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Abstract 13 
 14 
It is inherently difficult to plan water systems for a future that is non-predictive. This paper 15 
introduces a novel perspective for the design and operation of potable water systems under 16 
increasing water quality volatility (e.g., a relatively rapid and unpredicted deviation from 17 
baseline water quality). Increased water quality volatility and deep uncertainty stress water 18 
systems, confound design decisions, and increase the risk of decreased water system 19 
performance. Recent emphasis on resilience in drinking water treatment has partly addressed this 20 
issue, but still establishes an adversarial relationship with change. An antifragile system benefits 21 
from volatile change. By incorporating antifragility, water systems may move beyond resilience 22 
and improve performance with extreme events and other changes, rather than survive, or fail and 23 
quickly recover. Using examples of algal blooms, wildfires, and the COVID-19 pandemic, this 24 
work illustrates examples of fragility, resilience, and antifragility within physicochemical 25 
process design including clarification, adsorption and disinfection. Methods for increasing 26 
antifragility–both individual process options and new system design tools–are discussed. Novel 27 
physicochemical processes with antifragile characteristics include ferrate preoxidation and 28 
magnetic iron (nano)particles. New design tools that allow for systematic evaluation of 29 
antifragile opportunities include artificial neural networks and virtual jar or pilot “stress testing”. 30 
Incorporating antifragile characteristics represents a trade-off with capital and/or operating cost. 31 
We present a real options analysis approach to considering costs in the context of antifragile 32 
design decisions. Adopting this antifragile perspective will help ensure water system improved 33 
performance during extreme events and a general increase in volatility.  34 
 35 
Water Impact Statement 36 
 37 
Raw water quality volatility driven by extreme events presents a grand challenge to potable 38 
water systems. This work describes a new perspective of antifragility that allows water systems 39 
to thrive despite an uncertain future. Individual processes that have antifragile characteristics are 40 
introduced and discussed, as well as new tools for water system design that allow for 41 
considerations of antifragility. Incorporation of the antifragile paradigm developed here will 42 
enable a shift towards more sustainable water systems less reliant on stationarity and prediction 43 
of future conditions.  44 
 45 
Introduction 46 
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 47 
Engineered systems that produce and distribute potable water are critically important to public 48 
health. Potable water systems (PWS) have led to dramatic decreases in waterborne diseases,1 at a 49 
low cost relative to public value.2 PWS face challenges, especially related to uncertainty and 50 
volatility. For example, source water quality and quantity may be affected by extreme events and 51 
phenomena such as chemical spills,3 harmful algal blooms,4 hurricanes,5,6 and wildfires.7,8 Some 52 
water changes may be driven by climate change, although predictive modeling of this 53 
relationship is difficult at the watershed spatial scale.9 PWS may also be impacted by complex 54 
socioeconomic processes such as economic globalism, leading to population loss (e.g. “shrinking 55 
cities”) and corresponding water age increases,10 and possible water quality problems.11These 56 
processes generally contribute to volatility, uncertainty, complexity and ambiguity (VUCA). 57 
This combination of stressors contributes to a “deep uncertainty” that confounds the design and 58 
planning of water systems.12 59 
 60 
Water treatment processes have historically been designed using a deterministic approach.13,14 In 61 
the deterministic approach, modeling efforts intended to assist in process optimization have 62 
tended to assume that the influent water quality conditions, water demands, and model 63 
parameters are fixed and known. This assumption has proven dubious as new types of 64 
contamination (e.g. perfluorinated compounds, pharmaceuticals) have emerged, and surface 65 
water quality variability has increased.15 More recently, researchers have advocated for the 66 
incorporation of variability and uncertainty of source water quality in water treatment plant 67 
design and operation, but have continued an optimality paradigm with regard to water treatment 68 
plant effluent.16–18  The deterministic approach remains the current dominant paradigm in water 69 
treatment process design and operation, and is enshrined in published process selection guidance 70 
(see [13] as an example).  71 
 72 
An example consequence of the optimality paradigm is the exclusion of clarification from some 73 
PWS treatment trains (e.g., direct filtration). Given source water of sufficient average historical 74 
quality (i.e., the constraint), water treatment plants have been designed to minimize lifetime 75 
construction and operation costs (i.e., the objective). This model has been generally successful; 76 
however, a loss of (perceived) stationarity undermines the optimality paradigm, with accelerating 77 
rates of change and more numerous extreme events projected.19,20  The optimality paradigm is 78 
highly constrained and fragile to baseline water quality deviations, and is not appropriate for 79 
cases of deep uncertainty, as is now faced by water treatment plant operators and planners.21 80 
Also, it is highly dependent upon the quality of simulation models representing the water 81 
treatment system; unfortunately, we know the quality of the available models to be relatively 82 
poor.16,22 Further, common physical models such as jar testing and pilot testing informing PWS 83 
decision making provide no information about future water conditions or performance. Elements 84 
of the outcome for the optimality paradigm approach therefore contain stochastic elements, 85 
making the outcomes also inherently stochastic.23 An alternative decision making analytical 86 
approach is needed.  87 
 88 
PWS decision making has been shifting to the incorporation of robustness, resilience and 89 
adaptation.24,25 In the United States, The National Infrastructure Advisory Council (NIAC) 90 
