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Abstract
Endoplasmic reticulum (ER) stress-mediated cell death is an emerging target for human chronic disorders, including
neurodegeneration and diabetes. However, there is currently no treatment for preventing ER stress-mediated cell death. Here,
we show that mesencephalic astrocyte-derived neurotrophic factor (MANF), a neurotrophic factor secreted from ER stressed
cells, prevents ER stress-mediated β cell death and enhances β cell proliferation in cell and mouse models of Wolfram
syndrome, a prototype of ER disorders. Our results indicate that molecular pathways regulated by MANF are promising
therapeutic targets for regenerative therapy of ER stress-related disorders, including diabetes, retinal degeneration,
neurodegeneration, and Wolfram syndrome.

Introduction

Growing evidence indicates that endoplasmic reticulum (ER)
stress plays a critical role in β cell death in type 1 and type 2
diabetes, as well as in neurodegenerative disorders, including
Parkinson’s disease and amyotrophic lateral sclerosis [1–5].
Despite the underlying importance of ER stress in β cell
death, there is currently no diabetes treatment targeting the ER
due to the complex nature of type 1 and type 2 diabetes. Our
strategy for overcoming this challenge is to focus on a
monogenic form of diabetes, Wolfram syndrome. Wolfram

syndrome is a rare disease characterized by juvenile-onset
diabetes mellitus, optic nerve atrophy, and neurodegeneration
[6, 7]. As this syndrome is caused by mutations in the WFS1
gene which is involved in ER calcium homeostasis and ER
stress-mediated cell death, it is ideal for testing potential new
treatments targeting the ER [8–14].

Mesencephalic astrocyte-derived neurotrophic factor
(MANF) is a trophic factor whose expression and secretion
is enhanced by ER stress and ER calcium depletion [15–
18]. It has been demonstrated that MANF plays a critical
role in the survival of ER stressed β cells and neurons
[19, 20], raising the possibility that MANF-based treatment
can be beneficial for patients suffering from ER stress-
related disorders, including Wolfram syndrome. Here we
show that MANF-based treatment prevents β cell death and
enhances β cell proliferation in cell and mouse models of
Wolfram syndrome. Our results indicate that molecular
pathways regulated by MANF are promising drug targets
for ER stress-related disorders, including β cell death in
diabetes and Wolfram syndrome.

Materials and methods

Cell culture

Manf knockout INS-1 832/13 cells andWfs1 knockout INS-1
832/13 cells were created in collaboration with the Genome
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Engineering and Induced Pluripotent Stem Cell (iPSC)
Center at Washington University using CRISPR-Cas9 gen-
ome editing techniques. INS-1 832/13 cells in which Wfs1
expression can be suppressed by doxycycline-inducible
shRNA directed against Wfs1 (INS-1 DOX-shWfs1) were
generated as described previously [9]. Briefly, INS-1 832/13
cells stably expressing pTetR were transduced with lentivirus
expressing pTER(H1/tetO)-shWfs1. INS-1 DOX-shWfs1
were cultured in 2 µg/ml doxycycline (MilliporeSigma, St.
Louis, MO) for 48 h before isolation of protein and RNA,
and glucose-stimulated insulin secretion (GSIS) assay. INS-1
832/13 cells stably overexpressing MANF (MANF-OE)
were created by transducing INS-1 832/13 cells with lenti-
virus expressing human MANF. INS-1 832/13 cells were
cultured in RPMI 1640 (Thermo Fisher Scientific, Waltham,
MA) supplemented with 10% FBS (Thermo Fisher
Scientific), 1 mM sodium pyruvate (Thermo Fisher Scien-
tific), 100 nM β-mercaptoethanol (MilliporeSigma), and
penicillin–streptomycin (Thermo Fisher Scientific).
Tetracycline-free FBS (Takara Bio USA, Mountain View,
CA) was used for culturing INS-1 DOX-shWfs1.

