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Development and Structure of an Accurate Machine
Learning Algorithm to Predict Inpatient Mortality and
Hospice Outcomes in the Coronavirus Disease 2019 Era
Stephen Chi, MD,* Aixia Guo, PhD,† Kevin Heard, MS,‡ Seunghwan Kim, MS,§ Randi Foraker, PhD,†

Patrick White, MD,∥ and Nathan Moore, MD¶

Background: The coronavirus disease 2019 (COVID-19) pandemic
has challenged the accuracy and racial biases present in traditional
mortality scores. An accurate prognostic model that can be applied to
hospitalized patients irrespective of race or COVID-19 status may
benefit patient care.

Research Design: This cohort study utilized historical and ongoing
electronic health record features to develop and validate a deep-
learning model applied on the second day of admission predicting a
composite outcome of in-hospital mortality, discharge to hospice, or
death within 30 days of admission. Model features included patient
demographics, diagnoses, procedures, inpatient medications, labo-
ratory values, vital signs, and substance use history. Conventional
performance metrics were assessed, and subgroup analysis was
performed based on race, COVID-19 status, and intensive care unit
admission.

Subjects: A total of 35,521 patients hospitalized between April 2020
and October 2020 at a single health care system including a tertiary
academic referral center and 9 community hospitals.

Results: Of 35,521 patients, including 9831 non-White patients and
2020 COVID-19 patients, 2838 (8.0%) met the composite outcome.
Patients who experienced the composite outcome were older (73 vs.
61 y old) with similar sex and race distributions between groups. The

model achieved an area under the receiver operating characteristic
curve of 0.89 (95% confidence interval: 0.88, 0.91) and an average
positive predictive value of 0.46 (0.40, 0.52). Model performance
did not differ significantly in White (0.89) and non-White (0.90)
subgroups or when grouping by COVID-19 status and intensive care
unit admission.

Conclusion: A deep-learning model using large-volume, structured
electronic health record data can effectively predict short-term
mortality or hospice outcomes on the second day of admission in the
general inpatient population without significant racial bias.

Key Words: health informatics, palliative care, machine learning,
clinical prediction rules

(Med Care 2022;60: 381–386)

The health care crisis caused by coronavirus disease 2019
(COVID-19) has highlighted deficiencies in current

mortality prediction tools. As a critical endpoint for patients
and physicians alike, mortality has been the subject of nu-
merous clinical prediction models. Independent evaluation
has found significant heterogeneity in accuracy and within-
model variability, however, with many predictive tools
demonstrating only modest discrimination, low clinical utili-
ty, and high risk of racial bias.1–6 These limitations were
further underscored by COVID-19, which forced many in-
stitutions to implement triage policies under crisis standards
of care. Over 80% of hospitals with formal triage policies
used a version of the Sequential Organ Failure Assessment
score, which was later found to both systematically prioritize
White patients over Black patients while also demonstrating
lower discriminant accuracy than simply using patient age to
predict mortality in ventilated COVID-19 patients.7–9 Even as
health care systems look to move past COVID-19, novel
methods to estimate mortality without racial bias are clearly
needed.

To address this prognostic challenge, researchers and
clinicians have increasingly turned to machine learning (ML).
With the ability to model complex interactions between di-
verse clinical datasets, ML models show superior perfor-
mance to conventional mortality risk scores in diseases such
as sepsis or heart failure.10,11 Comparatively few studies
attempt to apply ML to inpatient mortality, however,
with limited generalizability driven by technical design,
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heterogenous populations, and potential for racial bias that
has gone largely uninvestigated.6,12–17 The data used to train
these models also predate the COVID-19 pandemic, which
impacted health care delivery and outcomes nationwide.18–22

The utility of ML in predicting mortality outcomes of hos-
pitalized patients in the modern COVID-19 era therefore
remains to be demonstrated.

We have previously shown that a long short-term
memory (LSTM) deep-learning model trained on electronic
health record (EHR) and claims data was effective at pre-
dicting mortality relative to 3 other common ML
approaches.23 LSTM are a type of recurrent neural network
that analyzes time-sorted data in the context of surrounding
values; among other advantages, this property allows LSTM
to learn from trends in patient data, thereby mimicking clin-
ical practice. By consolidating the model to EHR-specific
features and adding time-dependent variables, specifically
vital signs and laboratory results from the patient’s first

hospital day, we sought to create an accurate, racially un-
biased deep-learning model which would be readily
integrated into the EHR for real-time clinical application.

METHODS

Data Source
Patient data were collected from admissions to 10

academic and community-based hospitals within the BJC
HealthCare system from April 2020 to October 2020. This
health care system covers a diverse catchment area across
mid-Missouri, Southern Illinois, and greater Saint Louis re-
gions, and includes a 1250-bed tertiary referral center as well
as multiple community hospitals. Hospitalizations longer than
24 hours were included for feature extraction. Admissions to
psychiatry, labor/delivery, and bone marrow transplant units
were excluded. This project was approved by the Washington
University in Saint Louis Institutional Review Board; need
for informed consent was waived.