defined resilient infrastructure as able to anticipate, adsorb or adapt to, and/or recover from a 91 
disruptive event, and encourages planners and designers to aim for resilience in designs for 92 
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infrastructure.26,27 Similarly, America’s Water Infrastructure Act requires most PWS to conduct a 93 
risk and resilience assessment by the end of 2021.28 Common design changes to increase 94 
resilience in PWS include additional redundancy and capacity. 21 These changes have decreased 95 
risk of water system failure; however, this approach is still somewhat dependent on prediction of 96 
future events, and limiting service disruptions, not improving service in the face of volatility. If 97 
volatility is increasing, then the adversarial relationship with it inherent in resilience is 98 
unsustainable.  99 
 100 
This paper describes a novel perspective for achieving an antifragility paradigm in PWS design 101 
and operation, including cost trade-offs. The antifragile concept was popularized in the financial 102 
domain,29 but has been applied in other fields, such as computer science and transportation 103 
planning,30 as an approach to risk. In the antifragility paradigm, a system benefits from volatility, 104 
rather than being harmed by it.29 In this way, antifragility extends resilience/robustness 105 
frameworks. Robust infrastructure resists failure, often through the adoption of conservative 106 
designs that include excess capacity. Resilient infrastructure systems fail, but not 107 
catastrophically, and recover somewhat quickly. The key benefit of antifragility is that 108 
performance actually improves in volatile periods. It also is less reliant on prediction of the 109 
future. The overarching objective of this paper is to introduce the antifragility paradigm across 110 
domains into PWS, and frame raw water quality volatility and extreme (e.g., “black swan”) 111 
events in the water supply sector that may be better managed with via antifragility. We also 112 
include examples of novel physicochemical processes that have antifragile characteristics and 113 
summarize new design tools that allow for systematic consideration of antifragility in the field of 114 
water treatment. 115 
 116 
Black Swan Events  117 
 118 
We define volatility as the (relatively) rapid and unpredicted deviation from a baseline (i.e., 119 
“normal”). Specific instances of volatility can be labeled as a Black Swan Event. The term Black 120 
Swan Event (BSE) was also popularized in the financial domain, and is generally taken to mean 121 
a low probability event, with casual opacity, that is difficult to predict.31 Quantitively, this can be 122 
summarized as an event more than a few standard deviations away from the mean of prior data; 123 
an outlier. Casual opacity may also be a characteristic, leading to uncertainty in what initiated the 124 
low probability event. These characteristics of BSEs ultimately make them impossible to predict 125 
with confidence. Often, insufficient data (e.g. sample size) make the nature of the event 126 
probability unknowable, and leave it unclear if a system follows as Gaussian distribution, or 127 
another distribution with skewness (e.g. gamma family), or fat tails (e.g. Cauchy). 32,33 128 
 129 
Here, we take this concept cross domain into the environmental engineering context, focused on 130 
PWS. Water systems are exposed to BSEs. Examples receiving recent attention include lake 131 
recovery,34 and forest fires.35 Both of these BSE examples have impacts to source water quality 132 
that are an extreme departure from historical averages.36 Also, the cause of these events is 133 
difficult to determine. Lake recovery is a relatively rapid increase in organic productivity or 134 
“browning” of a surface water driven by a complex combination of nutrient loadings, warming 135 
air temperatures (e.g. climate change),37 and decreases in sulfur deposition from upwind 136 
sources.38 In Atlantic Canada, decreases in sulfur deposition followed the amendments of the US 137 
Clean Air Act, illustrating the causal opacity and deep complexity of secondary effects in PWS 138 
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design. Similarly, large-scale forest fires may form via anthropogenic or natural phenomena and 139 
are likely exasperated by climate change, invasive insect activity, and forest management 140 
policies. The total annual acreage burned by wildfires in the US more than tripled from 1983 to 141 
2016.35 Wildfires are known to cause changes in watersheds that impact water quality including 142 
increases in turbidity, nitrate, phosphate, and disinfection byproduct precursors that may persist 143 
for several years postfire.39,40  144 
 145 
The problem caused by exposure to a BSE by a PWS often presents in difficulty achieving 146 
treatment goals following dramatic changes in raw water quality. These source water shifts may 147 
exceed the design capacity of any physicochemical process that comprises a given drinking 148 
water treatment plant. Two examples of this situation are presented in Figure 1, which includes 149 
raw water organics (color or total organic carbon) and turbidity for two different source waters: 150 
(1) A reservoir before and after lake recovery–Pockwock Lake,34 and (2) a river draining an 151 
alpine forest before and after a major wildfire–Poudre River.8 Figure 1 also includes regions of 152 
recommended clarification design from Valade et al., 2009 based primarily on American Water 153 
Works Association survey of utilities.41 Gaussian distributions were assumed for both organics 154 
and turbidity.  155 
 156 

 157 
 158 
Figure 1. Results of 365 statistical resamplings of distributions based on average raw water 159 
quality from Pockwock Lake (PL) in 1999 (gray circle) and 2015 (green circle) and from the 160 
Poudre River (PR) from 2008-2011 (gray triangle) and 2013 (red triangle). PL plots are Color vs. 161 
Turbidity; PR plots are TOC vs. Turbidity. Regions of typical particle removal designs include 162 
direct filtration (DF), dissolved air flotation (DAF) and conventional sedimentation from Valade 163 
et al., 2009. Relative scaling of color and TOC within design regions also taken from Valade et 164 

DAF or SettlingDAF
