
Brain charts for the human lifespan

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-022-04554-y



 
 

1 
 

Supplementary Information  
Brain charts for the human lifespan 
R. A. I. Bethlehem 1,2,#✉, J. Seidlitz3,4,5,# ✉, S. R. White6,7,#, J. W. Vogel3,8, K. M. Anderson9, C. Adamson10,11, 
S. Adler12, G. S. Alexopoulos13, E. Anagnostou14,15, A. Areces-Gonzalez16,17, D. E. Astle18, B. Auyeung1,19, 
M. Ayub20,21, J. Bae22, G. Ball10,23, S. Baron-Cohen1,24, R. Beare10,11, S. A. Bedford1, V. Benegal25, F. 
Beyer26, J. Blangero27, M. Blesa Cábez28, J. P. Boardman28, M. Borzage29, J. F. Bosch-Bayard30,31, N. 
Bourke32,33, V. D. Calhoun34, M. M. Chakravarty31,35, C. Chen36, C. Chertavian5, G. Chetelat37, Y. S. 
Chong38,39, J. H. Cole40,41, A. Corvin42, M. Costantino43,44, E. Courchesne45,46, F. Crivello47, V. L. Cropley48, 
J. Crosbie49, N. Crossley50,51,52, M. Delarue37, R. Delorme53,54, S. Desrivieres55, G. A. Devenyi56,57, M. A. Di 
Biase48,58, R. Dolan59,60, K. A. Donald61,62, G. Donohoe63, K. Dunlop64, A. D. Edwards65,66,67, J. T. Elison68, 
C. T. Ellis9,69, J. A. Elman70, L. Eyler71,72, D. A. Fair68, E. Feczko68, P. C. Fletcher73,74, P. Fonagy75,76, C. E. 
Franz70, L. Galan-Garcia77, A. Gholipour78, J. Giedd79,80, J. H. Gilmore81, D. C. Glahn82,83, I. M. Goodyer6, 
P. E. Grant84, N. A. Groenewold62,85, F. M. Gunning86, R. E. Gur3,5, R. C. Gur3,5, C. F. Hammill49,87, O. 
Hansson88,89, T. Hedden90,91, A. Heinz92, R. N. Henson6,18, K. Heuer93,94, J. Hoare95, B. Holla96,97, A. J. 
Holmes98, R. Holt1, H. Huang99,100, K. Im82, J. Ipser101, C. R. Jack Jr102, A. P. Jackowski103,104, T. Jia105,106,107, 
K. A. Johnson83,108,109,110, P. B. Jones6,74, D. T. Jones102,111, R. S. Kahn112, H. Karlsson113,114, L. 
Karlsson113,114, R. Kawashima115, E. A. Kelley116, S. Kern117,118, K. W. Kim119,120,121,122, M. G. Kitzbichler2,6, 
W. S. Kremen70, F. Lalonde123, B. Landeau37, S. Lee124, J. Lerch125,126, J. D. Lewis127, J. Li128, W. Liao128, C. 
Liston129, M. V. Lombardo1,130, J. Lv48,131, C. Lynch64, T. T. Mallard132, M. Marcelis133,134, R. D. Markello135, 
S. R. Mathias82, B. Mazoyer47,136, P. McGuire51, M. J. Meaney136,137, A. Mechelli138, N. Medic6, B. Misic135, 
S. E. Morgan6,139,140, D. Mothersill141,142,143, J. Nigg144, M. Q. W. Ong145, C. Ortinau146, R. 
Ossenkoppele147,148, M. Ouyang99, L. Palaniyappan149, L. Paly37, P. M. Pan150,151, C. Pantelis152,153,154, M. 
M. Park155, T. Paus156,157, Z. Pausova49,158, D. Paz-Linares16,159, A. Pichet Binette160,161, K. Pierce45, X. 
Qian145, J. Qiu162, A. Qiu163, A. Raznahan123, T. Rittman164, A. Rodrigue82, C. K. Rollins165,166, R. Romero-
Garcia6,167, L. Ronan6, M. D. Rosenberg168, D. H. Rowitch169, G. A. Salum170,171, T. D. Satterthwaite3,8, H. L. 
Schaare172,173, R. J. Schachar49, A. P. Schultz83,108,174, G. Schumann175,176, M. Schöll177,178,179, D. Sharp32,180, 
R. T. Shinohara36,181, I. Skoog117,118, C. D. Smyser182, R. A. Sperling83,108,109, D. J. Stein183, A. Stolicyn184, J. 
Suckling6,74, G. Sullivan28, Y. Taki115, B. Thyreau115, R. Toro94,185, N. Traut185,186, K. A. Tsvetanov164,187, N. 
B. Turk-Browne9,188, J. J. Tuulari113,189,190, C. Tzourio191, É. Vachon-Presseau192, M. J. Valdes-Sosa77, P. A. 
Valdes-Sosa128,193, S. L. Valk194,195, T. van Amelsvoort196, S. N. Vandekar197, L. Vasung135, L. W. Victoria86, 
S. Villeneuve160,161,198, A. Villringer26,199, P. E. Vértes6,140, K. Wagstyl60, Y. S. Wang200,201,202,203, S. K. 
Warfield78, V. Warrier6, E. Westman204, M. L. Westwater6, H. C. Whalley184, A. V. Witte26,199,205, N. 
Yang200,201,202,203, B. Yeo206,207,208, H. Yun209, A. Zalesky48, H. J. Zar85,210, A. Zettergren117, J. H. 
Zhou145,206,211, H. Ziauddeen6,74,212, A. Zugman151,213,214, X. N. Zuo199,200,201,202,215, 3R-BRAIN*, AIBL**, 
Alzheimer's Disease Neuroimaging Initiative***, Alzheimer's Disease Repository Without Borders 
Investigators****, CALM Team*****, Cam-CAN******, CCNP*******, COBRE********, cVEDA*********, 
ENIGMA Developmental Brain Age working group**********, Developing Human Connectome Project, 
FinnBrain, Harvard Aging Brain Study***********, IMAGEN************, KNE96*************, The Mayo Clinic 
Study of Aging, NSPN**************, POND***************, The PREVENT-AD Research Group, VETSA, E. 
T. Bullmore6,± & A. F. Alexander-Bloch3,4,5,± 
 
 

# contributed equally to the work  
† jointly supervised the work  

 
Corresponding authors: 
Richard A.I. Bethlehem, rb643@medschl.cam.ac.uk  
Jakob Seidlitz, jakob.seidlitz@pennmedicine.upenn.edu 
 
 
 



 
 

2 
 

Common nomenclature 7 

Supplementary Methods 8 
1. Modelling lifespan trajectories of brain maturation 8 

1.1 Model distributions 12 
1.2 Convergence within GAMLSS 13 
1.3 Fractional polynomial model set 13 
1.4 Model simulations 14 
1.5 Centile normalisation 17 
1.6 Centile Mahalanobis distance 18 
1.7 Longitudinal centiles 19 
1.8 Out-of-sample estimation 21 

2. Quality control 23 
2.1 Euler index filtering 23 
2.2 Expert visual quality control 25 
2.3 Image quality and out-of-sample centile scoring 28 
2.4 Euler index and neuroimaging phenotypes 28 

Sensitivity Analyses 32 
3. Model evaluation 32 

3.1 Model diagnostics 32 
3.2 Model sensitivity analyses 33 

3.2.1 Leave-one-study-out 34 
3.2.2 Bootstrap analysis 34 
3.2.3 Parameter estimates 35 

3.3 Study-specific curves 41 
3.4 Brain weight, ultrasound, and head circumference validation 42 

4. Out-of-sample centile scoring: bias, stability and reliability 44 
4.1 Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies 44 
4.2 Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 
studies 46 
4.3 Test-retest reliability of out-of-sample centile scoring 48 
4.4 Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 51 
4.5 Effects of sample size on reliability of out-of-sample centile scores 52 

5. Batch correction and site harmonisation 55 
5.1 Modelling of between-site heterogeneity by GAMLSS: conceptual considerations in 
comparison to ComBAT batch-correction 55 
5.2 Modelling of between-site heterogeneity by GAMLSS: empirical evaluation compared 
to ComBAT 56 

6. Cohort effects 62 

Supplementary Analyses 65 
7. Extended global cortical phenotypes 65 



 
 

3 
 

7.1 Model optimisation 65 
7.2 Normative trajectories of extended global MRI phenotypes 67 
7.3 Quality control of extended global MRI phenotypes 72 
7.4 Stability of out of-sample centile scoring for extended global phenotypes: LOSO 
analyses 73 

8. Regional cortical volumetric trajectories and milestones 76 
8.1 Charting development of regional volumes 76 
8.2 Regional volumetric milestones 79 

9. Developmental windows and milestones 82 
9.1 Trajectories within developmental epochs 82 
9.2 Grey-white matter differentiation 84 

10. Clinical applications of centile scores 86 
10.1 Case-control and between-disorder comparisons of centile scores on cerebrum 
tissue volumes and extended global MRI phenotypes 86 
10.2 Multimodality of centile distributions in clinical disorders 92 
10.3 Case-control differences on CMD 95 
10.4 Summary centile comparison 96 

11. Cross diagnostic analyses 99 
11.1 Sliding window analyses of cross-disorder discriminability 99 
11.2 Cross-diagnostic clustering 100 

12. Associations of birth weight and gestational duration with centile scores on cerebrum 
tissue volumes 104 
13. Twin-based heritability of centile scores 105 
14. Longitudinal centiles 106 

14.1 Longitudinal patterns in developmental epochs 106 
14.2 Longitudinal variability across studies 107 
14.3 Longitudinal variability in clinical samples 109 
14.4 Longitudinal centile score changes and diagnostic progression 115 

15. Interactions between cerebrum tissue volumes 117 
16. Sex differences 119 

Reference database details: demographics and processing pipelines 120 
17. Demographics of reference database 120 
18. Data processing 121 
19. Primary dataset descriptions 123 

3R-BRAIN - Brain Consortium for Reproducibility, Replicability and Reliability 123 
ABCD - Adolescent Brain and Cognitive Development 123 
ABIDE - Autism Brain Imaging Data Exchange 123 
ABVIB - Aging Brain: Vasculature, Ischemia, and Behavior 123 
ACE and IBIS 124 
ADHD200 124 
ADNI - Alzheimer's Disease Neuroimaging Initiative 124 



 
 

4 
 

AIBL - Australian Imaging. Biomarkers and. Lifestyle Flagship Study of Ageing 125 
AOBA 125 
AOMIC ID1000, PIOP1 & PIOP2 - Amsterdam Open MRI Collection 125 
ARWIBO - Alzheimer's disease Repository Without Borders 126 
ASRB - Australian Schizophrenia Research Bank 126 
BCP - Baby Human Connectome Project 126 
BGSP - Brain Genomics Superstruct Project 127 
BHRCS - Brazilian High Risk Cohort Study for Mental Conditions 127 
BioDep - Biomarkers of Depression 127 
BSNIP - Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes 128 
Calgary 128 
CALM - Centre for Attention Learning and Memory 128 
Cam-CAN - Cambridge Centre for Aging and Neuroscience 128 
CAM-FT - Cambridge foetal testosterone 129 
CCNP-devCCNP - Chinese Color Nest Project devCCNP 129 
Cuban Human Brain Mapping Project (CHBMP) 129 
CHILD - Cambridge Human Imaging and Longitudinal Development 129 
COBRE - Center for Biomedical Research Excellence 130 
CONTE 130 
Cornell 131 
CTAAC - Cape Town Adolescent Antiretroviral Cohort 131 
cVEDA - Consortium on Vulnerability to Externalizing Disorders and Addictions 131 
dHCP - Developing Human Connectome Project 132 
DCHS - Drakenstein Child Health Study 132 

DCHS Infants 132 
DCHS Mothers 132 

DLBS - Dallas Lifespan Brain Study 133 
EDSD - European DTI Study on Dementia 133 
EMBARC - Establishing Moderators and Biosignatures Of Antidepressant Response for 
Clinical Care 133 
Female ASD 134 
FinnBrain 134 
Frankfurt 134 
GOBS - Genetics of Brain Structure and Function study 134 
GOSICH - Great Ormond Street Institute for Child Health 135 
GUSTO - Growing Up in Singapore Towards Healthy Outcomes 135 
HABS - Harvard Aging Brain Study 135 
Harvard foetal 136 
HBN - Healthy Brain Network 136 
Human Connectome Project 136 
Human Connectome Project Aging and Development 136 



 
 

5 
 

iADNI - Italian Alzheimer's Disease Neuroimaging Initiative 137 
ICBM 137 
IMAGEN 137 
IMAP - Multi-modal Neuroimaging in Alzheimer's Disease 137 
IXI 138 
KNE96 - Korean normal elderly brain template study 138 
LA5c - UCLA Consortium for Neuropsychiatric Phenomics LA5c Study 138 
LATAM 138 
LIFE - Leipzig Research Centre for Civilization Diseases Study 139 
MCIC 139 
MCSA (Mayo Clinic Olmsted Study of Aging) 139 
MRi-Share 139 
Narratives 140 
NeuroScience and Psychiatry Network 140 
NHGRI 140 
NIH 140 
NIHPD Infant and Adult 141 
NKI - Nathan Kline Institute Rockland Sample 141 
NTB_Yale 141 
OASIS3 - Open Access Series of Imaging Studies 141 
OHSU 142 
OpenPain 143 

Placebo 1 (PL1) 143 
Subacute longitudinal study (SA1 & SA2): 143 
Placebo predict Tetreault (PLOA) 144 
Brain network change Mano (RS) 144 
Accumbens Chronic Pain Signature (SAB) 144 

Oslo 144 
Oulu 145 
Penn-CHOP Developmental Connectome (PCDC) 145 
PING - Pediatric Imaging, Neurocognition, and Genetics 145 
Pixar 145 
PNC - Philadelphia Neuroimaging Cohort 146 
POND - Province of Ontario Neurodevelopmental Disorders 146 
PPMI - Parkinson's Progression Markers Initiative 146 
PREVENT-AD - PRe-symptomatic EValuation of Experimental or Novel Treatments for 
AD 146 
PSYSCAN Maastricht 147 
PSYSCAN Dublin 147 
RDB 148 
SALD - Southwest University Adult Lifespan Dataset 148 



 
 

6 
 

SCZIowa 148 
SLIM - Southwest University Longitudinal Imaging Multimodal Dataset 149 
STRIvE - Stress in Eating 149 
SYS Adults & Adolescents 149 
TEBC - Theirworld Edinburgh Birth Cohort 149 
TOPSY 150 
UKB - UK Biobank 150 
VETSA - Vietnam Era Twin Study of Aging 151 
VITA - Vienna Transdanube Aging study 151 

20. Replication/validation datasets 151 
10k-in-a-day 151 
Hsu et al. (Ultrasound) - estimated 152 
Chang et al. (Ultrasound) - estimated 152 
Roelfsema et al. (Ultrasound) - estimated 152 
Brain Weight 152 
International prenatal (HC) 152 
WHO postnatal (HC) 153 

21. A note on data sharing 154 

22. Affiliations of authors 156 

23. Acknowledgements 162 

24. References 170 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

7 
 

Common nomenclature
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ADHD - Attention deficit hyperactivity 
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CDF - Cumulative density function 
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‘Ventricles’) 
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GAM - Generalised additive model 
GAMLSS - Generalised additive models for 
location scale and shape 
GEEs - Generalised Estimating Equations 
GG - Generalised Gamma 
GMV - Total cortical grey matter volume 
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MRI - Magnetic resonance imaging 
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RMR - Resting metabolic rate  
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sGMV - Total subcortical grey matter 
volume 
SA - Surface area 
SCZ - Schizophrenia 
ST - Supplementary table 
SI - Supplementary information 
TCV - Total cerebrum volume 
WHO - World Health Organisation  
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Supplementary Methods 

1. Modelling lifespan trajectories of brain maturation 
Combining multiple cross-sectional studies covering a part of the lifespan to obtain a reference 
level lifespan curve, for a range of imaging phenotypes, requires a flexible modelling approach. In 
this section, we further describe the modelling issues and compare our chosen approach to 
potential alternative approaches. We also provide details about multiple sensitivity analyses using 
bootstrapping, study jackknifing and external validation. Furthermore, we outline several 
simulations that informed our choices of modelling in our final approach. We also note that figures 
are available in interactive format at www.brainchart.io.  
 
