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 CURRENT
OPINION Update on T cells in the virally infected brain:

friends and foes

Shenjian Aia and Robyn S. Kleina,b,c

Purpose of review

The present review will outline neuroprotective and neurotoxic effects of central nervous system (CNS)
infiltrating T cells during viral infections. Evidence demonstrating differential roles for antiviral effector and
resident memory T-cell subsets in virologic control and immunopathology in the CNS will be discussed.
Potential therapeutic targets emanating from a growing understanding of T-cell-initiated neuropathology that
impacts learning and memory will also be delineated.

Recent findings

The critical role for T cells in preventing and clearing CNS infections became incontrovertible during the
era of acquired immunodeficiency syndrome. Recent studies have further defined differential roles of T-cell
subsets, including resident memory T cells (Trm), in antiviral immunity and, unexpectedly, in postinfectious
cognitive dysfunction. Mechanisms of T-cell-mediated effects include differential innate immune signaling
within neural cells that are virus-specific.

Summary

T-cell cytokines that are essential for cell-mediated virologic control during neurotropic viral infections have
recently been identified as potential targets to prevent post-infection memory disorders. Further identification
of T-cell subsets, their antigen specificity, and postinfection localization of Trm will enhance the efficacy of
immunotherapies through minimization of immunopathology.
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INTRODUCTION

The central nervous system (CNS) has evolved multi-
ple mechanisms to preserve and repair its complex
structural and functional organization during neuro-
logic diseases. After viral infections, innate and adap-
tive immune responses variably contribute to viral
clearance and recovery, depending on the virus and
its targets. Cell-mediated immunity in the brain pri-
marily involves noncytolytic mechanisms of viral
clearance that preserve neurons and supporting cells
that express neurotropic factors (reviewed in [1]). T
cells are critically involved in virologic control, gain-
ing parenchymal access via local restimulation after
T-cell receptor (TCR) recognition of viral antigens
within perivascular spaces. Interactions with acti-
vated microglia also maintain T-cell effector func-
tions within the CNS parenchyma. T cells may also
undergo differentiation into regulatory, memory and
tissue resident subsets, which, depending on their
location, impact various aspects of brain function via
cytokine-mediated effects on neural cells types
including microglia, astrocytes and neural stem cells.
These neuroimmune interactions may trigger pro-
cesses that promote or prevent repair of acute injury

sustained during the height of antiviral inflamma-
tory responses, leading to recovery or progressive
neurologic diseases, including dementia.

INFLAMMATION OF THE CENTRAL
NERVOUS SYSTEM UPON VIRAL
INFECTIONS

The CNS is a site of high anatomic and cellular
complexity. The major cell types within the CNS
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include neurons, astrocytes, oligodendrocytes,
ependymal cells, and microglia, all of which are
potential viral targets and initiate innate immune
signals to recruit antiviral mononuclear cells into
the CNS for virologic control [2]. Three anatomically
distinct barriers: acellular barrier, blood–brain bar-
rier (BBB) and blood–cerebrospinal fluid barrier
(BCSFB), surround the CNS and provide both
immune specialization for the CNS and entry sites
for immune cells upon pathogen invasion [3]. Infil-
tration of immune cells from the periphery is driven
by a variety of factors including upregulation of
adhesion molecules and disruption of endothelial
and epithelial brain barriers [4], and the generation
of appropriate chemoattractant gradients created by
virally infected cells both at barriers and within the
CNS [5,6]. These localizing cues promote not only
the recruitment of mononuclear cells into perivas-
cular spaces, but their parenchymal entry and inter-
action with resident cells within the CNS.

