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Abstract: We study the asymptotic behavior as p — oo of the Gelfand problem

—Aju=21e" nQcR"
u=20 on 0Q.

Under an appropriate rescaling on u and A, we prove uniform convergence of solutions of the Gelfand
problem to solutions of

min {|Vu| — Ae",—Aou} =0 inQ,
u=20 on 0Q.

We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of A.
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1. Introduction

We are interested in the asymptotic behavior as p — oo of sequences of solutions of the problem
{—Apu =Ade" inQcR"

1.1
u=20 on 0Q). (1.1)

In the case p = 2, problem (1.1) is known as the Liouville-Bratu-Gelfand problem [5, 22, 37]; see
also [15,26]. It appears in connection with prescribed Gaussian curvature problems [9,37], emission of
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electricity from hot bodies [40], and the equilibrium of gas spheres and the structure of stars [8,17,42].
Problem (1.1) with p = 2 was also studied by Barenblatt in relation to combustion theory in a volume
edited by Gelfand [22]. For general p, problem (1.1) is often known in the literature as the “Gelfand
problem” or a “Gelfand-type problem”. It was studied by Garcia-Azorero, Peral, and Puel in [20,21];
see also [7,24,41] and the references therein.

The asymptotic study of p-Laplacian problems as p — oo offers a qualitative and quantitative
understanding of their solution sets for large p, see [4, 10-13, 18,30]. Additionally, they have been
used in [23] to obtain optimal bounds for the diameter of manifolds in terms of their curvature.

In [4,10-13, 18, 30], the authors study limits of p-Laplacian equations with power-type right-hand
sides and combinations of these. In all these cases, the parameter A is allowed to vary with p in order
to get nontrivial limits of sequences {u,,}, of solutions to the corresponding p-Laplacian problem;
namely,

A7 > A and uy,, —>u asp— .

With an exponential right-hand side, the solution sets change more drastically as p — o0 and more
severe rescalings become necessary. To take limits in (1.1), we consider

—Ayup,, = A, €7 in Q (12)
uy,p =0 on 0Q,
with the rescaling
/11/17
14
— > A asp— . (1.3)
p
Under this normalization, we prove that any uniform limit
u
WAL as p — o0 (1.4)
p
is a viscosity solution of the limit problem
min {|Vu| — Aée", —A,ut =0 in Q,
{Ivu = (1.5
u=20 on 0Q.

It is worth noting that in [38], the authors consider problem (1.1) without the rescalings (1.3)
and (1.4). They obtain that, regardless of A, the solutions u, converge uniformly as p — oo to the
unique viscosity solution of

min {|Vu| — 1, —Aypu} =0 inQ,
u=>0 on 09,

which is the distance function to the boundary of the domain. As the authors of [38] acknowledge
in their paper, this result is not unexpected since for each nonnegative function f € L*(Q)\{0}, the
sequence of unique solutions of

—A,v, = f(x) inQ
v, =0 on 0Q),
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converges uniformly in € to the distance function to the boundary of the domain; see [3,27,31]. This
highlights a critical feature of these problems, a precise scaling between u and A that balances reaction
and diffusion and produces a nontrivial limit problem.

Therefore, in this paper, we prove passage to the limit of the sequence of minimal solutions of
problem (1.2) under the rescaling (1.3), (1.4). Furthermore, we show that the resulting limit is a
minimal solution of (1.5). Note that the fact that the limit solution is minimal is nontrivial; in
principle, limit and minimal solutions could differ. To prove this, we use a comparison principle for
“small solutions” of problem (1.5), which we prove in Section 4. As it turns out, minimal solutions to
problem (1.5) are “small” in the sense of this comparison principle. To the best of our knowledge, no
corresponding comparison and uniqueness results for small solutions were known in the literature for
p < oo.

In Section 8, we find a second solution to the limit problem (1.5) under certain geometric
assumptions on the domain Q. Furthermore, we show that both solutions lie on an explicit curve of
solutions. Some examples of domains satisfying the geometric condition are the ball, the annulus, and
the stadium (convex hull of two balls of the same radius); squares or ellipses do not verify the
condition. We conjecture that this second solution is a limit of appropriately rescaled mountain-pass
solutions of (1.2).

The paper is organized as follows. In Section 2, we provide some necessary preliminaries, and
Section 3 formally introduces the limit problem. We have chosen to introduce the limit problem before
proving any convergence results to streamline the presentation. In Section 4, we prove the comparison
principle for small solutions of the limit equation (1.5). Section 5 concerns non-existence of solutions
to (1.5) for large values of A. In Section 6, we find a branch of minimal solutions to (1.5) up to a
maximal A. Section 7 discusses uniform convergence as p — oo of p-minimal solutions to minimal
solutions of (1.5). Finally, in Section 8, we show the multiplicity result and exhibit a curve of explicit
solutions under a geometric condition on the domain.

2. Preliminaries

In this section, we state some necessary preliminaries and notation. First, let us recall that weak
solutions of problem (1.1) are also viscosity solutions. The proof, which we omit here, follows [30,
Lemma 1.8]; see also [3].

Lemma 2.1. If u is a continuous weak solution of (1.1), then it is a viscosity solution of the same
problem, rewritten as
F,(Vu,D’u) = 1¢" inQ
{ u=0 ondQ,

where

Fo(£,X) = —|&72 - trace ((1 +(p— 2)§|§2§>X) . 2.1)

The divergence form of the p-Laplacian, i.e., div(|Vu|’~2Vu), is better suited for variational
techniques, while the expanded form (2.1) is preferable in the viscosity framework. In the sequel, we
will always consider the most suitable form without further mention.
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In [31] the problem

—Apvp =1 in Q
v, € W (Q)

is studied in connection with torsional creep problems when Q is a general bounded domain. Since
we are interested in the case p — oo, we can assume p > n without loss of generality. Then every
function in v, € Wé’p (Q) can be considered continuous in Q and 0 on the boundary in the classical
sense. The existence result we will need below is the following. We refer the interested reader to [31]
and [27, Theorem 3.11 and Remark 4.23] for the proof.

Proposition 2.2. Ler Q be a bounded domain and n < p < . Then, there exists a unique solution
v, € Wé’p(Q) N C(Q) of the p-torsion problem

{—Apvp —1 inQ

2.2
v, =0 on 0Q, 2.2)

and v, converge uniformly as p — o0 to the unique viscosity solution to

min{|Vv| — 1, =Ayxv} =0 inQ,
v=20 on 0S.

Moreover, v(x) = dist(x, 0Q).
The uniqueness of the solution in Proposition 2.2 follows from the following comparison principle.