Animal experiments

Wfs1 β cell-specific knockout (βWfs1(−/−)) mice were gen-
erated by breeding the Cre recombinase driven by rat
insulin promoter (Rip2-Cre) transgenic mice (originally
from Dr Pedro Herrera) with Wfs1 floxed mice [21]. All
animal experiments were performed according to proce-
dures approved by the Institutional Animal Care and Use
Committee at the Washington University School of Medi-
cine (A-3381-01).

Immunoblot analysis

INS-1 832/13 cells were washed in cold PBS and lysed with
M-PER reagent (Thermo Fisher Scientific) containing
Complete™ protease inhibitor cocktail (MilliporeSigma).
The equivalent amounts of cell lysates were resolved by
SDS-PAGE using 4–20% Mini-PROTEAN® TGX™ Pre-
cast Protein Gels (Bio-Rad Laboratories, Hercules, CA) and
blotted onto Immobilon-P PVDF membrane (0.45 µm)
(MilliporeSigma). The following primary antibodies were
used for detecting the protein of interest; WFS1 antibody
(Proteintech, Rosemont, IL), cleaved caspase-3, GAPDH,
alpha-tubulin and beta-actin antibody (Cell Signaling
Technology, Danvers, MA), and anti-MANF antibody
(Abnova, Taipei City, Taiwan) at 1:1000 dilution. The
secondary antibodies conjugated to horseradish peroxidase
were obtained from Cell Signaling Technology. The
detection was performed by enhanced chemiluminescence-
select (GE Healthcare Bio-Sciences, Pittsburgh, PA). Fiji/
ImageJ was used for the quantification of immunoblot.

Quantitative PCR

Total RNA was extracted from INS-1 832/13 cells using the
RNeasy Mini Kit (Qiagen, Germantown, MD) and reverse
transcribed using High-Capacity cDNA Reverse Tran-
scription Kits (Thermo Fisher Scientific). The expression of
Manf and ER stress-related genes including Binding
immunoglobulin protein (Bip), CCAAT/enhancer-binding
protein-homologous protein (Chop), spliced X-box binding
protein (Xbp1) (sXbp1), and Tribbles Pseudokinase 3
(Trb3) were detected by quantitative PCR (qPCR) using
SYBR green reagents (Bio-Rad Laboratories). The qPCR
was performed in triplicate for each sample. The primers
sequences were: rat Manf, 5′-TGAGGTATCGAAGC
CTCTGG-3′ and 5′-CTCGCAGATCTGGCTGTCTT-3′;
rat actin, 5′-GCAAATGCTTCTAGGCGGAC-3′ and 5′-
AAGAAAGGGTGTAAAACGCAGC-3′; rat Bip, 5′-TGG
GTACATTTGATCTGACTGGA-3′ and 5′-CTCAAAGGT
GACTTCAATCTGGG-3′; rat Chop, 5′-AGAGTGGTC
AGTGCGCAGC-3′ and 5′-CTCATTCTCCTGCTCCTTC
TCC-3′; rat sXbp1, 5′-CTGAGTCCGAATCAGGTGC
AG-3′ and 5′-ATCCATGGGAAGATGTTCTGG-3′; rat
Trb3 5′-ACCATGCGAGCCACATCTCTG-3′ and 5′-CT
AGCCATACAGCCCCACCTC-3′.

Primary islet culture

Mouse primary islets were taken from βWfs1(−/−) mice. The
mice were anesthetized, and pancreata were infused with 5ml
of 0.45mg/ml collagenase type V (MilliporeSigma) in Hank’s
balanced salt solution without Ca2+ (Thermo Fisher Scien-
tific). After surgical removal, pancreata were incubated for
12 min at 37 °C, and then hand-shaken for 2 min. Undigested
acinar tissue was removed by using a 70-μm cell strainer and
recovered tissues were washed twice with ice-cold Hanks’
balanced salt solution followed by centrifugation at 1100 rpm
for 1 min. Islets were handpicked and preincubated in RPMI
1640 medium containing 10% FBS and antibiotics before
experimentation. Islets of equal size were handpicked to
generate 3–5 technical replicates for all experiments. Very
large and very small islets were excluded. The results were
obtained from at least three independent experiments.

