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ARTICLE OPEN

Predicting mortality risk for preterm infants using deep
learning models with time-series vital sign data
Jiarui Feng1,2, Jennifer Lee 3, Zachary A. Vesoulis 4✉ and Fuhai Li1,4✉

Mortality remains an exceptional burden of extremely preterm birth. Current clinical mortality prediction scores are calculated using
a few static variable measurements, such as gestational age, birth weight, temperature, and blood pressure at admission. While
these models do provide some insight, numerical and time-series vital sign data are also available for preterm babies admitted to
the NICU and may provide greater insight into outcomes. Computational models that predict the mortality risk of preterm birth in
the NICU by integrating vital sign data and static clinical variables in real time may be clinically helpful and potentially superior to
static prediction models. However, there is a lack of established computational models for this specific task. In this study, we
developed a novel deep learning model, DeepPBSMonitor (Deep Preterm Birth Survival Risk Monitor), to predict the mortality risk of
preterm infants during initial NICU hospitalization. The proposed deep learning model can effectively integrate time-series vital sign
data and fixed variables while resolving the influence of noise and imbalanced data. The proposed model was evaluated and
compared with other approaches using data from 285 infants. Results showed that the DeepPBSMonitor model outperforms other
approaches, with an accuracy, recall, and AUC score of 0.888, 0.780, and 0.897, respectively. In conclusion, the proposed model has
demonstrated efficacy in predicting the real-time mortality risk of preterm infants in initial NICU hospitalization.

npj Digital Medicine           (2021) 4:108 ; https://doi.org/10.1038/s41746-021-00479-4

INTRODUCTION
One in ten babies are born prematurely (defined as birth before 37
completed weeks of pregnancy) in the United States1, and the
complications of preterm birth are the leading cause of infant
death2,3. Mortality is concentrated primarily among very low birth
weight (VLBW) preterm infants (those weighing <1500 g and born
before 32 weeks gestational age (GA)). Mortality rate is inversely
proportional to GA and rapidly decreases from nearly 100% at
22 weeks to <1% at 32 weeks4–7. Moreover, preterm infants who
survive often suffer from long-term health effects, including
neurodevelopmental impairment and chronic lung disease.
According to the 2019 Global Burden of Disease Study, neonatal
disorders were the leading cause of disability-adjusted life-years
(DALYs) worldwide (7% of all DALYs)8.
Accurate estimation of mortality is an important component of

antenatal counseling and assists healthcare providers in the
allocation of resources. Using large cohorts of preterm infants,
several different mortality prediction tools have been developed.
The Clinical Risk for Infants and Babies (CRIB-II)9,10 score uses sex,
birth weight, GA, temperature at admission, and base excess to
assess the mortality risk of babies upon neonatal intensive care
unit (NICU) admission. The Score for Neonatal Acute Physiology-
Perinatal Extension-II11,12 includes mean blood pressure, lowest
temperature, PO2/FiO2 ratio, lowest serum pH, multiple seizures,
and urine output as important factors for estimating the mortality
risk. More recently, the Transport Risk Index of Physiologic
Stability, Version II (TRIPS-II)13 uses temperature, blood pressure,
respiratory status, and response to noxious stimuli as predictor
variables—this measure was validated in 17,075 infants admitted
between 2006 and 2008. Furthermore, the TRIPS-II score can be
used to measure the change in mortality risk in the first 24 h.
Finally, the NMR-2000 score14 is a multivariate model with reverse

stepwise selection, validated in >100,000 cases between 2010
and 2017.
While these tools are useful and have gained widespread use,

the mortality estimates they provided have several limitations. For
example, while overall mortality risk can be quantified, these
models cannot assess the timing of highest mortality risk, thus
confounding efforts to provide timely therapies. Second, addi-
tional information collected after birth may provide meaningful
modification of the initial assessment of mortality risk (in either
direction) permitting real-time prediction and the opportunity for
intervention. Moreover, early detection of a change in mortality
risk, particularly if the identified changes are subclinical, is critical
to detect and prevent acute complications of prematurity, as such
events are often acute and catastrophic (e.g., respiratory failure,
sepsis, or intraventricular hemorrhage2,15).
Machine learning and deep learning approaches have been

developed for prediction of mortality following preterm birth.
Deep learning models have a growing presence in the healthcare
field and often outperform traditional machine learning models16–
18. For example, the Preterm Infants Survival Assessment (PISA)
predictor was developed to predict preterm birth mortality but
used only a few fixed variables19. In a recent study20, the addition
of time-series sensor data (e.g., systolic, diastolic, and mean blood
pressure; oxygen saturation; and heart rate for temporal variables)
achieved better results than the PISA predictor. However, even the
newer model does not function in a real-time prediction manner.
Moreover, the data are noisy and imbalanced because there are
only a few risk signals in most time periods of preterm babies. The
down-sampling, up-sampling, and weighting of samples does not
improve the performance of such models. As a result, the
application of standard deep learning models, like the general
deep belief network21 and long short-term memory (LSTM)
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models22, cannot achieve reliable and accurate predictions. We
hypothesized that augmenting these basic deep learning
approaches in an informed and goal-oriented manner would lead
to significant improvements in performance.
In this study, we developed a novel deep learning model,