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al., 2009. Raw water quality statistical information from PL and PR taken from Anderson et al., 165 
2017 and Hohner et al., 2016, respectively.  166 
 167 
Figure 1 demonstrates that shifts in raw water quality from BSEs can change the optimal design 168 
of a DWTP. Optimal clarification design guidance is summarized in Valade et al., 2009 and 169 
Gregory and Edzwald, 2011 (see Table 9.9 in that work).42 Utilizing raw quality data from 170 
Pockwock Lake (PL) in 1999, a designer using the optimality paradigm may recommended 171 
direct filtration (DF) to save costs by excluding any clarification step.13 Similarly, an optimality-172 
based designer presented with PR data in 2011 may consider DAF clarification in an attempt to 173 
save space and capital costs. DAF systems can be operated at a loading rate 10-20 times greater 174 
than conventional gravity sedimentation.43 However, a DAF design may struggle post wildfire, 175 
as resampled turbidities are significantly greater than the pre-fire condition. The J.D. Kline 176 
Water Supply Plant (JDKWSP) utilizing PL was designed as a direct filtration facility. This 177 
design was optimal at the time; in 1999 water quality was within the DF design region in 92% of 178 
simulations. However, JDKWSP is now straining to meet treatment goals due to lake recovery as 179 
the raw water typically exceeds the recommended limits for a DF facility. Figure 1 shows raw 180 
water quality exceeding the recommended color limit of the DF design region 58% of 181 
simulations. As a DF facility, few mitigative options are available. For the first time in 35 years, 182 
the JDKWSP recently increased its coagulation (alum) dose by 50%,44 which may have negative 183 
higher-order effects associated with increased levels of effluent aluminum and subsequent 184 
changes on distribution system corrosion.45 Recent pilot-scale research at JDKWSP has also 185 
examined cationic polymers, and larger filter media. Neither mitigation approach was completely 186 
successful and now physical plant upgrades are being considered. To what conditions the plant 187 
might be optimized in the future remains unclear.44 The situation at JDKWSP exemplifies 188 
difficulties presented by BSEs to drinking water systems. The Fort Collins Water Treatment 189 
Facility, which treats surface water from the Poudre River watershed, rapidly constructed a 190 
presedimentation basin as a response to observed turbidity volatility following a major wildfire.39 191 
 192 
Fragile, Resilient, and Antifragile 193 
 194 
Future BSEs and general volatility are difficult to predict, so it is more profitable to define a 195 
system based on relative impact from stress. This approach has again been popularized in 196 
financial markets through stress testing.46 The three primary relationships to stress may be 197 
described as fragile, resilient, and antifragile. A fragile system has severe negative outcomes 198 
from volatility, a resilient system has minor negative outcomes from volatility with relatively 199 
quick recovery, while an antifragile system has positive outcomes from volatility. Mathematical 200 
expressions of all three terms exist;47 however, model-free and probability-free heuristics can 201 
also be used to assess fragility, resilience, and antifragility based on a convex relationship to 202 
volatility.48 Fragile and antifragile systems have negative and positive convex relationships with 203 
volatility, respectively, while resilience has a linear relationship with volatility. Here, we apply a 204 
heuristic approach to identifying fragile, resilient, and antifragile PWS based on convexity using 205 
data from full-scale DWTPs,  206 
 207 
Fragility, resilience/robustness, and antifragility are currently present in contemporary full-scale 208 
DWTPs. Examples of each include the Lake Major Water Supply Plant (#1 Fragile); the 209 
Providence Water System (#2 Resilient) and for two surface water sourced DWTPs in New 210 
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England (#3 Antifragile). The Lake Major Water Supply Plant and the Providence Water System 211 
are also both surface water sourced systems. 212 
 213 
Fragile. The Lake Major Water Supply Plant (LMWSP) was commissioned in 1999 as a 214 
conventional sedimentation facility treating a high-quality source, Lake Major (LM). The 215 
LMWSP serves the same general population as JDKWSP: Halifax, Canada. Similar to Pockwock 216 
Lake, Lake Major has also experienced lake recovery since commission, resulting in an increase 217 
in raw water algal organics, as noted by color measurements, shown in Figure 2. Algae challenge 218 
conventional sedimentation-based DWT plants in two ways: the algal organic matter exhibits an 219 
increased coagulant demand, and algal particles settle quite slowly due to specific gravities ≤ 1.49 220 
The LMWSP has few mitigative operational controls, and has increased alum dosing in response 221 
to increased water color. Figure 2 shows an exponential (e.g., convex) relationship between raw 222 
water color and required alum dose. This indicates accelerating problematic fragility to further 223 
increases in water color. For example, an increase in color 5 units from 25 to 30 resulted in an 224 
alum increase of 20%, while the same 5 unit increase from 42 to 47 resulted in an alum increase 225 
of almost 50%. Results indicate accelerating problems and risk of system failure with further 226 
increase in raw water color, even if only incremental. Significant increases in alum dose carry 227 
the potential for numerous negative second-order effects, such as increased chemical costs, 228 
decreased filter run times, increased solids handling stress, and increased distribution system 229 
corrosion.44 230 
 231 
 232 

 233 
 234 
Figure 2. Yearly mean raw water color and corresponding coagulant dose at the Lake Major 235 
Water Supply Plant from 1999 through 2015. Data from Anderson et al., 2017. Note the non-236 

y=x

y = y0+(a*exp(b*x))
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linear (e.g., convex) relationship between color and required alum dose demonstrating fragility. 237 
Incremental increases in color above 40 CU led to exponential increases in alum dose.   238 
 239 
Resilient. The Providence Water Supply Board (PW) operates the largest conventional DWTP in 240 
