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Abstract: While the influence of several factors on battery electric vehicle (BEV) efficiency has
been investigated in the past, their impact on traffic is not yet fully understood, especially when
driving in a natural environment. This paper investigates the influence of driving in intense traffic
conditions while considering the ambient temperature and driving behavior on BEV energy efficiency
in a field study. A total of 30 BEV inexperienced drivers test drove a 2017 Volkswagen eGolf on a
route with various road types in two different traffic intensity scenarios: During morning commute
hours with higher traffic congestion and lower congestion hours throughout the middle of the day.
Results support the hypothesis that traffic conditions significantly impact the vehicle’s efficiency,
with additional consumption of approximately 4–5% in the high traffic scenario. By creating and
comparing driving in traffic to an underlying base case scenario, the additional range potential by
avoiding traffic for this particular vehicle can be quantified as up to seven miles. New patterns of BEV
efficiencies emerged, which can help stakeholders understand how eco-driving can be strategically
improved by selecting trip times and routes that avoid high traffic intensity.

Keywords: battery electric vehicle; traffic; driving behavior; eco-driving; efficiency

1. Introduction

The increasing popularity of electric-powered vehicles is a promising sign for achiev-
ing more sustainable transportation systems. Within the past few years, United States (U.S.)
sales of electric vehicles (EVs), including battery electric vehicles (BEVs) and plug-in hybrid
electric vehicles (PHEVs), have proliferated, reaching over 295,000 units in 2020 [1]. Mean-
while, BEVs have become increasingly important, representing 78% of the 2020 U.S. EV
sales [1]. Although commonly seen as a low-carbon and environmentally friendly option,
BEVs have noteworthy drawbacks, such as limited battery capacities and driving range,
leading to ‘range anxiety’. This phenomenon describes the fear of running out of energy
before reaching a charging station [2,3]. Along with insufficient charging infrastructure [4],
the limited range of BEVs represents a significant barrier for a comprehensive transition to
BEVs [5–8].

One way of overcoming BEV drawbacks associated with a limited driving range and
‘range anxiety’ is to apply eco-driving strategies. Eco-driving on an operational level can
improve the vehicle’s fuel economy through behavioral adjustments (e.g., speed, idling,
cruise control, heating, ventilation, and air conditioning) [9,10]. While eco-driving strategies
for internal combustion engine vehicles (ICEVs) are widely known, they do not necessarily
apply to BEVs due to fundamental differences in their drivetrain and their characteristics
(e.g., source of force, the ability of recuperation). These differences also account for changes
in the energy consumption behavior of BEVs in traffic. Understanding how traffic intensities
(i.e., high traffic intensity correlates with high congestion, high variation in acceleration, and
high variation in jerk) impact BEV efficiency is crucial to deriving specific and successful
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eco-driving strategies, creating opportunities for eco-routing, and, finally, facilitating the
widespread adoption of BEVs.

Different factors influencing the energy consumption of BEVs have been explored
in the past. For example, Sivak and Schoettle [10], and Arend and Franke [11] found
that the application of eco-driving strategies, including route selection and, thus, the
consideration of traffic, can extend the range of BEVs. In addition, driving behavior,
external and technical factors influence BEV efficiency. While the initial state of charge
(SOC) of the battery was not found to impact BEV efficiency significantly [12], the ambient
temperature [12–18], and the use of auxiliaries (e.g., ventilation, air conditioning, and cruise
control) do correlate significantly with the energy consumption of BEVs [13,16,17,19–23].
For example, Bartels et al. [12] found in their field study that there was no relationship
found between the initial SOC at the beginning of a drive and the energy consumed.
Instead, their results indicated a significant direct impact of the ambient temperature on
the SOC consumed [12]. In addition to the direct impact, temperature can increase the
need for additional charging through heating and cooling. For example, Kambly and
Bradley [13] modeled differences in cabin thermal comfort conditioning loads across the
United States based on the 2009 National Household Transportation Survey. The authors
stated that air conditioning, which is more likely used in warmer regions, increased the
energy consumption of EVs significantly. Furthermore, Yuksel and Michalek [17] used the
same survey data and supported findings in [12,13]. The authors posited that BEV energy
consumption was higher in colder regions of the United States and that air conditioning
and heating negatively impact efficiency. In Badin et al. [19], a simulation-based approach
was used to analyze EV energy consumption influencing factors. The study revealed that
the additional load of auxiliaries (e.g., cruise control and air conditioning) could increase
the energy consumption while the impact varies with the vehicle speed. Another study by
Johnson [21] supported evidence of the effect of air conditioning on a vehicle’s efficiency
through simulations. By analyzing actual driving cycles, Bingham et al. [23] found that
additional loads through heating and air conditioning require consideration in travel
planning and user behavior due to their decreasing effect on achievable ranges of BEVs.
Additionally, Haworth and Simmons [22] posited that the use of cruise control and constant
travel speed could increase the efficiency of vehicles.