Human islet culture

Human islets were purchased from Prodo Laboratories (Aliso
Viejo, CA), and cultured in CMRL-1066 medium (Corning
Incorporated, Corning, NY) containing 5 mM glucose, 100
units/ml penicillin, 100 µg/ml streptomycin, 2 mM Gluta-
MAX (Thermo Fisher Scientific), 250 µg/ml gentamycin
(Thermo Fisher Scientific), 10mM HEPES (pH 7.4) (Thermo
Fisher Scientific), and 10% FBS. Human islets (30 islets/
well) were handpicked under a dissecting microscope.

1198 J. Mahadevan et al.



Insulin secretion assay

Primary mouse islets or INS-1 832/13 were cultured for 24 h
and batches of ten islets were handpicked on the day of the

experiment. Mouse islets or INS-1 832/13 were starved for
1 h in Krebs-Ringer bicarbonate-HEPES buffer (129 mM
NaCl, 5 mM NaHCO3, 4.8 mM KCl, 1.2 mM KH2PO4,
1.2 mM MgSO4, 10 mM HEPES, and 1 mM CaCl2 at
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pH 7.4) containing 0.1% bovine serum albumin (KRBH/
BSA). KRBH/BSA was supplemented with 2.8 mM glucose
and then stimulated for 1 h at 37 °C in KRBH/BSA con-
taining basal 5.5 mM or stimulatory 16.7 mM glucose. At
the end of each incubation, supernatants were collected to
measure insulin release, and cellular insulin contents were
determined by acid–ethanol extraction followed by ELISA
Rat/Mouse Insulin kit (MilliporeSigma).

Cell proliferation

The islets isolated from humans donor or βWfs1(−/−) mice
were dissociated by incubation with 0.25% trypsin-EDTA
(Thermo Fisher Scientific) at 37 °C for 5 min and treated
with MANF peptide (R&D Systems, Minneapolis, MN) 5
µg/ml for 5 days. Two-thirds of the medium were changed
daily to fresh medium with MANF peptide. To monitor the
cell proliferation rate, the BrdU cell proliferation assay kit
(Cell Signaling Technology) was used following the man-
ufacturer’s instruction.

Caspase-3/7 activity in INS-1 832/13 cells

INS-1 832/13 cells were cultured in RPMI medium in a 96-
well plate. Cells were treated with MANF peptide (5 µg/ml)
for 24 h, and then exposed to thapsigargin (Milli-
poreSigma). Caspase-3 activity and cell viability were
assessed using the Caspase-Glo® 3/7 assay kit and the

CellTiter-Fluor™ cell viability Assay kit (Promega Corp.,
Madison, WI).

Immunostaining

Pancreatic tissue sections were fixed, rehydrated and per-
meabilized with 0.1% Triton X-100 for 2 min. The sections
were washed with 0.1% Tween-20 PBS (PBS-T) containing
Image-It FX signal enhancer (Thermo Fisher Scientific) for
1 h and incubated with primary antibodies overnight at 4 °C
[guinea pig anti-insulin antibody (1:100, Thermo Fisher
Scientific), MANF (1:100, Abnova), and Ki67 (1:100, Cell
Signaling Technology)]. The tissue sections were washed
three times in PBS-T and incubated with secondary anti-
bodies for 1 h at room temperature. Images were obtained
with a Zeiss LSM 5 PASCAL confocal microscope with
LSM Image software.