DeepPBSMonitor (Deep Preterm Birth Survival Risk Monitor) (see
Fig. 1), to predict the mortality of preterm births in a real-time
manner by integrating time-series sensor data and fixed factors.
These deep learning modules take the fixed variables and time-
series signals as input and map the input signals into informative
features for outcome prediction. The parameters of the mapping
functions are the parameters of the deep learning model, which
are initialized randomly and updated iteratively during the model
training process. Specifically, a highway block was combined with
an LSTM model to extract informative signals from time-series vital
sign data. In addition, the fixed variables (e.g., birth weight, GA)
were integrated using a gate block, which can compute weights
for fixed variables and the time-series vital sign values in a single
hidden dimension granularity. For this specific prediction task, we
used detection–verification models and turning point detection to
identify the state transition from “not alert” to “alert” in the course
of a preterm infant’s NICU stay. The model first identifies a
possible turning point (from “not alert”/infant is OK to “alert”/
infant should be checked on) in the signal sequence. Then, time-
series data before and after the turning point is used to verify the
prediction. The proposed model was evaluated and compared
with other approaches using data from 285 infants. The
comparison results showed that the proposed model out-
performed other traditional models.

RESULTS
Data cohort
During the study period, a total of 6271 infants were admitted to
the NICU, 1465 of which met GA and weight criteria to be
considered a VLBW infant. Vital sign recording data were available
for 525 of those infants. After examination of the recordings, 221
infants were excluded due to unreadable or corrupted recordings
and 19 infants were excluded for truncated recordings (<6 h).
After exclusion, the final cohort was 285 infants, 65 of whom

died. The mean GA was 26.7 ± 2.3 weeks, mean birth weight was
929 ± 281 g, and the cohort was 51% male. The median age at
death was 10 days (range 0–387 days) and the median CRIB-II
score was 10 (range 2–18). As would be expected, infants who
died were significantly more premature (24.8 vs 27.2 weeks, p <
0.01) and were of lower birth weight (687 vs. 1000 g, p < 0.01).
Detailed cohort characteristics can be found in Supplementary
Table 1 and a diagram of inclusion/exclusion in Supplementary
Fig. 1.

Missing data imputation
Missing data imputation is an important consideration in any data
analytics project. Inappropriate imputation will introduce bias into
the dataset. In this study, we tested and validated various missing
data imputation techniques. Specifically, both single data imputa-
tion and multiple imputation23 were evaluated. The single data
imputation methods included mean, median, mode, decision tree,
and Bayesian ridge imputation. For mean, median, and mode
imputation, we used the mean, median, and mode of a given
feature in each sample to replace the missing value. For decision
tree and Bayesian ridge imputation, we used the corresponding
model to predict the missing value. For multiple imputation, we
used Bayesian ridge to sample five different datasets by sampling
different posteriors each time. Next, we used fourfold cross-
validation and reported the average metrics. For multiple
imputation, the average of all five datasets is reported. We fixed
the model hyperparameters as nh= 128, lhighway= 1, lcnn= 1, pd=
0.1, β= 1. The validation metric was chosen as accuracy*recall, as
we were balancing total accuracy with the performance in “not
alert” time steps. During training, we evaluated the model with a
validation dataset at regular intervals (every 50 training steps). The
result is shown in Table 1.
We can see that our model performs well with all six different

imputation techniques, which means that our model is robust to
potential bias introduced by missing data imputation. Among
these six techniques, Bayesian ridge and decision tree achieved
the best results. We therefore selected Bayesian ridge as our
imputation method.

Model validation
To find the best model parameters, we fine-tuned the following
hyperparameters: nh, lhighway, lcnn, pd, and β using fourfold cross-
validation. The validation metric was chosen as accuracy*recall.
During training, we evaluated the model with a validation dataset
at regular intervals (every 50 training steps). The model

Fig. 1 Architecture overview of DeepPBSMonitor. The vital sign
and global data were integrated via linear projection, highway
network, LSTM, gate,detector and verifier blocks.

Table 1. Validation result of different imputation techniques.