CENTRAL NERVOUS SYSTEM ANTIVIRAL
IMMUNITY: INTERPLAY BETWEEN
INTERFERON AND IMMUNE CELLS

Upon invasion of the CNS, viral pattern-associated
molecular patterns (PAMPs) bind pattern recogni-
tion receptors (PRRs), leading to expression of type I
interferons (IFN-I), which includes IFN-a and IFN-b
that both bind to IFN-a receptor chain 1 (IFNAR1)
[1]. IFNAR is expressed by all cell types, and activates
the JAK–STAT signaling pathway upon binding to
ligand. One of the major functions of IFN-I is to
induce direct antiviral activities in an autocrine,
paracrine, or systemic manner [7]. Uninfected
microglia and astrocytes can therefore be the sour-
ces of IFN-I in the context of viral encephalitis,

which will increase IFN-stimulated gene (ISG)
expression of themselves and other cells expressing
IFNAR1 [7,8]. CXCL10 and CCL2 are prominent
chemokines and ISGs produced in the acute settings
[5,9–11] to establish an inflammatory milieu in the
CNS for the recruitment of infiltrating leukocytes.
Although antiviral T-cell recruitment is a critical
step in virologic control, recruited and resident
myeloid antigen-presenting cells (APC) are required
for local T-cell restimulation [12].

Members of the Flaviviridae family of small
enveloped viruses with RNA genomes have evolved
mechanisms to inhibit IFNAR signaling. For exam-
ple, Zika virus (ZIKV), a neurotropic flavivirus that
induces congenital and adult disorders of the CNS,
induces human, but not murine, STAT2 degradation
to inhibit IFN-I signaling [13]. Thus, initial inves-
tigations of CNS infections with ZIKV utilized either
ZIKV-susceptible interferon a/b receptor-deficient
(Ifnar1-/-) mice or mice with antibody blockade of
IFNAR signaling [14

&&

,15
&&

,16]. However, IFN-I is not
only vital for antiviral responses, but also required
for immunoregulatory control of immune cells. Loss
of IFNAR signaling has been shown to impair the
proliferation and activation of regulatory T cells
(Treg) during acute lymphocytic choriomeningitis
virus (LCMV) infection, and effector functions of
CD8 and CD4 T cells, resulting in an inefficient viral
clearance [17].

EFFICIENCY OF ANTIVIRAL RESPONSES:
CHEMOKINE AXES

As mentioned above, ISGs downstream of IFNAR
signaling include a variety of cytokines and chemo-
kines that may destabilize BBB junctional proteins
and/or recruit antiviral T cells, respectively. T-cell
chemoattractants including CCL2, CCL5, CXCL9,
and CXCL10 may also be induced by interleukin
(IL)-1, TNF, and type II IFN (IFN-II). The expression
of CXCR3, whose ligands are CXCL9 and CXCL10
under IFN induction, on T cells permits their entry
into the CNS during infection. CXCL10 is expressed
at the BBB. During CNS infection with West Nile
Virus (WNV), CXCL10 expressed by neurons guides
the trafficking of CXCR3þCD8þT cells into the
brain [18]. The CCR2–CCL2 axis, which recruits
both myeloid and lymphoid cells, has been heavily
studied in the migration of inflammatory mono-
cytes during CNS infection and inflammation.
Astrocytes have been shown to produce CCL2 in
multiple neurologic disease, such as experimental
autoimmune encephalomyelitis (EAE) [25],
mechanical injury [26], and WNV infection [23

&

].
Virally infected neurons, however, may also be a
source of CCL2 [19], which might recruit

KEY POINTS

� Virologic control within the CNS requires type I IFN-
mediated establishment of chemokine gradients that
recruit virus-specific T cells.

� Virus-mediated induction of type I IFN expression within
the CNS is required for the differentiation and
proliferation of infiltrating T cells into Tregs.

� Treg expression of TGF-b promotes CNS residency of
CD8 T cells via upregulation of CD103.

� PD1 pathways inhibit CD8 T-cell activation, and
promote their retention within the CNS as Trm.