Measurement of β-cell mass

For measurement of β-cell mass, every 40th pancreatic
section was immunostained with guinea pig anti-insulin
antibody (1:100, Thermo Fisher Scientific) and counter-
stained with hematoxylin. The β-cell mass for each mouse
was quantified using Image Pro Plus software (Media
Cybernetics, Rockville, MD) by obtaining the fraction of
the cross-sectional area of pancreatic tissue (exocrine and
endocrine) positive for insulin staining, and then multi-
plying this by the pancreatic weight.

Measurement of apoptosis through TUNEL assay

Apoptotic cells were detected using the terminal deox-
ynucleotidyl transferase dUTP nick end labeling (TUNEL)
method as per the manufacturer’s protocol (Milli-
poreSigma). For the determination of apoptosis, all β-cells
per pancreatic sections (five sections per animal) were
analyzed to count the total number of TUNEL-positive β-
cells. An average of 150 islets was counted per animal and
the percentage of TUNEL-positive cells was quantitated.

In vivo administration of AAV vectors

The methods for AAV production are described in Sup-
plemental Information. AAV was produced in collabora-
tion with the Hope Center Viral Vectors Core at
Washington University. Male (n= 3, 2–3 months of age)
and female (n= 4, 3–4 months of age) βWfs1(−/−) mice
received intraperitoneal injections of AAV9-CBA-IRES-
GFP or AAV9-CBA-MANF-IRES-GFP at a final dose of
1 × 1013 viral genome particles diluted in saline per

Fig. 1 MANF expression and secretion are induced by ER calcium
depletion leading to suppression of ER stress-mediated cell death.
a qPCR analysis monitoring Manf mRNA expression levels in INS-1
832/13 cells treated with thapsigargin (TG) 10 nM for 24 h, 0.1 µM or
0.5 µM for 6 h. UT untreated (n= 3, ***P= 0.0001, ****P < 0.0001).
b Western blot analysis monitoring extracellular and intracellular
MANF levels. INS-1 832/13 cells were treated with 0.5 µM of TG for
indicated times. c Left panel: western blot for evaluating the expres-
sion level of MANF protein in wild type (WT) and Manf knockout
(Manf-KO) INS-1 832/13 cells. Right panel: caspase-3/7 activity
normalized to cell viability in INS-1 832/13 cells treated with or
without TG (0.1 µM for 4 h) (n= 8, ****P < 0.0001). d Western blot
of cleaved caspase-3 in INS-1 832/13 cells pretreated with or without
recombinant MANF peptide (5 µg/ml) for 24 h, and then challenged
with TG (0.5 µM) for 6 h. Quantification of immunoblot analysis is
shown in the right panel (n= 4, ****P < 0.0001). e The caspase-3/7
activity assay in INS-1 832/13 cells pretreated with recombinant
MANF peptide (5 µg/ml) for 24 h, and then challenged with TG
0.5 µM for 6 h. f Left panel: western blot for evaluating the expression
level of MANF protein in control (Ctrl) and MANF overexpressed
INS-1 832/13 (MANF-OE) whole cell lysate and supernatant. Right
panel: qPCR analysis monitoring the expression levels of Chop,
sXbp1, Trb3, and Bip mRNA in Ctrl and MANF-OE INS-1 832/13
cells challenged with TG 0.5 µM for 6 h (n= 3, *P < 0.05, **P < 0.01,
****P < 0.0001).
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mouse. After 4 weeks of AAV administration, the pan-
creata were harvested. Dissected pancreas pieces were
fixed in 4% formalin. Formalin-fixed paraffin-embedded
sections were deparaffinized and rehydrated. To estimate
the β-cell replication rate, pancreatic sections were
immunostained with anti-insulin and anti-Ki-67 antibody,
a marker for cellular proliferation. Overall, 1500–3000 β
cells were counted in each animal.

Data analysis

The values are expressed as mean ± SEM. All the statistical
analysis was carried out with Prism 8 (ver 8.0.2). Compar-
isons among the group were done by Student’s t test. Multiple
comparisons were performed by ANOVA followed by
Tukey’s test. P < 0.05 was considered statistically significant.