Accuracy Recall AUC Accuracy*Recall

Bayesian ridge 0.898 0.756 0.901 0.679

Mean 0.894 0.704 0.859 0.629

Median 0.871 0.673 0.846 0.586

Mode 0.910 0.688 0.857 0.626

Decision tree 0.884 0.770 0.890 0.681

Multiple imputation 0.909 0.732 0.897 0.665
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parameters that result in the best validation metrics were saved.
First, we fine-tuned the nh. We set lhighway= 1, lcnn= 1, pd= 0.1, β
= 1. The result is shown in Table 2. For hidden size, nh= 64
achieved the best performance.
Then, we fine-tuned the lhighway. We set nh= 64, lcnn= 1, pd=

0.1, β= 1. The result is shown in Table 3. We can see that lhighway
= 1 achieved the best performance. Next, we fine-tuned the lcnn.
We set nh= 64, lhighway= 1, pd= 0.1, β= 1. The result is shown in
Table 4. The parameter lcnn= 1 had better performance than lcnn
= 2. Next, we fine-tuned pd. We set lcnn= 1, lhighway= 1, nh= 64, β
= 1. The result is shown in Table 5. The parameter pd= 0.10
achieved the best performance. Finally, we adjusted the β. The
result is shown in Table 6. We find that β= 1 is the best parameter.
The detailed cross-validation results can be found in Supplemen-
tary Table 2.

Model prediction result
Based on our validation results, the hyperparameters of our final
model were set as nh= 64, lcnn= 1, lhighway= 1, pd= 0.1, β= 1.
The prediction results per fold are provided in Tables 7–10. The
detailed predictions for the validation set per fold can be found in
Supplementary Figs. 1–4.

Performance comparison
To further evaluate the performance of the proposed model, we
compared our model with the existing CRIB-II score and a simple
deep neural network (DNN).
Fourfold cross-validation was applied to both the proposed

model and the DNN. Results are in Table 11. As shown below, our
proposed model achieved the best prediction performance in
terms of accuracy, recall, and area under the characteristic curve
(AUC) metrics.

DISCUSSION
In this manuscript, we proposed a novel deep learning model,
Deep Preterm Birth Survival Risk Monitor or DeepPBSMonitor. This
model utilizes an LTSM deep learning approach to examine
continuous vital sign data and identify “alert” periods where the
model detects underlying changes in the vital signs concerning
for an increased risk of mortality. Another novel innovation of this
model is the addition of a module to detect turning points, where
infants transition from a low- to a high-risk state. When compared
to an existing mortality prediction model (CRIB-II) and a simple
DNN model, DeepPBSMonitor provides superior accuracy (88.8%)
with the greatest AUC (0.897) (Fig. 2).

Mortality prediction is of great value to providers and families,
as this information can guide counseling and decision-making
during NICU care. Existing approaches utilize fixed clinical factors
deriving from the immediate perinatal period. While these

Table 2. Validation results for hidden size.

Hyperparameter Accuracy Recall Accuracy*Recall

nh= 64 0.888 0.780 0.6926

nh= 128 0.898 0.756 0.6788

nh= 256 0.918 0.724 0.6646

nh= 512 0.932 0.684 0.6374

Table 3. Validation results for highway layers.

Hyperparameter Accuracy Recall Accuracy*Recall

lhighway= 1 0.888 0.780 0.6926

lhighway= 2 0.929 0.656 0.6092

lhighway= 3 0.905 0.725 0.6568

Table 4. Validation results for CNN layers.

Hyperparameter Accuracy Recall Accuracy*Recall

lcnn= 1 0.888 0.780 0.6926

lcnn= 2 0.877 0.770 0.6748

Table 5. Validation results for dropout rates.

Hyperparameter Accuracy Recall Accuracy*Recall

pd= 0.05 0.877 0.710 0.6226

pd= 0.1 0.888 0.780 0.6926

Table 6. Validation results for loss function constants.

Hyperparameter Accuracy Recall Accuracy*Recall

β= 1 0.888 0.780 0.6926

β= 2 0.898 0.746 0.6672

Table 7. Confusion matrix of final model on first fold validation set.

PREDICT

Alert Not alert

Alert TP:903 FN:249

TRUE Not alert FP:6305 TN:56471

Table 8. Confusion matrix of final model on second fold
validation set.

PREDICT

Alert Not alert

Alert TP:737 FN:127

TRUE Not alert FP:9583 TN:50090

Table 9. Confusion matrix of final model on third fold validation set.

PREDICT

Alert Not alert

Alert TP:813 FN:267

TRUE Not alert FP:3853 TN:57694

Table 10. Confusion matrix of final model on fourth fold
validation set.