Lemma 2.3. Let f : Q — R be a continuous, bounded, and positive function. Suppose that u,v :
Q — R are bounded, u is upper semicontinuous and v is lower semicontinuous in Q. If u and v are,
respectively, a viscosity sub- and supersolution of

min{|Vw| — f(x), —Aew} =0 inQ,
andu <von oQ, thenu < vin Q.

We refer the interested reader for instance to [27, Theorem 4.18 and Remark 4.23] and also [25,
Theorem 2.1] (for the proof of [27, Theorem 4.18], notice that every co-superharmonic function is
Lipschitz continuous, see [35]).

We also need some facts about first eigenvalues and eigenfunctions of the p-Laplacian. Let us recall
that the first eigenvalue A, (p; Q) is characterized by the nonlinear Rayleigh quotient

Vol|P dx
A(p;Q) = inf M
pewir (@) o |o|P dx

In [32] (see also [33]), it is proved that the first eigenvalue of the p-Laplacian is simple (that is,
the first eigenfunction is unique up to multiplication by constants) when Q is a bounded domain; see
also [2,19,39] and the references in [32]. Moreover, it is also proved in [32] that in a bounded domain,
only the first eigenfunction is positive and that the first eigenvalue is isolated (there exists € > 0 such
that there are no eigenvalues in (1;, 4; + €]).

Mathematics in Engineering Volume 5, Issue 2, 1-28.
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Proposition 2.4 ( [3_2]). Let Q be a bounded domain and n < p < 0. Then, there exists a solution
v, € WP (Q) N C(Q) of

—AW, = 4 (p; Q) [W,|P 2y, inQ
wp =0 on 0.

Moreover, A,(p; Q) is simple and isolated.

Lastly, we recall the behavior as p — oo of the first eigenvalue of the p-Laplacian, see [30] for the
proof.

Lemma 2.5. lim A,(p,Q)"? = A(Q) = |dist(-, 0Q)

-1
lim I

We denote the first co-eigenvalue by A;(Q), see [30].
3. The limit problem

In the present section, we characterize uniform limits of appropriate rescalings of solutions of (1.2)
as solutions of a PDE. See [4, 10-13, 18, 30] for related results.

Proposition 3.1. Consider a sequence {(A,,u,,,)}, of solutions of (1.2) and assume

1/p
lim —-— = A.
p—®o P
Then, any uniform limit
. M/lp,p
uy = lim
p—0 D

is a viscosity solution of the problem

3.1
u=20 on 0Q. G-1)

{ min {|Vu| — Ae", ~Au} =0 inQ,
Proof. Consider a point xy € Q and a function ¢ € C?(Q) such that u, — ¢ has a strict local minimum at
xo- AS uy is the uniform limit of u,, , /p, there exists a sequence of points x, — xo such that u 40— PP
attains a local minimum at x, for each p. As u,,, is a continuous weak solution of (1.2), it is also a
viscosity solution and a supersolution. Then, we get

~(p=2) 5 W) { T g )+ (D0 V). )

= _Pp_]Ap¢<xp) = Ap e (),
Rearranging terms, we obtain

p—4

Vo ()l {%Aam) " <DZ¢<xp>V¢(xp),V¢<xp>>} > 1.

Mathematics in Engineering Volume 5, Issue 2, 1-28.
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If we suppose that |V¢(xo)| < Ae* () we obtain a contradiction letting p — oo in the previous
inequality. Thus, it must be
IV (x0)| — Ae"st) > 0, (3.2)

We also have that
— A(x0) = —(D*¢(x0)V(x0), Ve (x0)) = O, (3.3)

because we would get a contradiction otherwise. Therefore, we can put together (3.2) and (3.3) writing
min {|Vé(xo)| — Ae““™), A, ¢(x0)} = 0,

and conclude that u, is a viscosity supersolution of (3.1).

It remains to show that u, is a viscosity subsolution of the limit equation (3.1). More precisely, we
have to show that, for each xo € Q and ¢ € CZ(Q) such that u, — ¢ attains a strict local maximum at x
(note that xy and ¢ are not the same than before) we have

min {|V(xo)| — Aes30), —Apd(x0)} < 0.

We can suppose that
Vo (xo)| > Aest),

since we are done otherwise. Again, the uniform convergence of u, ,/p to u, provides a sequence of
points x, — xo which are local maxima of u, , — p ¢. Recalling the definition of viscosity subsolution
we have

p—4
Vo (xp)] Vg (xp)
—(p—2) — p—”2A¢(x,,) + (D¢ (x,)V(x,), Vo(x)) ¢ < 1,
p—4 -
([%e”&p(%))
for each p. Letting p — o0, we find —A,¢(xo) < 0, or else we get a contradiction. O

In the previous argument, the fact that e“*) is strictly positive independently of the value of u, (x,)
makes a difference with the case with a power-type right-hand side (see [10-13, 18, 30]), where one
needs to make sure that u, > 0 in Q. Furthermore, in the power-type right-hand side case, one can
consider sign-changing solutions, see [10,29] and get a more involved limit equation that takes into
account sign changes. In the next result, we show that all solutions to the limit problem (3.1) are
positive. Moreover, we show that solutions cannot be arbitrarily small for every given A and must
grow (at least) linearly from the boundary.

Proposition 3.2. Let QO — R”" be a bounded domain and A > 0. Then, every solution u, of (3.1)
verifies
up = Adist(-,0Q) in Q.

In particular, every solution of (3.1) is strictly positive and satisfies the estimate
Jurllir@) = AAL(Q) .

Mathematics in Engineering Volume 5, Issue 2, 1-28.



Proof. Let u, be a solution of (3.1). Then, ux > 0 in Q by Lemma 2.3. Let us show that
min{|Vus| — A, —Axup} =0 inQ

in the viscosity sense. To see this, consider x, € Q and ¢ € C? such that u, — ¢ has a minimum at x.
Since u, (x) is a solution of (3.1), we have

min {|Ve(xo)| — A e, —A p(x0)} =0 inQ.
We deduce —A,¢(xo) = 0 and [Ve(xo)| = A e+ > A and we get
min {|Vé(xo)| — A, —Axd(x0)} =0 inQ

as desired.
On the other hand, v, (x) = A dist(x, 0Q) is the unique viscosity solution of

min{|Vvpa| = A, —Axva} =0 inQ.

Then, one gets uy > vy = Adist(-, 0Q) by comparison, see Lemma 2.3. m|
4. Comparison for small solutions of the limit problem

In this section, we prove a comparison principle for small solutions of the limit equation (1.5). This
result is interesting for two main reasons. Firstly, Eq (1.5) is not proper in the terminology of [14],
a basic requirement for comparison. Secondly, based on the multiplicity results for the p-Laplacian
equation (1.2), see [20,21], one cannot expect comparison to hold in general. The key idea is a change
of variables that allows us to obtain a proper equation for solutions with |ju|,, < 1. Remarkably,
minimal solutions of (1.5) verify this condition (see Section 6 below), and we can conclude they are
the only ones with [lul|,, < 1. The change of variables we use here is the same that was used to prove
comparison for the limit problem with concave right-hand side in [12].