So far, literature exploring the impact of traffic has focused on ICEV fuel. However,
traffic can ultimately impact EV efficiency through its influence on vehicles’ speed profile.
While existing studies have derived conclusions about the impact of traffic on BEVs from
related findings (e.g., speed, acceleration, travel time), the current literature lacks a com-
prehensive study aiming to explore the impact of traffic on BEV efficiency in a naturalistic
environment. For example, Agrawal et al. [24] found that BEVs used less energy at lower
speeds and, thus, inferred that BEVs are more efficient in traffic. The authors investigated
three categories, including four speed levels, changes in speed during traffic (e.g., stop-and-
go-traffic), and potential energy loss. The authors use simulation models to compare costs
for ICEVs and BEVs while using different cost functions for the two types of vehicles. The
authors conclude that BEVs choose low-speed routes to reduce energy consumption and
range anxiety. Fiori et al. [25] supported these findings through their simulation models.
However, both studies disregard the human element of driving and the impact of other
factors, such as temperature and traffic. Instead, another study [26] found that their EV
conversion was more efficient during in-city driving than freeway driving and derived a
positive relationship between higher traffic intensities in cities and BEV energy efficiency.
The authors did not account for actual traffic intensities, differences in road characteristics
between freeways and local roads, or speed profiles. Furthermore, in [26], data were
collected based on a single driver, disregarding variation in driving styles and potential
aggressiveness between individuals. In [27], a freeway network aiming to optimize BEV
driving paths and charging procedures was modeled. The authors considered different
factors while minimizing travel time in their objective function. The study found that
higher traffic volume leads to an increase in route options, which reduce travel time while
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increasing energy consumption. Galvin’s model was considered in [27], describing the
relationship between speed and BEV energy consumption through regression models [28].
The model describes the minimum energy consumption of BEVs at approximately 38 miles
per hour under consistent acceleration [28]. Logically, an increase in acceleration requires
more power, leading to lower efficiency per unit distance [28].

Based on the studies mentioned above and the speed–energy relationship described by
Galvin’s model, it is questionable whether a difference in BEV energy consumption can be
found on the same route with different traffic intensities. To the best of our knowledge, no
study has yet focused on exploring this question. Therefore, there is a gap in investigating
the influence of traffic on BEV energy consumption based on a sophisticated field study
with a variegated sample of drivers. This study aims to close this gap while considering
the attributes of driver behavior and real-world environmental conditions, such as tem-
perature. For this purpose, the scope of this research is to explore whether BEVs are less
efficient during commuting hours compared to driving in a less traffic-intense scenario.
Furthermore, if the results of this study indicate a significant relationship between traffic
and BEV efficiency, a quantification of this effect is intended.

The remainder of the paper will present the methodology, results, discussion, and
conclusion. In Section 2, we describe the methodology for our experimental environment,
data collection, data processing, and the statistical analysis. In Section 3, the results are
evaluated and compared through the different ANOVA models, followed by an overarching
discussion in Section 4. We provide concluding remarks in Section 5, summarizing key
results, limitations, and potential areas for future research.

2. Materials and Methods

In a naturalistic driving experiment with several exogenous variables, it is crucial to
mitigate their impact to the extent possible. The design of the experiment and the methods
for the analysis were chosen accordingly and are summarized in Figure 1. This chapter will
describe them in more detail.
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Figure 1. Methodological framework.

2.1. Experimental Design

In this study, BEV driving data were collected from a total of 30 drivers, each driving a
2017 Volkswagen eGolf twice on a predetermined test route. The eGolf is equipped with a
134-horsepower electric motor and a 35.8 kWh battery pack [29]. Like other electric vehicles,
the eGolf can recuperate energy while braking, depending on the drive mode chosen. The
participants’ recruitment was conducted at a midsized research institution and consisted of
12 female and 18 male drivers with an average age of 23.73 years and a standard deviation
of 2.56 years. To ensure a homogeneous degree of BEV experience in the sample and
mitigate the effect of BEV driving experience on energy efficiency [30,31], only drivers with
no previous experience in driving a BEV were selected. The test route was located in Wash-
ington County, Rhode Island, and covered different road types (i.e., local roads, collectors,
arterials, and freeway/expressway) with a total distance of 27.6 miles [32]. Two scenarios
with assumed differences in traffic intensities were constructed to analyze and quantify
the impact of traffic on BEV energy consumption. The scenarios were differentiated by
controlling the time of the day since commuter patterns impact traffic intensities. Previous
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work has found these patterns by focusing on BEV utilization patterns [33,34] and air
pollution [35]. Therefore, in scenario 1 (S1), drives were conducted between 7:30 a.m. and
9:00 a.m. during peak traffic intensity. Low-intensity traffic scenario 2 (S2) test drives were
not started before 10:00 a.m. and scheduled to be completed before 4:30 PM to exclude the
impact of light conditions and afternoon congestion on driving behavior [18]. Furthermore,
all drives were conducted on dry roads, during stable weather conditions, and with good
visibility; otherwise, they were rescheduled. The data collection period started in early
April and ended in early June of 2019. The ambient temperatures were monitored and
ranged between 36 ◦F and 73 ◦F. Regardless of the ambient temperature, the vehicle’s inside
temperature was set to 68 ◦F. Windows always remained closed to keep the aerodynamic
drag constant. The 2017 Volkswagen eGolf offers different driving modes (i.e., B, D, D1, D2,
and D3) [12], which differ in the intensities of recuperation and acceleration. In this research,
the recuperation mode ‘D’ was used, which recuperated energy only while applying the
brakes and was considered closest to driving in a conventional vehicle.

The vehicle’s data were extracted through a data logger from the third-party company
FleetCarma, which was plugged into the On-Board Diagnostics port (OBD-ll) system. The
data were accessed and downloaded from the FleetCarma website and used for further
calculations. The tracking rate was mainly at 1 Hz. Data included the timestamp, the
speed, the GPS location, the battery current, the battery voltage, the initial SOC, and the
ambient temperature.

2.2. Data Processing

Data processing was automated through a project-specific code using the Pandas [36]
and Matplotlib [37] packages in Python. In the first step, the data were cleaned to ensure
equal starting and ending points and exclude noise. To this end, rows of data before the
uniform starting coordinates and after the uniform ending coordinates were removed for
each drive. During the period of data collection, road construction occurred on the test route.
Because of impacts on the speed profiles of the trials, the respective stretch of approximately
2.1 miles between the construction starting point (N 41◦ 25′ 55.654”, W 71◦ 36′ 26.071′′) and
ending point (N 41◦ 25′ 45.394′′, W 71◦ 34′ 5.883′′) had to be removed from the data sets.
The total net distance of the cleaned drives considered for the analysis was approximately
25.5 miles. Different variables were calculated for each test drive (i.e., energy consumption
per mile, average variation of speed, average variation of acceleration, average variation of
jerk, and average ambient temperature). Table 1 summarizes the computed variables, the
respective units, and a description of the computation procedure.