PREDICT

Alert Not alert

Alert TP:1154 FN:430

TRUE Not alert FP:6347 TN:49821
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calculations are simple and fast, they provide an incomplete
picture. For example, although an infant born at 23 weeks of
gestation has a high risk of mortality, the instantaneous risk of
mortality is not constant throughout hospitalization but instead is
heavily concentrated in the first 1–2 weeks of life. Furthermore,
when all other factors are held constant (gestation age, birth
weight, severity of metabolic acidosis, etc.), it is impossible for
providers to identify which of these high-risk infants are at the
greatest risk. The addition of continuous vital sign data is
enormously valuable in this endeavor, as changes in physiologic
state are often the first manifestation of illness.
There are several other mortality prediction models, namely,

NMR-2000 and TRIPS-II. While these models take dynamic factors
into account, have comparable performance, and have been
externally validated, they have limitations addressed by the model
proposed in this manuscript. Both NMR-2000 and TRIPS-II utilize
factors measured within the first 24 h after birth to predict in-
hospital (total NICU) mortality. This is in contrast to our proposed
model, which provides a continuous calculation of mortality risk
that is updated throughout an infant’s NICU stay. Second, this new
proposed model was developed specifically for use in the VLBW
population, a subgroup with the greatest proportional risk of
death in the NICU. Based on provided and estimated data from
the NMR-2000 and TRIPS-II studies, many VLBW and extremely
LBW infants were included in those studies; however, they
comprised only 20% of the total samples. While this makes these
tools more generalizable for a total NICU population, it may
impact performance in this specific high-risk subgroup. Given the
focus on developing a tool for exclusive use in the VLBW and
ELWB population, an enriched cohort of these infants is necessary.
Routine vital sign monitoring, however, results in a veritable

forest of false alarms with very few true pathologic events. These
repeated false alarms quickly lead to alarm fatigue, further
damaging the signal-to-noise ratio of continuous monitoring.

Deep learning can be employed to identify subtle patterns in vital
signs that are readily lost in human interpretation. DeepPBSMonitor
builds on previous vital sign analytic methodology by focusing on
the transition between low- and high-risk states. This inflection
point could be of great potential value to providers. Rather than
alarming with movement artifact or brief excursion of values
outside of programmed alarm limits, this tool identifies significant
paradigm shifts in the trajectory of the patient based on the
composite evaluation of multiple sources of information.
There are a number of potential limitations for this project. First,

as with all machine learning applications, a larger sample size
would improve the accuracy and reliability of the model and
reduce potential bias from inherent characteristics of the chosen
sample. We made effective use of fourfold cross-validation to
reduce this concern, but larger samples (on the order of the
several thousand VLBW infants included in TRIPS-II and NMR-2000
models) would provide for a greater degree of confidence in
prediction accuracy. Similarly, this model was developed from the
patient population at a single institution. Although patients come
from a variety of locations (urban, suburban, rural), the sample is
limited to the hospital catchment area and all patients receive care
by the same set of providers. Future research should include a
more geographically diverse sample, ideally multinational, to
account for all sources of variability.
Meanwhile, missing data is another source of bias that may

compromise model validity. To mitigate this issue, we utilized
multiple missing data imputation methods on the model, which
considerably reduces the risk of bias. Second, DeepPBSMonitor
does not identify the underlying mechanism of increased
mortality risk. Alerting providers to this concern is an important
first step but contextualizing the source of increased risk will be a
key part of moving this approach to practical clinical use. Third, a
small number of infants were transferred to other hospitals before
their initial NICU discharge. Although it is possible that some of

Table 11. Performance comparison of CRIB-II, DNN, and proposed model.

CRIB-II (per Infant) DNN (independent time point with fourfold cross-
validation)

Proposed model (time sequence prediction with fourfold
cross-validation

Accuracy 0.696 0.758 0.888

Recall 0.754 0.723 0.780

AUC 0.751 0.791 0.897

Fig. 2 The ROC curve and AUC of our final model on the four validation sets. The mean AUC of the model is 0.897. The plot of predictions
for each infant in four validation sets are shown in Supplemental Figs. 1–4.

J. Feng et al.

4

npj Digital Medicine (2021)   108 Published in partnership with Seoul National University Bundang Hospital



these infants died before discharge, such transfer occurs almost
exclusively to a lower level of care for completion of convales-
cence. Mortality in this clinically stable population is exceedingly
unlikely.
In conclusion, the proposed deep learning model has demon-

strated efficacy in predicting the mortality risk of preterm infants
in the NICU and is superior to existing clinical models of mortality
risk prediction and simple deep learning models. The proposed
model effectively integrates time-series vital sign data and fixed
variables while resolving the influence of noise and
imbalanced data.