� Trm-derived IFN-g induces microglial activation resulting
in elimination of synapses within the hippocampal
circuitry involved in spatial learning.
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macrophages or activated microglia for phagocytic
purposes. CCL2 is also expressed by activated endo-
thelial cells and microglia, the latter of which may
continue to express low levels of CCL2 after recovery
[2]. A new subset of CD8 T cells expressing both
CCR2 and programmed cell death protein 1 (PD-1)
has been identified within the CNS of mice that were
acutely infected via intravenous (i.v.) injection of
Japanese encephalitis virus (JEV) [20]. High levels of
CCR2 expression were also detected in hippocampal
CD8T cells afterviral recoveryofboth WNVand ZIKV
[21

&&

]. These findings suggest that CCR2 expression
may play a role in the maintenance and function of
memory T cells in the CNS. The functional conse-
quence of CCR2 expression by T cells in different
stages of CNS pathology remains to be explored.

In addition to the T-cell/monocyte-recruiting
CCL2, upregulation of proinflammatory chemokine
CCL5, also known as RANTES (Regulated on Activa-
tion, Normal T-Cell Expressed and Secreted), is also
commonly observed in the context of neuroinflam-
mation. Both neurons and astrocytes have shown to
be the source of CCL5 in WNV infection [19]. ZIKV
and tick-borne encephalitis virus (TBEV), another
neurotropic flavivirus endemic to Europe and the far
east, also have been reported to induce CCL5 pro-
duction in human primary astrocytes [22,23

&

].
Taken together, the interplay between neuronal

and immune cells creates an IFN–chemokine net-
work, which is essential to initiating viral contain-
ment at acute stage of infection by promoting
immune cell infiltration, directly involving lym-
phocytes and monocytes, in order to maintain the
appropriate level of immune cell activities after viral
clearance. The upregulation of sustained expression
of chemokines could exert neurotoxicity via main-
tenance of neurotoxic T cells within the CNS paren-
chyma [21

&&

].

T CELL SUBSETS AND ANTIVIRAL
IMMUNITY IN THE CENTRAL NERVOUS
SYSTEM

Cell-mediated immunity, especially the infiltration
and accumulation of antiviral T cells in the CNS
under virological challenge, is critical for virologic
control and survival from viral encephalitis.
Although both CD8 and CD4 T cells invade the
CNS, CD8 T cells constitute the majority of the
infiltrating lymphocytes [24

&&

]. CD8 T cells that
clear virus from infected neurons may do so largely
through noncytolytic mechanisms that may be reg-
ulated by peripheral expression of IL-7 [25]. How-
ever, the continous presence of T cells in the CNS
after viral clearance has been shown to promote
persistent microglial activation leading to synapse

elimination with lack of repair [21
&&

]. The CNS entry
of T cells is tightly regulated through chemokine
gradients that include luminal expression of
CXCL10 and abluminal expression of CXCL12.
CXCL10 expression at the BBB is associated with
upregulation of barrier destabilizing cytokines, such
as TNF, which increases BBB permeability [26–28],
while CXCL12 ensures T cells localize to perivascu-
lar spaces where they may obtain pro- or anti-
inflammatory cues from resident or infiltrating leu-
kocytes [29]. The tight regulation of T-cell entry and
cellular encounter supports the efficiency of the
antiviral response, which likely prevents excessive
bystander T-cell entry and injury, and may exhibit
virus-specific effects (Table 1).

CD8 T-CELL SUBSETS: ROLES BEYOND
VIRAL CLEARANCE?