Table 1. Target measures and explanation of computation.

Measure Unit Methodology of Calculation

Total energy consumption kWh
Transform wattage and voltage information provided
at 1 Hz intervals to kWh using power-law and
energy equation.

Total distance miles Sum of speed information (miles/hr) provided at 1 Hz
intervals is divided by the total duration of the drive.

Average consumption per mile kWh/mile Total energy consumption of the drive is divided by
the total distance.

Mean variation in speed miles/s Overall standard deviation of speed for the drive.

Mean variation in acceleration miles/s2
Acceleration is derived from speed at a frequency of
1 Hz. Then the standard deviation is computed for
each drive.

Mean variation in jerk miles/s3
Jerk is derived from acceleration at a frequency of 1 Hz.
Then the standard deviation is computed for
each drive.

Mean ambient temperature ◦F Average of ambient temperature information at 1 Hz.

As previously mentioned, most data were tracked at a rate of 1 Hz. By applying the
power-law and the electrical energy equation, the total energy consumption in kWh could
be calculated for each drive. Each trial’s total distance was calculated using the vehicle’s
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speed for every second. GPS data were not accurate enough since they were refreshed at
a rate of 4 Hz. Finally, the average consumption per mile [kWh/mile] could be derived
by dividing the total absolute difference in the SOC or ∆SOC [kWh] by each drive’s total
distance. Therefore, the average consumption can also be denoted as average ∆SOC/mile.
The variation in speed was calculated as the standard deviation of speed for each trial.
The vehicle’s acceleration could be derived from the vehicle’s speed at a rate of 1 Hz and
its standard deviation computed for each drive. The same procedure was undertaken for
variation in jerk, which describes the difference in acceleration over the difference in time.
Each test drive’s ambient temperature was calculated as the mean temperature over the
total duration of a drive.

2.3. Statistical Methods

This research evaluates differences in energy consumption due to different traffic
intensity scenarios while including important factors about the driver and ambient temper-
ature. Statistical tests were performed in R [38] using the packages glm2 [39], olsrr [40], and
tidyverse [41]. For all regression models in this study, a Bonferroni corrected confidence in-
terval was calculated and used to reduce the possibility of Type I error (i.e., a false-positive
result) [42]. Following the sample size, a significance level of α = 0.10 was chosen for the
Bonferroni correction in all statistical tests [43].

Initially, all trials were split into subsamples based on the scenario. To test these
subsamples for differences in means of average ∆SOC/mile, a paired sample t-test was
used. Under consideration of the subsample sizes (n = 30), normality tests were carried
out to meet conditions for applying a t-test using the Shapiro–Wilk test [44]. Differences
in traffic intensities between the two scenarios were investigated accordingly. Traffic flow
data were not available for the test route. Hence, measures based on speed (i.e., variation
in speed, acceleration, and jerk) could be used to provide potential evidence for differences
in traffic intensities between the test scenarios. Especially variation in acceleration and
jerk have a high effect on traffic movement and vice versa [45]. While the subsamples
were tested for differences in means for all measures, the standard deviation of jerk is
a reliable proxy to represent traffic intensities. Whether the subsamples differed in the
ambient temperature was investigated using an unpaired t-test as the ambient temperature
is independent of the participants’ behavior.

For the purpose of this field study with several exogenous factors, a multiple linear
regression was considered appropriate [46]. In [12], this method was previously applied
successfully. The average energy consumption ∆SOC/mile was the dependent variable in
this study. Dummy variables were constructed to analyze factors of a categorical nature
(i.e., driver and traffic scenario). For example, the two scenarios were treated as binary
dummy variables, where ‘1’ represents driving in a more congested traffic scenario (S1) and
‘0’ in a less congested traffic scenario (S2). The factor scenario was considered an ordered
factor since the traffic intensity of S2 was lower than the one in S1. The same approach
was applied to the factor driver. ‘1’ indicates that the individual is driving, and ‘0’ that the
individual is not driving. In contrast to the factor scenario, the factor driver was treated
as an unordered factor. Finally, all critical assumptions of the multiple linear regressions
were assessed. An analysis of variance (ANOVA) for the regression model was carried
out to test dependent variables for significance. Furthermore, a stepwise regression was
applied to find a potentially better fitting model. Two additional regression models were
created to test potential interaction effects. One accounted for the interaction between
driver and scenario, and the other for the interaction between ambient temperature and
scenario. To assess all regression models and compare their goodness of fit, the coefficient of
determination (R2

adj) was evaluated according to the guidelines described in [47] for models
with endogenous latent variables. Cohen [47] distinguishes between a weak explanation
of variance (0.02 ≤ R2 < 0.13), a moderate explanation of variance (0.13 ≤ R2 < 0.26), and a
strong explanation of variance (R2 ≥ 0.26).
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To identify the range impact of driving in a more traffic intense scenario, the achievable
range of driving in a traffic intense scenario S1 was compared to an underlying base case.
This base case consisted of the less-traffic-intense scenario S2 and the driver whose average
consumption was closest to the sample’s overall average in both scenarios. The base case’s
ambient temperature was set as 68 ◦F since this represents the battery service life optimal
ambient temperature [48,49].