Results

MANF confers protection against cell death induced
by ER calcium depletion

We have recently shown that various β cell perturbants,
including the loss of function of Wolfram syndrome 1
(WFS1) gene, induce ER calcium depletion and ER stress,
leading to β cell death [10, 22]. It has been recently reported
that loss of MANF in vivo leads to β cell death with ER
stress elevation [20]. These considerations prompted us to
monitor MANF expression levels in β cells under stressed
conditions. Although Manf mRNA expression was not
changed by Wfs1 deficiency (Fig. S1), thapsigargin, which
is a well-established ER calcium depletion inducer,
increased Manf mRNA expression and MANF protein

Fig. 2 Effect of MANF on glucose-stimulated insulin secretion. a
Doxycycline-inducible shRNA directed against Wfs1 (INS-1 DOX-
shWfs1) cells were treated with or without MANF peptide (5 µg/ml) for
24 h, and then treated with doxycycline (DOX). Insulin release was
measured at basal (5.5mM) glucose and stimulatory (16.7 mM) glucose
conditions (n= 3, not significant). b Cellular insulin contents were
measured after the 24 h pretreatment with MANF peptide (5 µg/ml)

followed by DOX treatment (n= 3, not significant). c Glucose-stimulated
insulin secretion on control (Ctrl) and MANF overexpressed INS-1 832/
13 cells (MANF-OE). Insulin release was measured at 5.5 and 16.7mM
glucose conditions (n= 3, not significant). d Primary islets isolated from
wild type (WT) and β cell-specificWfs1 knockout mice (βWfs1(−/−)) were
pretreated with MANF peptide (5 µg/ml) for 24 h. Insulin release was
measured at 5.5mM and 16.7 mM glucose (n= 3, not significant).
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secretion in INS-1 832/13 cells (Fig. 1a, b). A smaller band
of extracellular MANF corresponds to an isoform lacking
RTDL domain which is prone to be secreted, and a larger
band corresponds to an isoform containing RTDL domain
which is glycosylated [15] (https://www.ncbi.nlm.nih.gov/
protein/NP_001101653.1,XP_006243837.1). Intracellular
fraction only contains an isoform with the C-terminal RTDL
domain [23]. While Manf knockout INS-1 832/13 cells
were more sensitive to ER stress-induced cell death
(Fig. 1c), recombinant MANF peptide pretreatment reduced
cell death in INS-1 832/13 cells treated with thapsigargin
(Fig. 1d, e). Furthermore, mRNA expression level of trib-
bles pseudokinase 3 (Trb3), which is an ER stress-inducible
gene, was significantly suppressed in INS-1 832/13 cells
stably overexpressing MANF (MANF-OE) (Fig. 1f). Trb3
is a proapoptotic component of ER stress signaling [24–26],
suggesting that MANF might suppress the proapoptotic arm
of ER stress signaling in those models.

Effect of MANF on insulin secretion

Since the loss of MANF in vivo can lead to β cell dys-
function, we studied the relationship between MANF and
insulin secretion. We created INS-1 832/13 cells in which
Wfs1 expression can be suppressed by doxycycline-
inducible shRNA directed against Wfs1 (INS-1 DOX-
shWfs1) [9]. Glucose-stimulated insulin secretion (GSIS)
assays were performed in INS-1 DOX-shWfs1 cells,
MANF-OE INS-1 832/13, and primary mouse islets isolated
from β cell-specific Wfs1 knockout (βWfs1(−/−)) mice trea-
ted with recombinant MANF peptide. As a consequence,
MANF treatment or overexpression did not affect GSIS in
those models (Fig. 2a–d).