We prove a more general result with a “right-hand” side f(u) that satisfies a hypothesis reminiscent
of the celebrated Brezis-Oswald condition, see [6] and Remark 4.2 below.

Theorem 4.1. Let f : R — R be a continuous function for which there exist ¢ € (0,00] and g € (0,1)
such that
1
% is positive and non-increasing for all t € (0, c). 4.1)

Let Q < R" be a bounded domain and let u,v € C(Q) with max{|u|s, ||v|sw} < c be, respectively, a
positive viscosity sub- and supersolution of

min {|Vw| — f(w), —Axw} =0 in Q. 4.2)
Then, whenever u < v on 0, we have u < v in Q.

Remark 4.2. It is possible to prove a comparison principle for Eq (4.2) under the Brezis-Oswald [6]
condition
f(1)

- is decreasing for all > 0.

Mathematics in Engineering Volume 5, Issue 2, 1-28.
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Under this condition, the power-type change of variables used in [12] and in the proof of Theorem 4.1
no longer applies. Instead, we need a logarithmic change of variables, similarly to the comparison
principle for the eigenvalue problem for the infinity Laplacian in [30]. However, a viscosity
comparison principle obtained through a logarithmic change of variables requires that either the sub-
or the supersolution are strictly positive in Q and does not allow us to conclude uniqueness of
solutions for the Dirichlet problem with homogeneous boundary data, which our result does.

Before going into the proof of Theorem 4.1, let us discuss an important consequence of
Theorem 4.1, the uniqueness of “small” solutions of problem (3.1).

Corollary 4.3. Let Q c R” be a bounded domain. For every A > 0, the problem

4.3)

min {|Vu| — Ae", —Apu} =0 inQ,
u=20 on 09,

has at most one viscosity solution with |u], < 1.

Proof of Corollary 4.3. Suppose for the sake of contradiction that there are two viscosity solutions,
u,v of (4.3) with max{||u|o, |v|x} < 1. Notice that both u and v are strictly positive in Q by
Proposition 3.2. In this case we have f(f) = A e’ and (4.1) is satisfied with ¢ = ¢ for every ¢ € (0, 1).
Then, we can choose ¢ € (0, 1) such that max{|u|,||v]|w} < ¢ < 1, and all the hypotheses of
Theorem 4.1 are satisfied. Because u = v on 0Q, we conclude u = v. O

We devote the rest of the section to the proof of Theorem 4.1. In the next lemma we apply a change
of variables to Eq (4.2) to obtain a proper equation for small solutions.

Lemma 4.4. Let g € (0, 1) and let v be a positive viscosity supersolution (respectively, subsolution) of
(4.2) in Q. Then, ¥(x) = v'79(x) is a viscosity supersolution (subsolution) of

M —Ai(x) — —— 1 L g (4.4)

min < [Vw(x)| — (1 — q) . l—g w(x)

Ww(x)T

in every subdomain U compactly contained in Q.

Proof. Let § € C*(Q) touch ¥ from below at x € Q. If we define ¢(x) = $(x)™, then ¢ touches v
from below at x,. Note that ¢(x) is C? in a neighborhood of x,, since v > 0 in Q implies @(x) > 0
around x,. Then

1 . qa -
Vo(xo) = T—g ¢(x0) ™7 Vep(xo),
1 . 4

D*¢(xo) = T—4 B (x0) =7 D*P(x0) +

Because v is a viscosity supersolution of (4.2) and ¢(xy) = v(xo) > 0, we have

0 < min{[Vo(xo)| — £(#(x0)). ~(D0(x0)Vo(x0). Vo (x0))}

Mathematics in Engineering Volume 5, Issue 2, 1-28.



= ¢(xo) ™
L o) 3 q  |Vé(xo)[*
— —_ 1—q A + u
(75 o) (o0t + - T2
Therefore,
~ 1
f(po™) —_—
min { [V3(x0)| — (1 g) 2, ~Ad(rg) — —— P
¢(x0) ™4 =g ¢(x)
that is, ¥ is a viscosity supersolution of (4.4). The subsolution case is analogous. m|

Equation (4.4) is given by the functional
F R xR'"xS"— R

. IV N q |p*
a.px) — min{ o]~ (1= g (177)r 5, xtppy - L L
which is degenerate elliptic and non-decreasing in ¢ for 0 < ¢ < ¢! by hypothesis (4.1). Under
these conditions, it is well-known (see [14, Section 5.C]) that it is possible to establish a comparison
principle when the supersolution or the subsolution are strict. In the next lemma we show that we
can find a perturbation of the supersolution that is a strict supersolution, see [12,27,30] for related
constructions.

Lemma 4.5. Consider a subdomain U compactly contained in Q, and g € (0,1), ¢ > 0 as in (4.1). Let
U > 0 with ||V, < '™ be a viscosity supersolution of (4.4) in U. Define

Te(x) = (1 +€)(P(x) + €). 4.5)

Then, . — ¥ uniformly in U as € — 0, and for every € > 0 small enough, there exists a positive
constant C = C(e€,q, ||V] ) such that

g |Ve()[*

Pe(x)™ l1—gq ¥e(x)

min { |Vi.(x)| — (1 — q) >C>0 inU (46)

in the viscosity sense, that is, V. is a strict viscosity supersolution of (4.4) in U with ||[V¢]., < ¢'79.

Proof. Let ¢, € C? touch ¥(x) from below at xy € U. Define

~ | B
F) = o)~ e
which clearly touches ¥(x) from below at x,. Then,
Vd(xo) = (1 + €)' Voe(xg) and D*¢(xo) = (1 + €)' D*de(xo). (4.7)

Mathematics in Engineering Volume 5, Issue 2, 1-28.
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Since ¥(x) is a viscosity supersolution of (4.4) in U, we deduce

£ (x0)™) .
Plxo)Ta

Vo (x0)| = (1 - q)

and

— (DB(30) V), V) — L O “9)

1—q ¥(x)
In the sequel we assume € small enough so that |7, < [¥e]lo = (1+€) (|7 + €) < ' 2. Then, from
(4.1), (4.5), (4.7) and (4.8), we obtain

[Voe(xo)| — (1 —q) ————
VE()C()) I—q
’ )f'wmw%) Ny f(300)™)  f (Felxo)
=e€e(l—gq 7 +(l—q 7 - 7 )
7(x0) ™5 ¥(x0) ™5 (o) (*-10)
r (w12
>e(l—q) -
ES
Similarly, from (4.1), (4.5), (4.7), (4.8), and (4.9) we arrive at
25 - . g |Vee(xo)|*
_<D ¢E(x0)V¢E(xo),V¢E(xO)> T 1o g V(%)
> (1 3q(1— ! )V~ 4
IR ey B e
_ €+ eq(1 —g)° / (vt 17) 1+t —qf |7 (v|°° > ,
-1 9 o) e (ot o | oy
Finally, we get (4.6) from (4.10) and (4.11) as desired, which concludes the proof. O

Proof of Theorem 4.1. Since u—v € C(Q) and Q is compact, u — v attains its maximum in Q. Suppose,
for the sake of contradiction, that maxg(u — v) > 0. Let

ii(x) = u(x)'", b(x) = v(x)'9,
and define .(x) as in (4.5). Notice that u — v < 0 on 0Q gives
i—9V.=i—(1+e)v—(1+€) e<0 onodQ.

