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Abstract
Purpose of Review Currently, cardiotoxicity is monitored through echocardiography or multigated acquisition scanning and is
defined as 10% or higher LVEF reduction. The latter stage may represent irreversible myocardium injury and limits modification
of therapeutic paradigms at earliest stages. To stratify patients for anthracycline-related heart failure, highly sensitive and
molecularly specific probes capable of interrogating cardiac damage at the subcellular levels have been sought.
Recent Findings PET tracers may provide noninvasive assessment of earliest changes within myocardium. These tracers are at
nascent stages of development and belong primarily to (a) mitochondrial potential-targeted and (b) general ROS (reactive oxygen
species)-targeted radiotracers. Given that electrochemical gradient changes at the mitochondrial membrane represent an up-
stream, and earliest event before triggering the production of the ROS and caspase activity in a biochemical cascade, the former
category might offer interrogation of cardiotoxicity at earliest stages exemplified by PET imaging, using 18F-Mitophos and 68Ga-
Galmydar in rodent models.
Summary Both categories of radiotracers may provide tools for monitoring chemotherapy-induced cardiotoxicity and interro-
gating therapeutic efficacy of cardio-protectants.
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Introduction

Over the last decade, successes in chemotherapy have contrib-
uted enormously to improvements in survival rates of cancer
patients. During this intermediate period, the design and de-
velopment of targeted therapeutics and characterization of
novel biomarkers that mediate the pathophysiology of tumor
biology in general, and their distant metastases in particular,
have both demonstrated unparalleled growth, thereby advanc-
ing substantially the fields of medicinal chemistry, chemical,
and tumor biology. Among these discoveries, while therapeu-
tics directed at signaling pathways (angiogenesis) to impede
proliferation of tumor cells via kinase inhibitors have shown
promising outcomes, the discovery of immune check-point
inhibitors (ICIs) have also offered remarkable tools in kits of
molecular oncologists to treat both solid- and hematological
tumors. Among these ICIs, agents targeting cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), programmed cell
death receptor-1 (PD-1), and programmed cell death ligand-1
(PD-L1) have found remarkable clinical success [1, 2]. The
mechanism of action for these agents involve inhibiting the
tumor cells from inactivating the immune system, thereby
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restoring the immune system role against the infiltrating tumor
cells, thus impacting positively the healthcare landscape by
enhancing survival rates in patient populations with typically
poor outcomes using other treatment paradigms [3, 4].
However, each therapeutic advance has encountered its own
challenges; therefore, ICIs also could not escape that fate.
Importantly, the stimulation of the immune system is not with-
out risk and is known to be associated with multi-organ ad-
verse events [5]. These adverse events have been shown to
occur with a variable frequency depending on the type of ICI,
the type and location of the tumor, and host-traits [6]. Despite
these advances, anthracyclines (exemplified by Doxorubicin
or related analogues) either as primary intervention or as a
combination therapy continue to be the main workhorse of
patient management plans in molecular oncology clinics due
to their utility in numerous malignancies (but not limited to),
such as acute leukemia, non-Hodgkin lymphoma, breast can-
cer, and sarcomas. However, the benefits of these advances in
cancer chemotherapy have been offset by concerns about
cardiotoxicity-related adverse effects induced by administered
anthracyclines or combination therapy. Most chemotherapeu-
tic agents damaging myocardium often affect the circulatory
vessels, impair coronary endothelial function, and can poten-
tially induce left ventricular dysfunction or heart failure by
generation of reactive oxygen species, and apoptosis [7].
Cardiotoxicity may be acute, which occurs either during or
immediately following treatment and can be either transient
or chronic, and has been typically categorized into type I (ear-
ly onset) and type II (late onset) [8]. While the type I
cardiotoxicity has been considered to be irreversible cardiac
cell injury, and normally caused by anthracyclines, and ana-
logues thereof including combination therapy, the type II
cardiotoxicity is typically induced by molecularly targeted
antibodies [9•].