METHODS
Cohort selection and clinical data
All infants admitted to the NICU at St. Louis Children’s Hospital, a level IV
NICU serving urban, suburban, and rural populations have vital sign data
prospectively archived into a research database (BedMaster EX, Excel
Medical, Jupiter, FL). For this convenience sample of infants admitted
between 2012 and 2018, we included all infants who were born prior to 32
completed weeks of gestation and had at least 6 h of recorded vital sign
data. Given the novel nature of this study, a priori sample size calculation
was not performed. Only inborn and outborn preterm infants in their initial
NICU hospitalization were included; infants with cyanotic heart disease and
those readmitted after hospital discharge are initially admitted to other
units of the hospital and did not have any collected vital sign data (thus
were not included). Comprehensive clinical factors including sex, race, GA,
weight, length of stay, age at admission, and outcome were collected. The
study protocol was reviewed and approved by the Washington University
Human Research Protection Office. Given the retrospective nature of the
study, waiver of consent was granted.
Raw vital sign data were recorded using Philips IntelliVue MP70 or

MX800 patient monitors (Philips Medical Andover, MA) as the time-
integrated mean with recorded rate of 1 Hz. All infants had vital signal data
for heart rate (HR), respiratory rate (RR), and oxygen saturation (SPO2). In
addition, all infants had either non-invasive systolic (NIBP-S), non-invasive
mean (NIBP-M), and non-invasive diastolic (NIBP-D) blood pressure
measurements or invasive arterial lines, which provided arterial systolic
(ART-S), arterial mean (ART-M), and arterial diastolic (ART-D) blood pressure
measurements.

Labeling of samples
For model training and evaluation, the time-series data were labeled as
“alert” and “not alert.” For infants who died, each time point in the final 6 h
prior to death was labeled as “alert” and the remaining time points were
labeled as “not alert.” For the babies who survived, all time points were
labeled as “not alert.” The final objective of model was to predict the
correct label for each time point.

Model architecture of DeepPBSMonitor
The model architecture of DeepPBSMonitor is shown in Fig. 1. Specifically,
the model consists of the following blocks: linear projection block, highway
network block, embedding LSTM block, gate block, modeling LSTM block,
detector block, and verifier block.
The innovation of the DeepPBSMonitor model is driven by the

integration of time-series vital sign data with fixed global variables, and
a reduction in the false prediction rate by introducing the state turning
point detection (especially useful with imbalanced data, as is the case with
this specific preterm birth survival and mortality risk prediction).
Specifically, the highway network and LSTM blocks were used to capture
the most informative signal patterns from the time-series vital sign data.
The global variables and identified hidden signal patterns were then
combined using a gate block. More importantly, instead of directly
predicting the mortality risk over time, we designed the novel state turning
point detection and verification model for this specific task. This is based
on the hypothesis that, at the turning point, the stable (not alert) state of
preterm births transitions to a non-stable (alert) state. The model first
checks every 5min if a turning point has appeared. If there is a turning
point, the time-series data are divided into two segments, i.e., before and
after the turning point. The verifiers then use these two segments of
signals to verify the detection. If there is no turning point in the time
sequence, the model should report the final point (padded segment) as

the turning point prediction. Moreover, by introducing detection loss, the
model can be more effective in avoiding false positive predictions caused
by the imbalanced data. Model parameters were defined as follows: nh is
the hidden size of model, lhighway is the number of highway layer in the
modeling LSTM block, lcnn is the number of convolutional neural network
(CNN) layer in the detector block, pd is the dropout probability, and β is the
weight in loss function.

Prediction features and data preprocessing
For raw vital sign data, we selected HR, RR, SPO2, and ART-M or NIBP-M as
predictive features. The recording for all infants was processed at a
consistent length. For preterm babies with data spanning >80 h, the data
were truncated, and only the last 80 h were used in the predictive models.
For patients with <80 h, the data were padded with zeros in the missing
portion of the recording, and that section was masked during model
training and prediction.
The valid ranges of each vital signal were defined as follows: HR (0, 250],

