of OPEs, such as 78 

16-160 kg/d from the Elbe to the North Sea38, 16±3.2 t/year from 40 rivers to the Bohai Sea39 and  79 

450−16,000 t OPEs to the Canadian Arctic Ocean40. Model predictions have shown that OPEs are 80 
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persistent and mobile in water41,42, which implying the riverine runoff plays an important role for 81 

the transportation of OPEs from terrestrial source to the ocean.  82 

The concentrations of OPEs in seawater, sediment and air are generally 2 to 3 orders of 83 

magnitude higher than those of brominated flame retardants and other legacy persistent organic 84 

pollutants (POPs) in environmental matrices2,43, highlighting the need for further research on 85 

occurrence, environmental fates and biological accumulation in marine organisms and toxic 86 

impacts of OPEs in the global ocean8,44-48.  In 2021, Suehring et al. reported an estimate of the 87 

OPE load in the Canadian Arctic Ocean40. While, the total amount of OPEs in the environment, as 88 

well the total amount of anthropogenic organophosphorus compounds remains unquantified.  89 

In this Review, we summarize the studies for OPEs in the global ocean, including the Arctic 90 

and Antarctic. The major OPE sources are overviewed, and the environmental pathways are 91 

discussed for their effects on the transport processes in the ocean. Environmental concentrations 92 

and spatial trends of OPEs in air, sediment, seawater, biota and snow are separately presented. The 93 

most frequently targeted and detected OPEs in the ocean are covered in this review (Table 1).  94 
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 95 

Box 1 | Analytical methodology for OPEs in environmental matrixes 

Classical extraction methods including Soxhlet, solvent shaking, ultrasonication, 

microwave-assisted extraction (MAE), matrix solid-phase dispersion (MSPD), and accelerated 

solvent extraction (ASE) have been applied to the extraction of OPEs in solid samples1, such as 

airborne particles, sediment and organism. OPEs in air are generally sampled using active air 

sampler composed of glass/quartz fiber filters (GFFs/QFFs) and solid sorbent (such as 

polyurethane foam plugs, PUFs). Extraction of OPEs from fiber filters and PUFs can be 

performed with Soxhlet2-4, ultrasonication5,6 or ASE7, followed by purification with different 

columns such as  a preconditioned silica gel column (Table S1). Solid phase microextraction 

(SPME) is a passive sampling device used for the collection of OPEs in gas phase. The trapped 

compounds can be directly introduced into GC system for analysis after thermal desorption step, 

which has been developed as a fast and low-cost technique9.  

For sediment and organism samples, a series of pretreatment procedures including freeze-

drying and homogenization are generally needed before the extraction. Due to the complexity of 

these two matrices, ASE, solid phase extraction (SPE), Soxhlet1,8,10-13 and ultrasonication17 are 

typically used for the extraction and purification of OPEs in sediment and biota (Table S1). For 

the SPE cartridge, florisil and silica gel are commonly used packing materials. Moreover, the use 

of QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) could represent a fast and 

“green” alternative for the quantitative screening of OPEs in sediments and marine organisms18. 

Liquid-liquid extraction (LLE), in which dichloromethane (DCM) is often selected as the 

extraction solvent7,19, or SPE15,17,19-24 have been widely used for the extraction of OPEs from  

inland and seawater (typically 500-1000 mL sample volume). Several microextraction techniques 

have also been applied for the extraction of OPEs in water samples, with the advantages of easy 

operation, reduction of solvent consumption, and improvement in extraction selectivity1. 

The determination of OPEs can be achieved by gas chromatography–mass spectrometry 

(GC–MS) and liquid chromatography–tandem mass spectrometry (LC–MS-MS). It is widely 

acknowledged that background contamination is a common problem during the sampling and 

analytical processing of OPEs 42,50,56. Therefore, work in a clean lab, solvent pre-cleaning, 

avoiding of use of plastics, as well as the monitoring of field and procedure blanks are needed. 
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2. Environmental sources and pathways  96 

OPEs have multiple and concurrent sources in the oceanic environment. An important part of 97 

these sources is believed to be land-based 48, such as direct volatilization from consumer products 98 

(for example, electronic waste) to the atmosphere36,49,50 and direct inputs from rivers39,51,52. The 99 

riverine pathway integrates in turn a variety of sources at the river basin scale such as sewage 100 

treatment effluents53,54, direct leaks from industries, potential run-off from plastic and/or electronic 101 

waste sites, and atmospheric deposition13. These land-based sources result in environmental 102 

temporal stocks of OPEs reaching coastal and off-shore areas due to atmospheric transport and 103 

deposition55,56 and /or waterborne transport associated with currents54. There is compelling 104 

evidence of the widespread occurrence of OPEs in wastewater25,57,58, inland surface water59, 105 

ground water60 and seawater61 from Europe, North America and Asia. Additionally, oceanic plastic 106 

debris may represent in-situ local sources of OPEs and other organic plastic additives due to 107 

leaching. For example, between 0.3 and 0.9 Mt/y of phthalic acid esters (PAEs) have been 108 

estimated to be leached to the global oceans from marine fragments of polyethylene (PE) based on  109 

laboratory release experiments conducted on PE plastic bags62. Effective release of OPEs and 110 

PAEs from PE and PVC was confirmed in another laboratory study performed on surface and 111 

deep-waters collected in the Mediterranean Sea63.  Interestingly, a more efficient additive release 112 

at the ocean surface than in deep seawater was observed63, suggesting that the local sources of 113 

plastic additives could vary with depth pointing to differential exposure levels to deep and surface 114 

water marine organisms. Both laboratory experiments62,63 highlighted as well the important role 115 

of marine prokaryotes promoting the release of OPEs. Once in the ocean, OPEs are known to 116 

accumulate in marine sediment and aquatic biota, such as fish and in the tissues of marine 117 

mammals8,19,64-66(Fig. 1). 118 
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 119 

Figure 1. Major environmental sources, processing and pathways of OPEs in the coastal and 120 

open oceans. The major continental sources of OPEs include industries area, wastewater treatment 121 

plant, e-waste cycling plants and ambient emissions. OPEs undertake environmental pathways e.g. 122 

atmospheric and oceanic transport, air-water exchange, atmospheric dry and wet deposition, 123 

sedimentation, bioaccumulation and microbial interactions.  124 

 125 

2.1. Transport from rivers 126 

The riverine transport of OPEs has been highlighted as an efficient pathway contributing to 127 

their coastal inputs and subsequent water-borne oceanic stocks. Modeling estimations indicate that 128 

chlorinated-OPEs are more efficiently transported by rivers than non-chlorinated OPEs due to their 129 

higher water solubility and persistency40,41. Field studies investigating the riverine inputs of OPEs 130 

are still discrete and not a large spatial distribution is covered allowing for effective integration 131 

over regional and oceanic scales. However, available data support the important role of rivers 132 

transporting OPEs67. For example, the presence of organic plastic additives (OPEs, PAEs and 133 
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bisphenols) in the dissolved water phase from the Rhone river (France), the main freshwater source 134 

of the NW Mediterranean Sea, accounted for more than 40% of the total dissolved anthropogenic 135 

organic contaminants  in surface waters of the river, including PAHs, aliphatic hydrocarbons, 136 

pesticides and polyfluorinated alkyl substances.51 The estimated OPEs inputs associated to the 137 

water dissolved phase from the Rhone river to coastal NW Mediterranean Sea varied from 2 to 11 138 

t/y (9OPEs). In addition, important inputs associated with the sedimentary material exported by 139 

the Rhone are expected in the Gulf of Lion, based on the OPE concentrations measured in the 140 

sediments at the river outlet 68. OPEs have been measured at high concentrations in the dissolved 141 

water phase (up to ~1 µg/L), at the Amazon river plume (in the Western Tropical Atlantic Ocean) 142 

suggesting the Amazon River as a major source of these contaminants to the tropical North Atlantic 143 

Ocean. This finding points to medium-/long-range contaminant transport, most certainly facilitated 144 

by the highly stratified conditions offered by the river plume52. Both rivers have been reported to 145 

export large amounts of plastic waste69,70. However, a direct link between the organic additive 146 

concentrations at the water surface and the abundance of floating plastics couldn’t be stablished or 147 

was not investigated. The total riverine input of OPEs was estimated to be 18 t/y from 40 major 148 

rivers entering into the Bohai Sea, North China39. In Europe, the riverine input of OPs into the 149 

North Sea via Elbe, Ems, and Weser was estimated to be about 50 t/y.22,71 Overall, the riverine 150 

discharges of OPEs to the coastal areas can be transported with ocean currents further to the open 151 

ocean.  152 

 153 

 154 

 155 

 156 
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2.2. Long-range atmospheric transport 157 