Cardio-oncology is a rapidly emerging field for managing
cancer-therapy-related cardiotoxicity, the consensus around
using left ventricle ejection fraction (LVEF) is one of the
metrics, and is evolving criterion. For example, the Cardiac
Review and Evaluation Committee of trastuzumab-associated
cardiotoxicity defines it by symptoms of heart failure, decline
of LVEF, either as symptomatic LVEF decrease from ≥ 5 to <
55% or an asymptomatic reduction of LVEF ≥ 10 to < 55%
[10]. The American Society of Echocardiography and
European Association of Cardiovascular Imaging define
cardiotoxicity as global longitudinal strain (GLS) with a 10–
15% early reduction. Finally, FDA defines LVEF drop < 40–
45% or is 40–49% with a ≥ 10% absolute decrease below
baseline with anti-HER2 targeted therapy as a benchmark
for monitoring cardiotoxicity [11•]. While the consensus
among clinical community would continue to emerge on de-
fining features of cardiotoxicity, molecular imaging agents
capable of offering early detection of cardiotoxicity in vivo
could offer powerful noninvasive tools for understanding role

of different biomarkers regulating its pathophysiology, while
simultaneously allowing opportunities for stratification of
therapeutic choices for guiding patient management in the
twenty-first century.

Mechanisms and Biomarkers

While mechanisms of action for anthracyclines are multifac-
torial, the consensus among scientific community is that che-
motherapy can potentially trigger increased production of re-
active oxygen and reactive nitrogen species, lipid peroxida-
tion, inflammation, induced cardiomyocyte apoptosis, intersti-
tial fibrosis, and abnormal signaling of epidermal growth fac-
tor as well as β-arrestin (the highly conserved family of cyto-
solic adaptor proteins that contribute to many immune func-
tions by orchestrating the desensitization and internalization
of cell-surface G protein-coupled receptors (GPCRs) via well-
studied canonical interactions), inhibition of nuclear topo-
isomerase II β, induced DNA damage, inhibition of vascular
endothelial growth factor signaling, defective mitochondrial
biogenesis, and calcium overloading [12–14]. Among the in-
tracellular organelles, while maintaining their role as energy
powerhouse, mitochondria have an essential role in myocar-
dial tissue homeostasis; thus, either deterioration or partial
impairment in their normal function leads to cardiomyocyte
and endothelial cell death, consequently thus inducing cardio-
vascular dysfunction [15]. For example, the antiretroviral nu-
cleoside reverse transcriptase inhibitors such as zidovudine
may cause cardiac mitochondrial dysfunction through inhibi-
tion of DNA polymerase-gamma and induction of mitochon-
drial DNA mutations, thus leading to cardiomyopathy [16].
Overall, cardiac adverse effects can primarily be classified
into 2 categories: (a) functional and (b) structural effects. Of
note, seriously altered function may be completely dissociated
from the structural effect, especially at an early stage [17].
Other than the functional deterioration, anthracyclines have
also been shown to damage several proteins regulating cardiac
muscle contractility including titin, the myofilament forming
protein that regulates cardiac function leading to systolic and
diastolic dysfunction [18]. Finally, the inter-individual vari-
ability in the susceptibility to chronic anthracycline-induced
cardiotoxicity has also been reported. Therefore, the genetic
variants with occurrence of drug-induced cardiotoxicity have
also been identified, thus suggesting a potential role for gene
polymorphisms that may control the metabolism of
anthracyclines [19], detoxification of free radicals, and alter-
ations in physiological iron levels. Finally, SNPs in Her2/neu
Pro 1170 Ala polymorphism have also been identified in a
subset of patients with increased risk of cardiotoxicity from
trastuzumab therapy and postulated to be deployed with other
risk biomarkers for stratification of patients [20]. These factors
suggest challenges in encountering cardiotoxicity, while
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presenting opportunities to design new probes potentially ca-
pable of monitoring noninvasively cardiac dysfunction to
manage cancer treatment paradigms in twenty-first century.

Currently, commonly used noninvasive diagnostic bio-
markers to assess anthracycline-induced cardiotoxicity are
cardiac troponins, brain natriuretic peptide, and N-terminal
fragment of natriuretic peptide. Of note, persistent elevation
of cardiac troponin I levels post 1-month treatment of
anthracycline has also led to prevalence of more cardiac ad-
verse events in 84% patients at 3 years compared with patients
showing normal levels of cardiac troponin I levels.
Additionally, circulating microRNAs also offer promising
noninvasive tools and have been evaluated in children and
young adults treated with anthracycline chemotherapy [21•].
Finally, other less commonly used biomarkers for
cardiotoxicity include cytostatin C, galectin-3, interleukin 6,
tumor necrosis factor α (TNFα), myeloperoxidase, and C-
reactive protein [22]. However, due to their potential for being
influenced by numerous micro-environmental factors and
non-cardiovascular diseases, these circulating biomarkers lack
desired sensitivity and disease specificity.