Moreover, by uniform convergence, we have maxg(it — 9.) > 0 for € small enough. Therefore, we
can fix € > 0 small as in Lemma 4.5 for the rest of the proof and assume there exists U compactly
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contained in € that contains all maximum points of it — V.. We have proved in Lemmas 4.4 and 4.5
that iz and 7, are, respectively, a viscosity subsolution and strict supersolution of (4.4) in U.

For every 7 > 0, let (x;,y;) be a maximum point of &(x) — 7c(y) — 3|x — y|* in Q x Q. By the
compactness of Q, we can assume that Xx; — X as T — oo for some X € Q (notice that also y, — X).

Then, [14, Proposition 3.7] implies that X is a maximum point of & — ¥, and, therefore, an interior point
of U. We also have that

lim (ﬁ(xT) B (y) — %]xT - y7]2> = 4(2) — 7.(3) > 0,

T—00

and, consequently, both x; and y, are interior points of U for 7 large enough and

- - T
ii(x;) — Ve(yr) — §|x, —vy:[*>0. (4.12)

The definition of viscosity solution and the maximum principle for semicontinuous functions, see [14],
imply that there exist symmetric matrices X;, ¥; with X; < ¥; such that

f (#(x)™)

4 4
. q T ‘xr _yr‘
o {T |XT - yT| N (1 B q) ’ _TZ<XT(XT - yT>’ (XT - yT>> B } <0,

ii(x;) ™ l—q i(x)
and
1
De(yr)T q)
min T|)CT*yT|*(1*Q) ~—L’
VE(yT)lfq
2, yo)s (e — vy — = T e g ol > 0
-7 \Xe = Ve ) \Xr = Y¥7)) — ~ = &4, |V )
l—g¢q Ve(yr) *
Subtracting both equations, we get
N e
) f V6<yr)l_q>
0 < C(e,q, [7]o) <min{ 7|x; =y, [ = (1 — ) ————,
Ve(yr) T
4 4
I RO W N B (4.13)
< ( ) ( )> 1_C[ Ve<yr)
f (#x)™)
—min T’XT—yT’—(l—Q)~—L,
i(x,) =4
4 4

_ZXT T~ Y1) T~ JT - q T‘xT_yT‘ . 414

Pl =30 (e ye)) — @.14)

We consider four cases, depending on the values where the minima in (4.13) and (4.14) are attained. In
all cases we obtain a contradiction using that X, < Y, and ¥.(y,) < @i(x;), which follows from (4.12).
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1) Both minima are attained by the first terms and (4.1) implies a contradiction, i.e.,

0<Cleq,|Ve) < (1—gq)

2) Both minima are attained by the second terms. Then,

0 < C(eq.[7]x)

< = X =32 (5= 30) + T e o (255~ o) <0

a contradiction.

3) The minima in (4.13) and (4.14) are attained by the second and first term, respectively. This case
can be reduced to case (1) above and we again obtain a contradiction. Namely,

q Tﬂxr _yr‘4

1—gq ‘76(yr)
—T|x =y + (1 —¢q) ! E;;ix;?;qq)
f ﬁ(xf)ﬁ> f (ﬁs(yry%q)
<(l—gq) BT By =0

4) Finally, if the minima in (4.13) and (4.14) are respectively attained by the first and second term,
we obtain a contradiction as in case (2) above, i.e.,

0 < C(e4[V]w0) < Tl =y = (1 —4)

1’;Yf(y‘r)ﬁ
2 g T —y|*
+ (X (xr — y2), (xr — y2)) + T
S T2<(YT — Xo) (Xr = yr)s (% —yr)> + 1 T4|xT —y,|4 (~ ! — = ! ) <0.
1-¢ i(xc)  Velyr)
Since all the alternatives lead to a contradiction, the proof is complete. m|

5. Non-existence of solutions with large A for the limit problem

We show here that due to the structure of the limit problem (3.1), there exists a threshold A,
beyond which the problem has no solutions.

Proposition 5.1. Let Q < R" be a bounded domain. Problem (3.1) has no solutions for A > Apax,
where

Amax = e_lAl(Q), (51)
and A, (Q) = |dist(-, 0Q)||., " is the first o-eigenvalue, see [30].
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Proof. Define u = A(Q) + € with € > 0. Suppose for contradiction that problem (3.1) has a solution
uy for some A > e~ !pu.

First we are going to use this u, to construct a supersolution to the eigenvalue problem with
parameter u. More precisely, we are going to show that

min {|Vua| — pup, —Astip} >0 inQ (5.2)

in the viscosity sense. To this aim, let xo € Q and ¢ € C? such that uy — ¢ has a minimum in x,. Since
up(x) is a solution of problem (3.1) we have

min {|Vé(xo)] — A e, —A,¢(x0)} =0 inQ.
We deduce that —A,¢(xo) = 0 and [Ve(xo)| = A e“+), Hence,
Vo (x0)| — pun(x0) = Ae™™) — pu(xo).
To deduce (5.2) it is enough to show that
Ig]ip\n D) (1) 20 where @x(1) = Ae —put.

It is elementary to check that the function ®, is convex and has a unique minimum point at t;, =
log(u Al ). Notice that lim,_, 4, @4 (#) = 400, and hence f;, is a global minimum. Then, it is easy to
check that A > e~y implies @ (tin) = 0.

Next, we notice that any first co-eigenfunction is a subsolution of the eigenvalue problem with
parameter u. So, let v be a first co—eigenfunction, that is, a solution of

min {|Vv| — A (Q) v, —Arv} =0 inQ,
v>0 in Q
v=>0 on 0Q

normalized in such a way that |v||,, < e~!. Clearly, by definition of g,
min {|Vv| — pv, ~A,v} <0 inQ.

