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1. PREDICTION OF CONCRETE STRENGTHS USING COMMON MACHINE LEARNING TECHNIQUES 

In this section, the prediction of concrete compressive and tensile strengths from common machine 

learning techniques is illustrated. The experimental compressive strength and tensile strength obtained 

from  [1] serve as a database. While the main paper details XGBoost, this supplementary section details 

other approaches used in the study which are polynomial regression, LASSO, support vector machine, 

random forest, and neural network. For all the cases presented here, the dataset [1]  imputed by kNN (k 

= 10) is used.  

1.1 Polynomial Regression (PR) and LASSO 

Polynomial regression is a generalization of linear regression in which the selected predictors are mapped 

to a higher dimensional feature space according to the desired polynomial order. Polynomial regression 

is relatively easier to interpret when the polynomial order is low, indicating a lower-dimensional 

correlation between the dependent variable(s) and the mapped feature coordinates. In general, 

polynomial regression with Nth degree can be expressed as: 

𝑦 =  𝛽0 +  ∑ 𝛽𝑖𝑥𝑖𝑁
𝑖                                                                      [1] 

where 𝑥𝑖is the input variable (or predictor variable) and y is the output (or response) variable. The terms 

𝛽0 and 𝛽𝑖 are the fitting parameters corresponding to each degree 𝑖. In matrix form, the formulation can 

be separated into two phases. First, the vector of predictors is mapped to higher polynomial dimensions, 

i.e., 𝒙𝑖, 𝑖 = 2, 3, … , 𝑛 . Second, the mapped higher-order polynomial predictors are used to formulate 

regression problems identical to the linear regression, 
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𝒚 = 𝜷𝑿 + 𝛽0                                                                       [2] 

Using the least-square method, the coefficients (𝛽0 and 𝛽) can be estimated by minimizing the error, 

which is the sum of the squared difference between the true responses with those predicted responses. 

Hence, the complexity of the PR models highly depends on the choice of the Nth polynomial degree 

considered. After obtaining 𝛽0 and 𝛽,  the unknown variable vector can be obtained from the new 

predictor vectors, 𝑿𝒑 as follows: 

�̂� = 𝜷𝑿𝒑 + 𝛽0                                                                     [3] 

The linear model with polynomial mapped features is selected by comparing the mean squared error 

(MSE) values with increasing polynomial order of the features. Without losing generality, the polynomial 

features are not limited to only the crossing terms. Figures S1 (a) and (b) plot the MSE of the concrete 

compressive strength and tensile strength with increasing polynomial order. As it is observed from Figure 

S1(a), the MSE for the training set reduces with increasing polynomial order whereas the MSE for the 

validation set starts increasing significantly. The MSE for a polynomial degree of 1 indicates that, in this 

domain, the model is underfitted. However, when the model incorporating some polynomial terms strictly 

larger than 3, the models are overfitted. This arises from the fact that when at a high polynomial degree, 

the model starts to fit the noise of the training rather than the actual overall trend [2]. A similar 

observation is observed for concrete tensile strength as shown in Figure S1(b). 

 

Figure S1. MSE values of (a) the concrete compressive strength, and (b) the concrete tensile strength 
predictions using the polynomial regression models as a function of the maximum polynomial order for 

the training set and validation set.  The dataset was imputed using kNN (k = 10). 

One of the crucial disadvantages of the least-squares approximation is its tendency to overfit the training 

data. To overcome such a problem, the least absolute shrinkage and selection operator (LASSO) regression 
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offers a useful solution to reduce the complexity of the model, and eventually limit the risk of overfitting 

[3]. In addition to the cost function used in PR (i.e., the sum of the squared difference between the ‘true’ 

and ‘predicted’ values), LASSO is modified by adding an additional term to penalizes complex models. The 

modified cost function for LASSO is expressed as: 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ‖𝑦 −  𝛽0 − ∑ 𝛽𝑖𝑥𝑖𝑁
𝑖 ‖

2

2
+ 𝜆 ∑ ‖𝛽𝑖‖𝑁

𝑖                                                                [4] 

where 𝜆 is a hyperparameter that controls the weight of the penalty associated with the complexity of 

the model. In practice, LASSO penalizes some of the 𝛽𝑖 coefficients to zero in order to minimize the value 

of the cost function which leads to a decrease in the model complexity. The degree of complexity of LASSO 

models can be tuned by adjusting the value of 𝜆, where the increasing value of 𝜆 yields simpler models.  