Cohort and Study Design
Of 46,206 admissions with hospitalizations longer than

24 hours and identifiable mortality outcomes within 30 days,
a total of 35,521 unique patients were included in the anal-
ysis. For patients with multiple admissions, one admission
was selected randomly for feature extraction to reduce se-
lection bias. The primary outcome of interest was in-hospital
mortality, discharge to hospice, or death within 30 days of
admission.

Subgroup analysis was performed in 3 patient sub-
groups to evaluate model accuracy and bias. These subgroups
were defined by COVID-19 status, intensive care unit (ICU)
admission within the first 24 hours of hospitalization, and
race (White and non-White). To account for external COVID-
19 testing and processing time for internal COVID-19 assays,
COVID-19 status was determined retrospectively based on
either a positive test result for COVID-19 or infection pre-
vention flags specifying confirmed COVID-19 infection
during the index admission.

FIGURE 1. Deep learning model structure. Three bidirectional long short-term memory (LSTM) models were constructed to
analyze clinical variables grouped by data type: 100 most recent diagnosis, procedure, and medication codes (A); 150 most recent
laboratory test names and values (B); 300 most recent vital sign names and values (C). A fourth neural network model (D) was
comprised of demographic and social history variables.

TABLE 1. Study Population Characteristics
n (%)

Characteristics

No Mortality/
Hospice
Outcome

Mortality/
Hospice
Outcome Total

No. patients 32,682 (92.0) 2839 (8.0) 35,521
Age [mean (SD)] 61.2 (17.5) 72.6 (15.0) 62.1 (17.6)
Sex
Male 16,191 (49.5) 1451 (51.1) 17,642 (49.7)
Female 16,490 (50.5) 1388 (48.9) 17,878 (50.3)
Unknown 1 (0.0) 0 (0.0) 1 (0.0)

Race
White 23,616 (72.3) 2074 (73.1) 25,690 (72.3)
Black 8438 (25.8) 669 (23.6) 9107 (25.6)
Asian 257 (0.8) 22 (0.8) 279 (0.8)
Other 371 (1.1) 74 (2.6) 445 (1.0)

COVID-19 status
COVID-19 (+) 1587 (4.9) 433 (15.3) 2020 (5.7)
COVID-19 (–) 31,095 (95.1) 2406 (84.7) 33,501 (94.3)

ICU admission in first 24 h
ICU (+) 4475 (13.7) 1089 (38.4) 5564 (15.7)
ICU (–) 28,207 (86.3) 1750 (61.6) 29,957 (84.3)

COVID-19 indicates coronavirus disease 2019; ICU, intensive care unit.
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Feature Extraction
All encounter records for each patient available up to

24 hours after time of admission were extracted from the
EHR. Features included demographics, diagnosis codes,
procedure codes, inpatient medication lists, laboratory results,
vital signs, and social history. All features were sorted in a
time increasing order.

Diagnosis, procedure, and medication codes were mapped
to a 32-dimensional vector space using the Word2Vec
technique.24 The Python Genism Word2Vec model employed
the following hyperparameters: size (embedding dimension) of
32, window (the maximum distance between a target word and
all words around it) of 5, min_count (the minimum number of
words counted when training the model) of 1, and the sg
(training algorithm) was CBOW (continuous bag of words).
Each feature was then represented by a 32-dimensional
numerical vector.

Deep-learning Model Development
Patient features were structured into 4 groups for in-

put into the deep-learning model: (1) embedding vectors of
diagnosis codes, procedure codes, and medication codes
with a dimension of (100, 32), where 100 denoted the most
recent 100 codes and 32 was the dimension of embedding
vectors; (2) numerical variables from laboratory results with
a dimension of (150, 2), where 150 was the number of most
recent laboratory records, and 2 was the test names and
related values; (3) numerical variables from vital signs with
a dimension of (300, 2), where 300 was the number of most
recent vital sign records, and 2 was the vital sign names and
related values; and (4) demographic and social history
variables with a dimension of 16, which represented age
and categorical variables such as sex, COVID-19 infection
status, ICU admission, and substance use history.

The deep-learning model was comprised of 3 bidirec-
tional LSTM models and a fourth neural network model rep-
resenting the above groups (Fig. 1). A binary cross-entropy

loss function was employed as the output layer and a Sigmoid
function was used as the activation function for the hidden
layer. An Adam optimizer was used to optimize the model with
a mini-batch size of 256 samples.

