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Abstract: Responding to infrastructural damage in the aftermath of natural disasters at a national,
regional, and local level poses a significant challenge. Damage to road networks, clean water supply,
and sanitation infrastructures, as well as social amenities like schools and hospitals, exacerbates the
circumstances. As safe water sources are destroyed or mixed with contaminated water during a
disaster, the risk of a waterborne disease outbreak is elevated in those disaster-affected locations.
A country such as Haiti, where a large quantity of the population is deprived of safe water and
basic sanitation facilities, would suffer more in post-disaster scenarios. Early warning of waterborne
diseases like cholera would be of great help for humanitarian aid, and the management of disease
outbreak perspectives. The challenging task in disease forecasting is to identify the suitable variables
that would better predict a potential outbreak. In this study, we developed five (5) models including
a machine learning approach, to identify and determine the impact of the environmental and social
variables that play a significant role in post-disaster cholera outbreaks. We implemented the model
setup with cholera outbreak data in Haiti after the landfall of Hurricane Matthew in October 2016.
Our results demonstrate that adding high-resolution data in combination with appropriate social
and environmental variables is helpful for better cholera forecasting in a post-disaster scenario. In
addition, using a machine learning approach in combination with existing statistical or mechanistic
models provides important insights into the selection of variables and identification of cholera risk
hotspots, which can address the shortcomings of existing approaches.

Keywords: earth observations; machine learning; waterborne disease forecast; post-disaster

1. Introduction
1.1. Impact of Disasters on Humans (Health, Economic, and Social)

The frequency and intensity of natural disasters are increasing with time due to the
vital influence of climate change on environmental and natural disasters along with its
influence in shifting extreme weather events [1,2]. The International Federation of Red
Cross (IFRC) reports that a sharp increase of 35% has been observed in the number of
climate- and weather-related extreme events across the world [3]. Although the severity
and frequency of natural disasters impact many countries [4], people in underdeveloped
and developing countries are the most vulnerable to natural disasters [5] due to a lack
of essential resources to overcome the adverse impact of these events. The IFRC report
states that around 1.7 billion people were impacted in the last 10 years due to climate- and
weather-related disasters, and that approximately 410,000 deaths have been attributed to
these events in low- or middle-income countries [3].

One of the most common consequences of natural disasters is the effect on health,
which is closely related to water and sanitation crises that propagate following such
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disasters [6]. As existing water supply and sanitation systems are damaged during natural
disasters, it causes difficulty in accessing safe water supply and sanitation systems for the
populations living in that area. Their physical health is also at risk during and post-disaster
scenarios by the displacement of people who subsequently have scarce opportunities to
practice personal hygiene along with having sufficient access to safe water. As a result, the
likelihood of an increase in waterborne disease is more prevalent in a post-disaster scenario
due to poor water, sanitation, and hygiene (WASH) conditions [7]. Besides, traumatic expe-
riences during and after disasters also hamper mental health and have long-term health
consequences [8]. These include the disruption in their full-functioning lives, the demise
of family members or friends, loss of resources, and social support [9]. Apart from health
issues, natural disasters significantly interrupt the economic and social development of a
region and take considerable time periods to recover and reinstall necessary services [10].
Food insecurity and malnutrition often occur after natural disasters due to loss of agricul-
tural lands and crops amid disasters, which elevates the risk of cholera and other diarrheal
disease outbreaks [11]. Mainly, the transmission of cholera happens through the consump-
tion of water and foods contaminated with Vibrio cholerae, the causative agent of the
cholera disease [12]. The disease is mostly seen in populations that are deprived of proper
water supply and sanitation systems [13–19]. Globally, around 100,000–150,000 deaths
occur per year due to cholera [20,21].

1.2. Waterborne Disease after Natural Disasters

According to the Intergovernmental Panel for Climate Change (IPCC), more extreme
temperature and precipitation events are expected in the future with higher frequency
and intensity due to climate change [22]. Extreme precipitation events can cause flood-
ing and geological hazards like landslides [23]. Floods can increase the transmission
risk of waterborne and vector-borne diseases, apart from injury and mortality [24], as
heavy rainfall-induced floods can increase human contact with causative pathogens of
waterborne diseases [25]. Not only floods, but also droughts are found to influence the
increase of diarrheal diseases [26]. Approximately 3.6 billion of the global population
is living in water-scarce areas, who are suffering from water scarcity at least one month
per year [27]. As water availability decreases, people need to collect water from distant
and often compromised shared sources [28], and sometimes are forced to share sources of
water with animals [29] and thus sacrifice hygiene behavior [30,31]. Low rainfall intensifies
effluent concentration in surface water, which amplifies pathogen concentration in water
sources [26,30,32]. Additionally, the pathogen concentration in water increases as the river
discharge decreases, and scarce rainfall cannot provide enough dilution of pathogens [32].