3. Results

Before carrying out the regression analysis, the two scenarios had to be investigated
for differences in the vehicle’s mean average energy consumption and ambient temper-
ature. The dependent continuous measure average ∆SOC/mile of both subsamples was
approximately normally distributed based on the Shapiro–Wilk test. Table 2 summarizes
the descriptive statistics for the average energy consumption per mile of both scenarios.
It shows that all measures of central tendency and the quartiles, the minimum, and the
maximum consumption were higher in the presumably more traffic-intense scenario S1.
Driving in S2 was related to a higher standard deviation than driving in S2. In S1, the
vehicle had an average energy consumption of 0.2330 kWh with a standard deviation of
0.1600 kWh and a median of 0.2327 kWh. In S2, lower energy consumption with an overall
average of 0.2172 kWh, a standard deviation of 0.0126 kWh, and a median of 0.2181 kWh
could be observed.

Table 2. Descriptive statistics of the average consumption per mile for both scenarios.

Scenario N Mean St. Dev. Minimum Q25 Median Q75 Maximum

S1 30 0.2330 0.0160 0.1966 0.2214 0.2327 0.2433 0.2632
S2 30 0.2172 0.0126 0.1893 0.2104 0.2181 0.2255 0.2379

Figure 2 displays boxplots for the vehicle’s consumption in each scenario and supports
the mentioned differences visually. The paired two-sided t-test (p = 0.000) did further
indicate a difference in means of the average ∆SOC/mile.
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The two scenarios were investigated regarding the differences in ambient temperature
means and the following traffic measures: Average variation in speed, acceleration, and
jerk. All measures of both subsets were found to be approximately normally distributed
according to the Shapiro–Wilk test. An unpaired t-test showed that the means of ambient
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temperature between the scenarios differed significantly (p = 0.002). While there was no
evidence that the means of variation in speed did differ significantly between the subsets
(p = 0.873), the other two traffic measures (i.e., variation in acceleration and variation in
jerk) did show a significant difference between the scenarios with higher means in S1
(p = 0.068; p = 0.063).

A linear relationship between the independent numeric variables (i.e., ambient tem-
perature) and the numeric dependent variable (i.e., ∆SOC/mile) is a sine qua non condition
for applying linear regression models. A linear regression analysis was carried out with
only ambient temperature as the independent variable to test this relationship’s existence.
A significant regression (p = 0.000; R2 = 0.296) demonstrated that the BEV’s kWh/mile
decreases with an increase in ambient temperature.

Another regression model was carried out with the explanatory variables scenario,
driver, and ambient temperature. The predicted energy consumption equals 0.230 + 0.010
(Scenario)− 0.001 (Temperature) + βi (Driver i), where the scenario is coded as 0 = No traffic,
1 = Traffic, the temperature is measured in Fahrenheit, and the driver is coded as 0 = Driver
was not driving, 1 = Driver was driving for all 30 drivers. Table 3 contains the results of
the ANOVA. For testing all three factors for their significance, the Bonferroni-corrected
significance level was α = 0.0333. The two independent variables, scenario (p = 0.0083)
and ambient temperature (p = 0.0027), showed statistical significance for the dependent
variable, average ∆SOC/mile. The factor driver did not appear to be statistically significant
(p = 0.1311). The model’s adjusted coefficient of determination (R2

adj) was 0.5219. The
Shapiro–Wilk test showed that the residuals followed a normal distribution (p = 0.9373).
Following this model, the base case would lead to an average energy consumption of
0.2181 kWh/mile when driving in S2 at 68 ◦F. Instead, driving in S1 with a higher traffic
intensity would increase consumption by approximately 4.5% and end up in an average
of 0.2279 kWh/mile.

Table 3. ANOVA for initial multiple linear regression.

Source df SS F Value Pr (>F)

(Intercept) 1 0.0166 130.1294 0.0000 ***
S1 1 0.0098 8.0568 0.0083 **

Temperature 1 0.0014 10.8679 0.0027 **
Driver 29 0.0057 1.5322 0.1311

Residuals 28 0.0086
Note. ** p ≤ 0.01, *** p ≤ 0.001.

A stepwise regression was performed to explore the potential of a better-fitting model.
This regression model removed the driver from the initial model and led to a predicted
energy consumption of 0.272 + 0.011 (Scenario) - 0.001 (Temperature). With two remaining
factors, the significance criteria were given a Bonferroni corrected significance level of
α = 0.05. The ANOVA, as summarized in Table 4, shows that both variables, scenario
(p = 0.0023) and ambient temperature (p = 0.0001), remain significant. This regression
model had an R2 of 0.4130 and R2

adj of 0.3924. The Shapiro–Wilk test for normality showed
that the residuals are normally distributed (p = 0.9274). This model led to an average
consumption in the underlying base case of 0.2043 kWh/mile. This consumption increases
by approximately 5.4% to 0.2154 kWh/mile when driving in S1.

Table 4. ANOVA for stepwise regression model.

Source df SS F Value Pr (>F)

(Intercept) 1 0.0649 399.2361 0.0000 ***
S1 1 0.0017 10.1915 0.0023 **

Temperature 1 0.0027 16.8666 0.0001 ***
Residuals 57 0.0093

Note. ** p ≤ 0.01, *** p ≤ 0.001.
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Two more regression models were created to account for interactions between
driver and scenario, or temperature and scenario. When accounting for the interac-
tion between the factors scenario and driver, the predicted energy consumption equals
0.244 + βi (Driveri:Scenario) − 0.001 (Temperature). Table 5 contains the results of the
ANOVA with a Bonferroni corrected significance level of α = 0.05. No factor was found
statistically significant, nor did the residuals follow a normal distribution (p = 0.000). The
model had a coefficient of determination of 0.424.

Table 5. ANOVA for regression model with driver–scenario interaction.

Source df SS F Value Pr (>F)

(Intercept) 1 0.0259 167.9696 0.0000 ***
Driver:S1 30 0.0066 1.4298 0.1723

Temperature 1 0.0003 2.0526 0.1630
Residuals 28 0.0043

Note. *** p ≤ 0.001.