the Northeast USA. PW has a history of providing safe water service but recent, occasional 241 
issues with disinfection byproducts (DBPs), especially total trihalomethanes (TTHMs), have 242 
occurred including an maximum contaminant limit (MCL) violation in 2018.50 One particular 243 
DBP monitoring site tends to control MCL compliance; a large elevated storage tank in a remote 244 
part of the system. PW had recently installed a THM-stripping aeration system in the tank, just 245 
prior to the BSE of the COVID-19 pandemic. Changes in commuting and other behavioral 246 
patterns led to changes in water usage within the service area’s urban core. Water ages increased, 247 
and thus the THM formation also increased. Trihalomethane formation potential (THMFP) is a 248 
function of several drivers including precursory organic carbon, residual chlorine concentrations, 249 
temperature, and water age.51 Methods exists for estimating site-specific THMFP based on 250 
dissolved organic carbon (DOC), UV absorbance, and other water quality parameters.52,53 Using 251 
an approach outlined in [52] the THMFP for PW effluent is estimated to range from 100 to 150 252 
µg/L, significantly greater than the 80 µg/L MCL for TTHMs. 253 
 254 
The increase in water age created stress on the PW system to meet the MCL. Results in Figure 3 255 
show rapidly increasing THMs in March 2020, with one sample above 70 µg/L. Aeration was 256 
initiated in April. Aeration within the storage tank was effective at decreasing THMs in the 257 
delivered water, and THM values decreased to well below the MCL. The impact of aeration is 258 
also noted in July 2020 when aeration was temporarily ceased. The use of aeration represents a 259 
form of resilience for PW. Given serious stress from the COVID-19 BSE (increase in THMs), 260 
the system was able to mitigate the damage, and continue to meet treatment goals, after a 261 
temporary increase in delivered water THMs. There is a linear (non-convex) relationship 262 
between volatility and THMs as the presence of aerators provides a switch-on recovery option 263 
that can be utilized as needed. This THM mitigative approach generally meets the NIAC 264 
definition of resilience: “the ability to reduce the magnitude and/or duration of disruptive events 265 
through the ability to anticipate, absorb, adapt to, and/or rapidly recover.”27  266 
 267 
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 268 
 269 
Figure 3. Total trihalomethane (TTHM) concentrations measured as at an elevated storage tank 270 
within a problematic water age area of the Providence Water (PW) system from December 2019 271 
through November 2020. Shaded regions represent periods when an aeration system inside the 272 
elevated storage tank was in operation. PW THM formation potential estimated to be 100 to 140 273 
µg/L.  274 
 275 
Resilience may also be considered at the system level. In general, the more diverse a system is 276 
(e.g. multiple sources and/or production) the more resilient it is to a particular disruption; while a 277 
highly centralized system is more fragile.29 The relationship between centralization and fragility 278 
has been commonly explored in a financial context (e.g. “a diversified portfolio”), however, 279 
recent work has advocated for water supply systems to not be reliant upon a single source of 280 
water.54 A comparison between the water systems of Rhode Island, USA and Singapore 281 
demonstrates this difference. The PW system, consisting of one conventional water treatment 282 
plant, provides water to approximately two-thirds of Rhode Island residents, as many 283 
communities outside of Providence are wholesale customers through interconnections. While 284 
this is efficient, it also fragile as any BSE or other disruption at the PW treatment plant would 285 
impact potable water access to much of the state. Contrastingly, the Singapore Four National 286 
Taps approach includes water imports, direct potable reuse (i.e., NEWater), desalination, and 287 
runoff from local catchments. These four sources, each with different treatment processes, 288 
represents a semi-decentralized system with much less fragility from a BSE that might disrupt an 289 
individual component of the PWS. Decentralized water infrastructure has been described as a 290 
distinguishing characteristic of the “Water Sensitive City”,55 with the aim of reducing the harm 291 
from extreme events and ensuring service security for residents.56   292 
 293 
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Decentralized systems also support intergenerational equality and environmental justice.56 In the 294 
electricity planning field, one tool to accomplish this is “islanding”, whereby decentralized 295 
energy suppliers are managed in a way to protect consumers from blackouts, ensuring the 296 
security of supply.57–59 Within water networks, infrastructure that can be disconnected from the 297 
main centralized water system if it is compromised would continue as a source of clean water 298 
when in island mode, promoting public health and safety, supply security, and overall regional 299 
livability.55 300 
 301 
Antifragile. Options for incorporating antifragility in PWS are available. For example, 302 
Manganese (Mn) is a contaminant of concern in the drinking water field, based on emerging 303 
health risks, aesthetic concerns, and recent regulation by Health Canada.60 Current USEPA non-304 
enforceable guidance on Mn is through a secondary maximum contaminant level (SMCL) of 50 305 
µg/L, although there is no scientific basis for this SMCL, and aesthetic concerns still commonly 306 
occur at this level.61 The typical treatment goal for finished water Mn is 20 µg/L.62 Mn presents 307 
challenges to surface water systems, as raw water Mn concentrations can be highly variable; 308 
changing an order of magnitude or more within days.63 This volatility challenges chemical 309 
oxidation treatment, such as meeting stoichiometry.64 However, auto-catalytic Mn(II) (e.g. 310 
“greensand”) adsorption and subsequent free chlorine regeneration has been successful Mn 311 
removal approach. This auto-catalytic process exhibits antifragile characteristics, as the adsorbed 312 
Mn from the source water is rapidly converted by free chlorine to MnOx sites for additional 313 
Mn(II) adsorption.65 Thus, increases in raw water Mn produce increased adsorption capacity of 314 