Cholera outbreaks are also observed after large coastal storms, such as hurricanes
or cyclones, due to water contamination and disruption in the water distribution sys-
tems and lack of proper hygiene facilities, which all create favorable conditions for an
outbreak [33–35]. The floods and storm surges resulting from hurricanes damage road
networks and river embankments, causing the submergence of ponds and water wells [36]
and scarcity of safe drinking water. Unsanitary practices, such as open defecation due to
infrastructural damage following a hurricane and living in congested and overpopulated
temporary shelters, can additionally elevate the cholera outbreak risk [37–39]. Additionally,
salinity is a key environmental factor that affects cholera bacteria growth; thus, seawater
intrusion and contamination of coastal water resources following cyclones make coastal
areas vulnerable to cholera transmission [40,41]. In 2019, the country of Mozambique was
hit by two tropical cyclones, Idai and Kenneth, 6 weeks apart [42]. Cyclone Idai killed
1000 people and destroyed 100,000 homes [43]. Additionally, 600,000 people were dis-
placed due to cyclone-triggered flooding [44] and about 1500 suspected cholera cases were
reported a week after the cyclone [45]. Information about cholera cases and mortalities
after hurricanes are listed in Table 1.
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Table 1. Cyclone/hurricane-related cholera outbreaks.

Natural
Disasters

Country
People Impacted by

Natural Disasters Year

Cholera Related to
Natural Disasters House

Damaged

Health
Facility

DamagedAffected Death Cases Fatalities

Cyclone
Aila

West Bengal,
India 6.8 million [46] 138 [46] 26 May 2009

1076 [36]
(diarrhea:

85,000) [46]

14 [36]
(diarrhea:
28) [46]

945,000 [46] 30% of health
sub-centers [46]

Hurricane
Matthew Haiti 2.1 million [47] 546 [47]

4 October 2016
(after Matthew) 8457 [48] 100 [48]

25,160 [49] 36 [50]2017 13,747 [47] 159 [47]
2018 3786 [51] 41 [51]
2019 308 [52] 3 [52]

Cyclone
Kenneth Mozambique 374,000 [53] 45 [53] 25 April 2019 267 [54] _ 45,000 [53] 19 [53]

Cyclone
Idai Mozambique 1.85 million [55] Over 602 [55] 14 March 2019 6682 [56] 8 240,000 [53] 94 [53]

1.3. Cholera Outbreaks in Haiti

Ten months after the devastating earthquake that struck Haiti in 2010, the country has
been facing at least 27,000 cholera cases per year, with more than half of total cases requiring
hospitalization due to severity [57,58] After analyzing the genetic studies of the particular
cholera strain in Haiti, it was found to have originated in South Asia and was discharged
to Haiti from a single point source and killed around 5000 people in the initial phase of
this epidemic [59]. Between 2011 and 2014, the reported cholera cases in Haiti reduced
from 350,000 to 21,916 [60], which was thought to be the end of the epidemic. However, the
failure to provide financial assistance and essential WASH interventions [58] contributed to
the reoccurrence of cholera outbreaks in 2015 and again in 2016, after Hurricane Matthew.
The administrative area of Haiti and Hurricane Matthew Track Points are shown in Figure 1.
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1.4. Research Questions and Objectives of the Paper

It remains a challenge to forecast the risk of waterborne diseases (such as cholera)
in post-disaster scenarios and the corresponding impacts on WASH conditions, which
are conducive to an outbreak following a natural disaster. Additionally, infrastructural
damages, such as those to road networks, bridges, and hospitals during natural disasters,
often restrict access to nearby health facilities, which contributes to the lack of a comprehen-
sive database of disease cases for use by humanitarian agencies, government offices, and
academic researchers. Satellite data can be beneficial in disease forecasting, as it provides



Climate 2022, 10, 48 4 of 20

high spatio-temporal resolution and better global coverage than station data [61,62]. It
provides a substantial opportunity to understand the influence of environmental variables
that can make suitable conditions for disease outbreaks and to monitor the impact of spatio-
temporal variability on identifying disease hotspots. Access to high-resolution data during
and after natural calamities can be challenging as the environmental status is distinct from
the usual, i.e., high cloud cover during a cyclone [63]. Thus, creating a predictive cholera
risk model using satellite-derived high spatio-temporal resolution data as environmental
predictors in post-disaster scenarios can be beneficial for rapid WASH interventions.

While existing work on cholera prediction from measured environmental variables
has been guided by human intuition, machine learning (ML) techniques have the potential
to automatically determine which variables are the strongest indicators of cholera risk. By
learning from previously recorded cholera case counts in post-disaster scenarios, we can
build more accurate prediction models to determine whether ML inputs align with human
intuition and identify new environmental variables that should be considered.

Using cholera as a signature disease, this study offers insight on cholera outbreaks in
Haiti in 2016 following the landfall of Hurricane Matthew. Using high-resolution spatio-
temporal datasets of environmental variables that are associated with the hurricane, we
developed five unique and comprehensive post-disaster cholera prediction models. The
study aims to (a) improve the understanding of the influence of hydroclimatological vari-
ables on waterborne disease outbreaks in a post-disaster scenario and (b) select appropriate
predictors for improved cholera forecasting models by using better spatio-temporal satellite
Earth Observation (EO) datasets. Apart from selecting suitable hydroclimatic drivers for
better cholera risk prediction, this analysis will significantly increase our understanding
of the threats to WASH access, damage to road networks and infrastructure, population
displacement, and the disruptions to essential services following natural disasters that may
elevate to waterborne disease threats. In addition, the outcomes of this study will help to
improve policy interventions and community engagement approaches to better manage
environmental health impacts.