According to the last model accounting for the interaction effect between the factors
ambient temperature and scenario, the predicted energy consumption equals 0.244 + 0.000
(Temperature:Scenario) + βi (Driveri). Table 6 summarizes the ANOVA of this regression
analysis. There was evidence of a significance of the interaction effect between temperature
and scenario for the average energy consumption of the vehicle (p = 0.000). However,
the factor driver did not show statistical significance for the outcome of the dependent
variable. The model had an R2

adj of 0.2688, and the residuals followed a normal distribution
according to the Shapiro–Wilk test for normality (p = 0.6685).

Table 6. ANOVA for regression model with temperature–scenario interaction.

Source df SS F Value Pr (>F)

(Intercept) 1 0.0913 466.7415 0.0000 ***
Driver 29 0.0076 1.3442 0.2153

Temperature:S1 1 0.0031 15.7264 0.0004 ***
Residuals 29 0.0057

Note. *** p ≤ 0.001.

4. Discussion

This section discusses the findings of this study and its implications for the operation
and improvement of BEVs. First and foremost, the finding concerning the latter supported
previous research results on the existence of higher levels of traffic intensity or congestion
outcome during morning commutes [45]. Higher variations in acceleration and jerk appear
more frequently in the morning (S1) than in the afternoon (S2), providing evidence that
differences in traffic intensities exist between the scenarios. These results align with EV
commuter patterns previously found in [33–35]. However, future research should consider
real-time traffic data and use a higher tracking frequency than 1 Hz. Real-time traffic data
would improve the granularity of the data while allowing the analysis of traffic intensities
as a continuous variable. Neither traffic data nor a higher tracking frequency were available
for this study.

Second, a paired two-sided t-test was performed and provided evidence that mean
consumptions indeed differed. More specifically, higher consumptions were found when
driving in the more traffic-intense scenario S1, which supports Galvin’s model [28]. To
explore whether lower means in efficiency in S1 were caused by differences in the traffic
intensities between the two scenarios or another considered factor, multiple linear regres-
sion analyses were performed and compared by their goodness of fit. The initial regression
model considered the factors ambient temperature, driver, and scenario separately. While
the traffic scenario and ambient temperature were significant for the vehicle’s energy effi-
ciency, the factor driver was not. Driving in a more intense traffic scenario decreased BEV
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efficiency. Ambient temperature was negatively related to the vehicle’s average ∆SOC/mile.
With a coefficient of determination of R2

adj = 0.522, the model had a robust explanation of
variance. A stepwise regression led to a model that no longer included the factor driver.
While the factors ambient temperature and scenario were again significant for the outcome
of the dependent variable, the stepwise regression did not lead to a better-fitting model. In
other words, R2

adj = 0.3924 was strong but lower than the initial model.
Two further multiple linear regression analyses were carried out to assess potential

interaction effects between the scenario and one of the remaining two factors. An interaction
effect between driver and traffic scenario was not found. This model’s residuals did not
follow a normal distribution and, therefore, violated a fundamental assumption of the
linear regression analysis. Instead, a model with the interaction effect between ambient
temperature and traffic scenario showed normally distributed residuals. This model
gave evidence of the significance of a temperature–scenario interaction for BEV efficiency.
Although an R2

adj of 0.2688 can still be considered a strong explanation of variance, it was
half of the initial model’s explanation rate. Therefore, the first model, which considered all
factors separately, explained the highest percentage of variance and, hence, had the highest
goodness of fit.

In summary, the regression models’ results have provided evidence that traffic signifi-
cantly impacts BEVs’ energy consumption. While a negative relationship between ambient
temperature and a BEV’s energy consumption was expected and aligned with previous
findings in the literature [12–18], novel findings emerged about the efficiency behavior of
BEVs in traffic. Previous studies focusing on BEV in-traffic behavior were either based on
simulation models [24,25,27], leaving out the human element of driving, or were focusing
on speed profiles to derive energy consumption behavior in traffic [26]. However, different
speeds can have similar flow rates, offering the potential for endogeneity. This study
provides evidence that traffic decreases BEV efficiency while using a different approach to
analyze BEV consumption behavior associated with traffic in a field study with a sample of
human drivers. However, the driver’s insignificance should be treated carefully since the
literature has shown the impact of driving behavior in the past [10,11]. A potential reason
for this outcome could be similarities in the participants’ driving behavior. Therefore, future
studies should include a broader and more diverse sample of drivers to capture differences
in driving styles and BEV experience. A diverse sample could contribute to understanding
how traffic impacts BEV efficiency in correlation with different driving styles.

The initial regression model was used to quantify the range implications of driving in
traffic, which predicted the average consumption most accurately. Accordingly, driving in
a scenario with higher traffic intensity increased the energy consumption by approximately
4.5%. This supports the notion that driving during times with less traffic (S2) would
increase the achievable range of a fully charged test vehicle with a battery capacity of
35.8 kWh by more than seven miles. It should be mentioned that the range potential varies
among vehicles, battery capacities, drivers, ambient temperatures, and traffic intensities.

5. Conclusions

This study provides an approach to analyzing the impact of traffic on electric vehicles’
energy consumption while considering the human element of individual driving behaviors.
To this end, two scenarios were differentiated by their traffic intensity based on the time of
the day. The results demonstrate by applying a multiple linear regression that driving in
a more traffic-intense scenario decreases BEV efficiency. More specifically, the road tests
revealed that the test vehicle’s average energy consumption per mile was significantly
higher during typical commuting hours in the morning. While this was already acquainted
with ICEVs, the study discovered that this effect applies to BEVs, contradicting previous
findings derived solely from the analysis of speed profiles. Despite having the capability
to recuperate energy, a higher variation in speed during in-traffic driving seems to cause
energy losses that significantly reduce BEV efficiency. Thus, this work adds to the exist-
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ing literature by extending the body of knowledge about BEV energy consumption in a
naturalistic setting that can facilitate operation and adoption.