The presence of study-specific effects requires the use of a random-effects modelling strategy, 
viewing each study as an example drawn from an infinite pool of potential studies rather than 
estimating a study fixed effect. Ignoring study-specific effects would fail to account for the 
substantial correlation between individuals within studies, resulting in substantial bias in any 
estimated parameters and covariances. A fixed-effect framework, modelling each study as an 
identifiable effect, would induce an ever-growing number of parameters within the model. It is 
more appropriate to view the set of observed studies as drawn from an infinite population of 
possible studies. A random-effects approach has the additional benefit of introducing smoothing, 
or equivalently shrinkage, across the multiple study estimates. There is a priori evidence of 
meaningful variation in higher moments across the lifespan—not just in the mean (first moment) 
but also in the variance (second moment)1–5. This would preclude, for example, mixed-effect 
models which only model the mean. Furthermore, there is no biological basis for the assumption 
that neuroimaging phenotypes follow a Gaussian distribution. This leads us to the set of 
'generalised' extensions of common methods, for example generalised mixed-effects models. 
 
The World Health Organization (WHO) recommended6 framework to address these requirements 
within a growth chart context is the Generalised Additive Models for Location Scale and Shape 
(GAMLSS)7–10 modelling approach. The flexible outcome distribution component allows us to 
consider non-Gaussian outcomes, for example the generalised gamma distribution8. Importantly 
the GAMLSS framework allows us to incorporate models for multiple moments of the outcome 
distribution (the Location [L], Scale [S] and Shape [S] within GAMLSS), for example modelling 
age-related changes in the mean, variance and skewness of imaging features. Depending on the 
outcome distribution, the moments may be defined in terms of the parameters of the distribution, 
e.g., the generalised gamma11 is a three parameter distribution where the three moments are 
calculated in terms of the modelled parameters (rather than being directly modelled). See SI1.1 
for additional information about model distributions. 
 
With respect to covariates (or independent variables, or predictors), the GAMLSS framework 
encompasses generalised additive models (GAMs), which allow a highly flexible format for the 
relationship between the covariates and the outcome (or dependent variable). This includes the 
ability to use flexible spline functions. However, the strong association between studies and period 
of the lifespan, specifically the coverage density and range of the lifespan by studies, would likely 
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conflate with selecting knot locations for a spline model and may be unstable under the inclusion 
and exclusion of specific studies each covering specific ranges of the full lifespan. Despite having 
a substantial number of observations, allowing flexible splines within multi-parameter distributions 
with random-effects would induce too much flexibility. Instead, we consider a simpler additive 
construct, namely fractional polynomials12. Fractional polynomials can be viewed as a simpler 
form of spline modelling using a fixed set of polynomials. Following the standard approach for 
fractional polynomials, we consider a set of powers (the typical set of eight powers) across a 
number of orders of fractional polynomials. The GAMLSS framework includes a fractional 
polynomial function that automatically performs this model selection step within the fitting process, 
although in addition to this standard estimation we chose to evaluate model permutations of all 
possible combinations of the number of modelled polynomials in each term of the generalised 
gamma distribution (between 1–3 terms for each of the three parameters). In order to assess the 
uncertainty in our lifespan curves, we use a stratified bootstrapping procedure. It is important to 
stratify by study to ensure the bootstrap resampling maintains equivalent coverage of the lifespan. 
Further, we included a sex-effect as an a priori important feature and so also stratify on sex. See 
SI1.3 for additional information about fractional polynomial model selection, and SI1.4 for a 
discussion of the GAMLSS framework using simulated data. 
 
Our modelling aim is to obtain a reference lifespan model for cognitively normal subjects (CN), 
onto which we can place individuals with various diseases and conditions. Furthermore, there 
could be variability between studies in the standards used for diagnosis of disorders and for 
ascertainment of healthy controls, and the non-CN individuals are spread across the studies. To 
that end, we require study-specific estimates from our model so that we can derive study-specific 
CN reference curves. This requirement excludes many non-parametric outcome distribution 
approaches and conditional inference approaches, for example Generalised Estimating Equations 
(GEEs)13, since they explicitly avoid or side-step estimating the random-effects terms. Although 
many of these methods reduce bias under model mis-specification, we require the feature they 
integrate out. Similarly, this excludes approaches like the recent application of ComBAT14 in 
neuroimaging from its origins in the genomics literature (see SI5 for an in-depth comparison 
between the two approaches). The principal way in which we have accounted for inter-site 
variability issues is by using the GAMLSS modelling framework to correct for between-study 
differences in all studies, and to use only data from healthy controls to estimate the normative 
trajectories for all phenotypes. To demonstrate the robustness to study-specific variability of 
growth curves and the individual centiles derived from them, we conducted ‘leave-one-study-out’ 
(LOSO) analyses whereby the growth curves and centiles are repeatedly estimated after 
exclusion of each individual study (see SI3.2 on model sensitivity analyses). These analyses 
confirm that trajectories from the total dataset are in general highly conserved after exclusion of 
each individual study, suggesting that study-specific differences do not materially influence model 
parameters. 
 
Moving from Gaussian outcomes to general outcome distributions, with models for each 
parameter of the distribution, it becomes difficult to work in terms of the outcome measure directly. 
Rather, since we are working with probability distributions we consider the centile of the 
observation, the 50th centile being the median. This is in contrast to the commonly used approach 
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of 'standardising' the predictions, for example with z-scores. This is important especially for non-
symmetric or skewed distributions like the generalised gamma where the mean and median can 
differ, and 'z-scoring' (i.e., (x-μ)/σ)) is inappropriate or invalid. 
 
We can obtain study-specific offsets and then derive reference-normalized outcomes for each 
individual’s observation. Specifically, we can obtain a study-specific centile for the ith person as: 
 

𝑞! = 𝐹′(𝑦, 𝑥|𝛽, 𝑧) (1.1) 

 
using the inverse cumulative density function, F', with the model fixed-effect parameters, 𝛽, and 
study random-effect, z, combined with the participant covariates, x, and outcome measure, y. The 
'normalised' value, would be calculated using 
 

𝑦"#$% = 𝐹(𝑞!|𝛽). (1.2) 
 
These reference curves can be used to assess Dx individuals' centiles. If the non-CNs are 
comparable to the CNs then their centiles will span the zero to one range uniformly. Deviation 
from such a uniform distribution (within the study-specific centiles) indicates a deviation from the 
CN lifespan curve. See SI1.4-1.5 for additional information about centile normalisation and centile 
deviation relative to reference curves.  
 
Some of the included studies were longitudinal, including multiple follow-up scans for the same 
individuals. This enables us to investigate the validity of the cross-sectionally derived lifespan 
curves as longitudinal trajectories. For CNs, assuming a reasonable level of within-person 
variability, each individual’s centile score should remain constant. This would be the equivalent of 
maintaining a specific centile while ageing on a growth chart. Significant changes in an individual’s 
centile as they age, for example passing from 75th to 25th percentile in height or weight on the 
child growth chart is an indicator of a potential clinical issue. Our derived neuroimaging reference 
curves can be used in a similar fashion, using follow-up scans to assess whether an individual 
has crossed multiple deciles/quartiles/etc. of our lifespan curves. The utility of this approach for 
cases of extreme pathology may be limited, since they typically sit in an extreme part of the centile 
distribution (i.e., they are not uniformly distributed from zero to one). While their extreme place 
relative to the CN distribution is likely to be clinically meaningful, their amount of longitudinal 
variability might be compressed. To circumvent some degree of complexity we sought to quantify 
an individual’s interquartile range of their position in the centile distribution as a proxy for 
longitudinal stability. See SI1.7 for additional information about longitudinal centiles. 
 
Once the GAMLSS model is fitted to a reference database we obtain a parameterisation of the 
fixed-effects of the curve, estimates of the random-effect covariance structure (the 
parameterisation of the population of potential studies), and random-effects terms for any study 
within the database. Using these estimates, specifically the fixed-effects and random-effect 
covariance structure, we can derive a random-effects term for a new study by using new data 
from that study and conditioning on the estimated parameters within the model. The stability of 
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the newly estimated study random-effects will depend on the number of observations available. 
This can be partly quantified using the bootstrap parameter estimates, and we simulated several 
study sample sizes to determine an approximate minimum sample required for such out-of-sample 
(OoS) estimation. Crucially, the process described does not require refitting the model to the 
reference database, nor does it require revealing the original data from the reference database, 
making it both computationally effective as well as fitting within an open science framework. 
However, as more studies become available and sample sizes of new studies increase, we aim 
to periodically update the model fit to an updated/expanded reference database. See SI1.8 for 
additional information about the application of models to OoS data. 
 
With respect to all visualisation and statistics represented in graphical format, unless otherwise 
stated these were generated in R GNU v4.1.2 using the “ggplot” 15 package. Where boxplots are 
used they indicate the median and lower and upper hinges correspond to the first and third 
quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest 
value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range, or distance 
between the first and third quartiles). The lower whisker extends from the hinge to the smallest 
value at most 1.5 * IQR of the hinge. Data beyond the end of the whiskers are called "outlying" 
points and are plotted individually. Density plots were generated with the ‘geom_flat_violin’ option 
from the “raincloudplots” package16. Estimation of densities and the resulting number of peaks 
were done using the default settings of the ‘density()’ function in the base R “stats” package17 
using a Gaussian smoothing kernel18,19 which defaults to 0.9 times the minimum of the standard 
deviation and the interquartile range divided by 1.34 times the sample size to the negative one-
fifth power (Silverman's ‘rule of thumb’20); unless the quartiles coincide, when a positive result will 
be guaranteed. Clustering heatmaps were generated using the “ComplexHeatmap” package21. 
Crosshair plots depict the median and standard deviations. Plots depicting linear associations 
were generated with ggplot's ‘geom_point()’ function and where linear relations are reported 
include shaded regions indicating the 95% confidence intervals of that linear relation. Linear 
regression was performed using the “lm” function in the base “stats” package, as well as the 
“lmerTest” package22 for mixed-effects modelling. Student’s T-tests were performed using the 
“t.test” function in the base “stats” package (two-sided, unless otherwise reported). The 
“ggstatsplot” package23 was used for the model generalisability analyses to report robust 
correlation values. Cohen’s d effect sizes were calculated using the “effsize” package24. 
 
Finally, it is worth noting that the strategic intent of this study (and some directly relevant prior 
work) was to quantify brain structural MRI phenotypes relative to age- and sex-specific norms, 
rather than to predict chronological or biological age of participants from their MRI data25,26. There 
is a large extant literature on attempts to predict “brain age” and compare brain age to the actual 
age of study participants26–31. In contrast we do not ask the question: what is a participant’s 
neurobiological age, or the difference between their neurobiological and chronological ages32, 
given their brain morphology? Instead we ask: how (a)typical is a participant’s brain structure 
compared to their demographically matched peer group? More formally, we assess the vertical 
deviation of an individual scan from the normative trajectory of the corresponding phenotype in a 
reference population; whereas brain-age prediction attempts to quantify the horizontal deviation. 
Brain charting is more analogous than brain age prediction to the ways that traditional growth 
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charts are used in pediatric practice for anthropometric variables. Additionally, normative growth 
curves allow us to benchmark even a single MRI phenotype – such as one of the global tissue 
volumes that are abundantly available across primary datasets – as opposed to brain age 
predictions that typically require a high-dimensional feature space comprising multiple MRI 
phenotypes25,32. In addition, several methodological critiques of brain age prediction are not 
relevant to the present approach32–34. Thus, we note that using GAMLSS to quantify centile 
dispersion of MRI phenotypes on age-normed and sex-stratified distributions shares conceptual 
goals with, but methodologically entirely distinct from, studies that seek to predict human age (or 
derive a ‘brain age gap’) from brain imaging data35.  

1.1 Model distributions 
The WHO provides several guidelines for choosing underlying model distributions for growth chart 
modelling6,36 of anthropometrics such as head circumference, height and weight. For these 
phenotypes the guidelines suggest the Box-Cox t-distribution might be an appropriate starting 
place. Since we did not want to assume that the trajectories obtained from in vivo neuroimaging 
would automatically or by extension be best captured by the same underlying distributions, we 
decided to evaluate all possible distribution families. In that context it is worth noting that there is 
no specific statistical test to determine the best outcome distribution to use within the GAMLSS 
model, and the package provides a range of distribution families8. Standard practice is to fit 
multiple distributions, each consistent with the characteristics of the outcome, and to compare the 
distributions using an information criterion such as the Bayesian Information Criterion (BIC)37. We 
used this approach to select the optimal outcome distribution, keeping in mind the likely need for 
multi-parameter outcome estimates (so we only evaluated distribution families with 3 or more 
parameters for which GAMLSS fitting converged). Fig. S1.1 shows the BIC for all evaluated 
models scaled to the lowest BIC for each phenotype. In all cases a generalised gamma distribution 
provided the best fit. 
 
 

 
Fig. S1.1. Relative Bayesian information criterion (BIC) for each family of distributions of cerebrum 
tissue volumes evaluated for GAMLSS modelling. Log (natural log) BIC scores are shown in terms of 
their difference from the lowest BIC score, corresponding to the best-fitting form of the outcome distribution. 
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All BIC values were scaled to the lowest value for each cerebrum tissue volume. For all phenotypes, a 
generalised gamma (GG) distribution provided the best fit. Distribution family acronyms are adapted directly 
from the way they are listed within the GAMLSS package 8.  

1.2 Convergence within GAMLSS 
Model convergence within GAMLSS, like many iteratively fitting statistical models, is defined in 
terms of the estimated likelihood staying equivalent across several iterative steps, where 
equivalence is in terms of a defined convergence threshold. The threshold is with respect to 
changes in the (log-)likelihood between iterations (we use the default convergence criterion of 
0.001)7,8. Instability, or non-convergence, is typically when the GAMLSS model cannot converge 
on a maximum likelihood estimate and jumps between multiple solutions, whose likelihood values 
differ by more than the threshold and hence the algorithm never converges. 
 
If the model is over-parameterised there may be multiple solutions that fit the data, which will lead 
to non-convergence. Equivalently, within the bootstrapping procedure, it is possible for a bootstrap 
replication to become degenerate, meaning the resampled subset of data causes the model fitting 
to fail, e.g., the bootstrap replicate of a small study may, by chance, consist of copies of only one 
subject and have no variability with which to estimate the study random-effects. We employ a 
stratified bootstrap procedure to limit this issue (see SI3.2.2 ”Bootstrap analysis”); but given the 
sample size of some primary studies we experienced a small number (<1%) of model 
convergence failures across bootstrap replicates. A priori, we deemed the model unstable if more 
than 5% of bootstrap replicates failed to converge but this situation did not occur for any of the 
MRI phenotypes. 

1.3 Fractional polynomial model set 
As noted above, fractional polynomials can be viewed as a simpler form of spline modelling using 
a fixed set of polynomials (GAMLSS uses the standard set of polynomial powers: -2, -1, -0.5, 0, 
0.5, 1, 2, 3, see Royston & Altman (1994) 12). Some standard definitional issues should be noted. 
First, the term “order” is used to refer to the number of terms in the fractional polynomial model 
rather than the power, e.g., a third order fractional polynomial does not necessarily contain 𝑥&. 
We consider polynomials of the first order, 𝛽'𝑥'; second order, 𝛽'𝑥' 	+ 	𝛽(𝑥(; and third order, 
𝛽'𝑥' 	+ 	𝛽(𝑥( + 𝛽$𝑥$. Second, as conventionally defined by Royston and Altman, a power of zero 
in fractional polynomials is 𝑙𝑜𝑔(𝑥) rather than 𝑥) (since 𝑥) = 1 for all 𝑥). Third, “repeated powers” 
are evaluated: a second order fractional polynomial where power p is repeated is defined as 
𝛽'𝑥' + 𝛽'*𝑥'𝑙𝑜𝑔(𝑥), while a third order fractional polynomial where power p is repeated is defined 
as 𝛽'𝑥' + 𝛽'*𝑥'𝑙𝑜𝑔(𝑥) 	+	𝛽'*𝑥'𝑙𝑜𝑔(𝑥)+.  
 