Figure S2 (a) and (b) plot the mean MSE of the compressive strength and tensile strength for concrete, 

respectively. In this study, the optimized value of 0.01  is adopted for 𝜆.  

 

Figure S2. (a) MSE and (b) R2 values for polynomial regression models with LASSO constraints using the 
imputed dataset with kNN (k = 10) for compressive strength of concrete. (c) MSE and (d) R2 values for 
polynomial regression models with LASSO constraints using the imputed dataset with kNN (k = 10) for 
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tensile strength of concrete. The optimal polynomial order is chosen for such model where minimum 
MSE and maximum 𝑅2 of the validation set are observed. 

As it is observed from Figure S2(a), the MSE for training set reduces with increasing polynomial order 

whereas the MSE for validation shows little improvement beyond polynomial degree equal to 3. As 

opposed to the polynomial regression described above (see Figures S1(a) and (b)), the LASSO model 

reduces the model complexity and prevents the tendency to overfit the data, which is evident from the 

validation data (see Figures S2(a) and (c)). Figures S2(b) and (d) show the R2 value for the compressive 

strength and tensile strength for concrete with increasing polynomial order, respectively. A similar trend 

was observed for the tensile strength of concrete in which beyond the polynomial order of 3, the accuracy 

of the model drops as evident from the validation data. Thus, the optimal polynomial degree for LASSO is 

chosen as 3 with a 𝜆 value of 0.01. Figures S3 (a) and (b) demonstrate the comparison of the predicted 

compressive strength and predicted tensile strength of concrete from the LASSO model with the 

experimental data. The 𝑅2 value for both compressive strength and tensile strength of concrete outputs 

are also computed. 

 

Figure S3. Comparison of (a) the predicted compressive strength and (b) the predicted tensile strength of 
concrete using the LASSO model (polynomial degree and 𝜆 equal to 3 and 0.01, respectively) with the 
experimental values. 

1.2 Support Vector Machine (SVM) 

Support vector machine is a support vector classifier that determines the best separating hyperplanes in 

a higher-dimensional space of the original predictors [4]. The realization of raising the predictors to a 

space of higher dimension is based on the kernel tricks applied to the predictors. The support vector 

regression is a convex optimization problem that gives a unique solution to a given set of predictors and 

responses. The support vector regression can be expressed as follows, 
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{1/2||β||
2

+ 𝐶∑|ξ𝑖|}
β,β0  

𝑎𝑟𝑔𝑚𝑖𝑛
  subject to |𝑦𝑖 − β⊺𝑥𝑖 − β0| ≤ ϵ + |ξ𝑖|                          [5] 

Where ϵ is the pre-defined margin size or the maximum error tolerated by the model, ξ𝑖  is the slack 

variable that accounts for the tolerance of out-of-margin data points, and 𝐶 is the constraint of overall 

tolerance of the out-of-margin cases for finding the SVM model. This constraint acts as a regularization 

term. As 𝐶 increases, the regression result is less prone to overfitting the given data. In this study, a radial 

basis function (rbf) kernel is adopted. Figures S4(a) and (b) show the plot of MSE and  𝑅2 of the SVM model 