2. Materials and Methods
2.1. Data

In the geospatial models used in our study, cholera risk is the dependent variable,
whereas socio-environmental factors are the independent variables. Model A is created
with four basic socio-environmental variables, which use higher-resolution data than the
previous study. Model B includes extreme event variables during the hurricane. Each Plus
model includes cloud height, cloud top temperature, wind speed, and building damage
data, as they are found to be influential in machine learning models. The data used in
different geospatial models are population density, precipitation anomaly, temperature
anomaly, Hurricane Matthew wind swath and windspeed, elevation, extreme rainfall
during Hurricane Matthew, cloud top temperature, cloud height, and building damage.
Combinations of input variables of different geospatial models are listed in Table 2.

Table 2. Input variables of different geospatial models.

Model A Model A Plus Model B Model B Plus

Precipitation Anomalies
(mm/day)

Precipitation Anomalies
(mm/day)

Precipitation Anomalies
(mm/day)

Precipitation Anomalies
(mm/day)

Temperature Anomalies (◦C) Temperature Anomalies (◦C) Temperature Anomalies (◦C) Temperature Anomalies (◦C)
Population Densities
(count per km2)

Population Densities
(count per km2)

Population Densities
(count per km2)

Population Densities
(count per km2)

Wind Swath of Hurricane (miles) Wind Speed Above Ground (m/s) Wind Speed (miles/hour) Wind Speed Above Ground (m/s)
Cloud Height (m) Extreme Rainfall (mm/day) Extreme Rainfall (mm/day)
Cloud Temperature (k) Elevation (m) Elevation (m)
Building Damage Cloud Height (m)

Cloud Temperature (k)
Building Damage
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Gridded population density data were collected from NASA’s Socioeconomic Data and
Applications Center (SEDAC) website (https://sedac.ciesin.columbia.edu/data/collection/
gpw-v4 (accessed on 3 March 2022)) and the product name is “Gridded Population of the
World (GPW), v4” with a spatial resolution of 30 s (approximately 1 km × 1 km). Ex-
treme rainfall that occurred during the hurricane was collected from the Humanitarian
Data Exchange (https://data.humdata.org/dataset/accumulated-gpm-imerg-data-for-
haiti-hurricane-matthew-october-3-6th-2016 (accessed on 3 March 2022)), which is the total
accumulated rainfall in mm from 3 to 6 October 2016, and the data source is Integrated
Multi-satellitE Retrievals for GPM (IMERG) data. For model B, the Hurricane Matthew
gust footprint and windspeed (with highest wind gusts of 160 mph or 260 km/h) were
collected from the Humanitarian Data Exchange but were originally an output from Uni-
versity College London model (https://data.humdata.org/dataset/hurricane-matthew-
gust-footprint-tropical-storm-risk-university-college-london (accessed on 3 March 2022)).
For model A, wind swath data were collected from the National Hurricane Center [62].
Elevation data were taken from HydroSHEDS (https://www.hydrosheds.org (accessed on
3 March 2022)), which is derived from the Shuttle Radar Topography Mission (SRTM)
with 1 km × 1 km spatial resolution. All datasets were then resampled to 1 km × 1 km
spatial resolution.

The current case study focused on the outbreak of cholera in Haiti in the aftermath
of Hurricane Matthew in October 2016 [64]. In addition to variables used in previous
works, auxiliary remote sensing products were retrieved from the NASA Global Maps
collection [65] to provide more environmental measurements from which the ML algorithms
could learn. Monthly averaged global map features were used for three months before and
three months after Hurricane Matthew (July–December 2016), and example features include
aerosol optical depth, cloud fraction, chlorophyll concentrations, and water vapor amounts.

2.1.1. Precipitation Anomaly

The difference between the monthly precipitation in a month and long-term mean
precipitation is known as the precipitation anomaly. Thus, a positive anomaly means
current precipitation is more than the average precipitation of that location, and a negative
anomaly implies the mean precipitation is higher than the current precipitation.

The Global Precipitation Measurement (GPM) data with a spatial resolution of
0.10◦ × 0.10◦ (~10 km × 10 km) were used for precipitation of 2016 in all models, whereas
two different data sources were used for long-term precipitation mean. For model A
and A Plus, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation
Analysis (TMPA/3B43_v7) data from 1998 to 2019 were used for the long-term mean with
a spatial resolution of 0.25◦ × 0.25◦ (~25 km × 25 km), and for model B and model B
Plus, IMERG data were used from 2000 to 2019 with a spatial resolution of 0.10◦ × 0.10◦

(~10 km × 10 km) for the long-term mean. IMERG uses an algorithm to combine the previ-
ous precipitation data of the TRMM satellite (2000–2015) with recent precipitation data of
the GPM satellite (2014–present). All data were collected from the Giovanni-NASA website
(https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 3 March 2022)).

2.1.2. Temperature Anomaly

The difference between the average temperature in a month and long-term mean
temperature is known as the temperature anomaly. Thus, a positive anomaly shows that
the current month’s average temperature is more than the long-term average temperature
of that month, and a negative anomaly implies the long-term mean temperature is higher
than the current average temperature.