In the future, more priority should be given to understanding the range implications
of traffic and other factors on BEV energy consumption in a natural environment. To
this end, this study could be extended by including a more diverse sample of drivers
with different levels of driving experience and real-time traffic flow data to better account
for differences in driving behavior and traffic intensities. However, the findings here
can be considered a good starting point for systematically understanding BEVs’ energy
consumption behavior in different traffic situations under real-world conditions. The
results offer opportunities for more precise BEV range estimations, which can increase
public confidence in the performance of EVs. Furthermore, considering traffic in eco-driving
strategies allows BEV users to improve their achievable ranges and reduce range anxiety.
Moreover, the results and their consideration could mitigate current adoption barriers
and generally facilitate BEV ownership, thus supporting the electrification of national and
global transportation systems.
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Abbreviations

B Braking Energy Recuperation: Very High
BEV Battery Electric Vehicle
D Conventional Braking Setting
D1 Braking Energy Recuperation: Light
D2 Braking Energy Recuperation: Medium
D3 Braking Energy Recuperation: High
EV Electric Vehicle
GPS Global Positioning System
ICEV Internal Combustion Engine Vehicle
OBD-II On-Board Diagnostics Port-II
PHEV Plug-in Hybrid Electric Vehicle
S1 Scenario 1: Peak traffic intensity
S2 Scenario 2: Low-intensity traffic
SOC State of Charge
U.S. United States

References
1. IEA. Global EV Data Explorer. Available online: https://www.iea.org/articles/global-ev-data-explorer (accessed on

1 October 2021).
2. Tate, E.; Harpster, O.; Savagian, P. The Electrification of the Automobile: From Conventional Hybrid, to Plug-in Hybrids, to

Extended-Range Electric Vehicles. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2009, 1, 156–166. [CrossRef]
3. Franke, T.; Schmalfuß, F.; Rauh, N. Ergonomics and Human Factors for a Sustainable Future. In Ergonomics and Human Factors for

a Sustainable Future: Current Research and Future Possibilities; Palgrave Macmillan: Singapore, 2018. [CrossRef]
4. Dua, R.; White, K.; Lindland, R. Understanding Potential for Battery Electric Vehicle Adoption Using Large-Scale Consumer

Profile Data. Energy Rep. 2019, 5, 515–524. [CrossRef]
5. Bühler, F.; Cocron, P.; Neumann, I.; Franke, T.; Krems, J.F. Is EV Experience Related to EV Acceptance? Results from a German

Field Study. Transp. Res. Part F Traffic Psychol. Behav. 2014, 25, 34–49. [CrossRef]

https://www.iea.org/articles/global-ev-data-explorer
http://doi.org/10.4271/2008-01-0458
http://doi.org/10.1007/978-981-10-8072-2_6
http://doi.org/10.1016/j.egyr.2019.04.013
http://doi.org/10.1016/j.trf.2014.05.002


World Electr. Veh. J. 2022, 13, 15 11 of 12

6. Egbue, O.; Long, S. Barriers to Widespread Adoption of Electric Vehicles: An Analysis of Consumer Attitudes and Perceptions.
Energy Policy 2012, 48, 717–729. [CrossRef]

7. Graham-Rowe, E.; Gardner, B.; Abraham, C.; Skippon, S.; Dittmar, H.; Hutchins, R.; Stannard, J. Mainstream Consumers Driving
Plug-in Battery-Electric and Plug-in Hybrid Electric Cars: A Qualitative Analysis of Responses and Evaluations. Transp. Res. Part
A Policy Pract. 2012, 46, 140–153. [CrossRef]

8. Schmalfuß, F.; Mühl, K.; Krems, J.F. Direct Experience with Battery Electric Vehicles (BEVs) Matters When Evaluating Vehicle
Attributes, Attitude and Purchase Intention. Transp. Res. Part F Traffic Psychol. Behav. 2017, 46, 47–69. [CrossRef]

9. Beloufa, S.; Cauchard, F.; Vedrenne, J.; Vailleau, B.; Kemeny, A.; Mérienne, F.; Boucheix, J.-M. Learning Eco-Driving Behaviour in
a Driving Simulator: Contribution of Instructional Videos and Interactive Guidance System. Transp. Res. Part F Traffic Psychol.
Behav. 2017, 61, 201–216. [CrossRef]

10. Sivak, M.; Schoettle, B. Eco-Driving: Strategic, Tactical, and Operational Decisions of the Driver That Influence Vehicle Fuel
Economy. Transp. Policy 2012, 22, 96–99. [CrossRef]

11. Arend, M.G.; Franke, T. Eco-Driving from the Perspective of Behavioral Economics: Implications for Supporting User-Energy
Interaction. In Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018); Bagnara, S., Tartaglia, R.,
Albolino, S., Alexander, T., Fujita, Y., Eds.; Springer International Publishing: Berlin, Germany, 2019; pp. 887–895.