Data Splits and Model Evaluation
Patients were randomly divided into training (80%),

validation (10%), and testing (10%) datasets for a total of
28,417 patients in the training data set and 3552 patients each
in the validation and testing datasets. Model performance was
evaluated in the overall cohort and each subgroup using
standard performance metrics as well as receiver operating
characteristic (ROC) and precision-recall curves. Precision-re-
call curves compare a model’s positive predictive value (PPV
or precision) against its sensitivity (recall) as the discrimination
threshold is varied. In contrast to ROC curves which utilize the
false positive rate instead of PPV, precision-recall curves are
not dependent on the number of true negative cases and may
therefore be more informative for imbalanced datasets with a
low expected outcome rate. Ninety-five percent confidence
intervals were calculated for each metric. The model was also
tested under a series of discrimination thresholds or cutoffs,
ranging from 0.1 to 0.9.

RESULTS
The observed rate of the composite outcome of in-

hospital mortality, discharge to hospice, or death within
30 days of admission was 8%. Patients who met the com-
posite outcome were older (73 vs. 61 y) with similar sex and
race distributions between groups (Table 1). Patients with
COVID-19 infection were more likely to experience the
mortality/hospice outcome than patients without COVID-19
(21% vs. 7%). Thirty-eight percent of patients who met the
mortality/hospice outcome were admitted to an ICU within
the first 24 hours of admission.

ROC and precision-recall curves were constructed to eval-
uate model performance in the overall cohort and patient subgroups

FIGURE 2. Deep learning model prediction performance. Area under the receiver operating characteristic and precision-recall
curves for model performance in the overall cohort. Shaded areas denote 95% CIs. AUC indicates area under the curve; CI,
confidence interval.
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FIGURE 3. Deep learning model performance in clinical subgroups. Area under the receiver operating characteristic and precision-
recall curves for model performance in clinical subgroups. COVID-positive patients were classified retrospectively based on either a
positive COVID-19 test result or infection prevention flags specifying confirmed COVID-19 infection during the index admission.
ICU+ was defined by patients admitted to an ICU within the first 24 hours of hospitalization. Brackets indicate 95% confidence
intervals. AUC indicates area under the curve; COVID-19, coronavirus disease 2019; ICU, intensive care unit.
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(Figs. 2, 3). In the overall study cohort, the area under the ROC
curve was 0.89 (0.88, 0.91). The area under the precision-recall
curve was 0.46 (0.40, 0.52), corresponding to an average model
PPV of 46% compared with the observed outcome rate of 8%.
Table 2 lists the model’s performance metrics at different
thresholds of predicted probabilities. The F1 score, which is the
harmonic mean of PPV and sensitivity, plateaued at thresholds up
to 0.3; this cutoff corresponded to a sensitivity of 0.38 (0.32, 0.43),
specificity of 0.97 (0.97, 0.97), and PPV of 0.54 (0.46, 0.61).

In the prespecified patient subgroups, area under the
ROC curve did not differ significantly by COVID-19 status
[0.89 (0.83, 0.94) vs. 0.89 (0.87, 0.91)], ICU [0.86 (0.82,
0.89)] versus non-ICU admission [0.88 (0.86, 0.91)], or
Whites [0.89 (0.87, 0.91)] compared with non-Whites [0.90
0.86, 0.94)]. Average model PPV was higher in the COVID-
19 positive [0.68 (0.52, 0.81)] and ICU admission [0.71
(0.52, 0.69)] subgroups. Subgroup model performance by
cutoffs was also evaluated (Supplemental Table 1, Supple-
mental Digital Content 1, http://links.lww.com/MLR/C412);
when using a threshold risk score of 0.3, positive predictive
value exceeded 50% and specificity was > 90% in every
subgroup.

DISCUSSION
In this study, we developed and validated a structured deep-

learning model using EHR-specific data from academic and
community hospitals to predict in-hospital mortality, discharge to
hospice, or death within 30 days of admission. The model in-
corporated both historical and acute variables in the patient’s
medical record to generate a numerical risk score on the second
day of admission for clinical use. This ML approach was shown to
have excellent predictive value with no significant differences in
performance based on race or COVID-19 status.

Our investigation has several unique strengths and limi-
tations. The model was trained on data from the first 7 months of
the COVID-19 pandemic, during which health care delivery was
severely impacted in the form of treatment delays, experimental
interventions, and crisis standards of care seen at many
facilities.18–22,25–29 This clinical variability would be expected to
diminish the accuracy of any prediction tool, yet our model
showed favorable performance metrics and no significant racial
bias in comparison to many previously published traditional and
ML mortality scores.1,6,9 This finding may be attributed to the
structure and scope of our deep-learning model. An average of
over 500continuous, categorical, and multidimensional variables
per patient were incorporated into a framework of LSTM models,

which may be more effective than other ML techniques at pre-
dicting mortality.23 Compared with other mortality scores that
include only acute gical or disease-specific data, this multifaceted
approach to feature inclusion leverages the full breadth of data
available in modern EHRs, thereby providing a more compre-
hensive picture of patient health.6,10,30 This reliance on “big data”
decreases our model’s transparency, however, as the factors
contributing to a patient’s score within the LSTM hierarchy are not
readily visible. This lack of interpretability is a significant limi-
tation shared by other ML models intended for clinical
implementation.31 Future steps to improve model transparency,
such as feature importance analysis, will be required to maximize
clinical utilization.