(with rbf kernel) with increasing gamma (𝛾) value for the compressive strength of concrete. It is observed 

that with low gamma values, the model is underfitting and the error value is comparatively high for both 

training and validation sets. As the 𝛾 value is increased, MSE values drop and 𝑅2  values increase for both 

training and validation. The trend continues up to a 𝛾  value of 0.01 beyond which the MSE starts 

increasing and 𝑅2decreases. Thus, the optimum order is chosen for the model where minimum MSE and 

high  𝑅2 for validation set is achieved which corresponds to a  𝛾 value of 0.01.  The C value adopted in this 

model is 100. A similar observation is observed for the tensile strength of concrete (Figures S4(c) and (d)). 
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Figure S4. (a) MSE and (b) R2 values for support vector machine models (with rbf kernel) using the imputed 
dataset with kNN (k = 10) for compressive strength of concrete. (c) MSE and (d) R2 values for for support 
vector machine models (with rbf kernel) using the imputed dataset with kNN (k = 10) for tensile strength 
of concrete. The optimal gamma value is chosen for such model where minimum MSE and maximum 𝑅2 
of the validation set are observed. 

Using the optimal gamma value of 0.01, the predicted results are plotted against experimental values in 

Figures S5 (a) and (b) for compressive strength and tensile strength of concrete. The 𝑅2 value for both 

compressive strength and tensile strength of concrete outputs are also computed.  

 

Figure S5. Comparison of (a) the predicted compressive strength and (b) the predicted tensile strength 
of concrete using SVM (gamma = 0.01) model with the experimental values. 

1.5 Random Forest (RF) 

Random forest is a decision forest or decision tree method that belongs to ensemble learning. It is an 

average of a large collection of decorrelated decision trees. Such an ensemble method can both increase 

the prediction accuracy and reduce over-fitting problems [5]. In this model, a large number of trees is 

trained individually using only a subset of the input variables [5,6]. In each tree, a bootstrap sample of the 

training data is used instead of the entire set of training data. This procedure is known as bootstrap 

aggregation or bagging [5]. The predictions of each individual are then averaged to obtain the prediction 

of the random forest ensemble. This method is similar to boosting in many aspects but can be easily 

trained and manipulated. Figures S6(a) and (b) show the plot of MSE and 𝑅2 values respectively offered 

by random forest algorithm with an increase in the number of trees for the compressive strength of 

concrete. Here, the number of trees characterizes the complexity of the model. As observed from the 

Figure S6, minimum MSE for validation set is observed 30 trees and no significant change is observed for 

𝑅2 . It is noticed that the MSE of the training set and validation set remains almost constant upon 

increasing number of trees and this indicates that the RF does not yield any noticeable overfitting at high 

model complexity. Similar justification applies to the tensile strength results shown in Figures S6(c) and 
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(d). To assess the accuracy of the models, Figures S7 shows the predicted values obtained from the best 

RF model with the number of trees equal to 30 against experimental values.  

 

Figure S6. (a) MSE and (b) R2 values for Random Forest models using the imputed dataset with kNN (k = 
10) for compressive strength of concrete. (c) MSE and (d) R2 values for Random Forest models using the 
imputed dataset with kNN (k = 10) for tensile strength of concrete. The optimal number of trees is chosen 
for such model where minimum MSE and maximum 𝑅2 of the validation set are observed. 
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Figure S7. Comparison of (a) the predicted compressive strength and (b) the predicted tensile strength 
of concrete by random forest (with the number of trees equals to 30) with the experimental values. 

1.6 Multilayer perceptron-based Neural Network (NN) 

Neural networks (NN) draw inspiration from a human neural system where the information is stored and 

processed in the brain [7].  The map between the predictor and the response comprises multiple 

perceptron layers (such as the input layer, hidden layers, and output layer) and activation functions. It is 

called the feed-forward neural network [8,9]. It is a mathematical model which maps a given set of 

predictors, 𝑥, to a set of the desired response, 𝑦 and is expressed as follows, 

𝒚 = 𝒇𝑵(𝑨𝑵, … 𝒇𝟐(𝑨𝟐, 𝒇𝟏(𝑨𝟏, 𝒙)) … )                                                [6] 