The GAMLSS framework includes a fractional polynomial function that automatically performs the 
model selection step within the fitting process. In addition to this standard estimation, we chose 
to evaluate model permutations of all possible combinations of the number of modelled 
polynomials in each of the terms (𝜇, 𝜎, 𝜈)	of the generalised gamma distribution (between 1–3 
terms for each of the three parameters). Across all four main global tissue volumes (GMV, sGMV, 
WMV, ventricles) this approach suggested 3rd order fractional polynomial fits for the 𝜇-
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component. For the 𝜎-component, modelling indicated 2nd order fractional polynomial fits for 
GMV, sGMV, and WMV, but a 3rd order fractional polynomial for ventricles (Fig. S1.3). For GMV, 
sGMV, and WMV, the model evaluation procedure also suggested including a study random effect 
in both 𝜇 and 𝜎, whereas for ventricles it indicated inclusion of a study random effect only for 𝜇. 
Despite the size of the present dataset, we found that fractional polynomial modelling for 𝜈 resulted 
in model instability (e.g., the GAMLSS model selection did not converge on an optimal 
parameterisation). Polynomials for 𝜈 were therefore not evaluated as we did not have an a priori 
reason to assume age and random-effect dependent skewness. As detailed in Online Methods, 
the model selection processes supported the inclusion of an intercept term only, for the 𝜈-
component for all phenotypes. 
 

 
Fig. S1.3. Optimization of GAMLSS model specification by analysis of the Bayesian information 
criterion (BIC) for multiple possible models on the generalised gamma distribution. Here natural log 
BIC is plotted relative to the best-fitting model with lowest BIC for each combination of fractional polynomials 
and random effects for which the model converged. All BIC values were scaled to the lowest value for the 
set of models fitted to each cerebrum tissue volume (log-scored difference to the lowest scoring model). 
For all phenotypes, a model that included 3 polynomials for 𝜇 provided the best fit; and for all phenotypes 
other than sGMV the best fit also specified3 polynomials for 𝜎. The various models fitted are summarised 
by y-axis labels denoting the base fractional polynomial configuration (“baseFO”) that are structured as 
follows: baseFO[a][b][c]R[x][y][z], where a-c denote the number of fractional polynomials included in the 
age term on 𝜇, 𝜎, and 𝝂 respectively, and x-z denote whether a study random effect was estimated for each 
of the model components (1 means a study random effect was included, 0 means no study random effect 
was included).  

1.4 Model simulations 
In order to motivate the specific use of GAMLSS for lifespan modelling as done here, we designed 
a simulation scenario that matches our use case for a single outcome or MRI phenotype. 
Specifically, we simulated data from twenty studies across the lifespan. We simulated data on 
both healthy controls (CN) and diagnosed cases (DX), some with longitudinal follow-up, as well 
as study-specific random-effects. We chose the generalised gamma for the true outcome 
distribution with age and sex fixed-effects, random-effects within the 𝜇-component, and constant 
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𝜎- and 𝜈-components. The lifespan relationship was quadratic with age. Importantly, the simulated 
data also included a subject-level random-effect, which is fitted by the GAMLSS model. This 
allowed us to set the within- and between-subject covariance, which in turn allowed us to assess 
the utility of the longitudinal centiles (see SI1.7 “Longitudinal centiles”).  
  

 
Fig. S1.4.1. Simulated data for baseline observations. A | Female and male healthy controls (CN) 
coloured according to 20 simulated studies, highlighting the coverage of the lifespan and the within- and 
between-study variability. These simulated observations (N=13,500) were used to estimate lifespan curves 
with GAMLSS in order to motivate the application to real data. B | Healthy controls (CN) and diagnosed 
(Dx) individuals from each study (black and red respectively) (n=20,250). This simulation posits a diverging 
lifespan trajectory for Dx individuals, such that at the start of the lifespan CN and Dx overlap but gradually 
separate, which is induced by using different true age-related quadratics. The specific functional form of the 
CN and Dx curves are ((0.4 − 𝑥) ∗ (0.5 − 𝑥) + 1.8) and ((0.35 − 𝑥) ∗ (0.3 − 𝑥) + 1.55) respectively. (values 
were scaled for computational stability and visualisation purposes). 
 
The inclusion of individual-level random-effects within the simulation is necessary to induce a 
dependence between longitudinal observations. While the analysis shown in Fig. S1.4.1 only uses 
baseline observations, Fig. S1.4.2 illustrates the longitudinal follow-up for a subset of individuals 
across five of the twenty simulated studies for CN and Dx individuals to assess the capacity to 
model longitudinal trajectories. The simulated dataset also mimics the real-world data with an 
uneven coverage of the lifespan, as shown in comparing Fig. S1.4.3 to Fig. 1A. 
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Fig. S1.4.2. Simulated data for longitudinal observations. An illustrative sample of individuals (250 from 
among 1,500 for clarity) with longitudinal follow-up within the simulated data coloured by CN (black) or 
cases (Dx: red). Within the simulation individuals have relatively stable longitudinal trajectories relative to 
the between person variation, implying longitudinal centiles will be relatively stable for both CN and Dx. 
 
 

 
Fig. S1.4.3. Box-violin plots show age distributions (log-scaled) of twenty simulated studies. The 
design of the simulation mimics the structure of the observed datasets (with N = 750 for each simulated 
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study), with some periods of the lifespan being represented by multiple studies, for example adolescence 
(studies C,S, P and L), while other periods have sparser coverage with fewer studies.  

1.5 Centile normalisation  
The GAMLSS framework allows us to fit complex outcome distributions by parameterising a 
distribution into multiple components. Each component is then modelled as a regression (with 
appropriate link functions to ensure valid parameters, for example exponential links for sigma to 
ensure non-negative sigma values if it corresponds to a variance). As described in the Online 
Methods, we may consider the outcome, Y, to follow a distribution, 𝐹, parameterised by up to four 
parameters, (𝜇, 𝜎, 𝜈, 𝜏), with each component itself a regression on potential covariates. 
Importantly, the regression equations are not required to use the same set of covariates.  
 
Model specification procedures indicated including a study random-effect. Specifically, within the 
component regressions there is a random-intercept per study. If there are multiple components 
with random-effects, they are uncorrelated between components. Hence, there will be random-
effect estimates, z, drawn from a component specific random-effect distribution, Z (within 
GAMLSS random effects follow a normal distribution). Namely, 

 
 

𝑌 ∼ 𝐹(𝜇, 𝜎, 𝜈, 𝜏) 

𝑔,(𝜇) = 𝑋,𝛽, + 𝑍,𝛾, +<
!

	𝑠,,!(𝑥!) 

𝑔.(𝜎) = 𝑋.𝛽. + 𝑍.𝛾. +<
!

	𝑠.,!(𝑥!) 

𝑔/(𝜈) = 𝑋/𝛽/ + 𝑍/𝛾/ +<
!

	𝑠/,!(𝑥!) 

𝑔0(𝜏) = 𝑋0𝛽0 + 𝑍0𝛾0 +<
!

	𝑠0,!(𝑥!) 

(1.5.1) 

 
 
where each component is linked to a linear equation through a link-function, 𝑔∙(), and each 
component equation may include three terms: typical covariates and coefficients, 𝑋∙and 𝛽∙; 
random-effects, 𝛾∙ (which may include covariates, 𝑍∙); and non-parametric smoothing functions, 
𝑠∙,! applied to the 𝑖th covariate (GAM aspect of GAMLSS). The nature of the outcome distribution, 
i.e., the generalised gamma distribution, determines the appropriate link-functions and which 
components are used. 
 
The GAMLSS framework uses the likelihood of the observed data under the above model to 
estimate the coefficients of each component's regression equation. This formulation implies that 
we can obtain the centile of an observation using the cumulative density function (CDF). Let f be 
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the probability density function (PDF) of the distribution 𝐹, 𝐹 be the CDF, and 𝐹23 be the inverse-
CDF, such that  
 

𝐹(𝑦) = ∫425 𝑓(𝑣)𝑑𝑣	such that 0 ≤ 𝐹(𝑦) ≤ 1 
𝐹23(𝑞) =𝑖𝑛𝑓 {𝑦: 𝐹(𝑦) ≥ 𝑞}. 

(1.5.2) 

 
 
Within GAMLSS all outcome distributions are univariate, meaning the CDF and inverse-CDF are 
well defined, and we can obtain the centile, 𝑞(lying within the range zero to one), as 
 
 

𝑞 = 𝐹(𝑦|𝜇(𝑋, 𝑍), 𝜎(𝑋, 𝑍), 𝜈(𝑋, 𝑍), 𝜏(𝑋, 𝑍)). (1.5.3) 
 
 
Using the observed centile, which is dependent on the study random-effects, we can further obtain 
reference normalised values, 𝑤, by finding the matching centile in the reference distribution, that 
is without any random effects (i.e., 𝑍 = 0): 
 

𝑤 = 𝐹23(𝑞|𝜇(𝑋), 𝜎(𝑋), 𝜈(𝑋), 𝜏(𝑋)). (1.5.4) 
 
The reference normalised values are the matching centiles on the reference outcome distribution. 
 
These normalised values, 𝑤, are on the same scale as the original values, 𝑦, having been 
corrected for the study-specific effects: namely, the 𝜇-component and 𝜎-component study 
random-effects. However, these corrections are only appropriate for scoring scans that were 
included in the reference dataset, i.e., healthy controls, and normalised values are therefore not 
useful for scoring scans from cases of clinical disorder or for out-of-sample scoring of “new” scans. 
We have included a brief consideration of normalised values, 𝑤, for completeness and because 
they may be more interpretable than centile scores in some contexts, since they are scaled to the 
same units as the scored phenotypes. However, for most applications (including the case-control 
comparisons and out-of-sample analyses reported in this paper), we therefore strongly 
recommend the use of centiles.  

1.6 Centile Mahalanobis distance 
To create an integrated measure of normative deviation across all centile scores we computed a 
Mahalanobis distance38 in the 4-dimensional feature space relative to the normative mean across 
those phenotypes. This centile Mahalanobis distance (CMD), 𝐷6, can be formalised as follows: 
 

𝐷6(𝑥) = L(𝑥 − 𝜇)7𝑆23(𝑥 − 𝜇) (1.6.1) 
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where 𝑥 denotes the set of observations across multiple phenotypes, μ denotes the mean across 
those observations, and S denotes the covariance matrix across both. The squared Mahalanobis 
distance is also equivalent to the sum of squares of all non-zero standardised principal 
components scores (as illustrated in Fig. 4B). As such, CMD provides an indication of the distance 
of an individual from the centre of the normative multi-dimensional (multi-phenotype) space, taking 
into account the potential correlated structure of the dimensions (and thereby being arguably less 
sensitive to outliers along a single dimension than other possible distance metrics). The scale-
invariant nature of CMD also makes it generalisable to centile scores on additional MRI 
phenotypes as they are included in the future. 

1.7 Longitudinal centiles 
Using the CDF (as defined in Eq1.5.3), we can obtain the centile for any observation. Specifically, 
if an individual has multiple observations we can obtain the longitudinal centiles. It is important to 
stress that the fitted model only uses cross-sectional data and thus is not accounting for within-
subject correlation. This means that the model is not optimized for individual longitudinal 
predictions. However, under our hypothesis that for nominal subjects within-subject covariance is 
dominated by between-subject covariance (in other words, there is more variation from person to 
person, but repeated measures within a person will remain fairly consistent), then an individual's 
centile should remain consistent over time. In effect, each individual will sit off the reference curve, 
but will track the curve over time. Whereas, for individuals that experience significant clinical 
changes, for example the onset of a disorder that affects neuroanatomy, will change their centiled 
position relative to the reference curve. This is the foundation of the use of growth curve charts in 
clinical practice, where we track an individual over time with two aspects of interest: 1) on initial 
assessment whether the individual is in an extreme (top 1%, 5%, etc.), and 2) given an initial 
assessment whether an individual ‘jumps’ deciles of the growth chart or remains consistent in their 
decile (which can also be formalised as thrive lines in the case of consistent longitudinal data 39).  
 
Hence, for individual j from study i, with observations at 𝑡3, 𝑡+, ⋯ , 𝑡%, we can obtain the centiles:  
 

𝑞!83, 𝑞!8+, ⋯ , 𝑞!8%. (1.7.1) 

 
For healthy controls these centiles will be an appropriate model. For other individuals (across the 
range of diseases and conditions in all our studies) these centiles may be biased if the cohort has 
a systematic deviation from the normative reference or follows a systematically different trajectory. 
Hence, we have two dimensions of interest for an individual's longitudinal centiles: 1) the 
distribution of centiles across classes of individuals, and 2) the stability of centiles within 
individuals within a class. For the first dimension, if diagnosed cases are all substantially lower on 
the outcome, then their normative control-referenced centiles will all be low. More generally, they 
will not be uniform across the range zero to one, as they are for the healthy controls comprising 
the reference dataset. For the second dimension, we may consider a summary of the within-
subject variation.  
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Thus, comparing longitudinal centiles, with varying numbers of observations per individual, is 
approached via a univariate summary statistic. A univariate summary for variation across 
observations will assess the stability of the centiles within an individual. The summary must be 
defined for two or more observations, the minimal longitudinal follow-up period, and be 
comparable across individuals. The range, i.e., 𝑚𝑎𝑥(	𝑞!83, 𝑞!8+, ⋯ , 𝑞!8%	) − 𝑚𝑖𝑛(	𝑞!83, 𝑞!8+, ⋯ , 𝑞!8%	), 
would be well defined for two or more observations; however, the range is susceptible to outliers 
and statistically unstable under small samples. Instead, the interquartile range (IQR) acts as a 
robust equivalent of the range (in the same way that the trimmed mean is a robust version of the 
mean). Given the variable number of longitudinal data-points available for different participants, 
we chose to use a measure that was consistent for participants that only had 2 observations as 
well as for participants with more than 2 observations. Unfortunately, there is not a single definition 
of the IQR (there are 9 different definitions available within GNU R), and some versions are not 
defined for two observations. We estimated IQR as a continuous value by linear interpolation 
(within GNU R the default version of IQR, type 7), which is well defined for two (or more) 
observations. 
 
Specifically, we summarise all individuals with longitudinal observations by, 
 

𝐼𝑄𝑅(	𝑞!83, 𝑞!8+, ⋯ , 𝑞!8%	). (1.7.2) 

 
As a summary measure this gives us a single value per subject and incorporates both dimensions 
of interest. However, there are some substantial aspects that are obscured, for example, the 
temporal nature of the repeated measures. Note that, 
 

𝐼𝑄𝑅(	𝑞!83, 𝑞!8+, 𝑞!8&	) ≡ 𝐼𝑄𝑅(	𝑞!8&, 𝑞!83, 𝑞!8+	). (1.7.3) 

 
That is, the IQR is indifferent to the temporal order of the centiles. This will obscure certain types 
of temporal divergence from the reference curve that are likely to be of interest in future work. It 
does, however, guard against individual outliers over multiple time-points. IQR assessed on the 
simulated data described above confirms this (Fig. S1.7.1-1.7.2). 
 

 
Fig. S1.7.1. Comparing baseline centiles between healthy controls (CN) and diagnosed cases (Dx) 
in simulated data. The CN and Dx simulations follow two distinct lifespan trajectories, both quadratic in 
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shape and starting slightly offset in early life, both peaking in mid-life with growing divergence, and fully 
diverging in later life. The analysis of simulated data is formally equivalent to the analysis of observational 
data and the GAMLSS model is fitted to only simulated data of CN baseline scans. The figure shows the 
distribution of baseline centile scores across the twenty simulated studies (spanning different ranges of the 
lifespan, in four groups: A-J, K-O, P-R, S-T, each with NCN = 750 and NDx = 750; see Fig. S1.4.3). We note 
that the Dx centiles are not uniformly distributed between zero and one, but are skewed to the lower end of 
the distribution as expected from the simulation scenario: namely, that the Dx simulations are always below 
the fitted CN lifespan trajectory. Further, the skewness of the Dx centiles increases later in the lifespan 
(compare study J to study A). Conversely, the CN centile distributions are uniformly distributed from zero to 
one as expected. 
 