12. Bartels, R.L.; Kowalsky, D.; Jonas, T.; Macht, G.A. Ease of EVs: Exploring Factors That Influence Battery Consumption. Int. J.
Sustain. Transp. 2019, 14, 701–709. [CrossRef]

13. Kambly, K.R.; Bradley, T.H. Estimating the HVAC Energy Consumption of Plug-in Electric Vehicles. J. Power Sources 2014, 259,
117–124. [CrossRef]

14. Alvarez, R.; Weilenmann, M. Effect of Low Ambient Temperature on Fuel Consumption and Pollutant and CO2 Emissions of
Hybrid Electric Vehicles in Real-World Conditions. Fuel 2012, 97, 119–124. [CrossRef]

15. Fontaras, G.; Pistikopoulos, P.; Samaras, Z. Experimental Evaluation of Hybrid Vehicle Fuel Economy and Pollutant Emissions
over Real-World Simulation Driving Cycles. Atmos. Environ. 2008, 42, 4023–4035. [CrossRef]

16. Fontaras, G.; Zacharof, N.G.; Ciuffo, B. Fuel Consumption and CO2 Emissions from Passenger Cars in Europe–Laboratory versus
Real-World Emissions. Prog. Energy Combust. Sci. 2017, 60, 97–131. [CrossRef]

17. Yuksel, T.; Michalek, J.J. Effects of Regional Temperature on Electric Vehicle Efficiency, Range, and Emissions in the United States.
Environ. Sci. Technol. 2015, 49, 3974–3980. [CrossRef] [PubMed]

18. Jägerbrand, A.K.; Sjöbergh, J. Effects of Weather Conditions, Light Conditions, and Road Lighting on Vehicle Speed. Rev. Port.
Imunoalergol. 2016, 23, 223–230. [CrossRef]

19. Badin, F.; Berr, F.L.; Briki, H.; Petit, M.; Magand, S.; Condemine, E. Evaluation of EVs Energy Consumption Influencing Factors.
World Electr. Veh. J. 2013, 6, 1–12. [CrossRef]

20. Nemry, F.; Leduc, G.; Mongelli, I.; Uihlein, A. Environmental Improvement of Passenger Cars (IMPRO-Car); OPOCE:
Luxembourg, 2008. [CrossRef]

21. Johnson, V.H. Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach. SAE Tech. Pap. Ser.
2010, 1. [CrossRef]

22. Haworth, N.; Symmons, M. The Relationship Between Fuel Economy and Safety Outcomes. Report No. 188. 2001. Available
online: https://www.monash.edu/muarc/archive/our-publications/reports/muarc188 (accessed on 4 September 2021).

23. Bingham, C.; Walsh, C.; Carroll, S. Impact of Driving Characteristics on Electric Vehicle Energy Consumption and Range. IET
Intell. Transp. Syst. 2012, 6, 29. [CrossRef]

24. Agrawal, S.; Zheng, H.; Peeta, S.; Kumar, A. Routing Aspects of Electric Vehicle Drivers and Their Effects on Network Performance.
Transp. Res. Part D 2016, 46, 246–266. [CrossRef]

25. Fiori, C.; Arcidiacono, V.; Fontaras, G.; Makridis, M.; Mattas, K.; Marzano, V.; Thiel, C.; Ciuffo, B. The Effect of Electrified
Mobility on the Relationship between Traffic Conditions and Energy Consumption. Transp. Res. Part D Transp. Environ. 2019, 67,
275–290. [CrossRef]

26. Wu, X.; Freese, D.; Cabrera, A.; Kitch, W.A. Electric Vehicles’ Energy Consumption Measurement and Estimation. Transp. Res.
Part D Transp. Environ. 2015, 34, 52–67. [CrossRef]

27. Liu, Q.; Wang, W.; Hua, X. Path Planning Method for Electric Vehicles Based on Freeway Network. J. Adv. Transp. 2021. [CrossRef]
28. Galvin, R. Energy Consumption Effects of Speed and Acceleration in Electric Vehicles: Laboratory Case Studies and Implications

for Drivers and Policymakers. Transp. Res. Part D Transp. Environ. 2017, 53, 234–248. [CrossRef]
29. Volkswagen, D. 2017 EGolf Technical Specifications. 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=

&esrc=s&source=web&cd=&ved=2ahUKEwj_mIOlqYz1AhUP3aQKHXXnAd8QFnoECAIQAQ&url=https%3A%2F%2Fmedia.
vw.com%2Fassets%2Fdocuments%2Foriginal%2F9221-2019eGolfTechnicalSpecifications.pdf&usg=AOvVaw1P5-J2w6AA0w3
CE3Rf0JWC (accessed on 4 September 2021).

30. Rauh, N.; Günther, M.; Franke, T.; Krems, J.F. Increasing the Efficient Usage of Electric Vehicle Range-Effects of Driving Experience
and Coping Information. Transp. Res. Procedia 2017, 25, 3619–3633. [CrossRef]

31. Cocron, P.; Bühler, F.; Franke, T.; Neumann, I.; Dielmann, B.; Krems, J.F. Energy Recapture through Deceleration-Regenerative
Braking in Electric Vehicles from a User Perspective. Ergonomics 2013, 56, 1203–1215. [CrossRef] [PubMed]

32. Division of Statewide Planning-Rhode Island. Highway Functional Classification Definitions. Available online: http://www.
planning.ri.gov/planning-areas/transportation/highway-functional-classification-definitions.php (accessed on 4 March 2019).