Long-range transport especially via atmosphere has been considered an important pathway for 158 

global distribution of POPs 72,73. Since early predictions of atmospheric half-live times of OPEs 159 

were generally below the threshold (2 days) to meet the long-range atmospheric transport (LRAT) 160 

criterion of the Stockholm Convention on POPs, these chemicals were thought to be degradable 161 

enough as to have low potential for LRAT74.  However, improved modeling estimations 162 

considering episodic transport, sorption to the particle phase, impact of water-mass and the 163 

uncertainty of the environmental half-live times show that some of the most used OPEs could 164 

travel very long distance42. This is consistent with filed observations showing that OPEs are 165 

ubiquitous in the atmosphere globally. Indeed OPEs were measured in atmospheric particles from 166 

the North Sea, the North American Great Lakes, the Mediterranean Sea, across the Arctic, Pacific, 167 

Indian, Atlantic and Southern Oceans, and in ocean and Polar Regions indicating they undergo 168 

LRAT 2-4,6,43,61,75.  169 

Liu et al.76 estimated heterogeneous reaction rate constants for OPEs in air, and demonstrated 170 

that particle-bound OPEs are highly persistent in the atmosphere. However, OPEs were initially 171 

thought to be degradable enough to have less persistency in the environment and therefore low 172 

potential for LRAT 74. Reaction with the OH radicals in the atmosphere was expected to be the 173 

dominant atmospheric loss process for the OPEs77. The half-life time of TCIPP was estimated in 174 

the European Risk Assessment from 2008 to be 8.6 hours78. This led to the wrong conclusion, that 175 

LRAT of TCIPP can be excluded. The atmospheric lifetimes for OPEs are estimated to be less 176 

than 1.3 days based on their gaseous OH radical rate constants76. However, recent evidence that 177 

many OPEs present in the gas phase rather than the particle phase71,79. The persistence and LRAT 178 

potential of OPEs in gas phase might be lower estimated, as they are very water-soluble. Moreover,   179 
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heterogeneous OH initiated oxidation was studied for OPEs in air, and approximate atmospheric 180 

lifetimes were estimated to be 5.6 (5.2−6.0), 4.3 (3.5−5.6), and 13 (11−14) days for particle-bound 181 

TPhP, TEHP, and TDCIPP76. This calculated particle phase lifetime suggested medium-range or 182 

long-range transport potential of particle bound OPEs in atmosphere. Many studies have revealed 183 

the presence of OPEs in remote environments including oceanic and polar regions as discussed 184 

above, which also demonstrates their long-range transport potential 5,6,43,80,81.  In spite of this, OPEs 185 

include both halogenated and nonhalogenated compounds, and show a wide range of physical and 186 

chemical properties, suggesting that their atmospheric transport is going to be variable due to wide 187 

differences in persistence, particle sorption, and air-water partitioning. Most observations in the 188 

remote areas were associated with chlorinated OPEs (TCEP and TCIPP)61,81, which also implied 189 

stronger potential of LRAT for specific compounds. 190 

 191 

2.3. Air-water exchange and atmospheric dry and wet deposition 192 

During transport from source regions to remote oceans, OPEs will be subject to exchange at the 193 

interfaces between different environmental media. 82,83 Atmospheric depositional processes play 194 

important role in the environmental fate of OPEs, contribute to aquatic ecosystems burden and 195 

support OPEs accumulation in marine food webs61,84.  196 

The magnitude of atmospheric deposition or volatilization is a function of the physicochemical 197 

properties (especially Henry’s law constant) and the concentrations of OPEs in air and water, and 198 

will be further affected by a number of environmental variables such as wind speed, temperature, 199 

salinity, and precipitation frequency and intensity82,83. There are several major processes causing 200 

atmosphere-ocean interaction of OPEs, including diffusive air-water exchange between the 201 

gaseous and dissolved phases, atmospheric dry deposition of particle-bound OPEs, and wet 202 
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deposition by rain and snow5,61,81,85. Briefly, dry deposition (FDD), wet deposition (FWD), and air-203 

water exchange (FAW) can be estimated by, 204 

𝐹𝐷𝐷 = 𝑣𝐷𝐶𝐴   [1] 205 

𝐹𝑊𝐷 = 𝐶𝑅𝑎𝑖𝑛 𝑝  [2] 206 

𝐹𝐴𝑊 = 𝑘𝐴𝑊 [
𝐶𝐺

𝐻′
− 𝐶𝑊]  [3] 207 

Where CA, CG, CW and CRain are the chemical’s concentrations in particles, gas phase, water 208 

(dissolved phase), and rain, respectively. H’ is the dimensionless Henry’s law constant, vD is the 209 

deposition velocity of the particles, p is the rain precipitation, and kAW is the air-water mass transfer 210 

coefficient.86 211 

Air-water exchange fluxes of OPEs have been estimated in a few studies. Na et al. collected air 212 

and seawater samples simultaneously on an expedition from the North Pacific to the high Arctic5. 213 

The air-water exchange flux ranged from -0.79 to 0.59 ng/m2/d, and TiBP contributed the largest 214 

proportion with seawater to air volatilization ranging from 0.19 to 0.72 ng/m2/d. In contrast, TCIPP 215 

and TCEP exhibited net deposition fluxes. In the North Atlantic and European Arctic, Li et al. 216 

reported the net volatilization flux of 5 to 1080 ng/m2/d, 61 to 12300 ng/m2/d, 12 to 2050 ng/m2/d, 217 

and 3 to 943 ng/m2/d for TCEP, TCIPP, TiBP, and TnBP, respectively61. While in the coastal area 218 

of China, the gaseous exchange fluxes fluctuated in both directions7. TCIPP showed the highest 219 

air to seawater deposition flux of 395 ng/m2/d, however TCEP displayed the highest volatilization 220 

flux of 1410 ng/m2/d. McDonough et al. calculated fugacity ratios from average equilibrium-221 

corrected OPE concentrations in passive air and water samples, and found OPEs at dynamic 222 

equilibrium across the Farm Strait in the Arctic, with the exception of some volatilization of TnBP 223 
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observed at Cape Bounty lake sites in 2016 and of TDCIPP in Barrow Strait in 2015, and 224 

deposition of TPHP85.  225 

In the tropical and subtropical areas of the North and South Atlantic and Pacific Oceans, Castro-226 

Jiménez et al. calculated gaseous concentrations of OPEs from their measured particle 227 

concentrations and Henry’s law constants resulted from various models81. The resulting mean 228 

gross diffusive fluxes of 14 OPEs with the estimated gaseous phase OPEs varied from 200 to 229 

60000 ng/m2/d depending on the physicochemical properties used in the calculations. These 230 

studies showed that H values calculated from different models could cause the fluxes varying in 231 

1-2 orders of magnitude, which suggesting accurate H values of OPEs need to be determined with 232 

appropriate experiment design to decline the uncertainty of air-water exchange flux. 233 

The magnitude of air-water exchange direction and flux depends non-linearly on wind speed, 234 

with enhanced fluxes at high wind speeds 83,87. In addition, the processes affecting the dissolved 235 

and atmospheric concentrations of OPEs can affect the magnitude of air-water exchange. For the 236 

OPE components with relatively short half-live times in the atmosphere, volatilization from 237 

seawater to air may control the diffusion fluxes. In contrast, dissolved concentrations of 238 

hydrophobic OPEs such as TEHP and EHDPP can be depleted by partitioning to particular matters, 239 

which upon settling, may deplete OPEs in the surface ocean, a process known as the biological 240 

pump. Photo- and bio- degradation can also deplete dissolved phase OPEs, thus favoring the air-241 

to-water diffusive fluxes. Therefore, both the biological and degradative pumps favor deposition 242 

of OPEs to the marine environment. These biogeochemical controls on atmospheric deposition 243 

have been extensively studied for other semivolatile compounds88, but remain unquantified for 244 

OPEs. 245 
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The particle-bound OPEs contributed to 67 ± 17% of the total OPEs in the European Arctic61,  246 

accounted for 52 ± 23% in the Bohai and Yellow seas89, 71-93% in the North Pacific to the Arctic, 247 

35 ± 17% in the South China Sea79, 86 ± 25% in the North Sea3, 45% at German coast (Büsum)71, 248 

59% at Dalian, China90. The other studies have only determined OPEs in particle 249 

phase2,4,14,43,56,81,91. In the Northeast Pacific and the Arctic, the dry particle-bound OPEs deposition 250 

fluxes were estimated ranging from 13.64 to 94.17 ng/m2/d 5. The same pattern was present in the 251 

