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ABSTRACT Decolonization with topical antimicrobials is frequently prescribed in health
care and community settings to prevent Staphylococcus aureus infection. However,
effects on commensal skin microbial communities remains largely unexplored.
Within a household affected by recurrent methicillin-resistant S. aureus skin and
soft tissue infections (SSTI), skin swabs were collected from the anterior nares, axil-
lae, and inguinal folds of 14 participants at 1- to 3-month intervals over 24 months.
Four household members experienced SSTI during the first 12-months (observatio-
nal period) and were prescribed a 5-day decolonization regimen with intranasal
mupirocin and bleach water baths at the 12-month study visit. We sequenced the
16S rRNA gene V1–V2 region and compared bacterial community characteristics
between the pre- and post-intervention periods and between younger and older
subjects. The median Shannon diversity index was stable during the 12-month
observational period at all three body sites. Bacterial community characteristics
(diversity, stability, and taxonomic composition) varied with age. Among all house-
hold members, not exclusively among the four performing decolonization, diversity was
unstable throughout the year post-intervention. In the month after decolonization, bac-
terial communities were changed. Although communities largely returned to their base-
line states, relative abundance of some taxa remained changed throughout the year fol-
lowing decolonization (e.g., more abundant Bacillus; less abundant Cutibacterium). This
5-day decolonization regimen caused disruption of skin bacteria, and effects differed in
younger and older subjects. Some effects were observed throughout the year post-inter-
vention, which emphasizes the need for better understanding of the collateral effects of
decolonization for S. aureus eradication.

IMPORTANCE Decolonization with topical antimicrobials is frequently prescribed to
prevent Staphylococcus aureus infection, but the effects on commensal skin bacteria
are undetermined. We found that decolonization with mupirocin and bleach water
baths leads to sustained disruption of bacterial communities.

KEYWORDS Staphylococcus aureus, microbiome, skin, decolonization, households

S taphylococcus aureus is a pathobiont (commensal bacterium with pathogenic
potential [1]) causing conditions ranging from asymptomatic colonization to cuta-

neous abscesses (often recurrent) to invasive, life-threatening infection (2, 3). The
emergence of community-associated methicillin-resistant S. aureus (CA-MRSA) strains
over the past 2 decades has posed a significant burden in health care and community
settings (4, 5). As MRSA colonization is an endogenous source for infection, preventive
measures commonly include decolonization, the application of topical antimicrobials
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(e.g., mupirocin) or antiseptic agents (e.g., chlorhexidine or dilute bleach water), to
eradicate S. aureus carriage (6).

Across multiple study populations, the practice of topical antimicrobial application
has been demonstrated to reduce MRSA colonization burden and infection incidence.
Hence, decolonization has become a common practice in health care and community
settings (4–11). However, few studies have investigated the effect of topical antimicro-
bials on endogenous bacterial communities (12–14). Topical antimicrobials may disrupt
the skin microbiota, accommodating the presence and prosperity of potential patho-
gens, analogous to dysbiosis of the intestinal microbiota with systemic antibiotics (15).
As decolonization initiatives for infection prevention continue to expand (8, 16), it is
essential that we understand the capacity of these topical agents to disrupt commen-
sal bacterial communities and associated consequences.

The objective of the present study was to assess bacterial community characteristics
and evaluate disruption of bacterial communities in a large household of 14 individuals
that participated in a 24-month, longitudinal study of CA-MRSA, some of whom were
prescribed a decolonization regimen (17–21).

RESULTS
Cohort characteristics. Samples were collected from the nares, axillae, and inguinal

folds from the index patient and 13 household contacts up to 10 times over 24 months.
Seven participants were male and seven were female, with a median age of 9 years
(range 0–37). Thirteen participants were colonized with S. aureus at least once during the
24-month study. The median number of time points at which individuals were colonized
with S. aureus was 5: 5 participants were colonized with MRSA, 2 with methicillin-suscepti-
ble S. aureus (MSSA), and 6 with both MRSA and MSSA (either simultaneously at different
body sites or at different sampling time points). Overall, 8 S. aureus strain types (by
repPCR) were recovered from the 14 household members over the 24 month longitudinal
study. The index patient was persistently colonized with the same MRSA strain type from
the 3 month sampling through the 18 month sampling. Some of the household contacts
were also intermittently colonized with the index patient’s MRSA strain type, while others
were intermittently colonized with different strain types (both MRSA and MSSA).