In all models, to get a single Land Surface Temperature Analysis product, a combina-
tion of the Global Historical Climatology Network (GHCN) and Climate Anomaly Monitor-
ing System (CAMS) Land Temperature Analysis was used from the National Oceanic and
Atmospheric Administration (NOAA) with a high spatial resolution of 0.5◦ × 0.5◦ from 1948
to the near present. For the long-term temperature mean, data from 1990 to 2019 were used.

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
https://data.humdata.org/dataset/accumulated-gpm-imerg-data-for-haiti-hurricane-matthew-october-3-6th-2016
https://data.humdata.org/dataset/accumulated-gpm-imerg-data-for-haiti-hurricane-matthew-october-3-6th-2016
https://data.humdata.org/dataset/hurricane-matthew-gust-footprint-tropical-storm-risk-university-college-london
https://data.humdata.org/dataset/hurricane-matthew-gust-footprint-tropical-storm-risk-university-college-london
https://www.hydrosheds.org
https://giovanni.gsfc.nasa.gov/giovanni/
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Both the current and long-term average temperature data were collected from NOAA’s
Physical Sciences Laboratory (https://psl.noaa.gov/data/gridded/data.ghcncams.html
(accessed on 3 March 2022)) website, and the product name is “GHCN_CAMS Gridded
2 m Temperature (Land)”.

2.1.3. Humanitarian Assistance and Disaster Relief (HADR) Data

Deep learning was used to assess building damage and characterized as either “no
damage”, “minor”, “major”, or “destroyed” from visible spectrum satellite imagery. This
damage was characterized and used as an input to the Plus models. In this study, a deep
learning model was trained to estimate the amount of building damage in a given area from
visible spectrum satellite imagery (Figure 2a). Previous work has focused on parcel-level
damage assessment, but this level of granularity is unnecessary in the current context
and including more regional context was found to help reduce false positives. A regional
damage regression model based on the ResNet-34 architecture [66] was trained using
the xView2 dataset [67]. A 1024 × 1024 pixel image tile (~0.5 km2 with ~50 cm Maxar
WorldView imagery) was used as the input, and the output was the estimated number
of damaged buildings in each xView2 damage category: no damage, minor, major, and
destroyed (see Figure 2b). For training, the instance-level xView2 damage labels were
converted to image-level summaries, which alleviated the need for building segmentation
or pre-existing building vector data. The trained model was then run over all available
Digital Globe Open Imagery from Hurricane Matthew over Haiti [68], and the predicted
total number of damaged buildings for each ~0.5 km2 image tile were used as features for
the higher-level ML algorithms.
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estimation model overview.
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Using all a priori, post-hurricane, and monthly features up to and including the current
month resulted in a total of 57 features for prediction of cholera risk in October, 72 for
November, and 87 for December.

2.1.4. Cholera Data

There are 10 departments (provinces) in Haiti, made up of 140 communes (villages
or towns). Cholera case counts for each department and commune in Haiti were re-
trieved from the Pan American Health Organization, spanning epidemiological weeks
40–49 (4 October–7 December 2016) for communes and weeks 35–49 for departments
(1 September–7 December 2016) [69]. For easier comparison with previous works that
estimated cholera risk from (0–1), the recorded cholera case counts were first normalized by
commune and department populations and then scaled from 0–1 over the entire country of
Haiti. To evaluate commune-level ML model predictions every month, monthly commune
risks were estimated by combining monthly department-level recorded cholera cases and
commune proportions of total cholera case counts. Total cholera counts from October to
December 2016 were available for each commune and department in Haiti. Ratios were
computed for each commune by dividing by their encompassing department’s total counts.

2.2. Models
Weighted Sum Models

The model structure with input variables is provided in Figure 3a. In this weighted
sum model (Figure 3a), the risk for each variable is classified from risk 0 to risk 4 (a value of
4 represents the highest risk) and given a weightage according to the variable’s importance
for cholera risk. Then, each variable is multiplied by their respective weightage and sum-
ming them together to get an integrated raster layer of cholera risk. For better comparison
between time periods, the risk layer is then rescaled between 0 and 1. Different model
compositions are available from Tables S1–S4 in the Supplementary Materials.
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The machine learning approach was formulated as a regression problem, where the
goal was to predict cholera risk on a per-commune basis for each month in the aftermath of
Hurricane Matthew (October, November, and December 2016). Gradient-boosted trees [70]
were used for the ML models, as they can produce accurate results and provide inter-
pretability as to which features are most indicative of cholera risk. The trees were trained
by minimizing the mean squared error between predicted and ground truth cholera risk
values. During training, additive tree learning was used to iteratively build decision trees,
the goal of which was to optimize the information gained by splitting training exemplars
using different input features at every node. This process was repeated for the maximum
number of trees in the ensemble, and the ensemble consensus was used as the final model
output. In our experiments, the number of trees in the final ensembles varied between
40 and 100 and the maximum depth of the decision trees varied between 2 and 4, across the
four separate monthly ML models. Three models were trained (one for each month), and a
hyperparameter grid search was performed over key model parameters for each month
(since there were a variable number of features for each month).

As the size of the input dataset was limited (cholera cases were recorded for 103 of the
140 total communes in Haiti), 10-fold randomized cross-validation was performed over all
available data a total of 10 times, with risk predictions for each commune averaged over
all 10 appearances in the validation set. These commune-level risk predictions were used
to compute the average risk for each department in Haiti, to compare with the ground
truth monthly data. Analysis was performed on the department level to provide a fairer
comparison with existing model outputs, which are more informative and accurate when
averaged overall points in a given department.