RR (0, 120], SPO2 (0, 100], ART-M [10, 90], NIBP-M (10, 90]. To better handle
missing data in the time sequence, we applied various missing data
imputation techniques and compared the performance of each technique.
The details regarding missing value imputation and evaluation are further
discussed in the “Results” section.
To reduce noise, the rolling mean of each vital sign data was used with a

range of 5 min. For each sample (with 80 h data), the vital sign data was
divided into 959 segments ((80 h × 60min/5min)− 1= 959). The reason
for subtracting 1 from the segments is that the first 5 min were used to
compute the first rolling mean value. For each segment, 1500 vital sign
signals were acquired (5 features × 300 s (5 min)= 1500). Finally, we
padded the end of each sample with one segment where all features
equaled zero. The final length of samples was therefore 960.
In addition to the time-series data, the sex, race, GA, and weight were

used in the prediction model. GA and weight have a complex non-linear
relationship with mortality7; thus, both variables were considered in the
model. For modeling purposes, sex and race were converted into dummy
variables. To mitigate the effect of truncating, we also created an
additional feature to indicate the length of the infant’s stay in the NICU
prior to the start of the model evaluation period (which consisted of the
final 80 h of a given stay). Finally, there were nine variables to characterize
the fixed/global information of preterm infants. The prediction features are
listed in Table 12.

The DeepPBSMonitor model
Let X 2 RS ´ nv represent the vital signal data, where S is the length of
sequence and nv is the number of signals in each time step. Here S= 960
and nv= 1500. Let G 2 Rng denote the fixed global information, where ng
= 9 is the number of global variables.

Linear projection block. The model will first project both vital signal data
and global data to hidden size nh by linear projection block. Let
Wx 2 Rnv ´ nh , bx 2 Rnh , Wg 2 Rng ´ nh , and bg 2 Rnh be trainable parameters;
the linear projection block processes the data with:

HX ¼ ReLU XWx þ bxð Þ (1)

hg ¼ ReLU GWg þ bg
� �

(2)

where HX 2 RS´ nh and hg 2 Rnh are vital signal features and global
information, and ReLU is the activation function. Finally, in order to
integrate the global information into each time step, we tile the hg by S
times to get Hg 2 RS´ nh :

Hg ¼ Tile hg
� �

(3)

Highway network block. Next, the vital signal features outputted from the
linear projection block will be further processed by the highway network
block. The highway network block contains lhighway highway layers, where
lhighway is a hyperparameter. Let the input of each highway layer be HX ; the
computation in each layer is then as follows:

g ¼ σ HXWg þ bg
� �

(4)

t ¼ ReLU HXWt þ btð Þ (5)

HX ¼ g�t þ 1� gð Þ�HX (6)

J. Feng et al.
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where Wg 2 Rnh ´ nh , Wt 2 Rnh ´ nh , bg 2 Rnh , and bt 2 Rnh are trainable
parameters, * is Hadamard product, and σ is sigmoid function. HX 2 RS´ nh
is the output of the highway layer. Highway layers are useful to capture
relative information from each time step.

Embedding LSTM block. To further capture information among different
time steps, we design an embedding LSTM block. The embedding LSTM
block contains three LSTM layers with residual connections. Let the input
and the hidden state in the LSTM block at time step t be hxt 2 Rnh and
hht 2 Rnh , respectively. The computation in each LSTM layer is then as
follows:

hhtþ1 ¼ LSTM hxt ; hht
� �

(7)

where hhtþ1 2 Rnh is the hidden state in time step t þ 1. LSTM layers are
used to extract information from whole sequences. Meanwhile, we
introduce residual connections for each LSTM layer. The output for each
residual LSTM layer is:

h
iþ1
xt ht ¼ LSTM h

i
xt ; h

i
ht

� �
þ h

i
xt (8)

where h
iþ1
xt 2 RS ´ nh is the output in the ith residual LSTM layer. Finally, we

integrate information from all residual LSTM layers via:

LX ¼ Concat h
i
x for i ¼ 1; 2; 3

� �
(9)

Pl ¼ Softmax LXWl þ blð Þ (10)

LX ¼ P3
i¼1

Plih
i
x (11)

where Wl 2 R3
�nh ´ 3 and bl 2 RlLSTM are trainable parameters, LX 2 RS´ 3

�nh is
the concatenation of the output from three residual LSTM layers, Pl 2 RS ´ 3

is an indication of how much information from each residual LSTM layer
should be integrated into the final information representation, and LX 2
RS´ nh is the output of embedding LSTM block.

Gate block. To integrate vital sign information and global information, a
gate block is designed. Let LX 2 RS ´ nh be the vital sign embedding
information outputted by the embedding LSTM block. The point-wise gate
state p is computed by:

p ¼ σ Concat LX ;Hg; L
�
XHg; LX � Hg

� �
Wm þ bm

� �
(12)

where Wm 2 R4nh ´ nh ; bm 2 Rnh are trainable parameters, Concat is a
concatenate function, and p 2 RS ´ nh . In this step, we want to capture
how much information should be retained in vital sign information and
global information, respectively, among each hidden dimension. Next, we
use p to integrate vital signal information and global information.