Bacterial community characteristics in the pre-intervention and post-intervention
study periods. We analyzed the bacterial community characteristics longitudinally
and determined effects of the decolonization intervention. We first compared the
bacterial community structures in each sample using nonmetric multidimensional
scaling (NMDS). The axilla, inguinal fold, and nares samples collected throughout the
observational period clustered by subject (P , 0.001) but not by time point (Fig. 1A
to C). At the 12-month study visit, the index patient and 3 household contacts who
had developed SSTIs during the 12-month observational period were assigned the
decolonization intervention. During the post-intervention period, the axillae and in-
guinal fold samples no longer significantly clustered by subject (Fig. 1D and E, P .

0.05), though the nares samples continued to cluster by subject (Fig. 1F, P , 0.001).
We generated a clustered heatmap of bacterial communities to visualize associations

between participant characteristics, study procedures, and bacterial community structures
(e.g., Staphylococcus-dominant communities). In the axillae (Fig. 2A), younger age associ-
ated with the cluster of samples containing moderate Staphylococcus, Streptococcus, and
“Other” bacteria (a group representing lower abundance organisms) (Fig. 2A, right cluster).
One cluster, defined by a high level of Bacillus, contained only samples collected during
the post-intervention period (Fig. 2A, middle cluster). In the inguinal folds (Fig. 2B), there
was a cluster dominated by Bacillus predominantly comprised of samples collected during
the post-intervention period (Fig. 2B, left cluster). In the nares (Fig. 2C), samples col-
lected from participants who had taken additional bleach baths (beyond what was
prescribed for the intervention) did not cluster with samples dominated by
Staphylococcus (Fig. 2C, left cluster). The same Staphylococcus-dominant cluster was
associated with samples that were S. aureus positive by culture. The younger age
group (,12 years old at the beginning of the study) was associated with several
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clusters, including those with high Haemophilus, Moraxella, or Streptococcus (Fig. 2C,
middle clusters). Samples from females in the older age group associated in a cluster
with moderate levels of Staphylococcus and Corynebacterium (Fig. 2C, right cluster).
The study period of sample collection (observational period versus post-intervention
period) did not associate with specific clusters (Fig. 2C).

FIG 1 Ordination analysis. NMDS ordination plots are shown for samples collected from the (A) axillae during year 1 (the observational period), (B) inguinal
folds during year 1, (C) anterior nares during year 1, (D) axillae during year 2 (the post-intervention period), (E) inguinal folds during year 2, and (F) anterior
nares during year 2. Each sampling time point is indicated by a shape (key in the top left corner of each figure), and each individual in the study is
indicated by a color (key in the bottom right corner). Clustering by subject was significant by Adonis testing, P , 0.001, for panels A, B, C, and F.
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We evaluated the alpha (within sample) diversity over time. During the observatio-
nal period, the median Shannon diversity in the axillae, inguinal folds, and nares was
stable, even in the context of sporadic bleach baths performed by some household
members (Fig. 3), as were other measures of alpha diversity (not shown). 1 month after
the prescribed decolonization intervention (performed by the index patient and 3

FIG 2 Bacterial communities and associations with participant characteristics and study procedures. The relative abundance of the top 20 taxa for the (A)
axillae, (B) inguinal folds, and (C) anterior nares are shown on the heatmaps. Each row represents a different taxon, and each column represents a different
sample. Low to high abundances are represented on the gradient from yellow to red. Clinical features are shown in gray and black at the top of each
heatmap, and the key is at the bottom right side of the figure.
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other household contacts), the Shannon diversity of samples from all household mem-
bers trended lower in all body sites (Fig. 3, 13 months). In the post-intervention period,
diversity was unstable in the axillae, inguinal folds, and nares (Fig. 3), oscillating
between lower and higher values across samplings. Using linear mixed-effects models,
we determined that that the Shannon diversities of the communities were significantly
associated with the sampling visit, largely reflecting dynamic changes in diversity asso-
ciated with the decolonization intervention, and the age of the subjects sampled, with
higher diversity communities recovered from younger subjects (axillae: visit P = 0.01,
age P = 0.009; inguinal folds: visit P = 0.0006, age P = 0.003; nares: visit P = 0.003, age
P = 0.04). S. aureus colonization or the development of SSTI in the interval prior to or
after sampling was not associated with Shannon diversity, although the numbers of
samples in these comparative groups was small.