To interrogate cardiotoxicity at a molecular level, molecu-
lar imaging enables visualization, characterization, and quan-
tification of biomarkers or physiological processes at cellular
and subcellular levels in vivo. Therefore, it is conceivable that
cardiac nuclear imaging agents (PET and SPECT) may pro-
vide versatile diagnostic tools to detect cardiotoxicity at earlier
stages, while enabling interrogation of therapeutic efficacy to
afford stratification of chemotherapeutic choices in molecular
oncology for better management of cardiotoxicity concerns.

Nuclear Imaging Tracers

Currently, cardiotoxicity is evaluated by echocardiography or
multigated acquisition scanning and is typically defined as
10% or higher reduction of LVEF. However, a loss of such
a magnitude in contraction function can be an indication of
significant irreversible myocardium injury, thus substantially
diminishing opportunities for interventions or modification of
treatment plans. Therefore, interrogation of myocardium ab-
normalities at subcellular level may provide early and sensi-
tive readout of drug-induced cardiotoxicity. Although patho-
physiology of chemotherapy induced heart failure is a com-
plex phenomenon involvingmultiple intersecting biochemical
pathways, anthracycline-induced effects at a subcellular level
have been known to be attributed to mitochondrial dysfunc-
tion or partial impairment in its normal function and elevated
levels of oxidative stress. Arguably, nuclear imaging tracers
have been under development based upon both themes. While
the first category of tracers find their roots in application of
fluorescent lipophilic cations and their utility in reporting
about alterations in mitochondrial potential in cells [23], the

second category of tracers has focused upon exploiting utility
of dihydroethidium derivatives capable of detecting ROS
in vivo. While the fluorescent lipophilic cations such as
tetramethylrhodamine ethyl ester (TMRE) and Rhodamine
123 lack the desired depth penetration for whole body scan-
ning, 99mTc-Sestamibi, a hydrophobic and monocationic
technetium(I) octahedral complex, has been routinely used
in clinic as a myocardial perfusion imaging agent.
Importantly, 99mTc-Sestamibi also enables interrogation of
mitochondrial potential similar to that of TMRE and
Rhodamine 123 recently has been used to evaluate
anthracycline-induced cardiotoxicity [24] in rodents.
However, myocardium retention may need to be corrected
using either pharmacokinetic modeling or normalized to an-
other FDA-approved tracer to determine net signal in
myocytes for diagnosis of cardiotoxicity. Compared with
SPECT, PET tracers provide high sensitivity and enable quan-
tification, thus allowing 3-dimensional pharmacokinetic anal-
ysis. Therefore, taking advantage of principles of lipophilic
cations, 18F-Mitophos, a triphenylphosphonium analogue,
has been recently evaluated for its potential to image DOX-
induced cardiotoxicity in rat models [25••]. The agent may be
susceptible to concerns of perfusion effects similar to 99mTc-
Sestamibi and also indicates significant metabolism, thus in-
dicating reduction of parental tracer within minute post ad-
ministrat ion in vivo. Furthermore, 18F-DHMT, a
dihydroethidium derivative [26••, 27], has been also evaluated
to monitor anthracycline-induced ROS cardiotoxicity in vivo
[28••]. Compared with significant effects observed in LVEF at
6-week post DOX-treatment, 18F-DHMT enables detection of
superoxide production at 4-week post treatment [28••].
Following further validations, the PET agent may allow op-
portunities for quantifying therapeutic efficacy of
cardioprotectants, such as Dexrazoxane, an FDA-approved
drug for late stage treatment of breast cancer patients [29].

While 99mTc-incorporated radiotracers have been the work-
horse in nuclear medicine for decades due to commercial
availability of 99Mo/99mTc generators in nuclear pharmacies,
however, disruptions in the supply chain during the
99Mo/99mTc crisis of 2008–2010 demonstrated the vulnerabil-
ity of the world supply of 99Mo. To address these shortcom-
ings, over the last decade, germanium/gallium (Ge/Ga) gener-
ators have become available and are capable of producing
high quality 68Ga (t½ = 68 min), an isotope with excellent
emission properties for clinical PET imaging [30]. The parent
isotope, 68Ge (t½ = 271 days), is produced in high-energy
proton accelerators from a 69Ga(p,2n)68Ge reaction and is
bonded to alumina for eventual elution on-site [31], thus pro-
viding a practical generator-based distribution model for on-
site formulation of PET radiopharmaceuticals. With co-
development of high-quality 68Ga-based tracers, PET imaging
could be unlinked from proximity to cyclotrons, thereby
expanding access to the technology. In next section, we
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discuss development of another molecular imaging agent, de-
scribed in literature as 68Ga-Galmydar, to track anthracycline
induced effects in cellulo and in vivo.