subsequent raw water Mn(II), creating a positive, reinforcing cycle.  315 
 316 
Figure 4 includes raw and combined filter effluent (CFE) Mn concentrations for two surface 317 
water sourced DWTPs in New England. For both facilities, CFE Mn levels were lower as raw 318 
water Mn increased. In other words, treatment improved as contaminant concentrations 319 
increased. There is a positive convex relationship between raw water Mn and CFE Mn. Plant S 320 
more consistently achieved CFE Mn treatment goals when influent Mn was ≥ 50 µg/L, and met 321 
the treatment goal despite raw water Mn far exceeding 100 µg/L. This process is clearly beyond 322 
resilient and improves as raw water conditions deteriorate. Adequate Mn treatment does not 323 
require precise prediction or measurement of raw water Mn, nor a full understanding of the 324 
causes of raw water Mn fluctuations. Loss of MnOx coating from media surfaces is a likely cause 325 
of CFE Mn exceeding raw water Mn in the case of both facilities in Figure 4. This coating loss is 326 
a function several parameters including free chlorine residual across the media, backwashing 327 
practices, and filter run times.66 MnOx coating loss can be controlled by balancing these 328 
operational parameters with other water quality objectives on a case-by-case basis.62  329 
 330 
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 331 
 332 
Figure 4.  Combined filter effluent manganese (Mn) concentrations as a function of influent raw 333 
water Mn concentration for two surface water treatment plants with seasonal manganese 334 
problems. Data from Goodwill, 2006.  335 
 336 
The use of coagulation for the removal of DBP precursors (e.g., “enhanced coagulation” but 337 
perhaps best called “multi-objective coagulation”)67 is another example of an antifragile process 338 
common in water treatment systems. Aromatic, hydrophobic, higher molecular weight (MW) 339 
carbon compounds are more preferentially addressed by coagulation with metal salts due to 340 
charge interactions between cationic metal hydrolysis products and anionic humic 341 
macromolecules with carboxyl and phenolic groups.68,69 This is fortunate, as these same fractions 342 
of NOM also tend to have higher halogenated DBP yields due to the same unsaturated and 343 
aromatic moieties that have relatively high electron-donating capability.70,71 Therefore, as 344 
concentrations of higher DBP-forming compounds in raw water increases greater removals via 345 
enhanced coagulation are expected. This antifragile characteristic is acknowledged in The 346 
USEPA Stage 1 D/DBP Rule which requires higher removals of organic matter as aromatic and 347 
hydrophobic portion increases, as quantified by specific ultra-violet absorbance (SUVA).67  348 
 349 
Incorporating the Antifragility Paradigm into Potable Water Systems  350 
 351 
Antifragility can be incorporated into a PWS by applying physicochemical processes that are 352 
known to do well under a given set of raw water quality volatility. This process requires two 353 
general steps: (1) knowledge of individual processes that increase antifragility and (2) a design 354 
evaluation approach that enable antifragile process selection under a given volatility parameter 355 
(e.g., what processes have positive convexity to this volatility parameter?). We present two 356 
examples of emerging antifragile treatment processes and describe new design tools and how 357 
they may be used. Diverging from the optimality paradigm will inherently lead to increased 358 

Typical Treatment Goal
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costs, and we also present opportunities to include real options analysis for the assessment of 359 
antifragile and financial trade-offs.  360 
 361 
Individual Processes. Two examples of emerging, individual processes that may increase 362 
antifragility of PWS include: (1) ferrate (Fe(VI)) preoxidation and (2) magnetic (nano)particulate 363 
iron oxides.   364 
 365 
Fe(VI), a high-valent oxo-anion of iron,72 has been considered and evaluated as a potential 366 
preoxidant (i.e. occurring before the primary particle removal step) in DWT.73 Preoxidation is 367 
sometimes utilized as a response to BSEs, such as chemical spills,74 wildfires,75 and algal 368 
blooms76 to mitigate organic contaminants and/or improve downstream performance. Fe(VI) has 369 
a high reduction potential that is comparable to other strong oxidants in DWT such ozone (O3) 370 
and chlorine dioxide (ClO2).77 Similar performance in oxidative transformation of organic and 371 
inorganic targets between Fe(VI) and O3 has been noted, including DBP precursors,78 372 
manganese,79 arsenic,80 and algal toxins.81 Unlike O3 and ClO2, however, Fe(VI) does not require 373 
on-site generation. A production method for stable, high-purity K2FeO4(s) salts has been 374 
developed,82 which forms the basis for recent commercial applications. Also Fe(VI) generally 375 
leads to lower yields of active bromide and bromate than O3,83 due to the simultaneous in situ 376 
formation of H2O2 during Fe(VI) decay,84 which reduces HOBr to Br-.85 Fe(VI) does not form 377 
chlorite or chlorate, unlike ClO2, and is not known to directly from any other regulated 378 
byproducts.72 379 
 380 
This difference in generation between O3/ClO2 (on-site) and K2FeO4 (off-site) makes Fe(VI) a 381 
way for increasing antifragility of a water system. K2FeO4 can be acquired as needed, stored 382 
onsite as a stable salt, and added as conditions dictate. In this way, use of K2FeO4 is similar to 383 
powdered activated carbon usage for managing urgent events. However, Fe(VI) leads to benefits 384 
to multiple water treatment physicochemical processes including (pre)oxidation, coagulation, 385 
clarification, and disinfection.73,86 These multimodal benefits enable production of water quality 386 
better than baseline, in spite of a sudden deterioration in raw water quality. For example, bench-387 
scale testing has demonstrated lower post-clarification water turbidities following an algae spike 388 
than was otherwise achievable.87 Similar results related to ferrate use in natural disaster 389 
emergency contexts have been noted at the point-of-use (POU) scale.88,89   390 
 391 
K2FeO4 dissolves in water to produce Fe(VI) which is a relatively strong oxidant, leading to the 392 