FIG 3 Shannon diversity over time. The Shannon diversities of the samples from the (A) axillae, (B)
inguinal folds, and (C) anterior nares are shown at each sampling time point. Pre-intervention and
post-intervention time points are divided by the vertical dashed line. The data are displayed with box
and whisker plots, which include the median (solid horizontal line), interquartile ranges (box), and
min and max (whiskers), excluding outliers. The table at the bottom of the figure indicates interval
skin infections and bleach baths and mupirocin applications performed during each interval between
study visits: X represents interval skin infection; B*M* indicates the 5-day trial intervention of bleach
baths and twice daily mupirocin applications; B represents bleach baths performed outside those
prescribed for the trial; M represents mupirocin applications performed outside those prescribed for
the trial; (#) indicates the number of individuals in the group affected by SSTI or performing topical
antimicrobials or antiseptics during the interval.
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Bacterial community characteristics associated with age. Since age was a driving
factor in community structure and diversity metrics, we compared samples from sub-
jects who were ,12 years old at the beginning of the study with those $12 years old.
The Shannon diversity of the communities at each body site was higher in younger
participants than older participants (Fig. 4A to C). In the younger subjects, greater
dynamic change was observed in samples collected during the post-intervention pe-
riod compared to older subjects, and Shannon diversity in the axillae was strongly
associated with the sampling visit (linear mixed-effects model, P = 0.0005); no such
association was observed in older subjects (P = 0.2). In inguinal fold samples, Shannon
diversity was associated with the visit in younger subjects (P = 0.014) and older sub-
jects (P = 0.002). In the nares, younger subjects showed variability in Shannon diversity
over time, although this was not statistically significant (P = 0.07). In older subjects, the
variability in the Shannon diversity of nares samples was associated with sampling visit
(P = 0.0001).

We then evaluated specific taxa that distinguished samples from the subjects who
were ,12 years old compared with those who were $12 years old. In the axillae,
Streptococcus spp. were associated with the younger subjects, while Acinetobacter was
associated with older subjects (Fig. 4A). In the inguinal folds, the groups were distin-
guished by Streptococcus spp. and unclassified Enterobacteriaceae in the younger sub-
jects and Acinetobacter and Corynebacterium in the older subjects (Fig. 4B). The nares
from the younger subjects had higher levels of Streptococcus, Haemophilus, Moraxella,
and Dolosigranulum, while the older subjects had more Propionicimonas, Cutibacterium,
Staphylococcus, and Corynebacterium (Fig. 4C).

Effects of decolonization on bacterial community structure and taxa. To deter-
mine whether the community structure was disrupted by decolonization, and whether
this disruption persisted, we evaluated the change in community structure using Bray-
Curtis dissimilarity, a measure of beta diversity (Fig. 5). We measured the dissimilarity
between the communities from the 9- and 12-month samplings to serve as a baseline
level of community stability. We then measured the dissimilarity between the com-
munities at the 12- and 13-month samplings (i.e., before and after the decolonization
intervention) to measure the effects of the treatment on community structure. Finally,
we measured the dissimilarity between the 12-month and the 15-month samplings to
determine whether the community had returned to its baseline state. In the inguinal
folds, the difference in community structure was greater between the 12-month pre-
intervention sample and the 13-month post-intervention sample than between the 9-
month and 12-month samples pre-intervention (P = 0.03), suggesting the intervention
caused significant disruption. In the axillae, there was a trend toward greater disrup-
tion, but it was not statistically significant (P = 0.1). No difference was observed in the
nares samples (P = 1). The degree of change in community structure between the 9-
and 12-month (both pre-intervention) samplings did not differ from the change
observed between the 12-month (pre-intervention) and 15-month (3 months post-
intervention) samplings for all body sites.