• Feature Importance

Gradient-boosted trees [70] were used for ML model development, as they are able
to produce accurate results and provide interpretability as to which features are most
indicative of cholera risk. An example feature importance plot is shown in Figure 3b for the
October ML risk prediction model. While the conclusiveness of these feature importance
values may be limited by the small size of our dataset, they do provide preliminary insights
into which variables are most predictive for an ML model. In this case, measurements of
cloud properties appear to be indicative of post-hurricane cholera risk. This observation
is intuitive as stronger, larger clouds likely produced larger amounts of precipitation and
flooding, which are known to influence cholera outbreaks.
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3. Results
3.1. Correlation with Observed Cholera Cases

There are four post-disaster cholera prediction models: Model A (base model), Model B,
Model A Plus, and Model B Plus. All the Plus models have variables of their respective primary
models (Model A, Model B) plus four other variables: cloud height, cloud top temperature,
wind speed above ground, and building damage data. To validate the models, the actual
number of cholera cases in all departments and communes of Haiti (presented in Table 3) was
compared with the models’ predicted risks for each month using the Pearson Correlation
coefficient, as presented in Table 4. The p-values of the ML model shows that the correlation
between the ML model and reported cholera cases is high and statistically significant.

Table 3. Total reported cholera cases per month [69].

Month Total Cholera Cases

September 2461

October 4998

November 3913

December 946

Table 4. Monthly Pearson correlation between the actual number of cholera cases and predicted
cholera risk from all models.

Month Model A Model A Plus Model B Model B Plus ML Model

September −0.044 −0.398 −0.099 −0.692 0.818 (0.0039)

October 0.590 0.574 0.645 0.512 0.811 (0.0044)

November 0.649 0.687 0.748 0.570 0.733 (0.0158)

December 0.690 0.365 0.648 0.364 0.744 (0.0136)

Average
(October–December) 0.643 0.542 0.680 0.482 0.760

Cholera case counts for 10 departments and 140 communes in Haiti were retrieved
from the Pan American Health Organization, spanning epidemiological weeks 40–49
(4 October–7 December 2016) for communes and weeks 35–49 for departments (1 September–
7 December 2016) (Figure 4) [69]. For easier comparison with the base model that estimated
cholera risk from (0–1), the recorded cholera case counts were first normalized by commune
and department populations and then scaled from 0 to 1 over the entire country of Haiti. To
evaluate commune-level ML model predictions every month, monthly commune risks were
estimated by combining monthly department-level recorded cholera cases and commune
proportions of total cholera case counts. Ratios were computed for each commune by
dividing by their encompassing department’s total counts, as the total cholera counts from
October to December 2016 were available for each commune and department in Haiti.

3.2. Understanding from the Variation of Model Outputs in Different Months
3.2.1. Model A

Model A uses four variables for the October to December models—population density,
rainfall anomaly, temperature anomaly, and wind swath during the hurricane—and for
September, the model uses all variables except wind swath during the hurricane. Model A
is the base model for this analysis, which used the same variables as this paper [62], and
the objective is to use minimum variables to predict cholera risk.
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• September

The model overestimated the risk in the western peninsula and northern part of the
country. It estimated the high risk well in the middle of the country near the capital, where
population density is high. The correlation of the model output and actual cholera cases
showed a negative low correlation (−0.044), which implies the model failed to predict risk
spatially before the hurricane in September with only three variables (population density,
rainfall, and temperature anomaly). No extreme climatic variables were included in this
model for September. Population played a major role in the risk map, as its pattern matches
with the model output, whereas the pattern of temperature and rainfall anomaly did not
match with the model output in most of the locations.

• October

Starting from October to December, all risk layers showed some vertical straight
lines, which are due to the wind swath data that measures the distance from the wind
path. The correlation between the actual cholera cases and cholera risk was 0.590, which
implies this model predicts better than the previous month after including the extreme
variable—wind swath. Though it better estimated the high cholera risk in the western
peninsula, it overestimated the cholera risk in Nord-Ouest, Nord, Nord-Est, Nippes, Sud-
Est, and Centre departments. Except for temperature anomaly, the spatial pattern of all
other variables matched with the model output’s pattern.

• November

From October to November, the actual cholera cases increased in the north direction,
which the model captured very well; thus, the correlation increased to 0.649. Though the
high-risk area remained in the western peninsula, the number of cholera cases spread in
the northern direction as well. As wind swath and population density are fixed layers in all
models, and the rainfall anomaly pattern played a role in November’s cholera risk pattern,
as higher rainfall was observed in the northern part and western peninsula of Haiti.