MANF activates proliferation of human primary
islets

The fact that the suppression of ER stress can lead to β cell
proliferation raised the possibility that MANF treatment
might activate β cell proliferation [22, 23]. To test this idea,
human primary islets were treated with recombinant MANF
peptide and then their proliferation rates were assessed by
the BrdU assay. Consequently, MANF treatment sig-
nificantly induced the proliferation of human primary islets
derived from two out of six donors (Fig. 3 and Supple-
mentary Table).

MANF-based treatment for Wolfram syndrome

We have previously shown that ER calcium depletion,
followed by ER stress-mediated cell death, plays a role in
the pathogenesis of Wolfram syndrome [10, 22, 27], which
prompted us to consider the possibility that MANF-based

treatment could prevent β cell death and activate β cell
proliferation in Wolfram syndrome. Cell death induced by
Wfs1 knockdown in INS-1 DOX-shWfs1 cells was pre-
vented by recombinant MANF peptide treatment shown as
cleaved caspase-3 protein and caspase-3/7 activity reduction
(Fig. 4a, b). The proliferation of primary islets from
βWfs1(−/−) mice, which is a mouse model of Wolfram
syndrome [21], was also enhanced by MANF treatment
(Fig. 4c). Moreover, MANF treatment suppressed the
expression of proapoptotic ER stress markers (Chop and
Trb3) in INS-1 DOX-shWfs1 cells (Fig. 4d) and MANF
overexpression improved the viability of Wfs1 knockout
INS-1 832/13 cells (Fig. S2).

Next, we analyzed the effect of MANF on β cell pro-
liferation in βWfs1(−/−) mice. Adeno-associated virus 9
expressing MANF (AAV9-MANF) was injected intraper-
itoneally into βWfs1(−/−) mice. We then monitored β cell
proliferation for 5 weeks after the injections. Pancreas
sections from those mice showed robust expression of
MANF in islet β cells, as well as in exocrine pancreatic cells
(Fig. 5a). We found that β cell proliferation rates in endo-
crine cells were higher in βWfs1(−/−) mice injected with
AAV9-MANF than in those injected with control AAV9
(Fig. 5b). β cell mass was not increased in both groups
(Fig. 5c). TUNEL-positive cells were rarely detectable in
both groups (βWfs1(−/−) mice injected with AAV9-control,
0.09 ± 0.02%; βWfs1(−/−) mice injected with AAV9-MANF,
0.08 ± 0.02%) (Fig. 5a). Although MANF was also over-
expressed in exocrine pancreatic cells, proliferation rates of
these cells were comparable with control cells, suggesting
that the proliferative effect of MANF might be specific for
pancreatic β cells (Fig. S3). Collectively, these results
indicate that MANF enhances β cell survival and pro-
liferation in cell and mouse models of Wolfram syndrome.

Fig. 3 MANF activates proliferation of β cells. The BrdU assay
monitoring the proliferation of human primary islets treated with or
without MANF peptide (5 µg/ml) for 5 days (n= 4, *P < 0.05).
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Fig. 4 MANF attenuates cell death and activates cell proliferation
in β cell models of Wolfram syndrome. a Immunoblot analysis of
cleaved caspase-3 and actin in doxycycline-inducible shRNA directed
against Wfs1 (INS-1 DOX-shWfs1) cells. INS-1 DOX-shWfs1 cells
were untreated or pretreated with MANF peptide (5 μg/ml) for 24 h,
and then treated with doxycycline (DOX) for Wfs1 suppression. The
quantified ratio of cleaved caspase-3 is shown in the right panel (n= 3,
*P < 0.05). b Caspase-3/7 activity assay in INS-1 DOX-shWfs1 cells.
INS-1 DOX-shWfs1 cells were untreated or pretreated with MANF

peptide (5 μg/ml) for 24 h, and then treated with or without DOX for
another 48 h (n= 3, **P < 0.01). c BrdU assay of β cell-specific Wfs1
knockout mice (βWfs1(−/−)) primary islets. The isolated islets were
treated with or without MANF peptide (5 µg/ml) for 5 days (n= 4,
*P < 0.05). d qPCR analysis monitoring the expression levels of Chop,
sXbp1, Trb3, and Bip mRNA in INS-1 DOX-shWfs1 cells. The cells
were treated with or without MANF peptide (5 μg/ml) for 24 h, and
then treated with DOX (n= 3, *P < 0.05).
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Discussion