 
Fig. S1.7.2. Comparison of interquartile range (IQR) of observed longitudinal centiles between 
healthy controls (CN) and cases (Dx) in simulated data. Simulations P-T included longitudinal follow-up 
data for CN and Dx (non-CN) individuals (each with NCN = 750 and NDx = 750). As described, the simulated 
analysis model (fit to the CN baseline observations) is used to derive centile scores for all observations, Dx 
and longitudinal. Taking the IQR as a summary statistic of within-subject variability of longitudinal centiles, 
the boxplots for CN simulations highlight the stability of longitudinal centiles over follow-up. For the Dx 
simulations, we see an echo of the effect from Fig. S1.7.1; importantly the collapse of IQR variability towards 
zero does not imply the Dx centiles are more stable per se but rather the Dx status might coincide with more 
limited variability by being confined to the tail end of the distribution. This plot confirms that cross-sectional 
brain charts can be used to benchmark longitudinal measurements. 

1.8 Out-of-sample estimation 
The GAMLSS framework uses iterative maximum likelihood to obtain estimates of the component 
regression coefficients (and any associated random-effects). The theoretical basis of a random-
effect concerns the concept of an infinite population of possible random-effects, in our case all 
possible studies. To obtain observed centiles we require the study-specific random-effects, which 
are obtained during the model fit. For a new study, not included within the fitting process, we do 
not have an estimate of the random-effects and so cannot obtain observed centiles (or normalised 
outcome values). 
 
However, estimates for novel study random-effects can be obtained conditional on the fitted fixed-
effects. Specifically, for a novel study the only unknown (in terms of model estimators) are the 
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random-effects. Using the likelihood as defined by the main model fit, we can obtain maximum 
likelihood estimates (MLEs) of the random-effects conditional on the fitted fixed-effects. To assess 
uncertainty within the novel random-effects, we utilise the bootstrap replications (each with their 
own fixed-effects estimates) to obtain uncertainty within the novel estimates. 
 
It is worth noting that these novel random-effect estimates are conditional on the fitted model. This 
approach avoids having to refit the entire model. In fact these calculations are computationally 
trivial. However, this approach implicitly assumes that the novel data does not drastically diverge 
from the current model fit. In other words, the novel data does not substantially change our 
understanding of the reference lifespan curve, which would thereby invalidate the original model 
fit. Further, if we refit the model incorporating the novel data directly, we cannot expect the latter 
estimates to be identical since the novel data will now be affecting the entire fit, including the 
estimation of fixed-effects and the whole estimation of the random-effects.  
 
Let 𝐷 = {𝐷3, 𝐷+, 𝐷&, . . . , 𝐷9} be the combined datasets used to estimate the model parameters, 
specifically the fixed-effects for each component of the GAMLSS model, 𝛽 = (𝛽, , 𝛽. , 𝛽0, 𝛽/), and 
the study-specific random-effects for each component, 𝛾 = (𝛾, , 𝛾. , 𝛾/ , 𝛾0), where each 𝛾 contains 
a parameter for each dataset 𝐷! ,i.e., 𝛾, =	 (𝛾,,3, 𝛾,,+, 𝛾,,&, . . . , 𝛾,,9). 
 
In symbolic terms, we may consider the set of fixed- and random-effects from our model to be 
obtained from fitting the GAMLSS model, 
 

(𝛽: , 𝛾:) 	= 	𝐺𝐴𝑀𝐿𝑆𝑆(	𝐷	) (1.8.1) 

 
where 𝛽: and 𝛾: are the maximum likelihood estimates of the fixed- and random-effects, 
respectively, from the GAMLSS model conditional on a given dataset, 𝐷. Note that the GAMLSS 
model includes specification of the functional form, namely the fractional polynomial specification; 
however, during OoS estimation the fractional polynomial specification of the GAMLSS model is 
fixed and hence has been omitted here for clarity. 
 
For a “new” dataset, say 𝐷%, we require inference on its study-specific random-effects 
parameters. However, we condition on the fixed-effects parameters from Eq 1.8.1, namely 𝛽:. 
We can obtain these estimates from a conditional maximum likelihood estimator (MLE). 
 

𝛾∙,̇% = (𝛾,,%, 𝛾.,%, 𝛾/,%, 𝛾0,%) = 𝑀𝐿𝐸	(	𝐷%	|	𝛽:). (1.8.2) 

 
Combining the OoS estimate of study-specific random-effects with the fixed-effects, we can derive 
centile scores for the new study in the same way as centile scores are calculated for studies that 
were included in the reference dataset. 
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2. Quality control 
While developmental and ageing trajectories of cerebrum tissue volumes were expected to be 
relatively robust to data quality issues 40, controlling the quality of data is an important step in any 
neuroimaging analysis pipeline. We conducted several complementary analyses to evaluate the 
robustness of our procedures and results to variable image quality defined by the Euler Index 
(EI)41 and other quality control (QC) metrics.  

2.1 Euler index filtering 
First, we examined the effect of image quality on estimated brain phenotypes and GAMLSS model 
parameterisation using EI, an automated, quantitative measure of data quality in scans processed 
by FreeSurfer (~95% of the reference dataset)41,42. The EI metric we used was defined as the sum 
across hemispheres of the number of surface ‘holes’ or topological defects in the cortical surface 
reconstruction prior to a topological correction performed as part of the FreeSurfer pipeline 
(usually due to errors in white matter segmentation). Although cerebrum tissue volumes are 
expected to be less sensitive to cortical surface topology, compared to surface-based measures 
such as indices of cortical folding (see SI18 “Data processing”), EI has previously been used as 
a measure of the quality of “raw”, unprocessed scans 41. Thus, for the large majority of studies 
where EI was available (N=101,708 total scans on N=82,023 unique subjects), we assessed the 
impact on reference models of excluding high-magnitude EI scans. Given that no single EI 
threshold is expected to be generalizable across studies41 (Fig. S2.1.2), in this sensitivity analysis 
we excluded scans that had EI magnitude greater than 2 median absolute deviations from the 
primary study-specific median EI. This QC threshold, which is adaptive to the variable quality of 
scans between primary studies, excluded approximately 9-10% of scans from the original dataset. 
However, as can be seen in Fig. S2.1.3, the resulting model parameters were highly correlated 
with parameters estimated from the reference dataset without applying any EI-based QC 
threshold. The developmental trajectories estimated for all 4 cerebrum tissue volumes were highly 
correlated with their trajectories estimated on the basis of the full dataset (all R2 > 0.999 for 
parametric [Pearson’s] and non-parametric [Spearman’s] correlations between EI-filtered versus 
EI-unfiltered median trajectories and lower (2.5%) and upper (97.5%) centiles). Identical 
parameterisation of fractional polynomials for each random effect was identified by the same 
model selection procedure was found in both EI-filtered and EI-unfiltered datasets. Importantly, 
EI-filtered and unfiltered datasets also showed a high degree of overlap in subsequently estimated 
model parameters (correlation of study-specific mean (mu) components > 0.99; correlation of 
study-specific variance (sigma) components > 0.93). Model specification thus appeared to be 
robust to the presence of the poorer quality data. 
 
In addition, we examined the relationships between image quality measured by EI and individual 
centile scores of each brain phenotype. Both for the full dataset and the EI-filtered subset of higher 
quality scans, we found no significant associations between EI and individual centile scores (Fig. 
S2.1.1), nor did we find evidence for a non-linear relationship (quadratic, cubic, logarithmic) 
between EI and centiles. 
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Fig. S2.1.1 Associations between centile scores and MRI scan quality defined by EI. Panel depicts 
the relation between Euler indices (EI) 41 and centile scores for each of 4 cerebrum tissue volumes estimated 
by GAMLSS. The Spearman correlations between EI and centile scores were negligible (GMV, ρ<0.01; 
WMV, ρ=-0.07; sGMV, ρ<0.01; Ventricles, ρ=0.05). All linear mixed effect models examining non-linear 
(quadratic, cubic or logarithmic) relationships between EI and centile scores for each phenotype were P > 
0.1. 
 
To assess whether there were any age-related differences that could influence model estimation, 
we evaluated the linear effect of age (in years) on EI in healthy controls in the reference dataset 
used to estimate normative lifespan trajectories. Using linear regression stratified by sex and 
accounting for study-specific random effects, we found no evidence for an age-related bias in 
image quality as assessed with EI (t = -1.244, P = 0.213). Fig. S2.1.2 shows the median and 
standard deviation of age and EI and highlights the top 10 studies with the highest median EI.  
 

 
Fig. S2.1.2 Age-related variation in image quality measured by the Euler index in female (left panel) 
and male (right panel) control subjects. Median age (in years) and median EI are shown per study with 
cross-hairs indicating the standard deviations for age and EI per study. In red the top ten studies with the 
highest median EI are highlighted. There is no significant relationship between image quality and age at 
scanning. 
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Figure S2.1.3 Robustness of GAMLSS parameters to quality control by exclusion of scans with EI 
greater than twice the median absolute deviation (MAD) from the median EI in the corresponding 
primary study. Scatterplots show the relationships between random effects (mu on the top row and sigma 
on the bottom row) estimated for each primary study without exclusion of poor quality scans (y-axis) and for 
each primary study after exclusion of scans with EI > 2 MAD, relative to the primary study’s median EI. 
Colored points indicate the relative percentage of primary studies retained after filtering (darker means for 
subjects were removed) and Rho values in the titles indicate Spearman’s correlations between parameters 
estimated from the unfiltered and EI-filtered datasets. As with the absolute QC threshold of EI < 217 (SI 
2.1), the biggest discrepancy in study-specific random effects as a result of excluding poor quality scans 
was observed for the variance (Sigma) parameters, especially those estimated from the ICBM, HBN and 
EDSD datasets, which all included a relatively high proportion of excluded scans. We note that EI > 2 MAD 
filtering removed a lower proportion of data in primary studies where the distribution of EI was skewed 
towards higher quality/lower EI across the whole dataset (e.g., HCP, ABCD and UKB all have high data 
quality with low EI, and 2 MAD filtering in these studies only removed around 6-7% of data). In general, 
random effect parameter estimation was highly robust to adaptive EI thresholding for quality control. The 
shaded area represents the 95% confidence interval on the linear fit. 

2.2 Expert visual quality control 
Recognising that EI is but one metric of image quality, and mainly based on the capacity of 
FreeSurfer to correctly process the scans, we also leveraged visually-rated image quality 
performed for a subset of 9,704 raw scans from an equal number of unique individuals. These 
scans were provided by openly available datasets and are marked as having “QC Rating Included” 
in ST1.1 (note that the total number of scans with QC rating designated in the table is larger due 
to the fact that the table also includes longitudinal data, which were not included in this 
assessment). For each subject a slice stack of images was generated across the three axes, after 
bias field correction and intensity normalization, so that they were all easily comparable by visual 
inspection, and subsequently rated on motion corruption and other failure modes (artefacts, 
missing brain parts etc). Visual inspection then rated each image on the following questions: is 
the brain fully covered by the scan; is there visible noise (due to aliasing, motion etc.), blurriness, 
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or ringing; is there acceptable tissue contrast and image orientation? Based on these criteria, 
each raw scan was expertly classified on a 6-point scale as perfect (1), very good (2), good (3), 
bad (4), very bad (5) or unacceptable (6). Only 3% of scans (N=374) were assigned to the two 
worst quality categories (5 and 6). Each image was rated by a single rater. We analysed centile 
scores for each of the 4 cerebrum tissue volumes in each of these 6 classes of visually curated 
image quality (Fig. S2.2.1). Centile scores for all 4 phenotypes were consistent across the top 4 
classes of image quality but significantly variable for the minority of scans with very bad or 
unacceptable image quality. However, when we excluded these scans from re-analysis of this 
expertly QC’ed dataset, we found that the median trajectories and 95% confidence intervals for 
all 4 brain phenotypes were very highly correlated between the results of model fitting to all 9,704 
scans and the results of fitting to the 9,380 scans assigned to the top 4 quality classes (all R2 > 
0.999 for both Pearson’s and Spearman’s correlations for all 4 phenotypes). Additionally excluding 
the 4th category for GMV did also not impact the stability of the resulting trajectories (R2 > 0.999 
for both Pearson’s and Spearman’s correlations). 
 

 
Fig. S2.2.1. Centile scores for images categorized by expert visual quality assessment of N = 9,704 
unprocessed scans. A small subset (~3%) of the raw data were assigned to the two worst categories of 
data quality (QC class 5 or 6) and differed significantly from the other QC classes of data in terms of centile 
scores for cortical grey matter volume, white matter volume, and subcortical grey matter volume. Bars are 
coloured by natural log-scaled sample size. 
 
Using the subset of data with visually-rated image quality ratings, we also performed a limited 
validation of the use of EI as an automated metric of image quality. As shown in Fig. S2.2.2, EI 
magnitude was strongly associated with manual reviewer ratings, such that lower quality scans 
had a higher number of surface ‘holes’ or topological defects in the cortical surface reconstruction 
prior to a topological correction. Moreover, scans that had EI magnitude greater than 2 median 
absolute deviations above the primary study-specific median EI (the criterion applied in the 
sensitivity analysis described above) were significantly lower quality as determined by manual 
rating (Fig. S2.2.2). 
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Fig. S2.2.2. Comparison between manual quality control ratings and Euler index. (Left) Box-violin 
plots showing the distribution of Euler index (EI; calculated as the number of holes or topological defects in 
cortical surface reconstruction) as a function of manual quality control (QC) ratings by a single rater 
(t=56.44, P<2e-16). Increasing values for both variables are associated with worse image quality. (Right) 
Lollipop plot showing differences between EI category, binarised based on 2 median absolute deviations 
(MAD) above the primary study-specific median EI (t=36.36, P<2e-16). Size of dots represent the absolute 
number of subjects per ordinal QC rating. Total number of subjects with both EI and manual QC ratings, 
N=9,704. 
 
For foetal and some other primary studies where MRI data were not reconstructed with 
FreeSurfer, and the EI was therefore not available, scan quality had previously been assessed by 
expert visual curation as part of primary study procedures (Table ST1.1 lists the QC steps for 
each combination of dataset, sex, site and processing pipeline). We re-analysed data from these 
studies stratified by their prior QC ratings. For example, the Harvard foetal cohort conducted 
independent visual inspection of image reconstruction quality and classified each of the images 
as 'great’, 'good’ or ‘bad’. Only the best two categories were included in analyses. We found no 
significant difference in centile scores for each of the 4 phenotypes between ‘great’ and ‘good’ 
images (GMV, P=0.58; WMV, P=0.34; sGMV, P=0.14; CSF was not available for these foetal 
scans).  
 
Similarly, the ABCD study provided expert visual counts of artefacts identified by their inspection 
of FreeSurfer-processed data. For the ABCD data (N=9,056) included in our reference dataset, 
the majority of images had been rated as containing zero artefacts; a small subset (<0.5%) of 
scans had been rated as containing one or more artefacts. As shown in Fig. S2.2.3, there was 
some variability of centile scores in the small number of scans with high artefact scores, but there 
was no significant group level difference in centile scores for any of the four cerebrum tissue 
volumes between scans with zero artefacts and scans with one or more artefacts (ANOVA, 
P>0.05).  
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Fig. S2.2.3. Centile scores for ABCD scans previously assigned artefact scores by expert visual QC. 
The majority (>99%) of ABCD scans included in the aggregated dataset (N = 9,056) had zero artefacts; for 
scans with more than one artefact detected there was some variability in estimated centile scores. Bars are 
coloured by natural log-scaled sample size. 