We then evaluated whether specific taxa were affected by decolonization and
whether decolonization resulted in lasting effects. We stratified by age due to the age-
related differences in community composition. In the axillae and inguinal folds, we
found taxa that were distinct before and after decolonization (Fig. 6). Notably, Bacillus
was found at higher relative abundance post-decolonization in the axillae and inguinal
folds from younger subjects and the inguinal folds from older subjects. The Bacillus lev-
els were very low in all subjects in the observational period; post-intervention, the rela-
tive abundance increased 1 month after the prescribed intervention and continued to
oscillate in alternate months (Fig. 7A and B). In younger subjects, several taxa were
more predominant before decolonization (Fig. 6). For example, Cutibacterium and
Anaerococcus were found at higher levels during the observational period, and they
decreased and remained low throughout the post-intervention period (Fig. 7C and D).
In the nares, no taxa were associated with pre- or post-intervention samples.
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FIG 4 Shannon diversity over time stratified by age. The Shannon diversities of the samples from the (A) axillae,
(B) inguinal folds, and (C) anterior nares are shown at each sampling time point, with the subjects ,12 years of
age at the beginning of the study on the left and the subjects $12 years on the right, divided by the vertical
solid red line. Pre-intervention and post-intervention time points in both age groups are divided by vertical
dashed black lines. The data are displayed with box and whisker plots, which include the median (solid
horizontal line), interquartile ranges (box), and min and max (whiskers), excluding outliers. Taxa that distinguish
the older and younger subjects for each body site (identified by linear discriminant analysis [LefSe]) are inset into
each panel, with red bars showing taxa more prevalent in older subjects and green bars showing taxa more
prevalent in younger subjects.
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DISCUSSION

The practice of decolonization with topical antimicrobials to prevent S. aureus infec-
tion has become widespread across health care and community settings (5–7). While
these interventions are successful in eradicating S. aureus carriage, the collateral effects
of topical antimicrobials on commensal bacterial communities is largely unexplored (4,
10, 11). Topical agents may disrupt the skin microbiota, resulting in shifts in predomi-
nant organisms and potential loss of protective microbes (22–24). Such bacterial com-
munity disruption has been associated with inflammatory skin disorders (25–28). This
study demonstrates that a rigorous, prescribed decolonization regimen can lead to
changes in skin bacterial communities. While some of the observed changes were tran-
sient, others persisted 1 year after the decolonization intervention.

We observed general stability in bacterial communities within each anatomic niche
throughout the pre-intervention period, even in the context of sporadic bleach baths
by a few household members. This is consistent with other published studies that have
shown that skin bacterial communities are generally stable over time (29). However,
during the post-intervention period we observed dynamic changes in diversity and
sustained changes in bacterial community composition. Previous studies evaluating
effects of decolonization have differed in decolonization measures prescribed, out-
comes, microbial identification techniques, and sampling intervals, and thus are not
directly comparable to the present study (30–32). However, in both adult and neonatal
intensive care units, chlorhexidine bathing has been demonstrated to reduce microbial
diversity and bacterial burden (33, 34). Furthermore, in S. aureus-colonized adults from
community and nursing home settings, a 5-day course of mupirocin was shown to
reduce S. aureus for 8 weeks after treatment (14). That study found no difference in
overall alpha diversity (e.g., Shannon diversity) or in beta diversity between the pre-
treatment and 4-week posttreatment samples, which is consistent with our observa-
tions in the nares at that time point (Fig. 4 and 5, comparing 12- and 13-month sam-
plings) (14). Our study contributes to the understanding of the longitudinal effects
over a full year of frequently prescribed topical agents for decolonization, specifically
mupirocin and bleach baths, in a household setting. The sustained disruption observed
months following decolonization may be partially explained by the intensity and dura-
tion of the decolonization regimen. While this protocol is more effective at diminishing
S. aureus colonization than shorter protocols (e.g., a single bleach bath), our data sug-
gest that the increased intensity and duration of the decolonization regimen may have
long-term impact on microbial ecology of the skin.