A subset of CD8 T cells, brain-resident memory T
cells (bTrm), can still persist at the sites of original
infection even after viral clearance and remain
within the parenchyma unlike other circulating
lymphocytes, which is observed in both murine
and human [30]. bTrm have been often reported
to express CD103 and CD69, which is usually
involved in the downregulation of sphingosine-1-
phosphate receptor (S1PR1) to prevent tissue egress
and to promote retention in lymphoid organs
[24

&&

,31,32
&

]. The necessity of CD103 expression
on bTrm is not well determined while studies have
shown divergent capacity of CD103þ and CD103�
bTrm [33,34

&&

]. In congenital murine cytomegalovi-
rus (MCMV)-infected newborn mice, CD103þ sub-
subset showed higher proliferation potential
indicated by increased Ki-67 expression than its
CD103� counterpart after reinfection while the
protective ability was competent in both popula-
tions [33]. More IFN-g production was also detected
in CD103þT cells compared to CD103� T cells in
Murine polymavirus (MuPyV)-induced encephalitis,
a model for the DNA virus JC virus, which causes
multifocal leukoencephalopathy (PML) in patients
with severe T cell deficiencies [34

&&

].
The inquiry of how bTrms are developed is still

an active area of investigation. Local infection and
direct antigen encounter (or in the deep cervical
lymph nodes) in the CNS have been demonstrated
to be crucial for formation, but not maintenance of
CD8 bTrms since neuroinflammation in the absence
of cognate antigen for T cells only induced transient
CD8 T-cell infiltration [32

&

]. However, effects
inflicted upon individuals by the residual T cells
postinfection appear to be a double-edged sword.
Survivors of previous neuropathic infections will
manifest a stronger and more rapid immune
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response against reinfection because of bTrms [35].
In the meantime, IFN-g derived from persisting
T cells in the CNS could drive microglia to promote
cognitive impairment during recovery from neuro-
pathogenic flaviviruses such as WNV and ZIKV
[21

&&

]. The increase of cytokine production in
CNS-residing lymphocytes is also associated with
postoperative cognitive dysfunction [36], which
indirectly emphasized the role of the cytokine
milieu maintained by immune cells in the brain.

CD4 T CELLS: PROTECTIVE AND
REGULATORY FUNCTIONS

Recent studies have been focusing on the role of
CD4 T cells in the context of neurotropic infections,
especially some flavivirus infections [37–40].
Mariah et al. [14

&&

] showed that CD4 T cells are able
to confer protection against a lethal ZIKV challenge.
Antibody depletion of CD4 T cells in Ifnar-/- mice
showed a significant weight loss, higher viral titers
in the brains and spinal cords, more severe clinical
phenotypes and more deaths compared to control
animals [14

&&

]. Adoptive transfer of ZIKV-experi-
enced CD4 T cells ensured survival of most mice
under lethal i.v. ZIKV infection while all the mice
that received the naı̈ve CD4 cells succumbed [14

&&

].
Although these immunodeficient mice may not
faithfully reproduce host immune responses

observed in humans, as described above, these
experiments support multiple prior studies demon-
strating a critical role for CD4 T cells in antiviral
immunity in the CNS. Transforming growth factor
beta (TGF-b) produced by Treg inducing CD103
expression on CD8 T cells has been well examined
[41]. CD103 (i.e., integrin aEb7) is the ligand for an
adhesion molecule E-cadherin, which could be
related to T cell retention within the brain. In Treg-
depleted mice, CD103þCD8 bTrms are significantly
reduced following MCMV infection from 7 days post
infection (dpi) to 30 dpi [42], which greatly supports
the notion that Tregs are engaged in the develop-
ment, perhaps even the maintenance of bTrm.

CROSS-REACTIVE T CELLS AND VACCINE
DEVELOPMENT FOR FLAVIRUSES

Both ZIKV and four serotypes of dengue viruses
(DENV1–4) are members of the Flaviviridae family.
These viruses share over half of the homology in
amino acid sequences [43

&

], which lays the founda-
tion of their cross-reactive immune response. T cell
depletion and adoptive transfer studies have shown
that ZIKV protection was mainly conferred by DENV-
experienced CD8 T cells [44]. ZIKV-exposed T cells
isolated from human donors’ peripheral blood
mononuclear cells (PBMCs) also exhibited reactivity
against both ZIKV and DENV [45,46]. Supporting the

Table 1. Studies on roles of T cells in viral infections of the CNS

Virus T cell studies/characteristics Reference

Rift valley fever virus (RVFV) Depletion of CD4 T cells results in worse survival rate than CD8 depletion [69]

Encephalitis enhanced by CD4 depletion in CCR2 KO mice

Congenital murine cytomegalovirus (MCMV) Virus-specific T cells persist in the brain [31,33]

>90% virus-specific CD8 T cells upregulate CD69 expression at 3 wks p.i.