2.3 Image quality and out-of-sample centile scoring 
Recognising that image quality would likely be most influential for out-of-sample centile scoring of 
scans that were not included in the reference dataset, we analysed N=72 scans from an open 
test-retest dataset 40 which had been quantitatively QC’d (by 5 independent raters using Braindr 
43) but had not previously been included in our analysis (https://anisha.pizza/braindr-results/#/). 
We found that Braindr QC scores were not substantially correlated with centile scores for each of 
the 4 cerebrum tissue volumes (Pearson’s r; GMV=0.034, WMV=0.002, sGMV=0.007, 
Ventricles=0.004). In the same dataset, we did find that prospective motion correction 44 
somewhat improved the intra-class correlations of GMV centile scores (which changed from 
r=0.91 for prospectively uncorrected data to r=0.98 for prospectively corrected data). We note that 
these beneficial effects of prospective motion correction on test-retest reliability of centile scores 
derived by OoS analysis using our model are consistent with comparable improvements in test-
retest reliability of FreeSurfer-derived phenotypes, as previously reported40. 
 

2.4 Euler index and neuroimaging phenotypes 
To further examine the potential influence of quality control on the quantification of MRI 
phenotypes, we evaluated the relationship between Euler index (EI) and the four main global 
tissue volumes (GMV, WMV, sGMV, CSF) within each study with available EI data. We observed 
high variability in the range of EI within and between primary studies (Fig. S2.4.1). However, using 
linear models to assess the relationship between EI and non-centiled (“raw”) tissue volumes for 
the healthy controls within each primary study (controlling for age and sex), we found that the 
relationship between EI and tissue volume was generally weak, with only a small subset of primary 
studies showing significant effects of image quality on MRI phenotypes (PBonferroni < 0.05, corrected 
for the number of studies of each phenotype). Critically, the sign of this relationship varied across 
studies and was zero-centred, with the significant effects observed in primary studies with greater 
sample size (linear mixed effects model with phenotype as a random effect, comparing sample 
size and -log10(P-values) for association with EI: t = 8.77, P = 6e-16; Fig. S2.4.2). We stress that 
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while global measures appear to be relatively robust to variation in image quality, finer-grained 
imaging phenotypes are likely to be more sensitive to variation in image quality, and the impact of 
QC must be assessed on a phenotype-specific basis in the future. 
 

 
Fig. S2.4.1. Relationships between the distributions of non-centiled (“raw”) cerebrum tissue 
volumes and Euler index within each primary study. Crosshair plots show the range of values (mean 
+/- 1 standard deviation) for the Euler Index (EI) and cerebrum tissue volumes for each primary study: 
clockwise from top left, grey matter volume (GMV), white matter volume (WMV), ventricular cerebrospinal 
fluid volume (CSF) and subcortical grey matter volume (sGMV). The colour scale represents the median 
log age of participants in each primary study.  
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Fig. S2.4.2. Model statistics examining the relationships between non-centiled (“raw”) cerebrum 
tissue volumes and the Euler index within each primary study. Volcano plots show the t-statistics (x-
axis) versus negative log-scaled Bonferroni corrected P-values (y-axis) estimated from linear models of the 
relationship between Euler Index (EI) and cerebrum tissue volumes: clockwise from top left, grey matter 
volume (GMV), white matter volume (WMV), ventricular cerebrospinal fluid volume (CSF) and subcortical 
grey matter volume (sGMV). Each dot represents a single primary study and is coloured to represent the 
median log age of participants, and scaled to represent the sample size, in a study where there was a 
significant relationship between cerebrum tissue volume and EI (PBonferroni < 0.05). It is clear that the sign of 
association between EI and volumetrics was inconsistent between primary studies and the association 
tended to be significant for primary studies with larger sample sizes. 
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In short, we have demonstrated by multiple complementary QC studies that our principal results, 
and additional out-of-sample results for new data not previously analysed, are remarkably robust 
to image quality across a range of assessments. We conclude that our results are not confounded 
by uncontrolled image quality issues; but proper QC procedures should, of course, be 
implemented on all scans before they are submitted for OoS centile scoring on the basis of our 
model and aggregated reference dataset. In the absence of a single gold standard for automated 
assessment of imaging data quality, we strongly recommend using a combination of approaches 
to determine inclusion/exclusion of MRI data for brain charting. In future, as these methods may 
be extended to more fine-grained structural MRI phenotypes that are likely to be more sensitive 
to variation in image quality, and/or to benchmark phenotypes measured in fMRI or more 
innovative modalities of MRI data more likely to be measured in small samples (N<100), we should 
be prepared for GAMLSS modelling to be significantly less robust to image quality in comparison 
to the case of global MRI phenotypes, like cerebrum tissue volumes. The importance of rigorous 
quality control therefore remains paramount. 
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Sensitivity Analyses 

3. Model evaluation 

3.1 Model diagnostics 
In addition to simulation, leave-one-study-out (LOSO) jacknife, bootstrap and validation analyses 
outlined below, we also utilised more traditional ways to assess model goodness of fit (e.g., 
inspecting the model residuals)7,45. Detrended transformed Owen’s plots46 of the ordered centile 
residuals clearly showed that the confidence intervals crossed the zero line, indicating normally 
distributed residuals (Fig. S3.1.1). Detrended transformed Owen’s plots (DTOPs) are an 
alternative visual approach to assessing the adequacy of a fitted distribution, derived from a non-
parametric approach to the data that uses the empirical samples to derive uncertainty intervals. 
DTOPs have the slight advantage over the traditional Q-Q (quantile-quantile) plots of being more 
flexible in relation to the form of the distribution and thus provide a way to compare goodness-of-
fit across different distributions. Q-Q plots for GAMLSS fits are derived using transformations of 
the residuals, from the uniform 0–1 scale to the more familiar normal (Gaussian) distribution, 
hence they are based on a parametric approach. Neither approach alone is definitive for 
assessing GAMLSS fits, and Stasinopoulus7 recommends a variety of approaches including both 
Q-Q plots and DTOPs. 

 
Fig. S3.1.1. Detrended transformed Owen’s plots of model residuals. Visual inspection indicates that 
model residuals for grey matter volume (GMV; A), white matter volume (WMV; B), subcortical grey matter 
volume (sGMV; C), and Ventricles (D) were normally distributed and supports the adequacy of the fitted 
generalised gamma distributions. 
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Further evaluation of the model fits using more traditional QQ-plots (Fig. S3.1.2) and residual 
distribution measures, such as skewness, also showed that residuals were normally distributed 
and highly correlated47 with model-predicted normality: GMV (skewness=-0.025, kurtosis=3.69, 
Filliben correlation coefficient=0.99), WMV (skewness=0.005, kurtosis=3.60, Filliben correlation 
coefficient=0.99), sGMV (skewness=-0.011, kurtosis=4.29, Filliben correlation coefficient=0.99) 
and Ventricular CSF (skewness=0.008, kurtosis=3.37, Filliben correlation coefficient=0.99).  
 

 
Fig. S3.1.2. Model fit diagnostic Q-Q plots. Visual inspection indicates that model residuals for grey 
matter volume (GMV; A), white matter volume (WMV; B), subcortical grey matter volume (sGMV; C), and 
Ventricles (D) were normally distributed and supports the adequacy of the fitted distributions. 

3.2 Model sensitivity analyses 
With the GAMLSS implementation outlined above (SI1), we optimised the choice of model 
parameters including the outcome distribution and choice of fixed and random effects. In addition, 
GAMLSS provides automated parameter optimisation to obtain the best fit given the included data, 
covariates and random effects. Nonetheless we performed several sensitivity analyses to test the 
robustness and reliability of the optimised GAMLSS models. 
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3.2.1 Leave-one-study-out 
Although the current sample is the largest structural neuroimaging sample reported to date, a 
large proportion of this data is derived from two population-representative cohorts: the UK 
BioBank48 and the ABCD study49. To test whether our model’s reliability was skewed toward any 
particular study, we performed a leave-one-study-out (LOSO) analysis. Specifically, we iteratively 
subsetted our dataset, leaving out one study, re-estimated all model parameters and extracted 
the fitted trajectories. Given that these models were each derived from different datasets it was 
not possible to conduct a quantitative comparison of the models in terms of their Bayesian 
Information Criteria37 as we did when evaluating the optimal underlying distribution (SI 1.1 and 
1.3). Instead, we compared the resulting fits for consistency by computing a LOSO confidence 
interval based on the standard deviation across all LOSO iterations; see Fig S3.2.1.  
 

 
Fig. S3.2.1. Leave-one-study-out (LOSO) analyses of normative trajectories for cerebrum tissue 
volumes. A | Confidence intervals (representing the 95% confidence intervals) were computed from the 
mean and standard deviation of normative trajectories repeatedly estimated after leaving out each primary 
study in turn: from left to right, grey matter volume (GMV), white matter volume (WMV), subcortical grey 
matter volume (sGMV) and ventricular CSF volume (Ventricles). B | The same data are shown with the 95% 
confidence intervals magnified by a factor of 50 to enhance their visibility. 

3.2.2 Bootstrap analysis 
To determine reliability and stability of our GAMLSS fitted trajectories, and to obtain confidence 
intervals on all parameter estimates obtained from the GAMLSS fitting procedure as described 
above, we ran 1,000 bootstrap iterations with stratified sampling with replacement. The bootstrap 
replicates were stratified by study and sex, which maintains the relative proportions of the original 
datasets. Specifically, our process of random resampling of aggregated data was constrained by 
the relative size of each study compared to other primary studies, and by the sex ratio of each 
primary study, so that the bootstrap replicates conserved the same proportionality and sex 
balance as the observed primary studies. We considered it was important to ensure that the 
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bootstrap resampling was representative of the relative sex proportions within studies because 
we have chosen to stratify normative trajectories by sex, including it as one of the fixed effects in 
the GAMLSS model. With regard to constraining bootstrap resampling by primary study, there are 
two inter-linked considerations: between-study differences in sample size and lifespan coverage. 
Failing to constrain resampling by study sample size could cause a study to be omitted entirely 
from a bootstrap replicate, or more typically to have a smaller or greater number of observations, 
meaning the bootstrap intervals would be incoherent for study-level inference. More importantly, 
the normative trajectories are derived from studies across the lifespan, but each study only 
partially covers the lifespan; hence failing to stratify by study age-range could alter the bootstrap 
distribution and lead to incoherent confidence intervals for the lifespan curves. The foetal and 
early postnatal periods of the lifespan would be particularly vulnerable to this effect because 
relatively few primary studies have covered this age range. Our LOSO analysis showed that the 
lifespan curves were not in fact unduly affected by the removal of any single study (even large 
ones, for example ABCD and UK-Biobank); see Fig. S3.2.2.  
 

 
Fig. S3.2.2. Bootstrap resampling of confidence intervals on normative trajectories for cerebrum 
tissue volumes. A | 95% confidence intervals (estimated across random bootstrap iterations resampling 
with replacement) were computed from the mean and standard deviation of normative trajectories (with age 
on log scale, x-axis) after 1000 iterations of a bootstrapping procedure designed to conserve the relative 
proportion of primary studies, and the sex balance of each primary study, in each resampling with 
replacement from the representative dataset: from left to right, grey matter volume (GMV), white matter 
volume (WMV), subcortical grey matter volume (sGMV) and ventricular CSF volume (Ventricles). B | The 
same data are shown with age on a natural scale (x-axis).  

3.2.3 Parameter estimates 
From our bootstrapping approach, we can also derive confidence intervals for the models’ 
parameter estimates (e.g., the μ and σ terms) for study-specific random effects. Qualitatively we 
observed very narrow confidence intervals on the estimated μ term, with some smaller sample 
foetal studies (e.g., CHILD and Harvard foetal cohorts) showing wider intervals, likely 
commensurate with the smaller sample size and general lack of reference data in that age range 
(Fig. S3.2.3). While there were generally wider confidence intervals on the σ term offsets, across 



 
 

36 
 

studies all estimated random effect parameters were well contained within their bootstrapped 
confidence bounds. 
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Fig. S3.2.3.1 Point-range plots of study-specific random effects on the first (Mu) and second (Sigma) 
moments of the generalised gamma distribution for cerebrum tissue volumes and study-specific 
random effects on Mu only for ventricular CSF volume. Bootstrapped 95% confidence intervals are 
shown and point estimates representing the median offset across bootstraps (dots) are coloured by the 
range of the confidence interval. Where not observable, the confidence intervals are smaller than the size 
of the dots. There is no Sigma offset for the Ventricular volume as the data-driven process for GAMLSS 
model specification (SI 1) indicated that the best-fitting model did not include a study-specific random effect 
on the Sigma term. 
 
We further evaluated the potential impact of various technical and demographic covariates on the 
random effect parameters estimated by GAMLSS as a measure of each primary study’s offset 
from the normative trajectories of each MRI phenotype. Specifically, we used linear models to 
estimate the strength of association between random effects (on Mu and Sigma) and median age, 
standard deviation of age, sample size, scanner manufacturer, and MRI field strength, for each 
cerebrum tissue volume; see Figs S3.2.3.2 - S3.2.3.6. For each of these models we corrected for 
multiple comparisons within each parameter (i.e., correcting for 4 tests on the Mu term and 3 tests 
on the Sigma term). We found only limited evidence for significant effects of any of these 
covariates on any of these random effect parameters. Other technical covariates, e.g., MRI 
sequence parameters, were too heterogeneous between primary studies to be assessed for 
impact on random effects in this way; but full technical specification of all primary studies is 
detailed in ST 1.1. 
 

 
Fig. S3.2.3.2. Association between median age of participants and random effect parameters 
estimated by GAMLSS modelling of cerebrum tissue volumes for each primary study. Top row: 
random effects on Mu (y-axis) are plotted versus median age (x-axis) for each global MRI phenotype, left 
to right: grey matter volume (GMV), white matter volume (WMV), subcortical grey matter volume (sGMV) 
and ventricular CSF volume (Ventricles). Fitted lines and confidence intervals indicate the strength of 
association estimated by linear modelling. Bottom row: random effects on Sigma (y-axis) are plotted versus 
median age for the same set of global MRI phenotypes (except Ventricular volume for which Sigma was 
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not estimated). There were larger random effects on Mu and Sigma in some of the primary studies of 
younger participants, as expected by the greater technical and biological variability of studies in childhood. 
The association between random effects and median age was only significant on the Mu parameter (after 
FDR correction for multiple comparisons) for ventricular CSF volume (Pfdr = 0.007, R2 = 0.12, F(1,82) = 12.9). 
Shaded regions indicate the 95% confidence intervals of the linear association.  
 