Bacterial community changes were not limited to the 4 individuals who performed
the decolonization protocol. Studies have described the phenomenon of a “household
microbiota” resulting from close personal contact and shared environments (35). Song
and colleagues demonstrated that bacterial communities, particularly those recovered
from the skin, were more similar between cohabitating individuals than those living in
separate households (36). This effect was especially pronounced in larger families and
households with dogs, consistent with our family comprised of 3 adults, 11 children, 5
dogs, and 3 cats. Moreover, in our household in which only 4 members underwent
decolonization, we demonstrated that prescribed interventions (compared to sporadic
bleach baths) can have a broader impact on other household members. This raises
questions as to whether the same effects would be observed in smaller households or
households in which fewer people received the intervention. The mechanisms of the
shared community dynamics have yet to be determined. It is possible that bleach
baths and mupirocin affect the shared microbes through direct personal contact,
through household environmental reservoirs, or both. Given the broad impact of
decolonization on household members, it is important to understand the implications
of bacterial community disruption on susceptibility and resistance to colonization and
infection with pathogenic bacteria.

A predominant concern surrounding decolonization is replacement of commensal
organisms with microbes posing greater pathogenic potential. In our study, we
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observed increased relative abundance of Acinetobacter species in older participants
after decolonization, which could lead to skin and soft tissue infections with this patho-
gen (37). A systematic review found that, compared to controls, patients who had used
mupirocin were significantly more likely to develop infections caused by pathogens
other than S. aureus (38). This could be due to loss of protective effects of commensal
organisms, which protect the host from colonization and invasion by potential

FIG 5 Comparison of bacterial communities over time. The Bray-Curtis dissimilarity of bacterial
communities from (A) axillae, (B) inguinal folds, and (C) anterior nares samples collected from the
same individual at two time points are shown in the box and whisker plots. The data are displayed
with box and whisker plots, which include the median (solid horizontal line), interquartile ranges
(box), and min and max (whiskers), excluding outliers. A higher value indicates a greater difference in
community composition between the two samples compared. As a baseline, the samples collected at
9 and 12 months were compared. To evaluate samples collected before and after the intervention,
the 12- and 13-month samples were compared. To test for a return to baseline, the samples collected
at 12 months (pre-intervention) and 15 months (3 months post-intervention) were compared. The
differences between intervals were compared using Wilcoxon tests. Comparing the 9–12 and 12–
13 month values: axillae, P = 0.1; inguinal folds, P = 0.03; anterior nares, P = 1.
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pathogens (13, 39–42). Our study demonstrates that the taxa affected by decoloniza-
tion protocols differ in younger and older populations due to the differences in their
baseline community characteristics. A study by Oh and colleagues found that children
(classified as Tanner stages 1–3) had higher interpersonal variation in their bacterial
communities compared with older individuals (Tanner stages 4 and 5) (25), consistent
with the present study. Common respiratory pathobionts were also recovered from
children, whereas more lipophilic bacteria (e.g., Cutibacterium and Corynebacterium
spp.) were recovered from older individuals, likely due to the increased activity of seba-
ceous and apocrine glands associated with puberty. This raises the question of
whether disrupting bacterial communities in children may be problematic for develop-
ment of stable, healthy bacterial communities as they age. Alternatively, there might
be an ideal time to disrupt a community dominated by S. aureus to allow repopulation
with a more optimal set of microbes during the transition to an adult bacterial commu-
nity structure.

A strength of this study is the longitudinal nature with a prescribed, intense decolo-
nization intervention at the midpoint. This facilitates description of baseline character-
istics followed by analysis of the long-term effects of the intervention in the same sub-
jects. Moreover, while the majority of the limited studies evaluating the effects of
topical antimicrobials on the skin and nasal microbiota to date have employed culture-
based taxonomic identification (30–32), the 16S rRNA gene sequencing performed in
the present study provides a culture-independent analysis of the bacterial commun-
ities, enabling a more comprehensive assessment. Future studies could use metage-
nomic shotgun sequencing rather than 16S rRNA gene sequencing, which would ena-
ble species-level taxonomic classification and facilitate analysis of the gene content of
the bacterial community. Analyzing samples from members of one large household is
both a strength and limitation of this study. Evaluating bacterial communities among
household members controls for environmental exposures that may influence commu-
nity dynamics. Furthermore, it allowed us to evaluate the effects of decolonization in
both adults and children. The limited sample size of the present study, particularly
when stratified by age and body site, precludes our ability to identify specific constella-
tions of microbes associated with S. aureus colonization or development of subsequent
infection.