Wolfram syndrome is characterized by juvenile-onset dia-
betes, optic nerve atrophy and, neurodegeneration due to
ER stress-mediated cell death [6, 28], and has been estab-
lished as a prototype of ER stress disease [8, 9, 11–14,
21, 29]. Since there is no treatment that can stop or even
slow the progression of this syndrome currently, developing
the novel treatment has been an urgent task.

Increasing evidence indicates that MANF possesses
regenerative and cytoprotective effects. In the mouse pan-
creas, MANF overexpression was found to induce the
proliferation of pancreatic β cells [20]. Systematic MANF
overexpression or recombinant MANF peptide delivery
protects the liver of old mice from inflammation and
hepatocyte apoptosis [30]. Notably, recombinant human
MANF peptide protects human β cells from cytokine-
induced ER stress and cell death, and induces β cells pro-
liferation [31]. In this study, we show that MANF treatment
activates the proliferation of β cells in human islets and
prevents ER stress-mediated β cell death and enhances β
cell proliferation in cell and mouse models of Wolfram
syndrome. These results broaden the possibility of devel-
oping the new treatments for Wolfram syndrome using
adeno-associated virus expressing MANF or recombinant
MANF peptide. To elucidate the efficacy of MANF treat-
ment, further experiments using the other Wolfram syn-
drome model mice, or β cells which are differentiated from
Wolfram syndrome patient-derived iPSCs would be
required [12]. On the other hand, MANF treatment did not
change insulin secretion and insulin content in INS-1 832/
13 cells. These results are in line with the previous report
using EndoC-βH1 cells [31]. Moreover, even though
MANF overexpression activated the βWfs1(−/−) mice β cell

proliferation, the β cell mass of these mice was not changed.
A longer overexpression might be needed to study the effect
of MANF on the β cell mass.

MANF was originally isolated from astrocytes as a novel
neurotrophic factor [15]. It has been reported that MANF
regulates the NF-kB signaling pathway, which is considered
to be activated through their receptors [31, 32]. However,
receptors for MANF have not been identified. Further stu-
dies are required to identify these receptors and their sig-
naling pathway in order to develop treatments based on
small molecules that act as MANF receptor agonists.

Our results are also relevant to other diseases related to
ER stress. Genetic, clinical, and experimental evidence
indicates that ER stress-mediated cell death is an important
pathogenic component in human chronic disorders,
including type 1 and type 2 diabetes, retinal degeneration,
Parkinson’s disease, amyotrophic lateral sclerosis, inflam-
matory bowel disease, and multiple sclerosis [3, 33–39]. It
has been reported that plasma MANF protein levels decline
with age in flies, mice, and human [30]. In contrast, circu-
lating MANF levels are known to increase in children with
type 1 diabetes as compared with control subjects [40]. ER
stress in β cells has been linked to autoimmunity and
cytokine-mediated β cell death during the onset and pro-
gression of type 1 diabetes [41–47]. Thus, increased MANF
levels in patients with type 1 diabetes may be an adaptive
response to ER stress in β cells. MANF mutations have
been reported in a patient with type 2 diabetes [48]. In such
disorders, MANF-based therapy may suppress ER stress-
mediated cell death and delay the progression of the disease.

Collectively, our results provide a rationale for identi-
fying signaling molecules regulated by MANF, including its
receptor, so that we may develop novel regenerative therapy
for ER stress-related disorders, including diabetes, retinal
degeneration, and Wolfram syndrome.
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