Importantly, 68Ga-Galmydar is also recognized by ATP-
binding-cassette (ABC) family of transporters, such as
ABCB1 (also known as P-glycoprotein, 170 kD protein
located on plasma membrane of tumor cells) and ABCG2

(also known as breast cancer resistance protein, BCRP,
72 kD protein) as their transport substrate [32]. Overall, the
net retention of 68Ga-Galmydar in heart tissue is determined
by the opposing action of two biochemical processes [33].
Deploying delocalization of charge on its molecular surface,
this tracer permeates passively into living cells and concen-
trating within the mitochondrial inner matrix in response to
the driving forces of electronegative plasma membrane and
mitochondrial transmembrane potentials [34]. However, this
uptake is opposed by action of ABC membrane transporters,
such as ABCB1, MRP1 (ABCC1), and ABCG2, which excrete
the radiotracer into extracellular space of tumor cells [35–39].
Importantly, cardiomyocytes, although rich in mitochondria,
they lack expression of efflux transporter proteins, thus se-
questering this radiotracer for prolonged periods to enable
imaging, while hepatocytes, which express ABCB1 and
ABCG2 along their cannalicular surface, rapidly excrete it
into the bile and intestines. In principle, these biochemical
traits would be expected to facilitate hepatocellular clearance
of the tracer, thereby minimizing the impact of γ-emissions
arising from the liver that could potentially co-register into the
inferior wall of the myocardium during imaging.

Galmydar is also a mildly fluorescent molecular imaging
probe and localizes within the mitochondria of rat
cardiomyoblasts (H9c2) similar to mitotracker Red [40–42]
(Fig. 1). While tracer shows stable accumulation in rat
cardiomyoblasts, its uptake profiles in MCF-7 cells are in-
versely proportional to expression of ABCB1 on the plasma
membrane (Fig. 2) [39]. Similar uptake profiles are observed

Fig. 1 Intracellular localization of
Galmydar in mitochondria of rat
cardiomyoblasts correlation via
with Mito-Tracker Red: Images
were acquired using a 60X
objective (all panels represent
same magnification) in live
H9c2(2–1) cells following 30-
min treatment with Galmydar
(20 μM) and MitoTracker Red
CM-H2XRos (25 nM). Control
(top panel); DOX treated (Lower
Panel). Arrows depict localization
within mitochondria.
(Reproduced from: Sivapackiam
J, et al. PLoS One May 2019
23;14(5):e0215579. doi: https://
doi.org/10.1371/journal.pone.
0215579. eCollection 2019;
Creative Commons user license
https://creativecommons.org/
licenses/by/4.0/) [45••]

Fig. 2 Characterization of 68Ga-Galmydar, in cardiomyoblasts H9c2(2–
1) and human breast carcinoma (MCF-7neo (WT) including stably
transfected counterparts MCF-7Pgp3–4) cells: shown is net uptake at
90 min (fmol × (nM0)