M ¼ p�LX þ 1� pð Þ�Hg (13)

where M 2 RS´ nh is the output of the gate block.

Modeling LSTM block. Next, we apply a modeling LSTM block to generate
final state information for each time step. The modeling LSTM block
contains one LSTM layer, similar to the embedding LSTM layer. This final
state information captures the total risk of infant in time step t.

Detector block. Instead of directly predicting the state distribution for
each time step, we designed a detection–verification mechanism using
detector and verifier blocks. The responsibility of the detector block is to
discover whether there is a turning point of an infant’s state from “not
alert” to “alert,” and if so, determine where it is. Since the state of the
current time step is more related to the previous time steps near this step
than to those far earlier, we apply depthwise separable convolution to
focus on local information. The depthwise separable convolution is more
memory efficient and has better generalization power. In detail, the
detector block contains lcnn depthwise separable convolution layers. Let
the output of modeling LSTM block be M. The computation in the
convolution layer is then as follows:

F ¼ ReLU Batch normalization CNN M
� �� �� �

(14)

where F 2 RS ´ nh captures the local information in each time step. In our
model, the output channel in CNN is nh and kernel size is 7. Next, the
turning point is predicted with:

TP ¼ Softmax FWtp þ btp
� �

(15)

where Wtp 2 Rnh ´ 1 and btp 2 R. TP 2 RS is the distribution of the turning
point among all time steps. If the sample has no turning point, the
distribution should be maximized in the last time step (padded segment).
During training, the turning point (tp) is chosen as the time step with the
maximum probability. During evaluation, to avoid noise detection, we
designed a turning point selection rule. Specifically, if the probability of
time step with maximum probability is >0.5, we directly choose this time
step as our turning point. Otherwise, several candidates with maximum
probability are selected. In this case, the number of candidates is
computed by the length of sequence:
Round length of time sequence=960ð Þ. Then the candidate who is the last
time step among all candidates is chosen as the turning point, as long as
the probability of that point is greater than 4=length of time sequence. If
not, we assume that the baby does not have a turning point.

Verifier block. After the turning point in the sequence is detected, a
verifier block is used to verify the detection result in the detection block.
To be more specific, we divide the data into two parts: time steps before a
given turning point, and time steps after. We assume that these two parts
will have different distributions of mortality risk. Then we estimate each
distribution and derive the risk prediction. However, the model will
sometimes give a false turning point and therefore trigger an unwarranted
jump in risk. To mitigate the effect of false turning points, the verifier block
is designed to generate a final prediction based on the results of two
separate neural network layers. The computation in the verifier block is as

Table 12. Prediction features.

Description Type

HR Heart rate Vital sign data

RR Respiratory rate Vital sign data

SPO2 Oxygen saturation Vital sign data

ART-M Arterial blood pressure—mean Vital sign data

NIBP-M Non-invasive blood pressure—mean Vital sign data

Sex The sex of babies Fixed variable

GA Gestational age of babies Fixed variable

Birth weight The weight when babies were born Fixed variable

Time Length of the infant’s stay in the NICU prior to the start of the model evaluation period Fixed variable

Is Asian? Whether the baby is Asian Fixed variable

Is Black? Whether the baby is Black or African American Fixed variable

Is Hispanic? Whether the baby is Hispanic Fixed variable

Is White? Whether the baby is White or Caucasian Fixed variable

Is Other race? Whether the race of baby is unknown Fixed variable
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follows:

Pb ¼ MWnw þ bnw (16)

Pa ¼ MWw þ bw (17)

P ¼ Softmax concat Pb : tp½ �; Pa tp :½ �ð Þð Þ (18)

where Wnw 2 Rnh ´ 2, bnw 2 R2, and Ww 2 Rnh ´ 2 and bw 2 R2 are trainable
parameters, Pb 2 RS ´ 2 and Pa 2 RS ´ 2 are the risk prediction for time steps
based on the distributions before and after the turning point. Next, we
concatenate Pb (before turning point) and Pa (after turning point) to get
our final risk prediction. Then this prediction will be verified as follows:

Pverified ¼ Softmax concat Pb : tp½ �; Pa tp :½ �ð Þ � LSTM Pbð Þ þ LSTM Pað Þð Þ
(19)

The model will use Pverified as the final risk prediction.