Trms exhibit slower proliferation rate than of spleen counterpart

Persistent T cells control viral reactivation and activation state of microglia

Theiler’s encephalomyelitis virus (TMEV) Ratio of CD8:CD4 T cells in the brain is �13:9 at 7 dpi [70]

T cells not required for acute seizure development

West Nile virus (WNV) CD8 T cells [21&&,71]

Infiltration observed at 7 dpi

Predominant source of IFN-g production post clearance

Increased CD69 expression on Trms

Human immunodeficiency virus (HIV-1) Decreased number of CD4 T cells p.i. [72&&,73&]

Increased number of CD8 T cells p.i.

T cells act as viral reservoirs in the CNS

Zika virus (ZIKV) High level of CCR2 expression in CD8 T cells at 25 days p.i. [14&&,21&&]

Effector CD8 T cells induce ZIKV-associated paralysis

CD4 T cell

Control viral titers in the CNS

Confer protection against lethal challenge post-ZIKV-immunization

Abbreviations: wk: week; p.i.: postinfection.
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cross-reactive immunity between ZIKV and DENV,
another investigation has been conducted using a
Zika DNA vaccine candidate (pV-ZME) expressing
ZIKV premembrane and envelop proteins will elicit
robust both humoral and cellular immune response
in BALB/c mice against DENV1-4 where immunized
mice had limited body loss, better survival rates and
increased IFN-g-producing CD8 T cells compared to
the control mice [47

&

].

RECOVERY FROM FLAVIVIRUS VIRAL
ENCEPHALITIS

In addition to the acute neuroinvasive syndromes
and persistent motor deficits, patients that recover
from WN neuroinvasive disease (WNND) experience
significant long-term cognitive sequelae, including
high rates of memory impairment and abnormalities
in executive function [48–58]. Thus, although
approximately 90% of patients survive WNND, 50–
70% of survivors develop memory disorders that
worsen over time [59]. New memory disorders have
also been reported in adolescents and adults that
recovered from ZIKV meningoencephalitils [60,61],
and animal models also demonstrate synapse loss
and cognitive dysfunction [62]. Few studies have
examined mechanisms of postinfectious cognitive
dysfunction after viral encephalitis, which might
be generalizable to other neuroinflammatory dis-
eases of cognition.

PD1 PATHWAYS AND RECOVERY FROM
VIRAL ENCEPHALITIS

There is increasing evidence that PD1 and pro-
grammed death ligand 1 (PDL1) interaction could
be related to T-cell functionality within the CNS.
PD1, an inhibitory receptor expressed by all acti-
vated T cells, regulates T-cell effector functions dur-
ing various physiological responses, including acute
and chronic infections. Viral-peptide-specific CD8 T
cells in the brain expressed PD1 during the acute
phase of mouse MuPyV infection and showed sus-
tained expression under persistent infection
whereas their splenic counterparts only exhibited
transient and low expression of PD1 during the
acute phase [63