Now, we have to show that u, and v are ordered, namely, that 0 < v < u, in Q. Indeed, using that
[V]ew < e7!and A|(Q) < u < Ae, it is easy to see that

min {[Vv| = A, —A,v} <0 inQ,
and using that ¢"*¥) > 1 in Q one gets
min {|[Vup| — A, —~Agup} >0 inQ.

Asv =up = 0on 0Q, we get 0 < v < u, by comparison, see Lemma 2.3.
So far, we have a subsolution v and a supersolution u, of the eigenvalue problem

min {\Vw\ —uw, —Aoow} =0 inQ (5.3)
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which verify 0 < v < u,. Next we claim that it is possible to construct a solution of (5.3) iterating
between v and u, . The argument finishes noticing that we have constructed a positive co—eigenfunction
associated to u = A + €, which is a contradiction with the fact that A, is isolated (see [29, Theorem
8.1] and [30, Theorem 3.1]). Since the argument above works for every € > 0, we conclude that there
is no solution of (3.1) for A > Aux.
We conclude by proving the claim. First, define w (x), viscosity solution of
min {|Vw;| — uv, —Axwi} =0 inQ
w; =0 on 0Q.

To prove that such a w; exists, notice that v is a subsolution of the problem and that u, is a
supersolution, since, from (5.2) and v < u, we deduce

min{]VuA\ — v, —Aoou,\} = 0.

Then, we can apply the comparison principle in Lemma 2.3 as above and apply the Perron method
( [14, Theorem 4.1]), to get a unique w; such that

v<w; <up 1nQ.
Then, we define w,, the solution of
min {|Vw,| — pwi, —Aywr} =0 inQ
{wz =0 on 0Q.
In this case, w; is a subsolution and u, is a supersolution, since
min {|Vw1] —uv, —Aoowl} =0 = min {|Vw1\ — uwi, —Aoowl} <0,

while
min {|Vup| — pup, —Apup} =0 = min{|[Vup| — uwi, —Agupr} > 0.

Asw; = up = 0 on 0Q, by comparison and the Perron method, we obtain that there exists a unique w,
satisfying
VW S Wy < Up in Q.

Iterating this procedure, we construct a non-decreasing sequence

Vv

N
=
N
NS
N
N
S
T

N
=
N
<
>

of solutions of

min{ [Vwy| — uwi_1, —Aewit =0 1in Q
{ {| Kl — Wiy o0 k} (5.4)

wr =0 on 0Q.

Notice that |wy | is uniformly bounded by construction. On the other hand, as —A,w; > 0in Q, we
have (see [34,35] and also [28] for a related construction) that

ae. xe Q,

wi(x) i ()
V)l < G o0) S @stx, 09)
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for all k > 1. From there, both ||w | and ||[Vwy| are uniformly bounded in compact subsets of Q.
We observe that v, u, are barriers in 0Q for each w;. Hence by the Ascoli-Arzela theorem and the
monotonicity of the sequence {w;}, the whole sequence converges uniformly in Q to some w € C(Q)
which verifies w = 0 on 0Q. Then, we can take limits in the viscosity sense in (5.4) and obtain that the
limit w is a viscosity solution of (5.3), which proves the claim. O

6. Existence of a branch of minimal solutions for the limit problem

In this section we show that for every A € (0, A ] there is a minimal solution of the problem

6.1
u=20 on 0Q. ©.1)

{ min {|Vu| — Ae", ~Agu} =0 inQ,
The proof is based on the ideas in [20], although our construction is different in order to take advantage
of Corollary 4.3, our result of uniqueness for small solutions (the construction in [20] would only allow
us to conclude that the minimal solution satisfies |u], < |ua,, [l = 1, and Corollary 4.3 requires a
strict inequality).

Theorem 6.1. Let QO < R”" be a bounded domain. Then, problem (6.1) has a minimal solution u, for
every A € (0, Apax], where Apyy is given by (5.1). Moreover,

1) We have the estimate
Adist(x, 0Q) < up(x) < eAdist(x, 0Q).

uAHoo < €AA1(Q)_1 < lfOI‘A € (0, Amax)-
2) Forevery A € (0, Amax ), ua is the only solution of (6.1) with |u]. < 1.

In particular,

3) The branch of minimal solutions is a non-decreasing continuum, in the sense that if 0 < A <
T < Amax then uy < uy and whenever T — A € (0, Anax ), then uy — up uniformly.

Proof. 1) Letu and u be the unique viscosity solutions of

min {\vm “A, —A@g} 0 inQ

(6.2)
u=>0 on 0Q
and
min { |Vai| — eA, —Aooﬁ} —0 inQ
(6.3)
u=20 on 09,
respectively. By Proposition 2.2, we have the explicit expressions
u(x) = Adist(x, 0Q) and  u(x) = eAdist(x, 0Q) (6.4)

and u < u follows trivially (alternatively, this can be proved by comparison, Lemma 2.3, using that u
is a viscosity supersolution of (6.2)).
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2) Define now u;, viscosity solution of

min {|Vu1| A, —Aooul} 0 inQ

(6.5)
u =0 on 0Q.
Let us show that
u<u <u inQ. (6.6)
First, we prove u; < u. We aim to show that min {|Vu1| — eA, —Aooul} < 0 in the viscosity sense

and then apply comparison for Eq (6.3), see Lemma 2.3. Therefore, let xo € Q and ¢ € C*(Q) such
that u; — ¢ attains a local maximum at xo. We can assume that —A,,¢(xy) > 0 because we are done
otherwise. Then, from (6.5), (6.4), and (5.1), we have

IV (x0)| < A el < A ehm M@ < oA

In order to show that u; > u, we prove that min {|Vu1 |—A, —Apuy } > 0 1n the viscosity sense and then
proceed by comparison for Eq (6.2). Indeed, since u; is a supersolution of (6.5), we have —A, u; = 0
and |Vu;| = A e* > A in the viscosity sense, as desired.

3) Foreach k > 0, we define u; as the viscosity solution of

min {yvukﬂy — A", —Aooukﬂ} —0 inQ

(6.7)
U1 =0 on 0Q
with uy = u and u; given by (6.5). Let us show that for all k > 0
U<u<upy <u in Q, (6.8)

that is, the sequence {u };>0 is non-decreasing and uniformly bounded.

We prove (6.8) by induction. First, notice that (6.6) proves the case when k = 0. Assume (6.8) holds
true for k — 1 and let us prove that u; < wu;,,. Since u;, is, by definition, a viscosity supersolution
of (6.7), we have —Ayu;; = 0and |Vuy, (| = Ae" > Ae"" in the viscosity sense by the induction
hypothesis. Therefore, 1. is a viscosity solution of

min {[Viy (| — Ae* ", —Aguy 1} =0 inQ.