• December

Though cholera cases were lower in December than in November, they followed the
same direction to the north, with higher cholera cases with respect to December. The
results matched with the temperature anomaly trend and can capture it correctly, and
thus the correlation increased to 0.690. Temperature plays a role to create favorable con-
ditions for pathogen growth, and low rainfall causes safe water accessibility issue, thus
increasing cholera.
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3.2.2. Model B

Model B uses six variables for October to December models—population density,
elevation, rainfall anomaly, temperature anomaly, extreme rainfall, and wind speed dur-
ing the hurricane (Figure 5). It incorporates two variables that are associated with the
hurricane—extreme rainfall and wind speed.
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• September

In September 2016, before the hurricane, some places in both the western and northern
parts of the country had high cholera risks including the capital, Port-au-Prince, where
the population density per square kilometer is moderately high to very high. So, cholera
risk in September was mainly influenced by higher population density. Model B cholera
risk showed a very low (−0.099) negative correlation with the departments’ actual cholera
cases, which implies that the model output failed to capture the spatial location of the
actual cholera case occurrences. Except Port-au-Prince and nearby urban areas, the model
overestimated the cholera risk. This model did not include variables related to the hurricane,
i.e., extreme rainfall and wind speed.

• October

The high cholera risk area totally shifted to the western peninsula of Haiti, mostly in
three departments—Grand’Anse, Sud, and Nippes—after Hurricane Matthew in October
2016. Windspeed during the hurricane mostly hit the western peninsula. So, the more to the
west of the country, the higher the Hurricane Matthew’s windspeed risk. The temperature-
induced risk was moderately low for October. Rain-induced risk was very high mostly in
Nippes and Sud department, and otherwise, it was moderate to low all over Haiti. After
the hurricane, environmental variables played a stronger role than social variables like
population density. Hurricane-induced extreme rainfall had a higher impact on all five
departments in the southwestern part of the country—Grand’Anse, Sud, Nippes, Sud-Est,
and Ouest—and the impact was reduced in the northern direction of the country.

Elevation did not play that much of a role in the October cholera risk except in the west-
ern part of the Artibonite department and Port-au-Prince. The spatial correlation of actual
cholera cases in each department and cholera risk in October was 0.645. It underestimated
the cholera risk in Grand’Anse and the western part of the Sud departments. The model
overestimated the risk in the eastern part of Nippes, Sud, the western part of the Sud-Est
and Ouest departments, and the Nord, Nord-Ouest, and Nord-Est departments. The model
captured the risk well in the middle portion of the country.

• November

The spatial correlation of actual cholera cases in each department and cholera risk in
November was 0.748. The model overestimated the risk in the eastern part of Nippes, the
Sud, the western part of the Sud-Est and Ouest, and the Nord-Ouest and northwestern
part of the Artibonite departments. The model predicted well in locations with a higher
population density—Port-au-Prince. It underestimated the middle northern part of Haiti.
The cholera risk of November showed a similar spatial pattern as October. The influence of
wind, extreme rainfall during the hurricane, temperature, elevation, and the population at
risk of cholera was like October. Rainfall influenced the higher cholera risk in Grand’Anse
and Artibonite departments only. For other locations, lower rainfall in November and
higher cholera risk occurred in similar spots. Scarcity of safe water after the hurricane
along with low rainfall can be the cause of the inverse spatial pattern between rainfall and
cholera risk.

• December

The spatial correlation of actual cholera cases in each department and cholera risk
in December dropped from November (0.748) to 0.648. The prediction was close to the
actual values for the Grand’Anse and Sud departments, though it underestimated the
cholera risk in parts of the Sud and Grand’Anse. The model overestimated the risk in
the eastern part of Nippes, the Sud, the western parts of the Sud-Est and Ouest, and the
Nord-Ouest departments. The model failed to predict the higher cholera risk that occurred
in the middle part of the Artibonite and Nord departments. It appears that rain did not play
a role in December’s cholera risk. However, after two months of Hurricane Matthew, the
temperature seemed to elevate the risk in the southwestern parts of the country, particularly
the western peninsula. There was extreme rainfall and high wind during the hurricane,
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which caused flooding and destruction to the sanitation infrastructure, respectively. Such a
condition along with the increasing temperature in the western part of Haiti creates a more
favorable condition for pathogen growth, and the subsequent increase in cholera.

3.2.3. Model A Plus

All the plus models have variables of their primary name models (Model A and
Model B) plus three other variables—cloud height, cloud top temperature, and building
damage data.

• September

Model A Plus failed to capture the low cholera risk in most of the locations of the
country, whereas it overestimated the risk in the western peninsula and resulted in a
negative correlation of −0.398. Apart from wind speed during the hurricane—a fixed layer
with respect to month—the cloud top temperature and cloud height played a role in the
spatial pattern of the model output.

• October

A positive correlation (0.574) was observed between actual cholera cases and the
predicted cholera risk, which implies that the model successfully captured the spatial
trends of cholera cases. Except for the western peninsula and Port-au-Prince and its
surrounding areas, the model overpredicted the cholera risk. Apart from wind speed
during the hurricane—a fixed layer with respect to month—the cloud top temperature,
cloud height, and rainfall anomaly played a role in the spatial pattern of the model output.
In the month of the hurricane, both cloud variables affect the model, whereas in the later
months, the effect reduced gradually.

• November

The model predicted the spatial extend of cholera cases in the north direction well. So,
the correlation value improved to 0.687. Apart from wind speed during the hurricane—a
fixed layer with respect to month—the cloud top temperature and rainfall anomaly played
a role in the spatial pattern of the model output.

• December

The model fails to capture the northern higher cholera risk and overestimates the risk
in the western peninsula. Thus, the correlation value drops to 0.365. Temperature anomaly
and windspeed played a role in the spatial pattern of the model’s output. Cloud top
temperature, cloud height, and building damage data did not affect the output that much.