North Atlantic and European Arctic, while the deposition flux of OPEs was only 2-16 ng/m2/day61, 252 

which is similar to those estimated for the South China Sea 79,91. More intensive particle-bound 253 

OPEs deposition processes were observed in the open Mediterranean (70 ~ 880 ng/m2/d) and Black 254 

Seas (300 ~ 1060 ng/m2/d)4, the North African coastal Mediterranean (18 ~ 180 ng/m2/d)56, and 255 

the Bohai and Yellow Seas (21 - 250 ng/m2/d)89. These results suggested atmospheric dry 256 

deposition can significant remove particle bound OPEs from atmosphere. 257 

In the tropical and subtropical Atlantic, Pacific, and Indian Oceans, the dry deposition fluxes 258 

of particle-bound OPEs ranged from 4 to 140 ng/m2/d, with higher deposition fluxes in the North 259 

Pacific and Indian Oceans 81. In most studies, TCIPP and TCEP dominated the total deposition 260 

flux in the oceans. It is estimated that the surface waters of the tropical and subtropical oceans 261 

receive a yearly-integrated amount of ∼2 to 13 kt/year of OPEs (sum of 14 compounds) from the 262 

dry deposition of particle-bound OPEs81. 263 

Wet deposition by rain and snow precipitation can be very important quantitatively in some 264 

climatic regions and for some seasons, as an input of OPEs and other organic pollutants to marine 265 

environments. Furthermore, both snow and rain amplify the concentrations of organic pollutants 266 

in the receiving waters92,93. This amplification of concentrations by snow is driven by the high 267 

specific surface area of snow-flakes and raindrops, which increase the rain-air washout ratios. The 268 
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high water solubility of some OPEs also favor wet deposition fluxes.  Both the washout ratios for 269 

snow and rain are generally close to 105 for OPEs92. Although the measurements of OPEs in rain 270 

water are only available for samples collected on land by few studies92,94,95, these comprise 271 

temperate and polar environments. The high concentrations of OPEs measured in rain water imply 272 

that wet deposition cannot be ignored, especially for the coastal seas. OPEs in rain water have also 273 

been reported for the South Shetland islands (Antarctica)92. In the high latitude oceans, snow 274 

deposition plays as effective scavenger for atmospheric OPEs in the Arctic, the Southern Ocean 275 

and the Antarctic. The importance of snow deposition has been highlighted by the relatively high 276 

OPE concentrations found in the snow samples from the Arctic and Antarctic expeditions 61,96,97. 277 

Snow scavenging followed by snow melting can represent an important flash of pollutants from 278 

coastal land to coastal waters, which has been assessed for other pollutant98-100, but its relevance 279 

need to be explored for OPEs. 280 

 281 

2.4. Re-emission from melting ice and snow  282 

The areas of sea ice in the Polar Regions react very sensitively to climatic changes. Because of 283 

global warming, the areas of sea ice and snow cover are shrinking, and glaciers are transporting 284 

their ice toward the low latitudes more rapidly101. Along with the processes of ice retreat and snow 285 

melting, chemical contaminants trapped in snow including OPEs could be directly discharged into 286 

the water column. Consequently, the fresh input from melting ice and snow enhanced the OPE 287 

concentrations in seawater from the East Greenland coast, which are 2-5 times higher than those 288 

in the Farm Strait61. Besides, elevated OPE concentrations were measured in the high Arctic Lake 289 

Hazen (81°49.5′N, 70°42.8′W) with concentrations from 6.8-19.3 ng/L, which are 5-10 times 290 

higher than the North Atlantic Ocean and the Northeast Pacific Ocean5,61,102. 291 
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In the Southern Ocean and the Antarctic, raised atmospheric concentrations of OPEs have been 292 

measured along the Antarctic coast, which can be attributed to the re-emission from the melting 293 

snow and ice of the Antarctic43. The studies for organic contaminants in snow and air in the Arctic 294 

and Antarctic have shown that melted snow inputs could influence the relative abundance of the 295 

chemical components in coastal seawater and amplify their seawater-air fugacity gradient, such as 296 

polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), neutral polyfluoroalkyl 297 

substances (PFASs) and OPEs55,103. 298 

Climate change may lead to an increase of the rain periods with a decrease of snow deposition 299 

periods, which would mean that for some regions, such as the western Antarctica peninsula, the 300 

deposition by rain could become more important during the coming decades92. 301 

 302 

2.5. Ocean current transport 303 

Previous studies indicated that chlorinated-OPEs can be efficiently transported via ocean 304 

currents due to their persistence, lower volatility and high solubility 40-42. OPEs have a wide range 305 

of physical and chemical properties, and varied from very polar to highly hydrophobic, which may 306 

facilitate the transport of some OPEs by water. TCIPP was generally found to be the major 307 

chlorinated phosphates in urban rainwater and Elbe River in Germany.95,104 Many studies also 308 

revealed higher levels of OPEs in the coastal water compared with those in the open seas.17,20 The 309 

importance of water-borne transport for OPEs depends on the deposition and subsequent transfer 310 

of OPEs to the water compartment, followed by their persistence and mobility in the water 311 

compartment41. The model results showed larger portions of the OPE emissions could enter the 312 

water body, and with motilities from 85% for TPhP to 98% TCIPP41. The higher mobility of the 313 

Cl-OPEs versus non-Cl-OPEs was caused by the low degradation rate of Cl-OPE in water, which 314 
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have been also proved by the measurements of OPEs in lake water105,106 and oceanic water40,52,61,107. 315 

Sühring et al determined 11 OPEs in surface water from Canadian Arctic. The median of ΣCl-316 

OPEs (10 ng/L) was 6 times higher than Σnon-Cl-OPEs 1.3 ng/L. High concentrations of OPEs in 317 

samples from the Mackenzie River plume suggested riverine discharges acting as an OPE source 318 

to the Canadian Arctic. The ∑11OPE  inventory was estimated with a median of 4100 tonnes of in 319 

the Canadian Arctic Ocean with >99% of the OPE inventory estimated to be in the water column40. 320 

This study highlighted water-borne OPEs can be subject to long-range transport via oceanic 321 

circulations. Morever, OPEs are widely used plasticizers and flame retardants in plastic, and 322 

floating debris can transport between continents via ocean circulations108, it is speculated that 323 

ocean gyres can bring OPEs into the open waters such as in the Southern Ocean.6  324 

 325 

2.6. Degradation of OPEs  326 

The environmental degradation of OPEs is a key issue as it determines the persistence of these 327 

chemicals in the environment. The persistence is a key aspect when assessing the risk of 328 

anthropogenic chemicals. Furthermore, in the natural environment, photo- and bio- degradation 329 

are key sinks modulating the fate of many organic pollutants, including the marine 330 

environment109,110. 331 

Generally, the atmosphere is a very efficient medium for the environmental degradation of 332 

organic compounds due to the occurrence of OH radicals, among others. There are few mechanistic 333 

studies for the atmospheric degradation of OPEs, though reaction rates for the OH heterogeneous 334 

oxidation of several OPEs such as TPhP, TBEP, TEHP, TDCIPP have been measured76. The very 335 

short half-life time proposed by the EU risk assessment in 2008 for TCIPP (8.6 h) leading to the 336 

wrong conclusion that TCIPP will be not subjected to LART78. From these reaction rates, the 337 
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atmospheric half-live times of these OPEs range from few days to weeks. These relatively long 338 

residence times in the atmosphere are enough to explain their potential for long-range atmospheric 339 

transport, and their occurrence in the global oceanic atmosphere. 340 

In seawater, the degradation of several OPEs has been evidenced from a number of 341 

observations106. Organophosphate diesters are the degradation products of OPEs flame retardants 342 

and plasticizers, and their occurrence can be generally considered a field evidence of degradation 343 

of OPEs, although some OPE diesters may have also industrial sources (For example directly 344 

added to commercial products as flame retardants and plasticizers).111  Organophosphate diesters 345 

have not only been found in rivers and lakes 112,113, but also in fish from global marine 346 

environments 114. However, the degree to which these chemicals came from riverine inputs or were 347 

in-situ transformation products is unclear115. Diesters have also been detected in polar bears 116, 348 

top predators of the Arctic marine food web. Nevertheless, the in-situ production of diesters in 349 

seawater, such as by bacterial degradation, has not been proven so far. 350 

Photodegradation of OPEs in water has been reported in a few laboratory studies. Although 351 

direct photolysis did not account as the main photodegration mechanism, depletion of OPEs 352 

occurred in pure water with dissolved oxygen, and the removal rates could be enhanced in river 353 

water117. A study with lake water for photodegradation of 5 OPEs (TCEP, TCIPP, TBOEP, TiBP 354 

and TnBP) showed the sunlight could degrade TiBP, TnBP and TBOP in 15 days, but was less 355 

active for TCEP and TCIPP106. The photodegradation is more effective for nonchlorinated OPEs 356 

were also proved by the depletion of OPEs in snow and rainwater105 and global presence of TCEP 357 

and TCIPP. While the photodegradation process of OPEs in both air and sewater need to be further 358 

explored.  359 
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The capacity of microorganisms to degrade OPEs has been studied mostly in isolated bacteria 360 

that represent less than 1% of the wild bacteria inhabiting in the environment118. The isolation of 361 