transformation of various reduced targets stemming from a BSE including algae and algal toxins, 393 
90,91 chemical spills (e.g. Methyl tert-Butyl Ether).92 This Fe(VI) can also be activated using 394 
common shelf-stable reductants, such as sulfite, forming radicals Fe(V) and SO4•- in situ that are 395 
capable of transforming recalcitrant organics.93,94 Following oxidation, Fe(VI/V) is reduced to 396 
Fe(III) which is insoluble in most water treatment contexts. These in situ formed iron particles 397 
have unique characteristics including polydisperse diameters,95 magnetism,96 and core-shell 398 
architecture.97 Ferrate resultant particles then participate in coagulation,98 flocculation,91 399 
clarification, and adsorption processes.97,99 This multimodal action enables antifragility in 400 
response to volatility. For example, a water utility experiencing an unforeseen chemical spill 401 
could deploy ferrate as needed to oxidize the pollutant, while simultaneously decreasing 402 
disinfection byproducts, and improving coagulation beyond typical baseline operations. Thus, 403 
the as needed deployment of shelf stable K2FeO4 as represents a step towards antifragility. In 404 
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contrast to MnOx, Fe(VI)-derived benefits are from the use of the technology itself,  not a 405 
synergistic effect of the degraded water quality. Fe(VI), in several forms, could also be 406 
conducive to consistent use as part of baseline operations.   407 
 408 
Iron oxide nanoparticles (IONPs), exclusive of the ferrate context, also provide antifragility to 409 
PWS through the combination of adsorption and magnetic separation.100 Iron oxide nanoparticles 410 
comprised of magnetite (Fe3O4) or maghemite (g-Fe2O3) exhibit superparamagnetic properties 411 
and relatively high adsorption capacities for various drinking water contaminants. These IONPs 412 
can be synthesized off site, stored and used as needed by a PWS, like powdered activated carbon. 413 
However, unlike PAC, IONPs can be selectively recovered via magnetic separation, and 414 
reused.101 IONPs were found to decrease the concentration Rhodamine B dye in aqueous solution 415 
by > 60% with no significant decrease in adsorption capacity after five cycles of magnetic 416 
separation and chemical regeneration. Magnetic-based separations have demonstrated 417 
effectiveness of > 95%, using commercially available permanent magnet systems.101,102 The use 418 
of magnets may also improve flocculation and separation of non-magnetic particles assuming 419 
attachment to an IONP. Magnetic attraction between superparamagnetic IONPs in a magnetic 420 
field would serve to increase aggregation rate, from a DLVO perspective. Therefore, addition of 421 
IONPs in response to an algal bloom, forest fire, or chemical spill could enable improved water 422 
quality more than if the BSE had not occurred. For example, modeling magnetic filtration of 423 
activated sludge particles comprised of 10% IONPs by volume with stainless steel wool (M = 424 
0.2T) indicate filtration performance 100-times more effective than a conventional gravity filter 425 
with media collectors.103 In this way, IONPs represent a “switch on” method for achieving 426 
antifragility (similar to K2FeO4); however, they may also be used outside of periods of volatile 427 
water quality and provide benefits during more typical periods.    428 
 429 
Design Tools. A water system designer interested in incorporating antifragile processes into a 430 
drinking water plant requires new tools for guidance and evaluation. Current and historical 431 
process design under the optimality paradigm follows a multistep deterministic approach: (1) 432 
characterization of raw water quality and establishment of treatment goals; (2) jar testing and 433 
pilot studies and (3) selection of treatment processes optimized to conditions during jar testing 434 
and piloting. This approach produces treatment facilities that are generally minimized for cost 435 
given a required baseline performance. However, a six-month pilot test has a low probability of 436 
evaluating a BSE, and the system design has opacity to what future conditions a particular 437 
process might need to be antifragile to. In other words, incorporation of antifragile processes 438 
requires a lens to systematically evaluate weakness prior to picking antifragile processes. This 439 
establishes a potentially beneficial relationship with future volatility that is a key characteristic of 440 
an antifragile system.29 441 
 442 
Artificial neural networks (ANNs) are a biologically-inspired computational model generally 443 
consisting of an input layer, hidden layer(s), and an output layer.104  There are many different 444 
forms of ANNs and their corresponding models are trained and built using multiple methods and 445 
calibrated using large data sets such that the weights between different neurons and hidden layers 446 
can be estimated.105 ANNs offer several advantages over traditional modeling approaches and 447 
are well-suited for drinking water treatment applications because: (1) associations between 448 
inputs and outputs are “learned” from historical data without having to specify the form of the 449 
model; (2) results of ANN runs are robust to noisy or discontinuous data; (3) a detailed 450 
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understanding of the processes (i.e. treatment process) is not necessary, only an understanding of 451 
the factors that influence the processes; and (4) they are fast (increases in computer processing 452 
speeds have reduced the time needed to train and evaluate these models).106,107 For example, 453 
Shariff et al. 2004 used an ANN for modelling a full-scale drinking water treatment facility lime 454 
clarification process and reported r-squared value of 0.92 for the ANN model versus 0.41 for the 455 
USEPA Water Treatment Plant Model. ANNs have been used for simultaneous prediction of 456 
turbidity and DOC removal for a conventional surface water treatment plant configuration as a 457 
function of source water quality parameters and chemical use.108 Results from Kennedy et al., 458 
2015 indicate that ANNs can be used to provide an evaluation of the impact on DOC changes (as 459 
measured by individual parallel factor analysis components) on the coagulation process and 460 