 

 
Fig. S3.2.3.3. Association between the standard deviation of the age of participants and random 
effect parameters estimated by GAMLSS modelling of cerebrum tissue volumes for each primary 
study. Top row: random effects on Mu (y-axis) are plotted versus standard deviation of age (x-axis) for 
each global MRI phenotype, left to right: grey matter volume (GMV), white matter volume (WMV), 
subcortical grey matter volume (sGMV) and ventricular CSF volume (Ventricles). Fitted lines and confidence 
intervals indicate the strength of association estimated by linear modelling. Bottom row: random effects on 
Sigma (y-axis) are plotted versus standard deviation of age for the same set of global MRI phenotypes 
(except Ventricles for which Sigma was not estimated). The association between random effects and 
standard deviation of age was not significant (after FDR correction for multiple comparisons) for any of 
these global MRI phenotypes. Shaded regions indicate the 95% confidence intervals of the linear 
association. 
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Fig. S3.2.3.4. Association between sample size and random effect parameters estimated by GAMLSS 
modelling of cerebrum tissue volumes for each primary study. Top row: random effects on Mu (y-axis) 
are plotted versus sample size (x-axis) for each global MRI phenotype, left to right: grey matter volume 
(GMV), white matter volume (WMV), subcortical grey matter volume (sGMV) and ventricular CSF volume 
(Ventricles). Fitted lines and confidence intervals indicate the strength of association estimated by linear 
modelling. Bottom row: random effects on Sigma (y-axis) are plotted versus sample size for the same set 
of global MRI phenotypes (except Ventricles for which Sigma was not estimated). The association between 
random effects and sample size was not significant (after FDR correction for multiple comparisons) for any 
of these global MRI phenotypes. Sample size is scaled using the natural logarithm. Shaded regions indicate 
the 95% confidence intervals of the linear association. 
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Fig. S3.2.3.5. Association between the scanner manufacturer and random effect parameters 
estimated by GAMLSS modelling of cerebrum tissue volumes for each primary study. Top row: 
boxplots of Mu (x-axis) are plotted for primary studies using scanners manufactured by General Electric 
(GE, red), Siemens (purple), Philips (green), or a mixture of different scanners (cyan), for each global MRI 
phenotype, left to right: grey matter volume (GMV), white matter volume (WMV), subcortical grey matter 
volume (sGMV) and ventricular CSF volume (Ventricles). Bottom row: boxplots of Sigma (x-axis) are plotted 
for primary studies stratified by scanner manufacturer (with the same colour coding) for the same set of 
global MRI phenotypes (except Ventricles for which Sigma was not estimated). There was no evidence for 
a significant difference in mean random effects of primary studies using different scanners (after FDR 
correction for multiple comparisons) for any of these global MRI phenotypes. 
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Fig. S3.2.3.6. Association between the scanner field strength and random effect parameters 
estimated by GAMLSS modelling of cerebrum tissue volumes for each primary study. Top row: 
boxplots of Mu (x-axis) are plotted for primary studies using scanners at different field strengths for each 
global MRI phenotype, left to right: grey matter volume (GMV), white matter volume (WMV), subcortical 
grey matter volume (sGMV) and ventricular CSF volume (Ventricles). Bottom row: boxplots of Sigma (x-
axis) are plotted for primary studies stratified by scanner field strength (with the same colour coding) for the 
same set of global MRI phenotypes (except Ventricles for which Sigma was not estimated). There was no 
evidence for a significant difference in mean random effects of primary studies using scanners operating at 
different field strengths (after FDR correction for multiple comparisons) for any of these global MRI 
phenotypes. Numbers denote the number of studies included at this field strength. 

3.3 Study-specific curves 
Using the fitted model, specifically the fixed- and random-effects estimates, we can also derive 
study-specific prediction curves. On www.brainchart.io there are interactive plots of these studies’ 
specific curves as the granularity of that figure is not suited for print format.  
 
The study-specific prediction curves are obtained using the same method as the reference 
prediction curves described in SI1.5, using the mu-, sigma- and nu-component equations 
(Eq1.5.1) to calculate the predicted median (i.e., 50th percentile of the outcome distribution) 
across age and sex. However, there are two important differences. Firstly, we include a study-
specific random-effect (where present) within the prediction calculations (i.e., random-effect terms 
within the component equations; Eq1.1-1.2), whereas in the reference prediction curves these are 
all set to zero (effectively not included). Secondly, the study-specific predictions are for the most 
common FreeSurfer version used within that study (if multiple FreeSurfer versions were used), 
whereas in the reference prediction curves the FreeSurfer contribution is equivalent to the grand-
mean across all versions (across all studies), meaning the reference prediction curves correspond 
to a weighted average of FreeSurfer versions. All study- and individual-level analyses 
appropriately adjust for the specific version of FreeSurfer used. The study-specific prediction 
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curves could be extrapolated across the entire lifespan, but we consider the age-censored 
versions to provide a more informative representation of study effects across the lifespan, which 
are normalized by the modelling approach. While most curves fall somewhere within the 95% 
centile boundaries of the population reference, clear deviations can be observed (see 
www.brainchart.io). Although each study-specific curve may be representative of that specific 
sample, this highlights that they may not always be appropriately extrapolated to available 
neuroimaging data at large. 

3.4 Brain weight, ultrasound, and head circumference validation 
We performed a series of analyses to provide additional tests of functional interpretation of centile 
scores derived from the lifespan models, including a quantitative comparison to other data types 
traditionally used to measure brain size and growth (see dataset description below for further 
details on the data included in Fig. S3.4).  
 
Historically, the international standards for growth modelling have been led by global initiatives 
and institutions, most notably the WHO6. These standards have been used and maintained for 
decades, but have been mainly developed for anthropometric measurements of height/length, 
weight, and head circumference. Until recently, ultrasound was the only non-invasive method for 
quantifying brain growth in utero, with head circumference and biparietal diameter being the 
measures of choice based on the ability to estimate in 2D. Brain size has been quantified via 
postmortem brain weight estimates for centuries, with conversions to mass being possible through 
scaling factors based on tissue density (1.03 kg/l). As such, we sought to provide quantitative 
relationships between model derived population reference values and each of the comparable 
estimates of brain size (head circumference, ultrasonic brain volume, and brain weight). We also 
compared the results of the lifespan model to an MRI dataset (10k-in-a-day) that could not be 
incorporated into the reference dataset because only age ranges were available due to privacy 
restrictions (not the precise age of individual participants). 
 
To compare the GAMLSS trajectories to each of the traditional brain size features, we first 
determined the closest tissue types for each of the features: TCV (see supplementary figures 
below) for head circumference and brain weight, and GMV for the respective GMV estimates from 
one of the foetal ultrasound studies and the 10k-in-a-day MRI dataset. Next, due to the differences 
in age range and distribution of each of the replication studies, we extracted the median age and 
sex appropriate population reference points for the respective tissue classes from the GAMLSS 
model in each of the replication datasets. We then computed the correlation between the 
GAMLSS predicted and original sex-stratified mean values (Fig. S3.4), using log-scaled measures 
of brain weight and ultrasound-derived volumes (Pearson’s r), and the naturally-scaled measure 
of head circumference (winsorized Pearson’s r), due to the differences in units and methods of 
measurement 50.  
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Fig. S3.4. Validation of lifespan model-predicted values in independent datasets and modalities. A | 
Three foetal ultrasound datasets, B | two head circumference reference norms (foetal=INTERGROWTH 
consortium, postnatal=WHO), C | a brain MRI dataset not included in the present models with only binned 
ages available, and D | four independent post-mortem brain weight datasets across the postnatal lifespan51 
(GTEx: https://gtexportal.org/home/, PsychENCODE: https://psychencode.synapse.org/). The 
neuroimaging models demonstrated high correlations (predicted vs. empirical values) across each of these 
modalities, thus showing the potential for inter-modal aggregation in future work. Shaded regions indicate 
the 95% confidence intervals of the linear association. 
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4. Out-of-sample centile scoring: bias, stability and reliability 

4.1 Bias of out-of-sample centile scores: leave-one-study-out analyses for 100 studies 
To further evaluate the robustness and consistency of centile scoring of OoS MRI data that were 
not included in the reference dataset used to estimate population trajectories, we performed a 
comprehensive series of leave-one-study-out (LOSO) analyses. For each one of the 100 studies 
in the reference dataset, we removed the study from the reference dataset, re-fitted the GAMLSS 
model to the remaining dataset of 99 studies, computed the OoS centile scores for the excluded 
study, and compared the OoS centile scores to the in-sample centile scores computed for the 
same study from the complete dataset including all 100 studies. Supplementary tables ST7.1-7.4 
list the correlations between OoS and in-sample centile scores for all 4 cerebrum tissue volumes 
in each of 100 primary studies. Overall, we found very high levels of correlation (Pearson’s r ~ 
0.99) for almost all studies, indicating that centile scores can be estimated accurately for most 
studies even if they were not included in the reference dataset used to define population norms. 
Correlations between OoS and in-sample centile scores were lower than r = 0.99 for only 3 out of 
100 studies in the reference dataset: namely, the FinnBrain (r = 0.93), UCSD (r = 0.96) and NIHPD 
(r = 0.95) studies. These studies were characterised by relatively small sample size, foetal or early 
postnatal age range of participants, or idiosyncratic processing pipelines.  
 
In addition to demonstrating high correlations between OoS and in-sample centile scores, we also 
evaluated their relative bias, defined as the difference between in-sample estimated centiles and 
OoS estimated centiles. The median bias in centile scores was generally low (GMV = -1.7e-06; 
WMV = 1.1e-04; sGMV = 3.8e-05; Ventricles= -7.3e-05, all with a standard deviation of ~0.01 
centile). However, it is worth noting that the studies characterised by relatively small sample size, 
foetal or early postnatal age-range of participants, or idiosyncratic processing pipelines, appeared 
at the extreme ends of the distributions of the primary studies rank-ordered by the difference 
between in-sample and OoS centile scores (Fig.S4.1.1), indicating greater bias of OoS centile 
scoring, as expected, under these conditions. 
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Fig. S4.1.1. Bias of out-of-sample centile scores for four cerebrum tissue volumes. Each panel shows 
boxplots of the bias in OoS centile scores (the signed difference between OoS and in-sample centile scores; 
y-axis) estimated for each primary study when it was excluded from the reference dataset. Studies are 
ordered on the x-axis from most negatively biased (left) to most positively biased (right) OoS centile scores. 
Boxplots are colour-coded according to log sample size, indicating that OoS centile scores tend to be most 
biased for smaller primary studies. From top to bottom, panels represent the bias in OoS centile scores for 
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grey matter volume, white matter volume, subcortical grey matter volume, and ventricular CSF volume. 
Study sample sizes are scaled using the natural logarithm for visualisation purposes. The exact sample 
size per study and per imaging phenotype are provided in demographic table ST1.2-1.5. 

4.2 Stability of out-of-sample centile scoring: bootstrapped LOSO analyses for 100 
studies 
In addition, we tested the reliability of OoS centile scores for each individual participant by 
bootstrapping. Specifically, for each LOSO sample, bootstrapped model parameters were 
generated (see SI3.2.2 “Bootstrap analysis”), resulting in 1,000 bootstrapped models with 
maximum likelihood estimated parameters for each bootstrap iteration of each left-out study. From 
this we obtained a bootstrapped distribution of out-of-sample centile scores for each individual 
subject in each individual iteration of left-out studies, thus providing a stability assessment in the 
form of the standard deviation of individual OoS centile scores across 1,000 bootstrap iterations. 
Across the datasets included in the model, we found that the average standard deviation of 
(bootstrapped) OoS centiles was 0.014, which is well below the level of within-subject longitudinal 
variation (see Fig. S4.2.1 and SI14 “Longitudinal centiles”). Furthermore, we found increased 
standard deviation of OoS centile scores for datasets with comparatively small sample sizes (e.g., 
the OpenPain cohorts, Cambridge foetal Testosterone and CHILD studies; see Fig. S4.2.2). OoS 
centile scores were also more variable for datasets that had a more unique combination of age 
range, acquisition and processing pipelines (e.g., FinnBrain, IBIS and HBN; see Fig. S4.2.2). 
These observations reinforce the recommendation -- see main text, ‘Out-of-sample centile 
scoring of “new” MRI data’ -- that OoS centile scoring is reliable for studies comprising N>100 
scans. It was also notable that the reliability of OoS centile scores was weakly correlated with data 
quality as quantified by the Euler index (EI). So studies with higher number 41, indicating poorer 
image quality, tended to have higher variability of bootstrapped OoS centile scores (Pearson’s r 
for all 4 cerebrum tissue volumes: GMV=0.05, WMV =0.11, sGMV =0.14, and Ventricular volume 
= 0.13). These results were not substantially different when the whole set of analyses was 
repeated with the dataset filtered on 2 median absolute deviations of the median EI. We conclude 
that OoS estimation of centile scores is generally reliable at the level of individual scans, and (as 
expected) reliability is greater for higher quality scans.  
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Fig. S4.2.1. Stability of out-of-sample centile scores for four cerebrum tissue volumes when each of 
100 studies was excluded from the reference dataset before bootstrapping. The standard deviation of 
bootstrapped centile scores (y-axis) is plotted for each study (x-axis) for each phenotype, from top to bottom 
panels: total cortical grey matter volume, total cortical white matter volume, subcortical grey matter volume, 
and ventricular volume. Each study- and phenotype-specific boxplot is coloured according to log sample 
size. For each study, we estimated the normative model leaving that study out of the reference dataset and 
repeated this procedure after iteratively bootstrapping the reference dataset 1,000 times. This procedure 
allowed us to summarise the reliability of the out-of-sample estimates of centile scores in terms of the 
standard deviation of the 1,000 centile scores generated for each bootstrapped resampling of the reference 
dataset. Studies are ordered by median standard deviation of out-of-sample centile scores (small to large) 
indicating that scans are reliably assigned centile scores with the out-of-sample approach. Study sample 
sizes are scaled using the natural logarithm for visualisation purposes. 
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Fig. S4.2.2. Stability of out-of-sample centile scores as a function of age and sample size. The 
standard deviation (SD) of bootstrapped centile scores for four cerebrum tissue volumes (y-axis) is plotted 
against mean age of study participants (top row) or sample size (bottom row). Studies with the most unstable 
OoS centile scores (SD>0.05) are highlighted in red and labelled (see ST1.1 for study details).  

4.3 Test-retest reliability of out-of-sample centile scoring 
We also assessed the reliability of OoS centile scoring in three independent datasets that acquired 
multiple MRI scans within a single session or two closely spaced sessions 40,52–54. We analyzed 
each scan as a novel OoS dataset, then compared the consistency of centile scores across 
different scans of the same subject. We similarly compared the consistency of the uncentiled 
volumetric data and found that the out-of-sample centile scores were as consistent between scans 
in the same session as the “raw” volumetric data generated by FreeSurfer. 
 
First, we analysed test-retest reliability using the multimodal MRI reproducibility resource52, which 
provides two sessions of MRI data for multiple modalities. This dataset comprising 21 subjects 
was specifically designed for assessment of test-retest reliability as all subjects were scanned in 
two sessions separated by a one-hour break and the whole cohort was completed within a two 
week period. We analyzed each session of 21 scans as an independent OoS study (Fig. 5) and 
then estimated intra-class correlation coefficients (ICCs) to assess the between-session or test-
retest reliability of individual centile scores for four cerebrum tissue volumes55. All ICCs were ~0.99 
(Fig. S4.3.1). 
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Fig. S4.3.1. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes. MRI 
data were collected in two separate scanning sessions from N=21 participants and each session was 
analysed as an independent out-of-sample study using GAMLSS. The top panel shows the analysis for 
non-centiled, “raw” volumetric data. Bottom scatterplots represent OoS centile scores for session 1 (y-axis) 
versus OoS centile scores for session 2 (x-axis) for each brain tissue volume, from left to right: GMV, WMV, 
sGMV, Ventricular CSF. Data points represent individual subject centile scores. Test-retest reliability was 
consistently very high (all intra-class correlation coefficients > 0.99) for all cerebrum tissue volumes. 
Uncorrected (for multiple comparisons) P-values represent the significance of the intraclass correlation 
coefficient between two sessions. Shaded regions indicate the 95% confidence intervals of the linear 
association. 
 