http://doi.org/10.1016/j.enpol.2012.06.009
http://doi.org/10.1016/j.tra.2011.09.008
http://doi.org/10.1016/j.trf.2017.01.004
http://doi.org/10.1016/j.trf.2017.11.010
http://doi.org/10.1016/j.tranpol.2012.05.010
http://doi.org/10.1080/15568318.2019.1610920
http://doi.org/10.1016/j.jpowsour.2014.02.033
http://doi.org/10.1016/j.fuel.2012.01.022
http://doi.org/10.1016/j.atmosenv.2008.01.053
http://doi.org/10.1016/j.pecs.2016.12.004
http://doi.org/10.1021/es505621s
http://www.ncbi.nlm.nih.gov/pubmed/25671586
http://doi.org/10.1186/s40064-016-2124-6
http://doi.org/10.1109/EVS.2013.6914723
http://doi.org/10.2791/63451
http://doi.org/10.4271/2002-01-1957
https://www.monash.edu/muarc/archive/our-publications/reports/muarc188
http://doi.org/10.1049/iet-its.2010.0137
http://doi.org/10.1016/j.trd.2016.04.002
http://doi.org/10.1016/j.trd.2018.11.018
http://doi.org/10.1016/j.trd.2014.10.007
http://doi.org/10.1155/2021/3030050
http://doi.org/10.1016/j.trd.2017.04.020
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj_mIOlqYz1AhUP3aQKHXXnAd8QFnoECAIQAQ&url=https%3A%2F%2Fmedia.vw.com%2Fassets%2Fdocuments%2Foriginal%2F9221-2019eGolfTechnicalSpecifications.pdf&usg=AOvVaw1P5-J2w6AA0w3CE3Rf0JWC
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj_mIOlqYz1AhUP3aQKHXXnAd8QFnoECAIQAQ&url=https%3A%2F%2Fmedia.vw.com%2Fassets%2Fdocuments%2Foriginal%2F9221-2019eGolfTechnicalSpecifications.pdf&usg=AOvVaw1P5-J2w6AA0w3CE3Rf0JWC
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj_mIOlqYz1AhUP3aQKHXXnAd8QFnoECAIQAQ&url=https%3A%2F%2Fmedia.vw.com%2Fassets%2Fdocuments%2Foriginal%2F9221-2019eGolfTechnicalSpecifications.pdf&usg=AOvVaw1P5-J2w6AA0w3CE3Rf0JWC
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj_mIOlqYz1AhUP3aQKHXXnAd8QFnoECAIQAQ&url=https%3A%2F%2Fmedia.vw.com%2Fassets%2Fdocuments%2Foriginal%2F9221-2019eGolfTechnicalSpecifications.pdf&usg=AOvVaw1P5-J2w6AA0w3CE3Rf0JWC
http://doi.org/10.1016/j.trpro.2017.05.326
http://doi.org/10.1080/00140139.2013.803160
http://www.ncbi.nlm.nih.gov/pubmed/23767823
http://www.planning.ri.gov/planning-areas/transportation/highway-functional-classification-definitions.php
http://www.planning.ri.gov/planning-areas/transportation/highway-functional-classification-definitions.php


World Electr. Veh. J. 2022, 13, 15 12 of 12

33. Gonder, J.; Markel, T.; Simpson, A.; Thornton, M. Using Global Positioning System Travel Data to Assess Real-World Energy Use
of Plug-In Hybrid Electric Vehicles. Transp. Res. Rec. 2017, 2007, 26–32. [CrossRef]

34. Pearre, N.S.; Kempton, W.; Guensler, R.L.; Elango, V.V. Electric Vehicles: How Much Range Is Required for a Day’ s Driving?
Transp. Res. Part C 2011, 19, 1171–1184. [CrossRef]

35. Liu, S.V.; Chen, F.-L.; Xue, J.X. Evaluation of Traffic Density Parameters as an Indicator of Vehicle Emission-Related near-
Road Air Pollution: A Case Study with NEXUS Measurement Data on Black Carbon. Int. J. Environ. Res. Public Health 2017,
14, 1581. [CrossRef]

36. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,
Austin, TX, USA, 28 June–3 July 2010; pp. 56–61. [CrossRef]

37. Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
38. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015.
39. Marschner, I.C. Glm2: Fitting Generalized Linear Models with Convergence Problems. R J. 2011, 3, 12–15. [CrossRef]
40. Hebbali, A. Olsrr: Tools for Building OLS Regression Models, R package version 0.5.3; R Foundation for Statistical Computing:

Vienna, Austria, 2020.
41. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al.

Welcome to the {tidyverse}. J. Open Source Softw. 2019, 4, 1686. [CrossRef]
42. Bonferroni, C. Il Calcolo Delle Assicurazioni Su Gruppi Di Teste. Studi in onore del Professore Salvatore Ortu Carboni 1935.
43. Leamer, E.E. Specification Searches: Ad Hoc Inference with Nonexperimental Data; Wiley: New York, NY, USA, 1978.
44. Shapiro, S.; Wilk, M. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [CrossRef]
45. Ge, H.X.; Zheng, P.J.; Wang, W.; Cheng, R.J. The Car Following Model Considering Traffic Jerk. Phys. A Stat. Mech. Its Appl. 2015,

433, 274–278. [CrossRef]
46. Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; Wiley: Hoboken, NJ, USA, 2013.
47. Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988. [CrossRef]
48. Iora, P.; Tribioli, L. Effect of Ambient Temperature on Electric Vehicles’ Energy Consumption and Range: Model Definition and

Sensitivity Analysis Based on Nissan Leaf Data. World Electr. Veh. J. 2019, 10, 2. [CrossRef]
49. Zhang, J.; Lee, J. A Review on Prognostics and Health Monitoring of Li-Ion Battery. J. Power Sources 2011, 196, 6007–6014. [CrossRef]

http://doi.org/10.3141/2017-04
http://doi.org/10.1016/j.trc.2010.12.010
http://doi.org/10.3390/ijerph14121581
http://doi.org/10.25080/majora-92bf1922-00a
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.32614/RJ-2011-012
http://doi.org/10.21105/joss.01686
http://doi.org/10.1093/biomet/52.3-4.591
http://doi.org/10.1016/j.physa.2014.11.013
http://doi.org/10.4324/9780203771587
http://doi.org/10.3390/wevj10010002
http://doi.org/10.1016/j.jpowsour.2011.03.101

	Quantifying the Impact of Traffic on Electric Vehicle Efficiency
	Creative Commons License
	Citation/Publisher Attribution

	Introduction 
	Materials and Methods 
	Experimental Design 
	Data Processing 
	Statistical Methods 

	Results 
	Discussion 
	Conclusions 
	References