turbidity removal. This enables virtual jar testing of future water quality scenarios that were not 461 
present during the original experiments. Coagulation of the turbidity and/or DOC event caused 462 
by a BSE (e.g., wildfire, accelerating lake recovery, or hurricane) can be evaluated prior to 463 
occurrence, allowing for development of antifragile elements into the physicochemical 464 
processes. In other words, shifts in water quality presented in Figure 1 could be simulated to 465 
“stress test” and assess impact on coagulation/clarification performance before they occur, and 466 
identify potential chemical combinations and operational settings that perform better as the same 467 
shifts occur.  468 
 469 
Beyond bench-scale, pilot testing can also be improved with digital tools to achieve antifragility, 470 
primarily by simulating performance during extreme events prior to their occurrence. 471 
Developments in pilot-testing have led to the development of “proven perfect” pilot-scale 472 
systems that closely replicate their full-scale counterparts, as demonstrated by paired t tests to 473 
confirm the production of statistically equivalent water quality.109 Knowles et al., 2012 describes 474 
this process for the JDKWSP. This particular pilot system has been used to established possible 475 
physicochemical solutions to lake recovery, albeit after the negative impacts from lake recovery 476 
were realized.44 Pilot-scale systems that are proven to represent full-scale performance can be 477 
combined with digital twins to “stress test” a proposed process system design before problems 478 
arise, and proactively select and incorporate antifragile processes. A digital twin is a dynamic 479 
simulation model that visually integrates system components, and can be combined with data 480 
variations to understand the sensitivity of a physical system to input perturbation.110  481 
 482 
Essentially, these digital twins enable the typical process design question to be flipped: what 483 
types of future BSEs is the system fragile (e.g., negative convexity)? Curl et al. 2020 refers to 484 
this approach as “failure analysis”. In this application the failure is virtual, and information 485 
generated can be used to select processes that would perform better when the same BSE occurs 486 
(e.g., positive convexity). In this way the designer is empowered to systematically increase the 487 
antifragility of a water treatment system. The drinking water treatment space is currently 488 
experiencing early adoption of digital twins. For example, the City of San Diego (California, 489 
USA) is developing a digital twin of its North City Pure Water Facility, a component of their 490 
water reuse program.110  This digital twin operates via one-second time steps, and fully replicates 491 
system hydraulics and process performance. The city intends to employ the digital twin to 492 
improve future performance to operational challenges.  493 
 494 
Investment Considerations. Investments in antifragility may require capital cost outlays, 495 
behavioral changes and localized downtime or inconvenience as systems are altered from the 496 
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original deterministic designs. Investment in antifragility therefore requires demonstration of 497 
benefits that outweigh the costs – benefits such as improved performance, increased long-term 498 
(i.e., intergenerational) water security. Tradeoff analysis such as this is the realm of decision 499 
science, and the application to antifragility investment follows. 500 
 501 
Tradeoff analysis is the analytical core of Decision Making under Deep Uncertainty.111 Figure 5 502 
summarizes one approach. For the sake of illustration, we select four desired attributes of the 503 
proposed water treatment system: 1) low capital cost; 2) low operating costs; 3) high baseline 504 
performance; and 4) low fragility. The three design options in this case, as presented in Figure 1, 505 
are direct filtration (DF), sedimentation (Sed.), and dissolved air flotation (DAF). In the 506 
illustration, DF has the lowest capital costs and sedimentation has the highest capital costs. Why, 507 
then, would one choose to build sedimentation over DF? One motivating factor might be the 508 
higher baseline performance offered by sedimentation. But that baseline performance is 509 
calculated, as discussed in the Design Considerations section above, with reference to the 510 
particular raw water characteristics observed in the historical case, and it changes depending on 511 
whether the designer believes that those historical raw water characteristics will continue into the 512 
future or shift in some anticipatable fashion. Shifts in raw water characteristics will affect 513 
estimates of operating costs, and the system fragility. 514 
 515 
 516 
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 517 
 518 
Figure 5. Real options analysis decision tree framework for the comparison of three clarification 519 
designs: Direct filtration (DF), gravity sedimentation (e.g., conventional settling), and dissolved 520 
air flotation (DAF). Capital and operational costs, and baseline performance taken from Gregory 521 
and Edzwald, 2011.  522 
 523 
One method for navigating uncertainty in future raw water characteristics when designing a 524 
water system is to enumerate a decision tree.112 This approach, sometimes referred to (especially 525 
in applications to financial decision making) as real options analysis (ROA, see for example 526 
Ranger et al. (2010)),113 involves stepping through branches of distinct uncertainties. Each 527 
uncertainty is discretized into easily understood categories of exogenous variable such as “high”, 528 
“medium”, or “low”. Endogenous variables (such as “build this” or “build X amount of that” or 529 
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“don’t build”) are decision points at the left-hand side of decision trees. In higher-order complex 530 
decision trees, endogenous decision points can be interspersed throughout the branches of the 531 
tree to represent decision staging and adaptive design. Figure 5 includes only a single 532 
endogenous decision point (build DF or Sedimentation or DAF), and two exogenous variables to 533 
which the performance of the treatment plant is sensitive: climate change, discretized into 534 