OPE-degrading bacteria has been performed in an attempt to optimize environmental-friendly 362 

contamination removal strategies, especially for the chlorinated OPE compounds. However, only 363 

few OPE-degrading strains have been cultured to date, mainly from soil habitats. Isolated strains 364 

able to degrade and use TCEP and TDCIPP as the sole source of P belong to Alphaproteobacteria 365 

Sphingobium and Sphingomonas species119,120 , Firmicultes Brevibacillus brevis sp. that is able to 366 

degrade TCP121,122, and the TPhP- and TCrP-degrading Rhodococcus and Sphingopyxis123 and 367 

Roseobacter124.  368 

Like other organophosphorus triesters, OPEs degradation involves the hydrolysis of the 369 

phosphorester bonds mediated by phosphotriesterases, then phosphodiesterases and then 370 

phosphomonoesterases. The only phosphotriesterase identified so far that mediates TCEP and 371 

TDCIPP biodegradation is a haloalkylphophorus hydrolase (HAD) that differs from the common 372 

thee families of phosphotriesterases used to degrade aryl dialkyl phosphates, such as parathion and 373 

paraoxon among others125-128.  374 

OPEs can be biodegraded by activated sludge from domestic sewage treatment plants and are 375 

readily susceptible to biodegradation in rivers by naturally occurring microbial populations129. 376 

While, the biodegradation of OPEs and characterization of the associated microbial communities 377 

in the natural environment is poorly studied. Currently, only two studies have been performed: one 378 

in sediments of a river receiving wastewater discharges, that observed TCEP degradation rates in 379 

communities dominated by Burkholderiales, Rhizobiales, Rhodobacterales, and 380 

Methylophilaceae130; and one in phosphorus-limited natural seawater, in which consumption of 381 

several OPEs was observed along with an increase of activity of Flavobacteria131. Given the 382 
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widespread occurrence of Flavobacteria in the global oceans, OPEs biodegradation could be a 383 

common feature in the upper ocean132. Furthermore, if OPEs are especially degraded in P limiting 384 

waters, then OPEs would be more persistent when P is not a limiting nutrient. Recently, it has been 385 

shown that phosphodiesterase activities are much more abundant than expected in the water 386 

columns133, and they can account for relevant P acquisition by marine bacteria under inorganic P 387 

limitation, favoring the link between atmospheric inputs of anthropogenic organic P and its 388 

utilization as a nutrient by marine microbiomes. These processes could be important interactions 389 

between anthropogenic chemicals and the Earth system functioning131. In any case, with the 390 

current knowledge, the half-live of OPEs in marine waters remain unknown, but these may be 391 

dependent on the biogeochemical province. 392 

 393 

3. Occurrences of OPEs in the global ocean 394 

Previous review summarized occurrences of OPEs in various matrices, including atmosphere, 395 

water, sediment and biota134, which indicated their ubiquity in the world and possible adverse 396 

effect on ecosystem. Here we emphasized their occurrence of OPEs in the global ocean and Polar 397 

Regions as well as environmental fate of OPEs via long-range transport. 398 

 399 

3.1. OPEs in atmosphere  400 

OPEs have been widely detected in the atmosphere of the marginal as well as the high seas (Fig. 401 

2a). Over the Pacific, Indian, Arctic, and Southern Oceans, the concentrations of ∑8OPEs ranged 402 

from 120 to 2900 pg/m3 in airborne particles in 2010-2011, with the predominant compounds of 403 

TCEP and TCIPP43. The level and profile were consistent with the observation from the 404 

Northwestern Pacific to the Arctic Ocean (232-1884 pg/m3) in 20185. From the tropical and 405 

subtropical Atlantic, Pacific, and Indian Oceans, the concentrations of ∑14OPEs ranged from 360 406 
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to 4400 pg/m3 in particle samples collected mostly in 2011 during the MALASPINA 407 

circumnavigation campaign 81, with TCIPP, TnBP and EHDPP being the predominant OPEs (Fig. 408 

2a). In the West Pacific, the Indian Ocean and the Southern Ocean, OPEs (sum of TBEP, TCEP, 409 

TCIPP and TDCIPP) were at the levels of a few to hundreds of pg/m3 in the particle samples 410 

collected along a global cruise from China to Antarctic over 2009-20106 , suggesting their 411 

circumpolar and global distribution (Fig. 2a). These levels were generally two orders of magnitude 412 

higher than those of BFRs in the ocean atmosphere 135.  413 

In the Polar Regions, OPEs have been frequently found in the Arctic for the past decade.136 For 414 

instance, ∑13OPEs in atmospheric particles was found at concentrations up to 1450 pg/m3 in 415 

European Arctic from 2012 to 2013.2 In Canadian Arctic, the level of ∑13OPEs in atmospheric 416 

particles showed a generally increasing tendency from 2007 to 2013 with a median concentration 417 

of 50 pg/m3 14. Comparably, the concentrations of eight OPEs were found in the range of 29-180 418 

pg/m3 for the particle phase and 7- 163 pg/m3 for gas phase in Arctic 2014 (Fig. 2a)61. Whereas, 419 

at Longyearbyen in the European Arctic, a higher level of particle-bound OPEs were found with a 420 

median of 334 pg/m32, which might be caused by local emission. Furthermore, elevated 421 

concentrations of OPEs (357-852 pg/m3) were observed in the Arctic based on passive air sampling 422 

in 2015 137, and higher level of OPEs (232 to 1884 pg/m3) was even obtained in the air samples 423 

from the Northwestern Pacific to the Arctic Ocean.5 Recently, 4 OPEs in the particle phase were 424 

also found by non-target and suspect characterization of organic contaminants in Arctic air 425 

(Zeppelin Station) , including TCEP and TCIPP.138 426 

 427 

 428 

 429 
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a 430 

 431 

b 432 

 433 

Figure 2. Global distribution of OPEs in the oceanic air 2,4,6,43,61,81,89,91(a), which is synthesized 434 

with OPE data from research cruises, e.g. R/V Polarstern (Germany)61, Snow Dragon (China)6 and 435 

Malaspina circumnavigation expedition (Spain)81. The lower figure shows seasonal variation of 436 

OPEs in air at Yongxing Island in the South China Sea in 2018 (b)79 437 
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There is limited data on these chemicals in the Antarctic. The concentrations of OPEs ranged 438 

from 6.0 to 141 pg/m3 in four particle samples  collected nearby the Antarctic Peninsula in 20106. 439 

A long-term air monitoring campaign in the Western Antarctic Peninsula over 2014-2018 revealed 440 

that the concentrations (gas + particle phases) of ∑8OPEs ranged from 33.9 to 404 pg/m3 with a 441 

mean of 119±12.0 pg/m3.139 The most abundant OPEs were TnBP and TCIPP in air, and 442 

chlorinated-OPEs (TCEP, TCIPP and TDCIPP) accounted for 51% of total OPEs on average. This 443 

level was even comparable to those found in Arctic air, suggesting input of OPEs into Antarctic 444 

via LRAT in recent years. 445 

In general, elevated levels of OPEs in air are found in coast-near regions, especially near urban 446 

and industrial areas, followed by the Arctic and finally the Southern Ocean. This ubiquity of OPEs 447 

in the global atmosphere contrasts with previous model predictions of limited long-range 448 

atmospheric transport. Such discrepancy is probably related to a poor empirical knowledge of the 449 

physicochemical properties of OPEs. 450 

 451 

3.2. OPEs in seawater 452 

Most available data on OPEs in water were from studies on effluents from the wastewater 453 

treatment plants (WWTPs), as well as inland surface waters28,41,51,57,134. WWTPs were considered 454 

an important sink of many POPs emitted from urban anthropogenic sources, where the OPEs reach 455 

concentrations up to μg/L134,140,141. Experiments for the removal rate of TCIPP from WWTPs in 456 