Second, we analysed the test-retest reliability of OoS centile scoring using MRI data on N=72 
participants in the Healthy Brain Network (HBN) cohort40, which was not originally included in the 
reference dataset. The HBN cohort was designed to assess the influence of an alternate MRI data 
acquisition protocol, which included prospective motion correction44 to improve quality and 
reliability of MRI. The study protocol included 2 sessions of scanning using a conventional 
MPRAGE sequence for T1-weighted data acquisition and another 2 sessions of scanning using 
an innovative, prospectively motion-corrected sequence, VNaV, for T1-weighted imaging44. For 
all 72 individuals each session of each sequence was analysed as an OoS study (Fig. 5; SI1.8 
“Out-of-sample estimation”) and then we estimated ICCs as a measure of the test-retest 
reliability of individual centile scores for each brain tissue volume derived from each sequence 
(MPRAGE or VNaV). Test-retest reliability was uniformly high (ICCs > 0.95) for all OoS centile 
scores on all cerebrum tissue volumes estimated from both MPRAGE and VNaV sequences (Fig. 
S4.3.2). Reliability was incrementally higher for OoS centile scores derived from the VNaV 
sequence, under-scoring the importance of high-quality data especially for OoS analysis of 
datasets with N<100. However, we note that this increased reliability of centile scoring was most 
likely driven by a comparably increased consistency of the raw volumes estimated by FreeSurfer 
(as also noted in the original paper describing the impact of prospective motion correction40). 
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Fig. S4.3.2. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 
measured twice in the same N=72 participants using two T1-weighted sequences, MPRAGE and 
VNaV. For each type of acquisition, the top row shows out-of-sample centile scores for session 1 (y-axis) 
versus out-of-sample centile scores for session 2 (x-axis) for cerebrum tissue volumes. For each type of 
acquisition, the bottom row shows the unprocessed (“raw”) scores for session 1 (y-axis) versus session 2 
(x-axis) for cerebrum tissue volumes estimated from VNaV data, from left to right: GMV, WMV, sGMV, 
Ventricles. In all plots, data points represent individual subject scores. Test-retest reliability was uniformly 
high (all ICCs > 0.95) and generally somewhat higher for volumetrics derived from prospectively motion-
corrected data (VNaV). P-values represent the significance of the intraclass correlation coefficient between 
two sessions. MPRAGE acquisition refers to the T1-weighted MPRAGE sequence used in the Human 
Connectome Project. 
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Third, we assessed the test-retest reliability of OoS centile scoring using the Vietnam Era Twin 
Study of Ageing (VETSA) study cohort53. VETSA is a longitudinal study following 1,200 twins from 
the Vietnam Era Twin Registry, which includes two technically identical MPRAGE acquisitions 
within the first (baseline) scanning session. Both these scans were processed with FreeSurfer 
6.0.1 for all participants, then the two sets of scans were each analysed as an independent OoS 
study, and ICCs were estimated to assess the test-retest reliability of individual centile scores on 
all four cerebrum tissue volumes. Test-retest reliability of OoS centile scores was uniformly very 
high (all ICCs > 0.98) across all phenotypes, comparable to the high reliability of the uncentiled 
volumetric data generated by FreeSurfer 6.0.1 (all ICCs > 0.95), and in line with the constraints 
on reliability expected from technical sources of noise56 (Fig. S4.3.3). 
 

 
Fig. S4.3.3. Test-retest reliability of out-of-sample centile scores for cerebrum tissue volumes 
measured twice in the same 1,200 participants (600 twin pairs). The top row shows scatterplots of 
unprocessed (“raw”) volumes for scan 1 (y-axis) versus scan 2 (x-axis) for cerebrum tissue volumes 
estimated from MPRAGE data from the same subject, from left to right: GMV, WMV, sGMV, Ventricles. 
Data points represent individual subject centile scores. The bottom row shows the consistency of centile 
scores for the same subjects and same phenotypes. Reliability was uniformly high across all phenotypes 
(ICCs > 0.95) and comparable to reliability of uncentiled volumetric measurements from the same set of 
scans. Uncorrected (for multiple comparisons) P-values represent the significance of the intraclass 
correlation coefficient between two sessions. Shaded regions indicate the 95% confidence intervals of the 
linear association. 

4.4 Reliability of out-of-sample centile scoring across multiple versions of FreeSurfer 
Knowing that a large majority (~95%) of primary studies in the reference dataset used one of a 
series of versions of FreeSurfer for image analysis, we also evaluated the impact of these 
incrementally different image analysis pipelines on reliability of OoS centile scores. To do this we 
repeatedly re-analysed a single NIH dataset54 (see SI 19 “NIH” for a fuller description) using 4 
different versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1). Each version of the processed dataset 
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was treated as an independent OoS study for GAMLSS modelling and then we estimated ICCs 
between individual centile scores for each possible pair of FreeSurfer pipelines and for each of 
four cerebrum tissue volumes. This analysis demonstrated generally high within-subject reliability 
of OoS centiles across all four pipelines: ICCs for GMV=0.978, WMV=0.972, sGMV=0.816 and 
Ventricles=0.982 (Fig. S4.4). We noted that there was somewhat reduced reliability of subcortical 
grey matter volume in both raw and centiled data from FreeSurfer version 5.1 in comparison to 
later FreeSurfer versions. While the reasons for this are unclear, none of the studies included in 
the principal dataset were processed with FreeSurfer 5.1, or any version of FreeSurfer older than 
5.3. Furthermore, we found the highest between-pipeline reliability for both raw volumetric data 
and centile scores derived from the two most recent versions of FreeSurfer, 6.0.1 and 7.1, 
suggesting that minor inconsistencies due to FreeSurfer pre-processing are becoming less 
problematic as this widely used software package incrementally evolves. 
 

 
Fig. S4.4. Between-pipeline reliability of volumetric data and out-of-sample centile scores for four 
cerebrum tissue volumes measured in the same set of N=1,468 scans re-analysed using 4 different 
versions of FreeSurfer (5.1, 5.3, 6.01, and 7.1). Top row shows scatterplot matrices representing the 
correlations between raw volumetric data derived from each possible pair of FreeSurfer pipelines, from left 
to right: GMV, WMV, sGMV, Ventricles. Bottom row shows scatterplot matrices representing the correlations 
between out-of-sample centile scores derived from each possible pair of FreeSurfer pipelines, from left to 
right: GMV, WMV, sGMV, Ventricles. Intra-class correlations of out-of-sample centile scores and uncentiled 
volumetric data, on average over all pairs of four pipelines, were generally high (GMV=0.978, WMV=0.972, 
sGMV=0.816 and Ventricles=0.982). Although the reliability of sGMV volumetrics and centile scores was 
somewhat lower due to discrepant measurements by the oldest version of FreeSurfer, v5.1, this version of 
FreeSurfer was not used to analyse any of the scans included in the reference dataset. 

4.5 Effects of sample size on reliability of out-of-sample centile scores 
To further assess the validity of the OoS estimates, we generated “clones” of existing datasets. 
Clones were resampled subsets (without replacement, no duplicate subjects per clone) of studies 
included in the reference dataset used to estimate the study specific GAMLSS parameters. Each 
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clone was then treated as if it was a “new” study using the methods for out-of-sample centile 
scoring. This allows us to compare the OoS estimates to a relative truth, i.e., from the original, 
non-cloned version of the study included in the reference dataset, we know what the GAMLSS 
parameters ‘truly’ are, and we have an estimation of their ‘true’ uncertainty from the bootstrap 
resampling distributions. Thus for a given study dataset, 𝐷%, we generate a cloned copy 𝐷3, and 
if our approach is unbiased we expect the out-of-sample parameter estimates for 𝐷3 to be equal 
to the in-sample parameters estimated for 𝐷%, i.e., 𝛾∙,% (representing the set of random effects 
estimated by in-sample analysis of the original study treated as part of the reference dataset) 
should approximate 𝛾∙,3	 (representing the set of random effects estimated by OoS analysis of the 
cloned study treated as a new dataset): see SI1.8 “Out-of-sample estimation” and Fig. S4.5. 
 
In other words, we validated the OoS estimation by simulating a “new” study with the same 
underlying distribution as one of the studies included in the reference dataset. Hence, we expect 
the OoS random-effect estimates for this ‘clone’ to agree with the in-sample random-effect 
estimates. More formally, we are comparing 𝛾 = 𝑀𝐿𝐸<,=(𝐷) and 𝛾>?#"@ = 𝑀𝐿𝐸=(𝐷>?#"@|𝛽(𝐷)), 
where the clone is contained within the data, i.e., 𝐷 ∩ 𝐷>?#"@ = 𝐷>?#"@; see SI1.8 “Out-of-sample 
estimation” for further details on OoS MLE estimation. We used the Neuroscience in Psychiatry 
Network dataset (NSPN) to evaluate at what relative sample size the OoS estimation approaches 
the true parameter offset. As illustrated in Fig. S4.5, these simulations indicated good 
performance for the OoS approach for “new” study sizes greater than N=100 scans. In addition to 
the internally collected NSPN dataset, we also confirmed this optimal sample size in the ADNI 
cohort (Fig. S4.5), where a similar convergence happens at n > 100. 
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Fig. S4.5. Out-of-sample estimates of cloned study random-effect parameters compared to in-
sample estimates of random-effect parameters in the original or non-cloned study. The plot shows 
random-effects estimated using the out-of-sample approach across a range of possible sample sizes for a 
“new” study, generated by taking subsets of the same cloned study with uncertainty intervals derived from 
the bootstrap replicates. The purple horizontal lines are the equivalent in-sample estimates of the random-
effects parameters. We see that the out of sample estimates are somewhat unreliable below N=100 
subjects, but with larger samples the out-of-sample estimates from the cloned data converge with the in-
sample estimates from the original data for both 𝜇-component and 𝜎-component random effects. Top row, 
cloned NSPN refers to the Neuroscience in Psychiatry Network study; bottom row, cloned ADNI refers to 
the Alzheimer's Disease Neuroimaging Initiative. Error bars indicate the standard deviation of the parameter 
estimates at each sample size. Error bars indicate the standard deviation of the parameter estimates at 
each sample size. 
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5. Batch correction and site harmonisation 

5.1 Modelling of between-site heterogeneity by GAMLSS: conceptual considerations in 
comparison to ComBAT batch-correction 
 
Batch effects, or heterogeneities between sites or primary studies, are a challenging issue for 
estimating generalisable results from multi-site or multi-study neuroimaging data. In recent years, 
methods such as ComBAT14,57 have been translated from their primary application for whole 
genome transcription (microarray) analysis to achieve harmonisation of MRI data acquired across 
multiple sites. For our principal analysis, however, we preferred to use GAMLSS, a conceptually 
similar mathematical framework, to account for between-site or between-study heterogeneity. We 
made this choice a priori for several reasons. Firstly, GAMLSS explicitly includes the possibility of 
accounting for non-linear age effects (including age-related changes to higher order moments 
such as variance) during the harmonisation process. Adaptations of traditional ComBAT 
harmonisation have recently been developed that also allow the inclusion of non-linear age-trends 
as well as longitudinal, within-subject effects58,59; but these refinements of ComBAT remain 
somewhat restricted to batch correction of the mean and are not trivial to extend to batch 
correction of higher order moments, such as the variation across sites. Secondly, we chose to use 
GAMLSS because it is flexible with regards to the underlying distribution of the data that is to be 
harmonised; thirdly, because GAMLSS is the WHO-recommended statistical framework for 
growth chart modelling36; and finally because GAMLSS allows a flexible modelling capacity that 
would facilitate scaling of this framework to growth charting of additional MRI phenotypes in the 
future.  
 
Conceptually, normalised centiles derived from the GAMLSS model (see SI1.5) are analogous to 
normalised scores derived from ComBAT. Specifically, multiple groups of observations have an 
induced co-dependence, arising in the context of our analysis from common study-specific factors, 
which leads to a common measurement bias. The aim of both ComBAT and GAMLSS is to correct 
that common measurement bias. However, whereas ComBAT is derived from a conjugate 
Bayesian approach and hence restricted to a Gaussian distribution of phenotypes, GAMLSS uses 
a frequentist, iterative maximum likelihood approach that allows a range of distributions including 
those with non-zero third and fourth statistical moments (the Gaussian distribution by definition 
has third and fourth moments equal to zero). Flexibility in the distribution is important, especially 
for potentially highly skewed measures (with non-zero third moments), and to allow distributions 
that conform with the distributions of the measurements. ComBAT assumes that these 
distributions are naturally Gaussian or can be rendered approximately Gaussian by a simple (e.g., 
log) transformation. However, even if working with Gaussian measurements, the mean and 
variance may require non-constant terms to account for heteroskedasticity, and the resulting 
models are dependent on non-intuitive transformations for Gaussianisation.  
 
In the context of the present study, we used the Bayesian information criterion (BIC) to assess 
the goodness-of-fit of GAMLSS models making different assumptions about the form of the 
phenotypic distributions. We found that not only was the Gaussian a suboptimal distribution, but 



 
 

56 
 

that the optimal choice was the generalised gamma distribution, which includes a third order 
moment. Although we found no evidence of an age-related change in the third order moment, it 
was different from unity and hence there was evidence of skewness (otherwise we could reduce 
it to the gamma distribution, which is the simplified form of the generalised gamma). The 
(generalised) gamma distribution is also defined only on the positive real line, negating the need 
to perform any transformations (apart from multiplicative scaling for computational stability), 
meaning the fitted model coefficients are on the same scale as the original phenotype. 
 
The GAMLSS and ComBAT approaches to batch correction differ substantially in a few other 
ways. Whereas GAMLSS directly uses centiles and medians of the phenotypic distribution, 
ComBAT uses the mean and variance. Hence, when comparing these methods, we cannot expect 
exactly the same results, even if we enforce a Gaussian outcome distribution within GAMLSS. 
Another substantial difference between the GAMLSS and ComBAT approaches is that GAMLSS 
requires a substantial amount of data. Even with the number of observations available for our 
analysis, it has been necessary to use restricted forms, i.e., fractional polynomials, for the 
normative lifespan trajectories rather than more flexible forms, e.g, splines. Furthermore, ComBAT 
is defined on a multivariate (Gaussian) phenotype distribution, whereas we used GAMLSS to 
model multiple univariate phenotypes. (GAMLSS does have some capability to model multivariate 
distributions, but this area is currently under-developed.) Therefore, ComBAT is able to adjust for 
batch effects with fewer observations on the assumption that the batch effect is shared across 
multiple phenotypes. Running ComBAT in a univariate mode would be most directly equivalent to 
the GAMLSS approach but this is not how it is used in the wider literature. This implies that 
multivariate normalisation by ComBAT is to some extent dependent upon the set of phenotypes 
included; if a new phenotype is included the ComBAT correction for batch effects would need to 
be re-run.  

5.2 Modelling of between-site heterogeneity by GAMLSS: empirical evaluation 
compared to ComBAT 
To empirically evaluate the capacity of GAMLSS to account for batch effects or between-site 
variation, we analysed the well-known multi-site ABCD study60 and compared the results of 
between-site harmonisation by GAMLSS to the results of a standard ComBAT harmonisation 
pipeline. We specifically chose the ABCD study to test the capacity of GAMLSS and ComBAT to 
remove between-site noise because it is a demographically harmonised multi-site cohort. In 
addition the large sample size of healthy controls per site makes ABCD highly suitable for 
GAMLSS harmonisation of between-site differences (see also SI 4.5). This means that in the 
context of ABCD any residual significant differences between sites are less likely to be due to true 
site variation or recruitment differences and more likely to be due to noise (technical or otherwise), 
though even in this study recruitment bias can not be fully eliminated. In addition, the ABCD 
dataset also provided a wide range of non-MRI phenotypes to test any downstream impact of 
batch-effect correction approaches on analyses of association between MRI centile normalised 
scores and non-MRI phenotypes. Despite being a technically harmonised cohort, and despite 
using acquisition protocols that included prospective motion correction, the uncorrected ABCD 
imaging data still show clear and significant differences between sites across all MRI phenotypes. 
Both ComBAT and GAMLSS efficiently removed these batch effects in the normalised (site-
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corrected) data, but both harmonisation pipelines retained a high degree of variation at the level 
of individual scans (Fig. S5.2.1-5.2.2). 
 

 
 
Fig. S5.2.1. Raw volumetric data and centile scores for male subjects from the ABCD cohort. The 
top row shows raw volumetric data across the 22 sites included in ABCD (the exact sample sizes for ABCD 
for each feature are provided in ST1.2-1.5), the middle row shows centile normalised data by GAMLSS and 
the bottom row shows data normalised using ComBAT. ANOVA P-values refer to one-way analyses of 
variance across sites for each individual phenotype. Bars are coloured by site. ComBAT and GAMLSS are 
both able to substantially mitigate batch effects in multi-site MRI data. 
 