3.2.4. Model B Plus

All the Plus models have variables of their primary name models (Model A and
Model B) plus three other variables—cloud height, cloud top temperature, and building
damage data.

• September

The correlation was highly negative (−0.692), which means that the spatial pattern of
the risk was opposite to the actual cholera case pattern.

• October

The model predicted the risk better than the previous month, and thus, the correlation
changed from negative to positive and increased to 0.512.

• November

The model predicted the risk better than the previous month, and thus, the correlations
increased to 0.570.
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• December

The model failed to predict the cholera risk, and as a result, the correlation decreased
to 0.364 from 0.570.

3.3. Improvement of Different Models from the Base Model A

It is implied from the computed Pearson correlation coefficients between the predicted
and ground truth cholera risk that Model B is the best model among all four existing models,
as it has the power of capturing the high monthly cholera risk after Hurricane Matthew.
The model also showed the highest average correlation value. The accomplishment of all
models for better cholera risk prediction with respect to the base model is represented
in Table 5.

Table 5. Improvement offered by other models from the base model.

Month
Improvement from Base Model A (%)

Model A Plus Model B Model B Plus

October −2.717 9.304 −13.108

November 5.807 15.262 −12.220

December −47.109 −6.012 −47.303

Average
(October–December) −14.673 6.185 −24.210

Model B surpassed the base model prediction by 9.30% and 15.26% in October 2016
and November 2016, respectively. For December 2016, the base model predicted better
cholera risk than model B. On average of the post-disaster months in 2016, model B was
capable of predicting cholera risk 6.19% better than the base model. The Model B Plus
results did not offer any better forecasting for all three months compared to the base model.
Model A Plus only showed improvement (5.81%) from the base model in November 2016.

3.4. Cholera Risk Prediction Improvement Offered by the Machine Learning Model

Comparisons were made between Model B and the machine learning (ML) model.
The monthly improvement (%) of the machine learning model from the best of all four
other models is represented in Table 6.

Table 6. Improvement (%) offered by the machine learning model from the best geospatial models.

Month
Correlation with Monthly

Cholera Cases with Best Existing
Model (Model B) Outputs

Correlation with Monthly
Cholera Cases

with ML Outputs

Improvement
from Model B (%)

October 0.645 0.811 25.81

November 0.748 0.733 −2.00

December 0.648 0.744 14.74

Table 6 describes to what extent the ML model offers a better correlation with the
actual cholera cases. The largest improvement of the ML model occurred when predicting
cholera risk for October, a significant result considering that the largest number of cases
was recorded in October (Table 3). The Model B output was better at estimating risk
in November (one month after the hurricane), which is likely due to the environmental
variables used in the model having sufficient lag time to reflect the altered landscape after
Hurricane Matthew. It is not that the ML model provides less accuracy in November, but
model B is more capable of capturing the risk with a 1-month lag better than the ML model.
The ML model again produced more accurate results in December, demonstrating the
promise of using ML to predict disease outbreak further into the future. Using higher-
resolution earth observation datasets for multiple environmental variables makes the ML
model more robust in forecasting cholera with better accuracy with ground data. Instead of
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going with a single model approach, a combined model approach including both machine
learning model and the geospatial model can be a smart and effective way for better cholera
risk forecasting.

A spatial representation of the ground truth and estimated cholera risk for October can
be seen in Figure 6. The existing model generally overestimated the cholera risk, especially
in the eastern and northern parts of Haiti, but correctly showed higher levels of risk in the
southwestern peninsula where the path of Hurricane Matthew passed through Haiti. The
ML model predictions showed significant improvements, as they can identify input features
that are most indicative of cholera risk. The ML model was better at not over-predicting
risk compared to the existing geospatial model, Model B. In a real-world scenario, this
improved accuracy would ensure that the required resources (e.g., cholera vaccines and
rehydration solutions) can be optimally distributed to the most affected areas before an
outbreak occurs.
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4. Discussion

Machine learning has previously been used to forecast the outbreak of cholera in
Yemen [71] and India [72]. The model used for Yemen (XGBoost, similar to the model
reported in this paper) was trained over a dataset reporting cholera over an 8-week period
in 2017 and 12 weeks of 2018. Rainfall and conflict data were used as predictors, and
the results demonstrated an ability to predict cholera within an error of 5 deaths per
10,000 cases. The best performance was reported in the cases predicting an outbreak in
the immediate aftermath (0–2 weeks), whereas the model’s performance degraded as the
prediction window extended further out (6–8 weeks). A Random Forest classifier was
trained on nine years of cholera data (2010 through 2018) using various climate variables,
including sea surface temperature, sea surface salinity, and soil moisture. The model
performed well, yielding a high accuracy (0.99), but due to an imbalance in their dataset
(77 outbreak and 8504 non-outbreak data points), it cannot be fairly compared to the results
obtained for Haiti. All these efforts show promising results and highlight the need for
research into a model that trains over a diverse set of regions and for broad applicability.
However, there may be region-specific factors that contribute to the overall prediction
process, and that is a connection that can only be understood with a broader investigation
that spans distinct geographical regions.