−1 × (mg protein)−1) using a control buffer either
in the absence or presence of LY335979, a highly specific and sensitive
antagonist of ABCB1(1 μM). Each bar represents the mean of 4
determinations; lines above and below the bar denote ±SD.
(Reproduced from: Sharma V, et al. PLoS One 2014;9(10):e109361);
Creative Commons user license https://creativecommons.org/licenses/
by/4.0/) [39]
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in HEK 293 ABCG2 transfected cells [32, 43, 44]. The agent
shows dose and time-dependent pharmacological response to
anthracycline in rat cardiomyoblasts [45••], using live cell
imaging, thereby consistent with postulated mechanism of
anthracycline-induced depolarization of mitochondrial redox
potentials, and ROS production [46]. To further assess poten-
tial of 68Ga-Galmydar to serve as a molecular imaging probe
for assessment of DOX-induced cardiotoxicity in vivo, 68Ga-
Galmydar has been injected via tail-vein into rats pretreated
either with intravenous administration of DOX (15 mg/kg) or
vehicle (5% ethanol in saline). Following treatments, micro-
PET static scans (10-min acquisition; 60-min post tail-vein
administration of 68Ga-Galmydar; Fig. 3a) demonstrated a
1.91-fold lower retention in hearts of DOX-treated (Standard
Uptake Value; SUV: 0.92, n = 3) rats compared with their
vehicle-treated counterparts (SUV: 1.76, n = 3; Fig. 3b)
[45••]. For correlation of PET data, post-imaging quantitative
biodistribution studies demonstrate heart retention values of
2.02-folds lower for DOX treated (%ID/g; DOX: 0.44 ± 0.1,
n = 3) rats compared to their vehicle-treated counterparts (ve-
hicle control: 0.89 ± 0.03, n = 3, p = 0.04; Fig. 3c), thus
supporting micro-PET imaging data in vivo [45••]. Of note,
using live-cell imaging, Galmydar also indicate a gradual de-
pression in cellular uptake and retention of Galmydar (up to
8.2-fold difference compared to their untreated cells after 5 h),
thus indicating the sensitivity of the probe to map changes at
the level of the mitochondria resulting from DOX treatment,
which in turn likely result from depolarization of the mito-
chondrial potential [45••]. These findings are consistent with
literature precedents, wherein DOX treatment has been shown
to alter mitochondrial redox potentials, thus depolarizing mi-
tochondria, and elevating matric Ca2+ and ROS production in
30 min [46]. Finally, high-resolution single-cell imaging also
shows localization of Galmydar in mitochondria of DOX-
treated cells (Fig. 1, lower panel) similar to their untreated

controls (top panel), however, substantial decreased retention
thus correlating with the lower PET signal in heart of DOX-
treated rats (Fig. 3). Following further validations in higher
vertebrates, 68Ga-Galmydar imaging could enable monitoring
of impaired mitochondrial function in myocytes following
anthracycline treatment in vivo.

Conclusions

While a significant loss in contractile function of the myocar-
dium may serve as a warning for irreversible tissue damage,
current imaging techniques may not have the desired sensitiv-
ity and molecular specificity to guide interventions at early
stages of cardiotoxicity. Among various imaging modalities,
nuclear imaging-based strategies can potentially be translated
faster into clinic due to the need for administration of doses at
very low concentrations. Both mitochondrial potential- and
ROS-targeted tracers may allow noninvasive imaging of
anthracycline-induced cardiotoxicity in vivo. Because fron-
tiers of molecular imaging in twenty-first century are pushing
the edge of the envelop to detection at earliest stages, it may be
argued biochemically that changes in the mitochondrial po-
tentials represent an upstream event, before triggering the pro-
duction of the ROS and caspase activity; thus, it is conceivable
that tracers capable of reporting changes in the mitochondrial
potential in vivo might offer interrogation of cardiotoxicity at
earliest stages as evident from imaging of 18F-Mitophos and
68Ga-Galmydar in rodent models. It remains to be determined,
whether these initial observations would replicate in higher
vertebrates and translate into humans. We envision that both
categories of radiotracers could be beneficial for monitoring
cardiotoxicity in the field of cardio-oncology and may provide
opportunities for interrogating therapeutic efficacy of cardio-

Fig. 3 a Micro-PET/CT imaging. Sprague-Dawley (SD) rats were
injected intravenously with 68Ga-Galmydar, and static PET images
were acquired for 10-min, 60-min post tail-vein injection. Top panel:
Control rat; lower panel: DOX (15 mg/kg, 5 days prior to imaging)-
treated rat. Similar results were obtained in 3 independent experiments.
b SUV analysis of 68Ga-Galmydar uptake in hearts of SD rats (mean ±
SD, n = 3). c Post-Imaging biodistribution data (%ID/g) for 68Ga-

Galmydar in rats treated either with DOX (15 mg/kg; 5 days prior to
imaging) or vehicle as a control (mean ± SD, n = 3). (Reproduced from:
Sivapackiam J, et al. PLoS One May 2019 23;14(5):e0215579. doi:
https://doi.org/10.1371/journal.pone.0215579. eCollection 2019;
Creative Commons user license https://creativecommons.org/licenses/
by/4.0/) [45••]
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protectants, while offering opportunities for stratification of
cancer patients for modification of therapeutic protocols.
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