Germany have shown more than 50% of TCIPP found in effluent, which rinsing the concern for 457 

OPEs in surface water. Consequently, OPEs have been found in the surface waters from lakes and 458 

rivers with concentrations ranging from 10 to 1000 ng/L 41,51,60,67,142. 459 

 460 
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c 469 

 470 

Figure 3. Concentrations of OPEs (ng/L) in seawater in the global oceans5,20,51,52,61,65,104,143-145, 471 

which shows high levels of OPEs present at marginal seas of Asia and Europe (a); OPEs discharged 472 

from the Amazon River were transported in the tropical Atlantic52(b), and oceanic transport of 473 

OPEs from the North Atlantic to the Arctic Ocean61 (c) 474 

 475 

In a survey in coastal areas of seven European countries146, OPEs were detected in all samples 476 

and the sum concentrations of OPEs (TBOEP, TCEP, TClPP, EHDPP, TNBP, TPHP, and TDClPP) 477 

ranged from 0.43 to 867 ng/L in transitional/coastal water (Fig. 3a). High levels were found in the 478 

seawaters from the UK (∑7OPEs, 275±34.9 ng/L) and Portugal (∑7OPEs, 547±437 ng/L), 479 

correlating with the sampling sites that were the closest to urban areas. Comparable levels (mean 480 

243 ± 327 ng /L) were found for the ∑9OPEs in the dissolved water phase samples collected in the 481 



    26 

 

Bay of Marseille (NW Mediterranean Sea)65. Likewise, from the German Bight (North Sea), the 482 

concentrations of ∑18OPEs were at a range of 5-50 ng/L in the seawater in 2010, correlating 483 

negatively (r=−0.94) with salinity22. These results are generally consistent with those in coastal 484 

seas of China, where the concentrations of ∑7OPEs  were at a range of 8-98 ng/L in the Bohai 485 

Sea and Yellow Sea, and TClPP and TCEP were the dominant pollutants 147. However, relatively 486 

higher levels of OPEs were also observed in seawater near the coastal cities in China, e.g., 91.9–487 

507 ng/L in the Yellow Sea and East China Sea 21, 87.6 to 969.4 ng/L in the Laizhou Bay67, and 488 

810-3620 ng/L in the off-shore of Bohai Bay17 (Fig. 3a). These values are consistent with 489 

observations in the Pearl River Delta, South China Sea, Yellow River Estuary and Tokyo Bay, 490 

where the sum concentrations of ∑14OPEs in the range of 15-1790 ng/L, 1-147 ng/L, 253-1720 491 

ng/L, and 107-284 ng/L, respectively (Fig. 3a).145 . In the Western Pacific, 10 OPEs were 492 

determined in seawater with the contraptions of ∑10OPEs ranging from 3.0 to 48.4 ng/L (mean 493 

25.0 ± 10.5 ng/L)107. TCEP was the predominant OPE. In the tropical North Atlantic, dissolved 494 

OPEs (1300 ng/L) from the Amazon River were transported more than 3000 km via the North 495 

Brazil Current and its retroflection (Fig. 3b)52. 496 

In the high seas, the sum concentrations of 3 Cl-OPEs ranged from 0.9 to 17.4 ng/L in the Arctic 497 

surface water sampled by passive polyethylene samplers (PEs)85. Similarly, the concentrations of 498 

∑8OPEs in the North Atlantic and the Arctic were measured using liquid-liquid extraction for 0.8 499 

L seawater, which ranging from 0.35 to 8.4 ng/L. The four highest concentrations measured at 500 

sites near continents61, implying anthropogenic inputs into ocean. In the Canadian Arctic, the mean 501 

concentrations of Σchlorinated-OPEs (Cl-OPEs) and Σnon-chlorinated-OPEs were 10 ng/L and 502 

1.3 ng/L, respectively, in surface water over 2013-2018 40. Similarly, two chlorinated OPEs 503 

(TCIPP and TDCIPP) were observed at 2.7 to 8.4 ng/L in Arctic seawaters sampled by an on-board 504 
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passive sampling strategy148. Occurrence of OPEs was observed in seawater from the 505 

Northwestern Pacific to the Arctic in 2018, and the sum concentrations ranged from 8.5 to 143 506 

ng/L 5, which are higher than those from the European Arctic61 (Fig. 3c). In addition, there is no 507 

clear spatial trend for OPEs in seawater from China towards the Arctic, while a declining trend 508 

was noticed from the North Atlantic to the Arctic (Fig. 3c)61,  which shows clearly oceanic 509 

transport from European seas to the Arctic. Interestingly, relatively high concentrations of ∑6OPEs 510 

were found in the range of <5.0- 44.4 ng/L in seawater of Fildes Peninsula, Antarctica143, and 19.6-511 

9209 ng/L in freshwater from the northern Antarctic Peninsula149, which are attributed to local 512 

emissions from scientific research stations and tourist vessels in the Antarctic Peninsula. 513 

 514 

3.3. OPEs in marine sediment 515 

Influenced by the different degrees of human activities, average ΣOPEs concentrations 516 

ranging over two orders of magnitude (0.35-71 ng/g dw) have been reported in sediment from 517 

ocean regions, including straits, near-shore and off-shore areas (Figure 4c, Table S2). Elevated 518 

levels of Σ18OPEs were found in sediments along the coast of Korea, with the maximum and 519 

average values of 347 and 71.0 ng/g dry weight (dw), respectively, among which the higher 520 

concentrations usually occurred in harbors150. In the Bohai region of China, decreasing levels of 521 

ΣOPEs were reported in sediment with the extension of sampling areas: Laizhou Bay (6.65-102 522 

ng/g dw151; 0.100-96.9 ng/g dw152) > Bohai Bay (1.66-28.7 ng/g dw)17 > Bohai Sea (0.205-4.55 523 

ng/g dw)153 (Figure 4b). A few to tens of ng/g dw of ΣOPEs were found for sediments from Beibu 524 

Gulf (range: 4.35-22.1,ng/g dw)154, the Taiwan Strait (range: 5.26-34.2 ng/g dw)10, the Bohai and 525 

East China Sea (1.76-49.9 ng/g dw)155, the coast of Hainan Island (range: nd-60.0 ng/g dw)11 and 526 

the Pearl River Estuary (range: 12.0–66.0 ng/g dw)156 in China, the Maizuru Bay in Japan (range: 527 
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<0.500–56.0 ng/g dw)157, and the San Francisco Bay in USA (median: 23.0 ng/g dw)19. Recently, 528 

Alkan et al.68 reported relatively high levels of Σ9OPEs (range: 4-227 ng/g dw) in sediments across 529 

the Gulf of Lion in northwest Mediterranean Sea. Limited studies reveal that the levels of OPEs in 530 

ocean sediment are substantially lower than those found for the marginal seas. The detected 531 

concentrations of Σ7OPEs from the North Pacific to the Arctic Ocean ranged from 0.2 to 4.7 ng/g 532 

dw, with the average value of 0.9 ng/g dw (Figure 4a)66. This study revealed that the concentrations 533 

of Σ7OPEs, especially the chlorinated OPEs (TCEP, TCIPP and TDCIPP), increased from Bering 534 

Strait to the Central Arctic Ocean, implying the transference and accumulation of OPEs in oceanic 535 

sediments. Gao et al.144 reported higher levels of Σ7OPEs in the sediment of Ny-Ålesund, Svalbard, 536 

the Arctic (range: 0.01-14.9 ng/g dw) in comparison to those in Central Arctic Ocean (range: 0.32-537 

4.7 ng/g dw) reported by Ma et al.66, suggesting low temperatures limit the degradation of OPEs 538 

in polar oceans144. Recently, Sühring et al. reported elevated concentrations of Σ11OPEs (median: 539 

8.3 ng/g dw, range: 0.12-57 ng/g dw) in sediment in the Canadian Arctic Ocean, which has been 540 

attributed to the local riverine discharge40. In many studies, chlorinated OPEs (especially TCEP 541 

and TCIPP), have been the most abundant detected OPEs in ocean sediments, consistent with their 542 

extensive usage and their low degradation rates. Due to the relatively strong hydrophobicity, TEHP 543 

(log Kow: 9.49)19,153 and TCrP (log Kow: 5.11)11 have also been identified as the dominant OPEs 544 

in sediments by several studies. In contrast, TnBP and TBOEP were the most abundant OPEs in 545 

sediments from Taiwan Strait, China10 and Western Scheldt estuary, Netherlands158, respectively. 546 

This regional pollution feature should be attributed to the large usage of these compounds locally.  547 