&&

]. These data suggest that PD1
may exhibit a specialized function within the CNS
environment. In MyPyV model of encephalitis,
PDL1 was expressed on infiltrating myeloid cells,
tissue-resident microglia and astrocytes. PDL1�/�
mice upon acute MyPyV infection showed
increased frequency of CD103þCD8 T cells and
CD25þ FoxP3þCD4 T cells in the brain. CD103 is
an integrin protein that binds integrin beta 7 (b7–
ITGB7), promoting retention of CD8 T cells in

tissues. The association of CD103 expression on
CD8 T cells and PD1 signaling has also been demon-
strated in murine cytomegalovirus (MCMV) brain
infection [64]. PD-1-deficient CD8 T cells also exhibit
significant decrease in CD103 expression with mixed
glia in vitro [64]. These data suggest that PD1:PDL
interactions may contribute to effective T-cell
defense in circumstances of acute virus infection,
but promote chronic activation of microglia in the
postinfectious state. The functional interpretation of
the expression of PD1 on CNS-infiltrating CD8 T cells
regardless of acute or chronic infection or postinfec-
tion remains to be unraveled. However, one can
assume that PD1 signaling in brain-residing T cells
depend on dichotomous function that will establish a
balance betweenthecontrol ofviral infection and the
potential immunopathology from over-reactive T
cells. Of interest, PD1 levels on T cells are elevated
in aged individuals [65], which may impact virologic
control and recovery from viral encephalitis.

CHRONIC MEMORY AND BEHAVIORAL
DEFICITS

Recent studies using attenuated strains of flavivi-
ruses in mice indicate that antiviral T cells that
promote virologic clearance during CNS infection
may underlie neurocognitive sequelae in survivors.
IFN-g released by CNS-infiltrating, virus-specific
CD8 T cells induces microglial activation, as evi-
denced by upregulation of MHC class II expression
on these cells, which is normally expressed at lower
levels [21

&&

]. Microglial activation has been shown
to be associated with a variety of neurotoxic effects
including synapse elimination, neurodegeneration,
and decreased adult neurogenesis [1]. CD3þT cells
that persist in the hippocampus were found to be
the predominant source of IFN-g after recovery in
murine models of WNV and ZIKV encephalitis,
which were both associated with elimination of
synapses and cognitive dysfunction [18] (Fig. 1).

These T cells also expressed markers of Trm cells,
including CD103 [21

&&

]. Specific deletion of IFN-g
signaling in microglia protects mice from microglial
activation, synapse elimination and promoted syn-
aptic repair resulting in reinstatement of spatial
learning post recovery, suggesting that the effect
of Trm-derived IFN-g on microglia may be the most
proximal trigger in the development of memory
disorders that emerge after flavivirus encephalitis.
IFN-g alone, or in combination with tumor necrosis
factor-a, has also been shown to upregulate CXCL9
and CCL2 in subventricular zone-derived adult
neural precursor cells [66]. This increase of CXCR3
ligand secretion may be responsible for further
recruitment or maintenance of CXCR3þor
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CCR2þ cells, which includes microglia and T cells,
respectively [67,68]. This could potentially provide
a feed-forward mechanism to maintain T cells in
the parenchyma with continued activation
of microglia.

CONCLUSION

Mosquito-borne and tick-borne neurotropic arbovi-
ruses cause annual epidemics of virus-induced
encephalitis throughout the world and are consid-
ered some of the most rapidly spreading vector-
borne diseases. Emerging Flaviviruses, New World
Alphaviruses, and Bunyaviruses, cause neurologic
illness at a rate of 50–100 000 cases/year with lasting
neurocognitive sequelae in up to 70% of survivors
[2]. Viral infections within the brain pose a unique
challenge for the immune system: the host must
trigger an effective immune response to control and
clear the infection while minimizing neuronal dam-
age. The studies reviewed here illustrate the com-
plex interactions between antiviral T cells and
infected and/or inflamed neural cells that orches-
trate their effector functions and ultimate fate
within the CNS. These effects, which depend on
age and immune status of affected individuals,
not only determine survival but whether recovery
is associated with progressive memory disorders.

They also identify potential therapeutic targets with
in vivo demonstration that cytokine receptor inacti-
vation may prevent loss of neural correlates of mem-
ory formation and spatial learning defects. Use of
anticytokine receptor therapeutics may ultimately
prove beneficial for these patients and those with
other dementing illnesses.
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