where 𝒇𝑵(∙): ℝ → ℝ  is a continuous bounded function which is usually referred to as the activation 

function, 𝑨𝒊: ℝ𝒅𝒊 → ℝ𝒅𝒊+𝟏  is the transformation matrix that contains weights between two layers of 

perceptrons [8]. The NN has gained tremendous attention in academia and applications in engineering 

due to the proven universal approximation property that states that the feed-forward NN architectures 

with a sigmoid activation function can approximate any set of functions between two Euclidean spaces 

for the canonical topology [10].  

In the NN, the neurons in the input layer do not participate in the computation but serve to pass the input 

vectors to the hidden layers. Each neuron in the layers other than the input layer performs a simple non-

linear transformation using an activation function such as rectified linear units (ReLU) or sigmoid function 

[11]. The neurons in two consecutive layers are connected by weights, which are learned through a 

training process to approximate the mapping function from the input to output vectors. The weights can 

be solved by formulating the above mapping into a constrained optimization problem as stated below, 

𝒂𝒓𝒈𝒎𝒊𝒏𝑨𝒋
{𝑓𝑵 (𝑨𝑁 , … 𝒇𝟐(𝑨𝟐, (𝒇𝟏(𝑨𝟏, 𝒙)) … ) + 𝛌𝐠(𝐀𝐣))}                               [7] 

where λ  is the regularization intensity constant and 𝑔(⋅)  is a functional form of the weights to be 

regularized. This optimization problem is usually solved by stochastic gradient descent or backward 

propagation algorithm. However, because of the non-convex nature of the neural network, the solution 

to this optimization problem is not unique. Moreover, the selection of the number of layers and the 

number of perceptrons in each layer affects the result of the regression, and high variances are observed 

when large numbers of neurons and layers are used which necessitates an efficient regularization 
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approach. In this study, while training an NN model, a rectified linear unit (ReLU) is implemented as an 

activation function due to its superior performance [12].   

For the NN model, the hyperparameters include the number of hidden nodes, size of hidden layers, 

optimizer function, learning rate, epoch, and batch size. In this study, the NN model is trained using the 

back-propagation algorithm [13]. Also, the NN model implements Adam optimizer [14] with a learning 

rate of 0.001, an epoch equals 400, and a batch size of 32. The size of hidden layers is set to two as no 

improvement is observed with any further increase in the number of hidden layers. Figures S8(a) and (b) 

represent the MSE and R2 values respectively for concrete compressive strength whereas Figures S8(c) 

and (d) show the same for the concrete tensile strength from the NN model with respect to an increasing 

number of neurons.  

 

(a) (b)

(c) (d)
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Figure S8. (a) MSE and (b) R2 values for NN with 2 hidden layers using the dataset imputed with kNN (k = 
10) for compressive strength of concrete. (c) MSE and (d) R2 values for NN with 2 hidden layers using the 

dataset imputed with kNN (k = 10) for tensile strength of concrete. From these relationships, an 
optimized number of neurons with minimum MSE and maximum R2 values are obtained. 

It is observed that with a low number of neurons, the model is yet to learn, which is demonstrated with a 

high MSE value. In contrast to a low number of neurons, the model with a high number of neurons has 

saturated where the MSE value for the validation set either starts increasing or shows a slight 

improvement. The optimum neurons are chosen where minimum MSE value and high R2 value for the 

validation set is achieved which is at 70 neurons for compressive strength prediction and 50 neurons for 

tensile strength prediction. 

In this section, predictions based on the hyperparameter-optimized NN model are reported for the k-NN 

(k=10)-imputed data. The test set, which is hidden from the model during the training, is used to evaluate 

the model prediction using the trained NN model with the optimized hyperparameters. Figure S9(a) shows 

the predicted compressive strength of the concrete using the trained NN model with R2 values from the 

training set, validation set, and test set.  