Although the deep ocean is commonly considered as the final oceanic repository of OPEs, 548 

inventory analysis shows that only a small proportion of the produced OPEs in the world have 549 

been preserved in ocean sediment40,66,153, but the reservoir in the water column remains unknown. 550 
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In a study on OPEs inventory in the Canadian Arctic Ocean, Sühring et al. estimated that water 551 

column OPEs even accounted for ∼99% of the total OPEs inventory40. The transfer of OPEs from 552 

surface waters to sediments is mediated by the biological pump, thus the sorption of OPEs to 553 

settling particles, a process especially relevant for the more hydrophobic OPEs. The study for 554 

partitioning of OPEs between the water phase and sewage sludge in WWTPs has shown only 1 % 555 

of the OPEs entering the WWTP retained by the sludge, and most of the chlorinated OPEs went 556 

through the plant with water phase without degradation25. As marine sediment contents less 557 

organic matter than sludge, during vertical transport, the microbial degradation of OPEs concurrent 558 

with organic matter mineralization might be limited. Generally, the extent of sediments and water 559 

column as a final sink of OPEs will depend on the water column biogeochemistry, that needs 560 

further research. 561 

a 562 

 563 
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 565 

c 566 

 567 

Figure 4. Spatial distribution of OPEs in the sediment from the North Pacific to the high 568 

Arctic66 (a), and in the Bohai and Yellow Seas153 (b). OPEs concentrations in sediments from 569 

different regions are summarized (c), shows the coastal areas play as important sink for 570 

OPEs.13,18,19,40,65,144,153,154,157,159  571 
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3.4. OPEs in snow from Polar Regions 572 

Freshwater discharge from snow and ice to the ocean is increasing across the Arctic and 573 

Antarctic in response to anthropogenic climate change160. The strong seasonal changes in 574 

environmental conditions associated with emissions of organic chemicals from melting ice and 575 

snow in the polar regions may amplify their effects on the marine ecosystems93. In the Antarctic, 576 

OPEs were detected in surface snow on the ice sheet along a transect from Zhongshan Station 577 

(69.3733S, 76.3778E) to Kunlun Station (80.4169S, 77.1161E), near Dome Argus97. TCEP was 578 

the dominant component of 12 OPEs in all snow samples with concentrations ranging from 0.05 579 

to 2.0 ng/L, followed by TCIPP, TiBP and TBEP. The appearance of TCEP in fresh snow clearly 580 

indicates that TCEP is more persistent and could be transported to the Antarctic ice sheet. This 581 

finding is consistent with Xie et al., who reported the occurrence of OPEs in snow samples 582 

collected at Dome Concordia in 201696. Nine OPEs were detected in all snow samples with the 583 

total concentrations ranging from 7.2 to 20.5 ng/L. TCIPP was the dominant compound and 584 

accounted for 64.6% of the sum, followed by TnBP (9.8%) and TCEP (8.9%). The mean 585 

concentration of TCIPP was 8.2 ng/L which was 7 times higher than those of TCEP (1.1 ng/L), 586 

TnBP (1.2 ng/L) and TEP (0.96 ng/L). Other detected OPEs were TDCIPP (0.32 ng/L), TPhP (0.44 587 

ng/L), TPeP (0.19 ng/L), TEHP (0.18 ng/L) and TPrP (0.026 ng/L). The ratio TnBP/TCIPP is 588 

similar to those in the snow from urban areas and indoor dusts95,161,162, implying that OPEs in snow 589 

at Dome C might be partially attribute to local sources, e.g. emissions from the research stations. 590 

However, LRAT of OPEs to the inland of the Antarctic need to be further explored. 591 

In the Arctic, OPEs have been measured in surface snow collected along a transect between 592 

East Greenland and Svalbard61. The concentrations of  ∑8OPEs (TCEP, TCIPP, TDCIPP, TnBP, 593 

TiBP, TPhP, TEHP, TPeP) ranged from 4.36 to 10.6 ng/L with a mean of 7.83 ng/L. TCIPP was 594 
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the most abundant OPEs in Arctic snow with a mean of 3.89 ng/L, followed by TiBP (2.00 ng/L), 595 

TCEP (1.29 pg/L) and TnBP (0.63 pg/L). The concentrations of OPEs in snow samples collected 596 

from coastal sites were 2 times higher than those from the central Arctic, and the composition 597 

pattern of OPEs in snow was comparable with that of OPEs in seawater. These pioneering works 598 

showed the major role of long-range atmospheric transport and snow deposition in the global 599 

distribution of OPEs102. 600 

 601 

3.5. OPEs in organisms 602 

The investigations on OPEs in marine organisms including zooplankton, invertebrates, 603 

bivalves, fish, birds and mammals have revealed their widespread occurrence of OPEs across food 604 

webs in various oceanic environments (Fig. 5a). In general, markedly lower concentrations of 605 

OPEs were reported in biota samples collected from North America compared to those from 606 

European and Asia regions. For example, the levels of Σ13OPEs of bivalve samples in San 607 

Francisco Bay, United States (US) ranged from 8.7-25 ng/g lw19 as compared to those from the 608 

coast of Korea (Σ13OPEs: 18.4-1516 ng/g lw)150, Sweden (Σ11OPEs: 190-1600 ng/g lw)163 and 609 

Spain (individual OPE: nd-623.6 ng/g lw) 64. The concentrations of OPEs in harbor seal from US 610 

(nd-56 ng/g lw)19 and in Polar bear from Canada (nd-0.902 ng/g lw)164 were also much lower than 611 

those from Svalbard, Norway (nd-372.41 in harbor seal and nd- 52.5 ng/g lw in polar bear)84 (Fig. 612 

5a). Comparable concentrations of ΣOPEs in fish were reported in several studies on samples from 613 

Svalbard, Norway (mean Σ14OPEs: 713 ng/g lw)84, Manila Bay, Philippines (mean Σ9OPEs: 683 614 

ng/g lw)165, NW Mediterranean Sea (meanΣ19OPEs: 526 ng/g lw)166 and coast of Sweden (mean 615 

Σ11OPEs: 342 ng/g lw)163, while relatively high levels (mean Σ20OPEs: 1630 ng/g lw) were found 616 

for Laizhou Bay, Bohai Sea, China152. Sala et al. detected OPEs in edible fish from the 617 

Mediterranean Sea including European sardine (Sardina pilchardus), European anchovy (Engraulis 618 
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encrasicolus), and European hake (Merluccius merluccius), with concentrations between 0.38 and 619 

73.4 ng/g wet weight167. Pattern analysis of OPE congeners shows that TCIPP, TBOEP, TnBP, 620 

TPhP, TEHP and TDCIPP were commonly detected as the predominant OPEs in marine 621 

organisms.12,19,65,84,152,154,157,158,163-166 The differences in the OPE patterns among studies may result 622 

from local pollutions from near-shore163. 623 

Species-dependent discrepancies in OPEs concentrations have been observed in marine 624 

organisms, which were significantly lower in birds and mammals than in fish. Hallanger et al. 625 

reported that 9 OPEs (TCEP, TCIPP, TDCIPP, TPHP, EHDPP, TBOEP, TCrP, TEHP and DPhBP; 626 

mean: 7.81-537.16 ng/g lw) were found in capelin collected from Svalbard, Norway, as compared 627 

to those of <5 OPEs found in most of the other species, including kittiwake, brünnich's guillemot, 628 

glaucous gull, ringed seal, harbour seal, arctic fox and polar bear (mean: 1.91-955.09 ng/g lw)84 629 

(Fig. 5a). Low concentrations of individual OPEs were reported for the peregrine nestlings in the 630 

Great Lakes Basin, ranging from 0 to 7.5 ng/g ww168. Another study measured OPEs in liver and 631 

blubber of harbour porpoises from the UK, and reported that only 5 OPEs (TEP, TPhP, TEHP, 632 

TBOEP and EHDPP) were detected with low detection frequencies (DFs) of 3-44%12. Four out of 633 

13 OPEs (TCEP, TCIPP, TDCIPP and TPhP) were found in harbor seal blubber in San Francisco 634 

Bay, United States with the median concentrations of <LOD to 13 ng/g lw19. Five out of 17 OPEs 635 

were quantifiable at sub-ppb levels in polar bear fat samples, but with variable and low detection 636 

frequencies164. This contrast with high levels of ΣOPEs detected in brain (1530 ng/g lw), muscle 637 

(645 ng/g lw) and blubber (267 ng/g lw) in dolphin collected from the Alboran Sea169. 638 

 639 

 640 

 641 
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a 642 

 643 

b 644 

 645 

Figure 5. Concentrations of OPEs (ng/g lw) in organism samples from Antarctic Peninsula and 646 

the Arctic ocean28,84,164,171-174 (a); and nine OPEs (ng/g, dw) in different species in the South China 647 