Our model was developed using data from a single health
care system, which poses a significant challenge to portability due
to EHR and population heterogeneity. While direct replication of
our model may not be feasible, however, we would argue that our
study population and model design support generalization of
similarly structured ML models to other centers. The training data
set included a diverse patient population spread across medical,
surgical, and subspecialty floors and ICUs at academic and com-
munity hospitals encompassing a large geographic area. Urban,
suburban, and rural counties were included along with significant
non-White representation. The model structure does not require
any manual curation or preprocessing of patient features, which
can dramatically increase cost and computational time, and the use
of EHR-specific data has enabled complete integration of the
model into our institution’s EHR.32 Risk scores are now generated
automatically on all inpatients without any user input for real-time
clinical use. While implementation will necessarily vary between
centers, we hope other institutions see this model as a proof-
of-concept for the potential of LSTM models to yield accurate,
racially unbiased predictions in the COVID-19 era.

Clinical applications of this mortality model are the subject
of ongoing investigations. Our model demonstrated excellent
positive predictive value in all clinical subgroups, supporting its
clinical relevance as a mortality screening tool.33 For example, a
screening threshold of 0.3, corresponding to a minimum 30% risk
of inpatient mortality, hospice discharge, or death within 30 days
of admission, would identify at-risk patients with >50% PPV and
90% specificity. Clinical care can then be enhanced for those
patients through increased clinical attention or advance care
planning discussions. One promising application is through di-
rected palliative care, which has been previously shown to de-
crease ICU transfers, increase advance care planning, and facilitate
goal-concordant limitations in care.34–36 With multiple recent
studies highlighting the potential of improving palliative care

TABLE 2. Performance Metrics by Cutoff Values (95% Confidence Interval)
Cutoffs Accuracy Sensitivity Specificity Precision F1 Score Negative Predictive Value

0.1 0.86 (0.84, 0.87) 0.76 (0.71, 0.81) 0.86 (0.86, 0.86) 0.32 (0.28, 0.35) 0.45 (0.4, 0.49) 0.98 (0.98, 0.98)
0.2 0.91 (0.9, 0.92) 0.52 (0.46, 0.57) 0.94 (0.94, 0.94) 0.42 (0.37, 0.47) 0.46 (0.41, 0.51) 0.96 (0.96, 0.96)
0.3 0.93 (0.92, 0.94) 0.38 (0.32, 0.43) 0.97 (0.97, 0.97) 0.54 (0.46, 0.61) 0.44 (0.39, 0.5) 0.95 (0.95, 0.95)
0.4 0.93 (0.92, 0.93) 0.23 (0.18, 0.27) 0.98 (0.98, 0.98) 0.55 (0.46, 0.65) 0.32 (0.26, 0.38) 0.94 (0.94, 0.94)
0.5 0.93 (0.92, 0.94) 0.13 (0.09, 0.16) 0.99 (0.99, 0.99) 0.64 (0.51, 0.78) 0.21 (0.15, 0.27) 0.93 (0.93, 0.93)
0.6 0.93 (0.92, 0.94) 0.1 (0.06, 0.13) 1.0 (1.0, 1.0) 0.76 (0.61, 0.89) 0.17 (0.11, 0.22) 0.93 (0.93, 0.93)
0.7 0.93 (0.92, 0.93) 0.05 (0.02, 0.07) 1.0 (1.0, 1.0) 0.81 (0.6, 1.0) 0.09 (0.05, 0.14) 0.93 (0.93, 0.93)
0.8 0.93 (0.92, 0.93) 0.02 (0.0, 0.04) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.04 (0.01, 0.07) 0.93 (0.93, 0.93)
0.9 0.93 (0.92, 0.93) 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.93 (0.93, 0.93)
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through deep learning, we plan to implement a targeted palliative
care intervention through the hospital-wide screening potential of
our model.37–39

CONCLUSIONS
A structured deep-learning model developed during the

COVID-19 pandemic accurately predicted in-hospital mortality,
discharge to hospice, or death within 30 days of admission among
inpatients at a large academic and community-based health care
system. Our study suggests that a single model can predict short-
term mortality outcomes of patients across multiple clinical sub-
groups with excellent predictive value and minimal racial bias.
Clinical applications of this inpatient mortality model are the targets
of ongoing investigation.
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