By definition, we have min {|Vuk| — A et —Aoouk} = 0 and u; < w4 follows by comparison, see
Lemma 2.3 (notice that ¢**~! is bounded, positive, and continuous, since the co-superharmonicity of
ux—1 imply its Lipschitz continuity, see [35]).

To prove that u;,; < u, we show that

min {|Vigy | — eA, —Apiy1} <0 inQ

and use comparison for Eq (6.3) (see Lemma 2.3). Therefore, let x, € 2 and ¢ € C2(Q) such that
U1 — ¢ attains a local maximum at xy. Assume that —A,¢(xy) > O since we are done otherwise.
Then, from (6.7), (6.4), (5.1), and the induction hypothesis we get

IVo(x0)| < A e < Al < eA.
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4) We have obtained a non-decreasing sequence {u}r>o, uniformly bounded by u and u given
by (6.4). Therefore, we can pass to the limit in the viscosity sense in the same way as in
Proposition 5.1 and get a viscosity solution u, of problem (6.1) as intended. It is also clear that the
solution u, we just found is minimal for every A € (0, Ay« |, because any solution of (6.1) could be
taken as u in the iteration (note that the function u, does not depend on u). Moreover, by (6.4)
and (6.8), we have

Adist(x, 0Q) < up(x) < eAdist(x, 0Q) in Q.

Therefore, by Corollary 4.3, for every A € (0, Apax), s is the only solution of (6.1) with ||ul,, < 1.
5) Let us prove that the branch of minimal solutions is non-decreasing, i.e., uy < uy whenever
0 < A < T < Apa. To this aim, let us just observe that we can repeat the above construction taking
u = uy and keeping u(x) = Adist(x, 0Q) as before. In this way, we recover the minimal solution u,
with the estimate up < uy < 1.

We conclude by showing that the branch of minimal solutions is a continuum. Arguing again as in
the proof of Proposition 5.1, we see that, for every A € (0, Apax ), the uniform limits

it\A = lim U, and it/A = lim Uy
T—AT T—A—
are both viscosity solutions of (6.1) with max {[#a|w, [iia]} < 1. Therefore @ix = iin by
Corollary 4.3, as desired. O

7. Minimal solutions achieved as limits of p-minimal solutions as p —

This section shows that uniform limits of appropriately scaled, minimal solutions of

—Aju=21e" mQcR"
(7.1)

u=20 on 0Q

converge to the minimal solutions of the limit problem (6.1), found in Section 6. Observe that the fact
that the limit solution is minimal is nontrivial; in principle, a limit solution could be different from the
minimal one. Here is where we use the uniqueness results from Section 4. We prove the following.

Theorem 7.1. Let A € (0, Anax), and {4}, be a sequence such that

1/p
1
lim -2 = A.

p—© P
For each A, consider u Aoy the minimal solution of (7.1) for A = A,,. Then,

ur,.p

— up, uniformly as p — o0,

where uy is the minimal solution of the limit problem (6.1).

We devote the rest of the section to the proof of Theorem 7.1. In order to obtain estimates that allow
us to pass to the limit, we provide an explicit construction of the branch of minimal solutions of (7.1).
Although these are rather classic facts, see [20,21], some of our results appear to be new. Additionally,
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we provide a modified, more streamlined, and systematic construction that exhibits the dependences
on p at each step, which is necessary in order to pass to the limit.
First, we show that problem (7.1) has a minimal solution up to a certain, explicit 4,,.

Proposition 7.2. Let QO < R” be a bounded domain and p > n. Then, problem (7.1) has a minimal
solution u, ,(x) for every A € (0, 4,], where

- —1\"!
- (250) 12)
e[vploo

1) Forevery A < Ip, we have the estimate

and vy, is given by (2.2). Moreover,

/lp%uvp(x) < u/l,p(x> < e/lﬁvp(x) in Q. (7.3)

~

2) For every A < A, the minimal solution u,,, is the only solution of (7.1) with |u|, < p — 1.

~

3) The branch of minimal solutions is non-decreasing, in the sense that if 0 < A < u < A, then
Upp < Uyp in Q.

The uniqueness result in part 2 of Proposition 7.2 appears to be new. For the proof, we use the
following comparison principle, an adaptation of [1, Lemma 4.1] to problems that are proper (in the
sense of [14]) only for “small” sub- and supersolutions.

Lemma 7.3. Let p > 1 and f : R — R be a non-negative continuous function for which there exists
¢ € (0, 00| such that

f@ . . .

Pl non-increasing for all t € (0, c).

Assume that u,v € Wé’p(Q) N CY(Q) are positive in Q, max{|u|w, [v|x} < c and
—Au < f(u) and —Ay=f(v) in Q.

Thenu < vin Q.

We omit the proof of the lemma since it is a straightforward modification of [1, Lemma 4.1] (note
that ¢ = oo in [1]). We proceed now with the proof of Proposition 7.2.

Proof of Proposition 7.2. 1) Consider u and u, the respective solutions of

and
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By the weak comparison principle for the p-Laplacian, we have that 0 < u < % in Q. Define now u;,
solution of

—Ayup = e inQ
(7.4)

u; =0 on 0Q.

We clearly have —A,u; > A = —A,u. On the other hand, we find u = /lﬁvp by rescaling, which
together with (7.2) yields

N N1/ (p—1) _ —
C Ay < Al < Qe e — e < A

Then, by the weak comparison principle we have u < u; < uin Q.
2) Now, for each k > 1 define u;, solution of

—Apuk+1 =Ade"% InQ
U1 = 0 on 0Q

with u; defined by (7.4). Let us show by induction that
géukéuﬂl <ﬁ 1n§

for all k > 1. Itis easy to see that u < u; < ux by comparison. To prove u;,; < u, notice that the
— 1 .
induction hypothesis, the rescaling u = A7-Tev,, and (7.2) yield

7l 1)/ (=1 _ —
—Apiyy = A" < el < et elvpllo —  pP—1 = — AL

Then, u;, < u follows by comparison.

3) We have obtained an increasing sequence {u; }r>o, uniformly bounded by u and u. Therefore, we
can pass to the limit and get a solution u, , that satisfies the bounds (7.3). It is also clear that u, , is
minimal, because any solution of (7.1) could be taken as u in the iterative scheme (note that each
does not depend on u). Similarly, we see that the branch of minimal solutions is non-decreasing, since
whenever A < u, we can take u = u, , in the construction of u, , and obtain u, , < u .

4) Finally, let us denote f(t) = Ae'. It is elementary to see that f(z)/tP~! is non-increasing for
0 <t < p — 1. Moreover, by (7.2) and (7.3) we have that |u,,| < p — 1. Therefore, we can apply
Lemma 7.3 with ¢ = p — 1 and conclude that u, , is the only solution of (7.1) with |u|,, < p — 1 for
every A € (0, 711,]. |

The next result states that problem (7.1) has no solution for large A; that is, there is a value 71,, >0
such that (7.1) has no weak solution with A > A4,,.