 

Figure S9. Comparison of (a) the predicted compressive strength and (b) the predicted tensile strength of 
concrete using the NN model with the experimental values. 

Overall, excellent prediction efficacy is obtained as indicated by the R2 values. Figure S9(b) represents the 

predicted tensile strength of the concrete using the trained NN model. At lower tensile strength values, 

the NN model shows excellent predictions. However, the prediction efficacy of the NN model reduces at 

higher tensile strengths which could be attributed to a lower number of available high tensile strength 

data points for training. Nevertheless, an overall high R2 value of 0.97 is obtained for the test set.   
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2. SIGNIFICANCE OF SHAP RIVER FLOW PLOT 

To explain the significance of SHAP river flow plot (as shown in Figure 8 in the main article), we have taken 

couple of data points. The first data point corresponds to a low output compressive strength of 9.49 MPa 

which is obtained for a specific combination of input feature values (stone powder content = 0.06, sand 

ratio = 0.36, fineness modulus = 2.92, water content = 81, binder tensile strength = 8.4 MPa, binder 

compressive strength 62.4 MPa, crushed stone size = 80, water-binder ratio = 0.5, curing age = 7 days and 

water-cement ratio = 1.0). The second data point corresponds to a higher output compressive strength 

value of 84.36 MPa which is also obtained for a specific combination of input features (stone powder 

content = 0.04, sand ratio = 0.41, fineness modulus = 3.0, water content = 150, binder tensile strength = 

8.0 MPa, binder compressive strength 47.84 MPa, crushed stone size = 30, water-binder ratio = 0.25, 

curing age = 90 days and water-cement ratio = 0.33).  

Now, for the first case, if we only consider water-cement ratio as the input feature and eliminate all other 

input features, the mean value of compressive strength is 29.58 MPa corresponding to a water-cement 

ratio of 1.0. Similarly, if curing age is considered as the only input feature, a mean compressive strength 

of 33.31 MPa is obtained corresponding to curing age of 7 days. Using this approach, all the mean values 

corresponding to each input features are obtained. The values are reported in Figure S10 (a) and this line 

corresponds to blue color as the corresponding output value is lower. Similarly, for the second case 

(output compressive strength of 84.36 MPa), the mean compressive strength of individual input features 

are shown in Figure S10 (b). This line corresponds to blue color as the corresponding output compressive 

strength value is on the higher side.  
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Figure S10. SHAP river flow plot for concrete with (a) low compressive strength and (b) high compressive 

strength using the XGBoost model. 

Table S1. Hyperparameters values corresponding to different ML approaches 

Models Hyperparameters Range/List/Values 

Lasso 𝜆  0.01 

 degree 1 to 4 

SVM 𝛾  0.001,0.001,0.01,0.1,1,10 

 C 10,100,1000 

RF num_estimator 1 to 80 

 min_samples_leaf 5 

NN learning rate 0.001 

 epoch 400 

 batch_size 32 

 hidden_neurons 2 to 100 

 hidden_layer 1 to 5 

XGBoost num_estimators (number of trees) 5 to 500 

 max_depth 9 

 minimum child weight 7 

 learning rate 0.09 

 objective reg:squarederror 

  

3. INFLUENCE OF INSIGNIFICANT FEATURE REMOVAL ON THE COMPRESSIVE STRENGTH PREDICTIVE 

EFFICACY 

To elucidate and quantify the influence of insignificant features on the predictive efficacy, Table S2 shows 

the comparison for the compressive strength of concrete using XGBoost when (i) full features are used, 

(ii) only stone powder content is removed, and (iii) stone powder content and sand ratio are removed. 

Table S2: Performance measures for analysis of different input variable combinations 

Combinations Train MSE (MPa2) Validation MSE (MPa2) 

No features removed 1.98 5.54 

Stone powder content removed 6.37 7.97 

Stone powder content and sand ratio removed 2.92 6.15 
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