“high”, signifying rapid global warming over the treatment plant’s design life, and “low” 535 
signifying less rapid global warming; and forest management, discretized into “yes” or “no”. 536 
Climate change increases ambient air temperatures and speeds the hydrologic cycle, resulting in 537 
lower base flows during dry periods and higher velocity flow during wet periods. Each condition 538 
creates raw water quality challenges, as described in the introduction. Forest management is 539 
costly (and controversial), but has potential to reduce evapotranspiration, reduce forest fire risks, 540 
and improve soil retention. Forest management also benefits source water protection,114 which 541 
can be considered the first step in water treatment,115 from a multiple barrier perspective by 542 
decreasing contaminant load in source waters. For the sake of illustration, these two variables are 543 
presented as independent, i.e., forest management policy has no bearing on climate change 544 
magnitude, and climate change magnitude has no bearing on forest management policy. 545 
 546 
Scenarios are formulated as combinations of the fully enumerated decision tree, in this case: high 547 
climate change and forest management, high climate change without forest management, low 548 
climate change and forest management, low climate change without forest management. Once 549 
the scenarios are enumerated, variable values (e.g., water temperature, sediment load) are 550 
assigned to represent each condition, and the performance of each treatment option is simulated 551 
for each variable setting. Simulations might be accomplished with an ANN, a physically based 552 
model, or a “digital twin”, as discussed earlier. As shown in Figure 5, the baseline performance 553 
of each treatment option is differently responsive to the altered conditions. In the case of low 554 
climate change and forest management, DF might be the preferred choice as it is lowest in cost 555 
with comparable baseline performance, and only slightly elevated fragility. However, in the case 556 
of high climate change and no forest management, sedimentation might be the preferred choice, 557 
with its high baseline performance and relatively low fragility. DAF appears the best option in 558 
the case of low climate change without forest management, with its moderate costs, high baseline 559 
performance and very low fragility. Probabilistic weighting and risk hedging is needed before a 560 
final decision can be made. 561 
 562 
Climate change carries deep uncertainty. The Intergovernmental Panel on Climate Change 563 
(IPCC) Sixth Assessment Report presents possible climate futures as a function of potential 564 
reductions in carbon dioxide and other greenhouse gas emissions. The extent of realized global 565 
warming will affect the climate system in numerous ways, including precipitation extremes, and 566 
more intense tropic cyclones.116 It is impossible to know whether “high” climate change or “low” 567 
will occur, and it is impossible to know whether the next set of politicians will opt for forest 568 
management or not. However, in order to overcome the paralysis created by the uncertainty 569 
regarding future watershed conditions, we weight possible future conditions by likelihood of 570 
occurrence and calculate the expected value of each performance metric across the uncertainty 571 
space as shown in Equation 1.  572 
 573 
 𝜉 = ∑ 𝑝!𝜉!!∈# 											∀𝑠 (Equation 1) 574 
 575 
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Where xs is the value of the realization of the particular performance metric under consideration 576 
in some future aggregate scenario (climate change level and forest management condition) s, and 577 
p is the probability of that aggregate scenario. x is the expected value of the performance metric 578 
across the likelihood-weighted future conditions. 579 
 580 
Expected values are not the only metrics of interest and depending on the risk aversion (or 581 
relative optimism) of the particular decision maker, there might be more or less focus placed on 582 
extreme values – best-case and worst-case performance of each water treatment plant design 583 
option. Finally, likelihoods could be assigned in this case, for example, by consulting the most 584 
up-to-date science on global climate change produced by the Intergovernmental Panel on 585 
Climate Change, and local experts on the history and likely future management of local forests. 586 
The process of likelihood weighting is inexact, and best subjected to sensitivity analysis (i.e., 587 
repeated evaluation changing likelihoods and re-determining the preferred decision). See Ray et 588 
al. (2012) for an example exploration of the sensitivity of staged climate change adaptation 589 
decisions to changes in scenario likelihoods.117 590 
 591 
Conclusion 592 
The deterministic approach to drinking water system design has served society well and led to 593 
safe supplies of water at low costs; however, these optimized water systems carry the indirect 594 
cost of fragility. This fragility has become increasingly problematic as source water volatility and 595 
other extreme events have increased. This increased variability makes reliance on stationarity 596 
unsustainable. Water system design has begun to increase emphasis on resilience, although this 597 
paradigm still has an adversarial relationship with volatility. Pursuing antifragility in water 598 
systems creates a different relationship with change, whereby system processes are placed in a 599 
position to perform better as conditions change with less reliance on future forecasts. Processes 600 
conveying antifragility can be included into PWS designs by new tools powered by ANNs, 601 
including virtual jar and pilot testing, that allow for systematic evaluation of convexity. 602 
Including antifragile components into a PWS will inherently cost more than an option optimized 603 
for lowest cost. Therefore, developing antifragile characteristics represents a trade-off between 604 
performance and cost. Real options analysis is one way for water system designers to consider 605 
this trade-off. Ultimately, more research on antifragile designs and costs is required to ensure 606 
long-term performance and sustainability of public water systems in an era of increasing 607 
volatility.  608 
 609 
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