Proposition 7.4 ( [20, Theorem 2.1]). Problem (7.1) does not have a solution for A > /Alp, where

_ 1\ 7!
ﬁpz/ll(P,Qfmax{l,(pe 1) } (7.5)

At this point we can define

Amax,p = SUp {/1 > (0 : problem (7.1) has a solution}. (7.6)

In the next result we show that Ay, , 1s well-defined, find its asymptotic behavior as p — 0, and
complete the construction of the branch of minimal solutions.
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Proposition 7.5. Let Q < R" be a bounded domain and p > n. Then, Amax, given by (7.6) is well-

defined (in the sense that it is positive and finite). Moreover, (7.1) has a minimal solution u, ,(x) for
every A € (0, Admax,p) and no solution for A > Ay . In addition,

/lp < /lmax,p < /117’ (77)
where 7lp and ﬁp are respectively given by (7.2), (7.5), and

1/p
/lmax

Jfor Anax defined by (5.1).

Proof. By Propositions 7.2 and 7.4, we have that 0 < /vl,, < Amaxp < 71,, < 0. Moreover, although we

do not know Ay, explicitly, (7.2), (7.5), and (7.7), along with Proposition 2.2 and Lemma 2.5 provide
its asymptotic behavior, namely,

R D L A L
lim =

= L= 'A(Q) = Apax.
p—®0 P p—w0 P p—=% P

Let us now complete the construction of the branch of minimal solutions. Since Apay, < 00 we can
take p arbitrarily close t0 Amax,, and u, solution of

—Ayu, = pe™ inQ,
u, =0 on 0Q.

~

Then, for every A € (4, u| we can produce a minimal solution as in Proposition 7.2, taking # = u,, in
the iteration.

O
We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. 1) We have that

—Ayup,, = A, €7 in Q
Uy, =10 on 0Q.

Multiplying the equation by u,, , and integrating by parts, we get

J Vi, p ()" dx = /lpf ty,.p(X) "0 (%) .
e Q

Let us fix p > n + 1. Then, for every x,y € Q, there exists a positive constant C independent of p
(see [10, Lemma 3.3]) such that

_ 1/(n+1)
uy ,(x) —u n
| Ap’r( ) |1_A’:p(y)| <C <J ‘Vuﬂp,p| +1dx) <C|Q
x_y n+1 Q
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1

I/P 1/1,
= ClQ7 (Apf Uy, p € dx) < clol (ﬂpwlu@,pllwe””ﬂ»ﬂ”w) . (1.8)
Q

Let us now find estimates for [y, , |-
2) Consider 71,,, given by (7.2). Since

Iim — = Apux > A= lim —,
p—00 p p—00 p

there exists py such that 1, < ip for all p > py. Then, by estimate (7.3), we have

1 1
AT uy p(x A —
~Lv,(x) < 10 (%) < —L—ev,(x) inQ,

p P p

where v, is given by (2.2). Take € > 0 such that (1 + €)A < Apax. By Proposition 2.2, we know that
v, — dist(-, 0Q) uniformly as p — 0o and we deduce that

42,10

< (14 e)Ae|dist(-, Q)] = (1 + €)AA,L <1 (7.9)

max

for p large enough. Then, from (7.8) and the Arzela-Ascoli theorem, we find that there exists a
subsequence p’ and a limit function u, such that

Ui, .p' . /
— Uy, uniformly as p” — 0.

/

3) By Proposition 3.1, we have that u, is a viscosity solution of the limit problem (6.1). Additionally,
from estimate (7.9) we deduce ||up| < AA,L < 1, and then Theorem 6.1 implies that u, must be

max
the minimal solution of the limit problem (6.1). Therefore, the whole sequence u 1,,p converges, and

not only a subsequence, which concludes the proof. O
8. Multiplicity results in special domains

This section proves that, under certain geometric assumptions on the domain €2, it is possible to
compute an explicit curve of solutions. Moreover, we establish a further non-existence result with the
aid of this curve of solutions. To this aim, we consider the ridge set of Q,

R = {x e Q: dist(x, Q) is not differentiable at x}

={xeQ: Ix,x € dQ, x; # x, s.t. |x — x;| = [x — x| = dist(x, 0Q)}
and its subset M, the set of maximal distance to the boundary,
M = {x e Q: dist(x,0Q) = |dist(-, 0Q)| }.

We have proved in Theorem 6.1 the existence of minimal solutions for the limit problem (1.5),
as well as several non-existence results in Propositions 3.2 and 5.1. These results hold for general
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bounded domains Q. In this section, we find a second solution to the limit problem (1.5) under the
additional assumption M = R. Furthermore, both solutions lie on an explicit curve of solutions (see
Figure 1). Some examples of domains satisfying M = R are the ball, the annulus, and the stadium
(convex hull of two balls of the same radius). A square or an ellipse does not verify the condition.

ulloo

Amax A

Figure 1. Curve of explicit solutions A;(Q) [usl — Ael“sl» = 0 in Theorem 8.1 and
regions of non-existence derived from Proposition 5.1, Theorem 8.4, and the uniqueness
result in Theorem 6.1.

8.1. A curve of explicit solutions
We have the following result.

Theorem 8.1. Let A > 0 and A.x given by (5.1). Assume that Q < R" is a bounded domain that
satisfies M = R. Let us consider solutions of the form

u(x) = a - dist(x, 0Q), a>0 (8.1)
for the problem
{ min {|Vu(x)] — Ae“@, —~Apu(x)} =0 inQ, 82)
u=>0 on 0Q.
Then, problem (8.2)
i) Has two solutions of the form (8.1) if 0 < A < Apax, corresponding to the two roots of
a — A e 14 — (8.3)

ii) Has one solution of the form (8.1) for A = Ay, with a = |dist(-, 0Q)| "
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iii) Has no solutions for A > A, and only the trivial solution for A = 0.

Remark 8.2. By Theorem 6.1, for 0 < A < A, the solution of the form (8.1) with smallest « is the
minimal solution of (8.2).