FIG 6 Taxa associated with pre- and post-intervention intervals. Subjects were stratified by age (young ,12 years, older $12 years), and linear discriminant
analysis (LefSe) was used to identify taxa associated with pre- and post-intervention intervals. Green bars indicate taxa associated with the pre-intervention
interval, and red bars indicate taxa associated with the post-intervention interval.
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In conclusion, as decolonization initiatives for infection prevention continue to
expand, it is essential that we understand the capacity of these agents to disrupt com-
mensal bacterial communities and associated consequences. Larger studies of more
diverse patient populations are needed to understand the collateral effects of decolo-
nization over time in people of all ages.

MATERIALS ANDMETHODS
Cohort recruitment, data, and sample collection. To investigate CA-MRSA household transmission

dynamics and prevention strategies, pediatric index patients with acute CA-MRSA skin and soft tissue
infections (SSTI) were recruited as previously described (17–21). The present analysis investigated nasal
and skin bacterial communities recovered from members of one enrolled household. Study personnel
conducted all research visits in the participants’ home. Informed consent (and assent when appropriate)
was obtained. The study design is depicted in Fig. S1 The observational period consisted of the enroll-
ment visit and longitudinal visits 3, 6, 9, and 12 months following enrollment. At the 12-month visit, the
household was randomized into a pragmatic intervention trial (20) in which the 4 household members
who experienced SSTI during the observational period (i.e., the index patient and 3 household contacts)
were assigned a 5-day decolonization regimen (application of 2% mupirocin to the anterior nares twice
daily and soaking for $15 min each day in dilute bleach water [6]). Post-intervention study visits
occurred 13, 15, 18, 21, and 24 months following initial study enrollment. During each study visit, partici-
pants were queried regarding the incidence of interval SSTI, antibiotic consumption, and topical antimi-
crobials or antiseptics applied in addition to the trial protocol. Additionally, swab samples (BD Eswab;
Becton, Dickinson) were obtained following a standardized protocol from the anterior nares, axillae, and
inguinal folds of each participant. S. aureus was recovered using broth-enrichment and molecular typing
was performed on all recovered S. aureus isolates by repetitive-sequence PCR (repPCR) (21). The remain-
ing swab transport medium was aliquoted and frozen at 280°C for genomic analyses. All study proce-
dures were approved by the Washington University Institutional Review Board.

16S rRNA gene sequencing and analysis. The V1–V2 region of the 16S rRNA gene was amplified
and sequenced on the MiSeq platform (Illumina, San Diego, CA, USA). Sequences were processed and
taxonomically classified using Mothur (43, 44). Data were subsampled to 10,046 reads per sample for
comparisons. Thirty-seven of the 363 samples (10%) had read counts ,10,000 and were removed from
further analysis. See Supplemental Methods for details. Sequence data have been deposited in the
Sequence Read Archive under Bioproject PRJNA788575.

FIG 7 Read counts of taxa associated with pre- and post-intervention intervals. Taxa that distinguish
pre- and post-intervention intervals were identified using linear discriminant analysis (LefSe).
Distributions of sequence read counts (y axis) are shown over time (x axis). Read counts are from the
data that were subsampled to 10,046 total reads per sample. The data are displayed with box and
whisker plots, which include the median (solid horizontal line), interquartile ranges (box), and min
and max (whiskers), excluding outliers.
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Statistical analyses. The R statistical program was used for statistical analysis and plotting (45). The
R libraries vegan (46), labdsv (47), plotly (48), and lme4 (49) were used to calculate diversity, create
NMDS plots, and explore longitudinal trends. Differential representation of specific taxa was evaluated
using LEfSe (50). For some analyses we stratified the subjects into two groups based on age (,12 and
$12 years old at the start of the study), as significant changes occur in the skin microbiome coincident
with sexual maturation (25). See Supplemental Methods for details.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.
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