Sea 170(b). 648 
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In tropical food webs, 11 OPEs were detected in fifteen types of organism from the South China 649 

Sea, and the concentrations of OPEs in the organisms decreased with the increase of their trophic 650 

levels in the order: phytoplankton (922 ng/g dw) > zooplankton (660 ng/g dw) > oysters (309 ng/g 651 

dw) > crabs (225 ng/g dw) > coral tissues (202) > fishes (58.2)170 (Fig. 5b). TCIPP, TCEP and 652 

TCIDPP were dominant OPEs in phytoplankton, zooplankton and in coral tissues. While, 653 

Zoobenthos and the eight fish species had similar OPE composition profiles dominated by TCIPPs 654 

and TBOEP170.  655 

 656 

4. Bioaccumulation and effects in marine organisms 657 

Several studies have shown that higher exposure to OPEs was observed in demersal marine 658 

organisms than in zooplankton and phytoplankton, indicating that greater accumulation of OPEs 659 

occurs in the benthic environment. For examples, in the organisms from coast of Sweden, the 660 

concentration of EHDPP was reported 14,000 ng/g lw in eelpout (bottom dwelling fish) compared 661 

with those found for other fish (< 78 ng/g lw)163. The concentrations of Σ9OPEs in demersal fish 662 

(230-1900 ng/g lw) were significantly higher than those in pelagic fish (110-760 ng/g lw) from 663 

Manila Bay165. Bekele et al. also observed significant difference in Σ20OPEs between benthic fish 664 

(mean: 2120 ng/g lw) and pelagic fish (1200 ng/g lw)152. However, high OPE concentrations have 665 

been found in zooplankton (i.e. at the base of many pelagic food webs) in coastal Mediterranean 666 

with vales reaching up to 4.6 µg/g d.w for the 9OPEs 65 .Overall, the profiles of OPEs in marine 667 

organisms are influenced by sampling sites, species and even developmental stages of such 668 

organisms, which could be attributed to different usage of OPEs in different regions, as well as the 669 

discrepancies in habitat, diet, and metabolic and accumulation behaviors of OPEs in the 670 

organisms84,163,165 671 
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The bioaccumulation and biomagnification potential of OPEs in marine organisms depends on 672 

their physicochemical properties, bioavailability and extent of biotransformation165. 673 

Octanol−water partition coefficient (log Kow) values of OPEs cover a large range from -0.65 (TMP) 674 

to 9.49 (TEHP)134 (Tab. 1). Significant correlations of bioconcentration factors (BCFs) with log 675 

Kow values of OPEs are observed in marine biota, implying that hydrophobicity plays an important 676 

role in bioaccumulation of OPEs152,154 (Fig. 6 and Tab. S4). While different result was obtained by 677 

Schmidt et al. that no relationship between BCFs and log Kow of OPEs was observed65. BCFs 678 

higher than the threshold value (5000 L/kg) used under the Stockholm Convention on POPs to 679 

identify bioaccumulative chemicals were generally found for TCEP, TDCIPP, TiBP, EHDPP and 680 

TEHP in this study65. Furthermore, several studies showed that most OPEs detected in marine 681 

organisms are not correlated with the lipid contents150,158,163,165, with the exception of TEP and 682 

TPeP reported by Kim et al. in fish165. Weak biomagnification of OPEs through food web also 683 

implies limited bioaccumulation of these compounds. As stated above, even lower detection 684 

frequencies (DFs) and concentrations of OPEs were observed in higher trophic levels (such as 685 

birds, seals, arctic foxes and polar bears) than in fish in Arctic biota 84. This may be due to either 686 

poor assimilation from the diet or rapid metabolism of OPEs in these species such as birds and 687 

polar bears164. 688 

Kim et al. investigated the biomagnification of OPEs in 20 species of fish in Manila Bay, 689 

Philippines by establishing the correlations of δ15N values with concentrations of OPEs in fish165. 690 

The result showed that OPEs did not bio-magnify through the food web except for TPhP in 691 

demersal fish165. However, Brandsma et al. reported that the levels of TPhP decreased with the 692 

increasing in trophic levels both in benthic and pelagic food web in Western Scheldt estuary, 693 

Netherlands, while the biomagnification of TBOEP, TCIPP and TCEP (trophic magnification 694 
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factors >1) through the benthic food web was observed158. In the food web in Laizhou Bay, China, 695 

8 OPEs (including TEP, TnBP, TCIPP, TDCIPP, TBOEP, TEHP, CDPP and TCrP) showed 696 

trophic magnification152. These results may be influenced by the distinct input of OPEs in local 697 

species and different metabolic processes among these species. Furthermore, research on 698 

bioaccumulation and biomagnification of OPEs through marine food webs is very limited, and just 699 

performed in select tissue, such as liver, and plasma in marine mammals84. More attention should 700 

be paid to the bioaccumulation behavior of OPEs in marine organisms to determine the 701 

biomagnification potential of these chemicals. 702 

At present, little is known about the biological effects the OPEs elicited in marine species, 703 

populations, ecological systems, and humans, particularly from a one-health perspective. Wu et al. 704 

suggested that TCIPP could disturb the immune system of marine mussel by evaluating the 705 

endpoints including reactive oxygen species, apoptosis, antioxidant system and related gene 706 

expressions175. Several studies investigated toxic effects of OPEs to algae, which are important 707 

primary producers in the marine ecosystem and sensitive to pollutants176-178, and reported that 708 

TDCIPP inhibited the population growth of Phaeodactylum tricornutum in a concentration-709 

dependent manner by disrupting photosynthesis177. Both TDCIPP and TnBP increased the levels 710 

of reactive oxygen species and led to oxidative damage in Phaeodactylum tricornutum cells at the 711 

experimental concentrations (2-10 mg/L for TDCIPP and 0.2-1.6 mg/L for TnBP)177,178. Although 712 

neurotoxicity, and developmental and reproductive toxicity of some OPE compounds (i.e., 713 

TCEP179-182, TCIPP179,181, TDCIPP179,181-189, TPhP179,182,185,187,190, TCrP179,182,187, TBOEP179,180 and 714 

TnBP180) have been reported for freshwater fish models, biological effects of OPEs in marine fish 715 

and more higher trophic levels of organisms are rarely investigated. A recent study found that 716 

TPhP could disrupt ecologically-relevant behaviours inof Coturnix japonica at environmentally 717 
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relevant or greater concentrations, implying the health risks of OPEs in wild birds191. In addition, 718 

since OPEs tend to accumulate in the benthic marine environment as discussed above, much more 719 

attention should be paid to the health risks of bottom dwelling species. The input of OPEs to the 720 

marine environment is persistent and therefore, knowledge on potential ecological risks caused by 721 

these compounds, especially adverse effects resulting from chronic exposure, antagonistic 722 

interactions and biomagnification, is urgently required in the future19,152,165.  723 

 724 

Figure 6. Biota-water accumulation factors (log BCF) of OPEs in marine organisms65,152,154  725 

 726 

5. Future perspectives 727 

Both ocean currents and the atmosphere are relevant pathways for OPEs transport on a global 728 

scale, but they have different contributions to the global distribution of individual OPEs, which 729 

needs more intensive studies in different oceanic regions. Chlorinated-OPEs  can be efficiently 730 

transported via ocean currents due to their persistence, lower volatility and high  solubility14,41, 731 
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while non-chlorinated OPEs (excluding TnBP and EHDPP which may relate to local sources) are 732 

likely mainly transported via air advection due to potential adsorption onto  particles14. Recently, 733 

it has been suggested that sea-spray aerosol can be an important vector for the regional and long-734 

term transport of organic pollutants, and the relevance of this process needs to be assessed for 735 

OPEs. Furthermore, the role of oceanic plastics as significant in-situ and mobile sources of OPEs 736 

should be further investigated, also in relation to other potential OPE sources into the Ocean. 737 

Particularly, a qualitative and quantitative assessment of OPE leaching from microplastics 738 

accumulated in sediments, considered as final sinks of plastic debris, should be addressed. Existing 739 

data based on laboratory experiments point to a lower release of some OPEs from plastics under 740 

deep-sea conditions compared to surface waters63, but no data on direct release from plastics settled 741 

on the sediments exists, to the best of our knowledge. The occurrence of OPEs in the deep seafloor 742 

(and the water-sediment interface) and organisms should be further investigated, also in relation 743 

to the large plastic accumulation in this environment192 and the potential longer-term or chronic 744 

exposure  to OPEs and other plastic additives in profound oceanic environments63. 745 