Proof. First of all, we are going to check that
—Ajpu(x) =0  inQ\R

in the viscosity sense. Let ¢ € C? and xo € Q\R such that u — ¢ has a local maximum at x,. We can
assume u(xo) = ¢(xp) and V(xg) # 0. A Taylor expansion, and the fact that ¢ touches u from above
at x, yield

Aoo¢(x0) 1 < . )
——— =+ 0(1) < = [ 2u(xg) — max u(y) — min u
Vo (x0) |2 (1) < g (2ulw) veBe(x0) ) ¥€Be(x0) o)
as € — 0. From (8.1) we have that
max u(y) = u(xg) + ae, min u(y) = u(xg) — e
jmax u(y) = ulx) i u(y) = u(x)

and we deduce that u is co-subharmonic in Q\R. The proof that it is also co-superharmonic is
analogous. Hence, we need make sure that

Vu(x)| —Ae"™ >0  VYxe Q\R

Indeed, we find that
IVu(x)| — A "™ = @ — A @929

(recall that x ¢ R and the derivatives are classical). Since we can choose points x ¢ R = M arbitrarily
close to M, we find the necessary condition

o — A e ldist-09)e > (8.4)

Next, we turn our attention to the ridge set R. First, observe that cones as in (8.1) are always
supersolutions of (8.2) in the ridge set, since they cannot be touched from below with C? functions at
those points. Hence, we only have to consider the subsolution case. So, let xo € R and ¢ € C? such
that u — ¢ has a local maximum point at xy. We aim to prove that

min {|Ve(xo)| — A "™, —A,p(x0)} <O. (8.5)
It is well-known (see for instance [27, Lemma 6.10]) that
min {|Vu(x)| —a, —Aoou(x)} =0

in the viscosity sense. Thus, by definition of viscosity subsolution we have that either |V (x)| < «a
or —Ay¢(x9) < 0. In the latter case, (8.5) holds and there is nothing to prove. Thus, we can assume
in the sequel that —A,,¢(xo) > 0 and |Vé(xo)| < a. Then, since xp € R = M, we have u(xy) =
« ||dist(-, 0Q) ||, and

Vo (x0)| — A0 < g — A e dist(. 0o
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Recalling (8.4), we discover that the only possibility is that (8.3) holds. The rest of the proof is devoted
to study the number of positive solutions of equation (8.3).
Consider @y () = A 19l _ o Tt is elementary to show that @, is convex and has a global
minimum at
min = —|dist(-, 0Q)[5," log (Alldist(-, Q)| c) -

This minimum value is

12@@“&)2¢M@%m)=Hﬁm@@ﬁ”;(k+bng&ﬁﬁagmw».
Whenever this minimum is strictly positive, Eq (8.3) has no solution. This happens when A > A
(in fact, Proposition 5.1 gives a stronger result in this case). Furthermore, notice that if A = 0, then
necessarily @ = 0. These facts amount to (ii/). When the minimum equals 0, that is, when A = Ay,
then there exists a unique solution with a = ||dist(-, 8Q)|.'. This is part (ii). And finally, for part (i),
notice that when the minimum is strictly negative (0 < A < Anax), €quation (8.3) has two roots. O

Remark 8.3. Theorem 8.1 yields the following implicit curve of cone solutions
A (Q) [up]o — Aelrle =,

where A;(Q) = |dist(-,0Q)|' is the first co-eigenvalue, see [30]. The same curve was deduced
heuristically by Lions in the context of the Gelfand problem for the Laplacian in [36, p. 465, item (h)
and Remark 2.4]. Unfortunately, Lions uses this example to caution against the heuristic reasoning
since the bifurcation diagram is of corkscrew-type for dimensions 3 < n < 9. One could wonder
why we do not see a similar situation in Theorem 8.1. However, according to [16, Lemma 2.3], the
corresponding corkscrew-type diagram for the p-Laplacian in the radial case occurs in the range

p(p+3)

p<n< ,
p—1

which cannot happen as p — c0.

8.2. Further non-existence results

The following result shows that we can enlarge the region of nonexistence of solutions for certain
domains by taking advantage of the curve of explicit solutions.

Theorem 8.4. Let Q) be a bounded domain such that M = R, and assume M is Lipschitz connected.
Then, for every A > 0, the only solutions of the problem

(8.6)

min {|Vua (x)] — A e, —Agupn(x)} =0 inQ,
uy =0 on 0Q

satisfying
A(Q) [un o — Ael“rl= > 0, (8.7)

are the explicit solutions found in Theorem 8.1, which satisfy (8.7) with an equality.
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The idea of the proof of Theorem 8.4 is to show that any solution u, satisfying (8.7) must necessarily
be a cone and therefore belong to the curve of solutions given by Theorem 8.1. First, we show that
solutions of (8.6) that satisfy (8.7) must lie below a cone with their same height.

Lemma 8.5. Let Q be a bounded domain and u, be a viscosity solution of (8.6) satisfying (8.7). Then,

2N

< o gist(-,0Q) inQ.
NS dist( 0Q) ist(, 0Q) in

Proof. It is enough to prove that
min {|Vua (x)] — A1(Q) |[upllsos —Axtta(x)} <0 inQ (8.8)

in the viscosity sense. Then one gets uy (x) < |lup o |dist(-, 0Q)| " dist(x, 9Q) in Q by comparison
(Lemma 2.3), and the result follows.
To prove (8.8), let ¢ € C? such that u, — ¢ has a maximum at xo € Q. As u, is a viscosity solution
of (8.6), it satisfies
min {|Vé(xo)] — A e, —A,p(x0)} <O inQ.

If —A,¢(xy) < 0 we are done, so assume —A,p(xy) > 0 and [Vé(xg)| — A e+ < 0. Using (8.7),
we have
Vo (x0)] — A1(Q) Junlloe < A ™ — A1(Q) un]c <O,

and then
min {[V(x0)| — Ar(Q) [ua ], ~Ad(x0)} <O inQ

as desired. O

Remark 8.6. Lemma 8.5 holds for any bounded domain Q without the assumption M = R.

Next, we recall the following result from [43, Theorem 2.4, (i)], which is a crucial point in the proof
of Theorem 8.4.

Lemma 8.7. Let Q be a bounded domain such that M is Lipschitz connected. If u is co-superharmonic
(see [34,35]) then,
{xeQ: u(x) = |u|i=@} =M

Now, we can complete the proof of Theorem 8.4.

Proof of Theorem 8.4. Consider u, solution of (8.6) satisfying (8.7). Notice that

R LN CR
v(x) = st o), dist(-, 0Q)

is the unique (see [25]) viscosity solution of the problem

—Apv(x) =0  inOQ\M
v(x) = Jualw on M (8.9)
v(x) =0 on 0Q.
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Since u, 1s oo-superharmonic, it is also a viscosity supersolution of (8.9) by Lemma 8.7. Then, we get
v < up by comparison (see [25]), and Lemma 8.5 yields u, = v. That is, u, is of the form (8.1). Since
all the solutions of (8.6) of the form (8.1) are given by Theorem 8.1, we find that there are no solutions
with

AL (Q) [|ua]lo — A el > 0,

Furthermore, if A;(Q) |uall, — A el*sl = 0, then u, must be one of the explicit solutions in Theorem
8.1. |
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