Loss function. To support the detection–verification mechanism, we
designed a unique loss function. The loss is divided into three parts—the
detection loss, the prediction loss, and the verification loss. The detection
loss is used to measure how accurately the detector predicts the turning
point. To mitigate false detection, we apply focal loss24 with greater weight
on the last padded time step:

Ldetection ¼ weighted focal loss PTP; real PTPð Þ (20)

where real_PTP is the real turning point and PTP is the predicted turning
point. The parameter γ and α of focal loss are set to be 2 and 1,
respectively. The weight of each time step is 1 if it is not the last padded
step, or 1.3 if it is. The prediction loss measures the difference between the
prediction and true risk:

Lprediction ¼ weighted nll loss P; real Pð Þ (21)

where weighted nll loss is the weighted negative log-likelihood loss, and
real_P is the real final state for each time step. The verification loss
measures the difference between the verified prediction and true risk:

Lverification ¼ weighted nll loss Pverified ; real Pð Þ (22)

The final loss is designed as:

L ¼ βLdetection þ Lprediction þ 2Lverification (23)

where β is a hyperparameter.

Model training
To train the DeepPBSMonitor, we use Adadelta as our optimizer, with a
learning rate set at 0.5. To address overfitting, L2 weight decay was applied
with parameter λ ¼ 3 ´ 10�7. A dropout layer was applied after each block
with drop probability pd. Batch size was set as 6 and epoch was set as 60.
During training, to deal with the unbalanced sequence problem, we

used weighted nll loss in prediction loss and verification loss. To be more
specific, we assigned different weights for each “not alert” and “alert” time
step of each infant. The weight is varied in each fold based on the number
of “not alert” and “alert” time steps in the training data. The weight of a
“not alert” time step was set as 1 and the weight of an “alert” time step was
set as:

Weightalert ¼
number of not alert time steps
number of alert time steps

� 0:1153

In each training epoch, we reconstructed the training set. The
reconstructed training set contains all infants who eventually died and
n/6 randomly selected infants who eventually survived, where n is the
number of infants who eventually died in the training dataset.
To smooth the training and validation procedure, we clipped the

gradient with threshold 5.0 before each back-propagation step. Mean-
while, exponential moving average (EMA) was applied on all trainable
variables with a decay rate μ= 0.999. To be more specific, model weights
after back-propagation step t were Wt and model weights after EMA in
step t were Et. After back-propagation step t+ 1, we derived model
weights Wt+1 from Wt. The new EMA model weights were updated with
the function Et+1= (1− μ)Et+Wt+1. If we reached the validation
procedure at step t, model weights Et were used instead of Wt. Finally,

we implemented our model in Python using Pytorch25 and carried out
cross-validation on an MSI GeForce RTX 2070 GPU Super (Micro-Star
International, Zhonghe, New Taipei, Taiwan) on a local machine with 8 GB
memory.

Data imputation
The decision tree and Bayesian ridge imputation are implemented using
the scikit-learn package in Python. For multiple imputation, the parameter
sample_posterior is set to be true and different random states are applied
for each imputed dataset.

Model comparison
CRIB-II Score. The CRIB-II score is widely used tool for evaluating initial
mortality risk in preterm infants. It considers the birth weight, GA,
admission body temperature, base excess, and sex of the baby and results
in a numerical score. CRIB-II scores ≥11 have been associated with a
significantly increased risk of mortality10,26. To evaluate the performance of
our model, predictions using CRIB-II score were made by labeling each
baby with the “alert” label if the infant had a CRIB-II score ≥11; otherwise,
we labeled the baby as “not alert.” For CRIB-II scores, we only consider the
risk in the scalar of per infant, not per time step. This approach is consistent
with real-world usage of the CRIB-II score, where it is calculated once at the
time of NICU admission but is not updated over time (as the factors do not
change). Then we compared the result with the true information and
computed accuracy, recall, and AUC. A small number of infants do not
have CRIB-II score due to missing components (generally admission
temperature); for these, we assign the infant a random value in the range
of normal admission temperatures (35–38 °C).

Simple DNN. We also compared our proposed model with a simple DNN.
The DNN contains four linear projection layers, the hidden size of each
layer is 512, 128, 32, and 2, respectively. The activation function was ReLU
except for the final layer, which used the Softmax function to convert
scores to probability distributions. Similarly, a dropout layer and L2 weight
decay were applied to deal with overfitting. The optimizer was Adadelta
with the learning rate set as 0.5. Additionally, to deal with the imbalanced
data, we also evaluated different weights to “alert” and “not alert” points.
Specifically, the weights of “alert” samples were set as number_of_not_a-
lert_time_steps/number_of_alert_time_steps. However, DNNs do not have
the ability to make predictions based on whole time series or sequences.
Therefore, we considered data as independent data points; for each data
point, corresponding global features were concatenated to construct final
features. The feature dimension of each data segment was thus 1509.
During the training process, the batch size was set as 128 and epoch time
was 10. The model parameters with the best Accuracy*Recall were used for
comparison.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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