In this study, we used social and environmental variables for each month for the model
of that month only. We did not use the lag effect of the environmental variables for creating
a suitable environment for pathogen growth and accelerating cholera outbreaks. However,
natural processes may take weeks to months to develop a cause–effect relationship and
have a lagged effect on disease outbreak and transmission. Including different lag times
in this analysis can be a future step. Additionally, in addition to the monthly risk maps,
another model can be introduced using the epidemiological weeks. To convert data of
different timestamps (daily, weekly, monthly), we took an average of the data to convert
them to a monthly scale, i.e., cloud height and cloud top temperature. A weekly model
can be more fruitful in a post-disaster scenario, which may be able to better capture the
changes in extreme conditions and determine cholera risk more precisely.

Although there are 140 communes in Haiti, cholera data were only available for
103 communes, and those data were not catalogued in weekly or monthly formats but
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aggregated to a total amount of patients from October to December. Having data in
a weekly or monthly format for all communes can give us a better insight into the post-
disaster outbreaks and allow for better identification of the variables and training for the ML
model. The spatial resolution of the cloud top temperature and cloud height temperature is
0.1◦ × 0.1◦, and for wind speed, the resolution is even more coarse at 0.25◦ × 0.25◦. Better
resolution data from earth observation sources can be more useful to monitor and capture
the slightest change on a smaller scale.

Different combinations of variables and weightages were used in this study, as all
variables that do not have the same contribution towards high cholera risk. In Model B,
we used elevation, wind speed, and extreme rainfall during the hurricane, which are
new additions from Model A. The influence of elevation and extreme rainfall together
can be considered as flood impact, as lower elevation and higher rainfall together can
pose a flood threat to the population, and these have an adverse impact on the water
supply and sanitation system. Additionally, high wind speed can destroy houses and
outdoor water supply and sanitation structures, which may lead to higher cholera cases.
Though temperature and precipitation anomalies were used in both Model A and B, better
spatiotemporal resolution data were used in Model B, which leads to better cholera risk
prediction. In Model A Plus and Model B Plus, building damage due to hurricane, cloud
height, and cloud top temperature was used. The same building damage layer was used
for all months and the same respective cloud height and cloud top temperature were used
for the corresponding months. Both cloud top temperature and cloud height/thickness
were used, as these may have an impact on the precipitation process that is not explicit. The
inclusion of lag in these cloud variables can potentially be useful for better model outputs.

Model A, the base model, was prepared based on the methodology described in [62].
However, the spatial resolution of the temperature data in that study was 2.5◦ × 2.5◦,
and thus, we used higher-resolution Land Temperature Analysis data (0.5◦ × 0.5◦), a
combination of the Global Historical Climatology Network (GHCN) and Climate Anomaly
Monitoring System (CAMS), from the National Oceanic and Atmospheric Administration
(NOAA). Global Precipitation Measurement (GPM) was used to obtain 2016 rainfall data,
while Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analyses
(TMPA) were used to calculate the long-term mean in the base model. Other geospatial
models used IMERG data with better spatial resolution than used in a previous study [62].
Adding high-resolution data along with including extreme variables improved Model B’s
performance over the base model.

The models were compared based on their performances over the study months, and
after taking the average of all months’ correlations of model outputs and reported cholera
cases, Model B had the highest average correlation among the four geospatial models. In
the months immediately following the hurricane, the ML model captured the risk very
well, but in later months, the geospatial model (Model B) performed better. A combined
approach using both the geospatial and ML models would potentially predict the risk
more accurately.

The primary beneficiaries of these models will be people related to health care facilities
and government officials, who are responsible for providing relief, medical supplies, and
vaccinations. If decision making is done by government officials according to the risk index,
where 0 is the lowest cholera risk and 1 is the highest risk, then supplies can be provided
to health facilities based on this index. As health facilities’ data are not available for each
pixel (1 km × 1 km), nearby pixel values can be averaged to determine the risk for each
hospital for each health care facility.

5. Conclusions

Our models were able to successfully utilize earth observations of environmental
variables to determine the spatio-temporal distribution of cholera risk in Haiti following
the 2016 Hurricane Matthew landfall. The models captured cholera risk well in the middle
portion of the country and especially the hurricane-affected western peninsula. As the
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models were designed for extreme conditions, like a hurricane, the models performed
better in locations near the path of Hurricane Matthew, where environmental variables
showed extreme patterns. The models were less effective in capturing the cholera risk in
locations farther from the hurricane’s path. The models overestimated the risk in various
areas of the Nord, Nord-Ouest, and Nord-Est departments. Though the eastern part of
Nippes and the Sud department are situated near the hurricane path, the models did not
reflect their risk index properly. As elevation, rainfall, and extreme rainfall together raise
the possibility of floods, high risk in any of these variables may have caused overestimation.
The results strengthen our hypothesis behind selecting variables like elevation, rainfall, and
extreme rainfall, which lower elevations, and higher and extreme rainfall may rapidly cause
floods in post-disaster situations, which will worsen the situation with more cholera cases,
as water will be contaminated due to flooding. Our results will help develop waterborne
disease forecasting frameworks to identify vulnerable regions in post-disaster settings and
help to guide efforts to plan health interventions and recovery efforts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cli10040048/s1. Table S1. Risk level classification for Model A (base
model). Table S2. Risk level classification for Model B. Table S3. Risk level classification for Model A Plus.
Table S4. Risk level classification for Model B Plus.
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