Local usage and environmental behaviors of OPEs, as well as discrepancies in habitat, diet, 746 

and metabolic behaviors of OPEs in different species, may play important roles in the occurrence 747 

and bioaccumulation of OPEs in marine organisms. Current studies on occurrence of OPEs in 748 

marine organisms mainly focus on near-shore regions. Further investigations in relation to off-749 

shore regions could help to clarify the natural behaviors of these compounds and environmental 750 

impacts on the global ocean. Although OPEs seem not to bio-magnify like other POPs such as 751 

PBDEs, potential accumulation of hydrophobic OPEs with a high logKow has been observed in 752 

marine organisms. The bioaccumulation and biomagnification behaviors of OPEs through food 753 

webs, particularly the entry mechanisms at the first steps (such as plankton), still need to be further 754 
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scrutinized in the future, also in relation to their potential biological effects. In addition, much 755 

attention should be paid to health risks induced by OPEs on benthic species, because benthos 756 

shows greater accumulation of these compounds than pelagic species.  757 

Given the knowledge of OPEs in global ocean summarized in this review and other 758 

works28,42,193,  it is shown that, OPEs are sufficiently persistent to be distributed globally and 759 

present health hazards potential to marine organisms due to their bioaccumulation and 760 

biomagnification behavior. Given the large volume of OPEs on the market and increasing 761 

consummation, national and international policies were called to regulate the production and 762 

application of OPEs, and to develop more safe alternative flame-retardants193,194. Especially, TCEP 763 

and TCIPP should gain more attention and be considered for global regulatory framework as soon 764 

as possible. 765 

Phosphate esters could account for over 75% of the total dissolved organic phosphorus in the 766 

marine environment109. However, the contribution to this pool of OPEs and other anthropogenic 767 

organophosphate ester compounds (such as pesticides) remains unknown. The related organic 768 

phosphorus (OP) inputs coming from diffusive OPEs fluxes are estimated to potentially trigger up 769 

to 1.0% of the reported primary production in the most oligotrophic oceanic regions.81  770 

At present, toxicological data of OPEs in marine organisms as well as environmental quality 771 

standards are lacking, which limits not only the accurate evaluation on ecotoxicological risk of 772 

OPEs to the oceanic ecosystem, especially under the long-term, chronic and interactive exposure 773 

to OPE pollutants, but also important elements to support an efficient chemical contamination 774 

management due to these compounds.  775 

The environmental occurrence of OPEs (i.e. triester-OPEs) degradation products in marine 776 

environments has been little investigated. Experimental in vivo and in vitro studies have 777 



    41 

 

demonstrated that a certain number of tri-OPEs can be transformed to di-ether metabolites (di-778 

OPEs)195, Some di-OPEs could induce comparable or higher toxic effects than their respective 779 

triesters111,196. The few existing studies report di-OPEs in fish197,198, water112 and sediments115 from 780 

inland aquatic ecosystems. Only one study focused on marine sediment to the best of our 781 

knowledge.54 782 

The use of airborne OPEs as source of nutrients suggest a direct link between the 783 

biogeochemical cycle of phosphorous and the environmental occurrence of OPE109. However, this 784 

is a not yet accounted process that could be of global relevance since phosphorous limits 785 

metabolism (primary production and respiration) in large oceanic regions. Future research should 786 

constraint the estimates of atmospheric deposition of anthropogenic OP and its use as a nutrient in 787 

the large oligotrophic oceanic regions. 788 

Pioneering studies have highlighted the importance of atmosphere as a media for the long-789 

range transport of OPEs and air-water exchange and dry deposition fluxes in the global ocean41,42,81. 790 

The accuracy of the physicochemical data of OPEs can affect the estimation of air/particle 791 

portioning process199 and air-water exchange flux direction and intensity61, which requests 792 

experimental-derived physicochemical properties in order to constrain the relevance of 793 

atmospheric inputs of OPEs to the ocean. Further work should establish a budget for OPEs present 794 

in the Southern Ocean and focus on the oceanic transport from marginal seas to the open ocean, 795 

vertical deposition in the water column, microbial and photo degradation and sinking to deep ocean 796 

sediments.  797 

In terms of global warming, new input of OPEs from the melting ice sheet and snow may 798 

alter the concentrations and vertical profile in the water columns at high latitude. This will 799 

subsequently change environmental pathways of OPEs in the ocean environment and related health 800 
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impacts. Consequently, future research will need to understand the various biogeochemical and 801 

geophysical processes under climate change and anthropogenic pressures to be able to predict the 802 

environmental fates and the global ocean health impacts of OPEs accurately.   803 
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Table 1. The names, abbreviations, chemical formulas and physicochemical properties of the most regularly detected organophosphate esters in the ocean 1403 

Compound Abb. CAS No. Chemical 

formula 

Solubility c 

(mg/L, 25°C) 

VP b,c 

(Pa, 25 °C) 

logKow 
c 

logKoac t1/2 (air) 42 

(h) 

t1/2 (Water)42 

(h) 

t(air)200 

(day) 

t(particle)201 

(day) 

t1/2 

(Microbial)109 

(h) 

Tris (2-chloroethyl) 

phosphate 

TCEP  
 

115-96-8 C6H12Cl3O4P 877.9 8.17 1.44 5.311 12 2172 - - 41.8 

Tris (1-chloro-2-

propyl) phosphate 

TCIPP 

 

13674-84-5 C9H18Cl3O4P 51.85 7.53×10-3 2.59 8.203 7 3270 - - - 

Tris (1,3-dichloro-

2-propyl) 

phosphate 

TDCIPP 
 

13674-87-8 C9H15Cl6O4P 1.50 3.81×10-5 3.65 10.62 12 4320 11-14 7.9-19.4 49.5 

Trimethyl 

phosphate 

TMP 
 

512-56-1 C3H9O4P 3.004×105 55.3 -0.65 5.881 33 360 - - - 

Triethyl phosphate TEP 

 

78-40-0 C6H15O4P 1.115×104 22 0.80 6.632 3 360 - - - 

Tripropyl 

phosphate 

TnPP 
 

513-08-6 C9H21O4P 826.6 3.08 1.87 6.426 - - - - - 

Tri-isopropyl 

phosphate 

TiPrP 

 

513-02-0 C9H21O4P 501.1 18.4 2.12 6.375 - - - - - 

Tributyl phosphate TnBP 
 

126-73-8 C12H27O4P 280 0.151 4.00 8.239 3 208.2 - - 75.3 

Tri-isobutyl 

phosphate 

TiBP 

 

126-71-6 C12H27O4P 16.22 1.71 3.60 7.485 3 360 - - 73.0 

Tripentyl 

phosphate 

TPeP 
 

2528-38-3 C9H21O4P 
 

0.3318 2.33×10-3 5.29 8.805 - - - - - 

Trihexyl phosphate THP 

 

2528-39-4 C18H39O4P 0.01023 3.29×10-4 6.76 9.905 - - - - - 

Triphenyl 

phosphate 

TPhP 
 

115-86-6 C18H15O4P 1.9 1.49×10-3 4.59 8.459 24 795 5.2-6.0 3.4-8.5 97.6 

Tris(2-butoxyethyl) 

phosphate 

TBOEP 

 

78-51-3 C18H39O7P 1.963 1.65×10-4 3.75 13.06 2 456.4  2.4-5.8 - 

Tris(2-ethylhexyl) 

phosphate 

TEHP  
 

78-42-2 C24H51O4P 1.461×10-5 1.10×10-5 9.49 14.98 3 240.4 3.5-5.6 2.7-6.6 52.5 

2-ethylhexyl 

diphenyl phosphate  

EHDPP 

 

1241-94-7 C20H27O4P 0.06659 4.45×10-3 5.73 8.384 8 780 - 6.5-15.9 30.5 

Tricresyl phosphate 

 

TCrP 1330-78-5 
 

C21H21O4P 0.2073 1.62 5.11 9.591 19 909 - 2.6-6.5 29.1, 25.2, 
27.5 

Di-n-octylphenyl 

phosphate 

DOPP 6161-81-5 C28H45O4P 4.246×10-4 9.88×10-6 8.04 11.74 - - - - - 

Methyl diphenyl 

phosphate 

MDPP 115-89-9 C13H13O4P 61.59 1.55×10-3 2.93 8.786 - - - - - 

a The chemical structures are refered to ChemicalBook (https://www.chemicalbook.com) 1404 
bVapor pressure; c Solubility, Vp, logKow and logKoa are adopted from EPIWEB 4.1. 1405 
t1/2: Half-life time; t: Life time 1406 
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