 
Fig. S5.2.2. Raw volumetric data and centile scores for female subjects from the ABCD cohort. The 
top row shows raw volumetric data across the 22 sites included in ABCD (the exact sample sizes for ABCD 
for each feature are provided in ST1.2-1.5), the middle row shows centile normalised data by GAMLSS and 
the bottom row shows data normalised using ComBAT. ANOVA P-values refer to one-way analyses of 
variance across sites for each individual phenotype. ComBAT and GAMLSS are both able to substantially 
mitigate batch effects in multi-site MRI data. 
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To further assess whether batch-corrected MRI data derived from both ComBAT and GAMLSS 
pipelines would generate convergent results in subsequent analyses, we estimated the 
correlations between total cerebrum volume (TCV) and fluid intelligence or birth weight, after TCV 
had been batch-corrected by either GAMLSS or ComBAT. Both these psychological and biological 
factors have previously been shown to be correlated with similar brain volumetrics61–63. We were 
able to replicate these significant associations with uncorrected TCV, as well as after both 
GAMLSS and ComBAT batch correction, all largely showing consistent effects across sites (Fig. 
S5.2.4-5.2.5). 
 

 
Fig. S5.2.3. Comparing effects of GAMLSS versus ComBAT batch correction on estimation of total 
cerebrum volume. TCV was estimated for N=10,583 participants in the ABCD multi-site study after MRI 
data had been batch-corrected for between-site differences by ComBAT (y-axis) or GAMLSS (x-axis). 
Estimated TCV was highly correlated (r > 0.99) downstream of these two batch correction procedures. 
Scans are point-coloured according to site.  
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Fig. S5.2.4. Associations between total cerebrum volume (TCV) and birth weight (top) or fluid 
intelligence (bottom) after batch correction by GAMLSS (left), by ComBAT (middle), or without batch 
correction (raw, right). Linear relationships for each of the 22 sites in the ABCD study are in coloured solid 
lines; dashed lines signify overall linear mixed-effect model fit across sites; fluid intelligence was assessed 
using the NIH Toolbox54. These results show that predicted relationships between TCV and both birth weight 
and fluid intelligence are more convincingly replicated in these N=10,583 scans from the ABCD multi-site 
study when the MRI data have been batch-corrected by either GAMLSS or ComBAT compared to when the 
MRI data have been analysed without correction of between-site differences. Linear mixed-effect models, 
with either birth weight or fluid intelligence as independent variables, included fixed effects for TCV, binary 
sex, and age (in days); and a random effect of site. 
 
 
Few other datasets fit the selection criteria used for the specific comparison between GAMLSS 
and ComBAT approaches to normalisation (i.e., N >100 healthy control participants per site, 
aligned recruitment criteria, and broadly aligned MRI data acquisition protocols). The only other 
multi-site datasets fitting these criteria in our aggregated dataset were the IMAGEN and UK 
BioBank cohorts. To explore whether the harmonisation approach worked well in a cohort other 
than ABCD we chose the IMAGEN cohort as UK BioBank implements an extremely well-
harmonised acquisition and recruitment strategy across its 3 sites. While we did not have access 
to the same extensive set of non-neuroimaging based phenotypes in the IMAGEN dataset as we 
had for the ABCD dataset, we observed that both GAMLSS and ComBAT were highly effective at 
removing large site-related variation from raw neuroimaging phenotypes (Fig. S5.2.5-5.2.6). 
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Fig. S5.2.5. Raw volumetric data and centile scores for female participants from the IMAGEN cohort. 
Top row shows raw volumetric data across the different sites included in IMAGEN (the exact sample sizes 
for IMAGEN for each feature are provided in ST1.1-1.5), the middle row shows centile normalised data by 
GAMLSS, and the bottom row shows data normalised using ComBAT. ANOVA uncorrected P-values refer 
to one-way analyses of variance across sites for each individual phenotype. ComBAT and GAMLSS are 
both able to substantially mitigate batch effects in multi-site MRI data from the IMAGEN study (as well as 
the ABCD study). 
 

 
Fig. S5.2.6. Raw volumetric data and centile scores for male participants from the IMAGEN cohort. 
The top row shows raw volumetric data across the different sites included in IMAGEN (the exact sample 
sizes for IMAGEN for each feature are provided in ST1.1-1.5), the middle row shows centile normalised 
data by GAMLSS and the bottom row shows data normalised using ComBAT. ANOVA uncorrected P-values 
refer to one-way analyses of variance across sites for each individual phenotype. Bars are coloured by site. 
ComBAT and GAMLSS are both able to substantially mitigate batch effects in multi-site MRI data from the 
IMAGEN study (as well as the ABCD study). 
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In short, there are pros and cons to both harmonisation strategies: ComBAT is better suited for 
smaller datasets, normalised distributions and multivariate phenotypes; whereas GAMLSS is well 
suited for large datasets, non-Gaussian distributions and univariate phenotypes. We preferred 
GAMLSS on the grounds of its greater scalability and flexibility to match the distributional 
properties of the reference data and the objectives of this project. It is beyond the scope of the 
present work to provide an exhaustive review on batch correction methods or to evaluate the 
performance of GAMLSS (or ComBAT) for correction of batch effects under all possibly relevant 
experimental conditions. We emphasize that our use of GAMLSS for between-site or between-
study harmonisation may not be optimal for studies with small (N<100) numbers of healthy control 
participants per site (SI 4.5). In addition, GAMLSS will not mitigate study- or site-specific effects 
driven by ascertainment bias or variability in diagnostic criteria between sites. Adaptations of 
ComBAT have been proposed for batch effect correction of multi-site data where such factors are 
likely to be problematic65. However, these approaches may not be suitable for harmonisation of 
datasets with partially or totally non-overlapping age-ranges, as required for integration of primary 
studies to estimate brain charts over the entire lifespan.  
 
Finally, while we principally modeled lifespan brain trajectories with primary study (not scanning 
site) as “the batch” to be corrected by GAMLSS or ComBAT, we also modelled trajectories treating 
both study and site as batch effects. The results were nearly identical for study-batch corrected 
or study-and-site batch corrected trajectories (all r2 > 0.99 for both parametric [Pearson’s] and 
non-parametric [Spearman’s] correlations). This near-perfect agreement is likely due in part to the 
partitioning of variation. The study and study-site random-effects covariance structures are both 
dominated by the sigma-component, i.e., phenotype variance. Essentially once we increase the 
resolution of batch effects to study-and-site specific random-effects, we have reduced the sample 
size to estimate each random-effect and hence this uncertainty is unable to compete with the raw 
observation noise (captured by the sigma-component). In an ideal scenario one would use a site 
within study nested random-effects structure. However, the co-dependence of variation in 
processing pipelines, MRI acquisition parameters, lifespan coverage, and small site-specific 
sample sizes, combined with the inherent observation noise, means such a covariance 
specification is unlikely to be viable with the currently available data (also, GAMLSS does not 
currently support nested covariance structures). 
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6. Cohort effects 
As is the case for traditional growth charts, reference norms for brain charts may change over 
time, underscoring the need for “front work” on constructing normative reference models that are 
adaptive to future trends. Our choice of GAMLSS as the preferred modelling framework was in 
part motivated by its ability to provide a flexible and scalable basis that could support ongoing 
updates to the reference data. Likewise, our effort to share these models on an interactive web-
platform (www.brainchart.io & https://github.com/ucam-department-of-psychiatry/Lifespan) was 
also motivated by the likely need for continuous updates to the reference dataset as and when 
more MRI data become available.  
 
To assess the potential risk of cohort effects, or population norms shifting over historical time and 
biasing estimation of centile scores in future, we used a single (NIH) study already included in our 
aggregated dataset, which collected data from 1991 onwards in a constrained age range (5–25 
years; N=1,468 scans). While MRI is a comparatively novel methodology (~30 years), it is possible 
that there may be systematic cohort effects within studies that have sampled individuals over 
prolonged periods of time66, or between measurements aggregated in different age bins at 
different times. To quantitatively assess this possibility and the robustness of our procedures and 
results against such cohort effects, we analysed this NIH study containing longitudinal scans 
collected over two decades, from 1991 to 2011. During this time there were multiple upgrades to 
the hardware and software, but the core system remained a 1.5T GE Signa platform throughout: 
 
Label Scanner ID Description Date of upgrade 

1 S1-1 GE Signa 1-1 6/9/90 

2 S1-2a GE Signa 1-2a (Hardware + Software upgrade) 3/19/02 

3 C1-1 CRADA magnet (Hardware upgrade) 12/16/03 

4 C1-1b CRADA magnet (Software upgrade) 5/15/07 

  
We found no evidence for significant variation of centile scores on any of the 4 cerebrum tissue 
volumes as a function of year-of-scanning or between these four major eras defined by the 
upgrade history of the NIH study scanning platform (Fig. S6.1-2). Thus, there was no clear 
evidence of cohort effects in one of the few large studies to have sustained scanning over a long 
period of time, and there was no evidence of measurement biases related to technical 
development of image analysis software that potentially could contribute to cohort effects in large, 
aggregated MRI datasets. However, the ongoing technical development of MRI scanners and 
image analysis software, as well as the possibility of more general secular trends in brain growth 
over time, mean that the risk of cohort effects should nonetheless be iteratively re-evaluated as 
the currently available reference dataset continues to be updated in the future.  
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Fig. S6.1. Assessment of potential cohort effects based on date of scanning over two decades. The 
longitudinal study at the National Institutes of Health (NIH) contains N=1,468 longitudinal scans (N=788 
subjects) collected across the age range 5–25 years and over the historical period 1991–2011. Scatterplots 
represent individual centile scores (y-axis), ordered by date of scanning (x-axis), for each of the four 
cerebrum tissue volumes (top four rows); and age at scan (y-axis) versus date of scanning (x-axis) (bottom 
row). Lines represent locally-weighted regression lines (LOESS regression) for qualitative analysis of 
possibly non-linear cohort effects on brain phenotypes or age at scanning. Filled circles denote baseline 
scans, empty circles denote follow-up scans in this longitudinal dataset; vertical lines indicate the timing of 
scanner upgrades over the course of the study (see also Fig. S6.2). 
 



 
 

64 
 

 
Fig. S6.2. Assessment of potential cohort effects related to scanner upgrades in the NIH longitudinal 
study. Centile scores for all four cerebrum tissue volumes estimated at baseline (time point 1) or two follow-
up assessments (time points 2 and 3) were assigned to one of four epochs partitioned by the timing of 
upgrades to the 1.5T MRI scanner used for data collection. Box-violin plots show the distribution of centiles, 
and the range (whiskers) and 25th, 50th, and 75th percentiles of the centile distributions (boxes). Linear 
mixed effect modelling demonstrated no evidence of a significant effect (t=-1.577, P=0.115). This analysis 
was restricted to time points with N > 100 subjects. 
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Supplementary Analyses 
In addition to sensitivity analyses aimed at validation of the modelling framework, primary output 
and out-of-sample stability and reliability, we conducted several analyses that extend the work 
presented in the main manuscript.  

7. Extended global cortical phenotypes  
In addition to the principal results based on cerebrum tissue volumes, we also developed brain 
charts, based on the same GAMLSS modelling strategy, for other global phenotypes. This set of 
extended phenotypes including mean cortical thickness (CT) and surface area (SA) which we 
refer to as ‘cortical geometric phenotypes’. Geometric cortical phenotypes are likely to be useful 
in addition to, and complementary to, cerebrum tissue volumes that can theoretically be derived 
from MRI data without cortical surface reconstruction and are expected to be more robust to 
estimation in MRI data of marginal image quality. CT and SA were estimated from a subset of the 
representative dataset for which we had access to quality-controlled, surface-reconstructed MRI 
data suitable for cortical geometry (Ntotal=97,980, Nunique subjects= 75,889 and Nunique CN subjects= 59,643 
for SA and Ntotal=97,933, Nunique subjects= 75,847 and Nunique CN subjects= 59,599 for CT; see ST1.6-1.9 
for demographic and other details for each study included; see also SI19 “Primary dataset 
descriptions”). Another extended phenotype was total cerebrum volume (TCV)—a composite 
metric defined as the aggregate volume of GMV and WMV (measurable in Ntotal=121,650 and 
Nunique subjects=98,724). TCV estimated by combining all 4 cerebrum tissue volumes, i.e., inclusive 
of sGMV and CSF as well as GMV and WMV, was highly similar to TCV = GMV+WMV (r=0.99); 
but a smaller subset of the reference cohort had analysable data for all 4 tissue classes. 

7.1 Model optimisation 
CT, SA and TCV were all analysed using the same GAMLSS modelling strategy (see SI1-6) as 
we originally used for growth charts of cerebrum tissue volumes. For 2 extended phenotypes (TCV 
and SA), optimal GAMLSS model specification converged on 3rd order polynomial fits for 𝜇 and 
𝜎 and a 2nd order polynomial fit for mean thickness on the 𝜇 and 𝜎terms (Fig. S7.1.1). We found 
that fractional polynomial modelling for 𝜈 resulted in model instability, i.e., the GAMLSS model 
specification process did not converge on an optimal parameterisation, and these terms were 
therefore not included as fixed-effects of time in the GAMLSS model. On the other hand, model 
specification endorsed the inclusion of study-specific random effects on both mean and variance 
(𝜇 and 𝜎 terms) of all extended phenotypes. We note the discontinuity between the raw, non-
centiled CT data for participants younger versus older than 2 years (approximately) that is evident 
by inspection of Fig. 2. The common sense interpretation of this discontinuity must be some 
combination of sample selection bias and/or the impact of different preprocessing pipelines in the 
primary studies of early childhood (<2 y) compared to studies of later childhood and adults (> 2y) 
. It is consistent with this interpretation that participant age of 2-3 years is often used as the cutoff 
to decide application of different, specialised preprocessing pipelines, e.g., infant FreeSurfer 
versus adult FreeSurfer. However, we note that this discontinuity was evident also in data from a 
number of primary studies that applied identical sampling criteria and image processing methods 
to measure cortical thickness in participants younger and older than the ~2 year transition point. 
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Thus it remains conceivable, in our view, that this discontinuity may partially reflect a 
neurodevelopmental nonlinearity occurring in the context of the process of grey/white matter 
differentiation that is actively ongoing throughout the first 2-3 years of postnatal life. Definitive 
resolution of this issue is currently hampered by the relative lack of primary MRI studies of early 
childhood development; but it is expected that the correct interpretation of the discontinuity 
apparent in the existing data will become clearer in future as studies apply more consistent 
methods to analysis of larger samples of participants recruited from either side of the ~2y transition 
point.  
 

 
Fig. S7.1.1 Optimization of GAMLSS model specification by analysis of the Bayesian information 
criterion (BIC) for multiple possible models on the generalised gamma distribution. For each of three 
global metrics – TCV, total SA and mean CT – we compared model fit across multiple possible models 
combining fractional polynomial fixed effects of time and study-specific random effects on statistical 
moments of MRI phenotypes. Model goodness was quantified by the Bayesian information criterion (BIC) 
with greater log BIC indicating better-fitting models. Here log BIC is plotted relative to the best-fitting model 
with lowest BIC for each combination of fractional polynomials and random effects for which the model 
converged. All BIC values were scaled to the lowest value for the set of models fitted to each cerebrum 
tissue volume (log-scored difference to the lowest scoring model). For all phenotypes the best-fitting model 
included 3 fractional polynomials for 𝜇; and for all but CT the ordering also suggested 3 polynomials for 𝜎. 
The various models fitted are summarised by y-axis labels denoting the base fractional polynomial 
configuration (“baseFO”) that are structured as follows: baseFO[a][b][c]R[x][y][z], where a-c denote the 
number of fractional polynomials included in the age term on 𝜇, 𝜎, and 𝝂 respectively, and x-z denote 
whether a study random effect was estimated for each of the model components (1 means a study random 
effect was included, 0 means no study random effect was included). 
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7.2 Normative trajectories of extended global MRI phenotypes  
Following the data-driven determination of the optimal GAMLSS specification of the number of 
random-effect fractional polynomials on each of the distribution parameters, normative trajectories 
were generated using the same framework as outlined in SI1-6 including the same bootstrapping 
procedure. Briefly, we generated 1,000 bootstrap iterations with stratified (by study and sex) 
sampling with replacement. The figure below (Fig. S7.2.1) shows the mean trajectory across 
bootstraps with a shaded region indicating the 95% confidence intervals (across the bootstrap 
replicates). In addition, and analogous to our primary phenotypes, we evaluated the stability of all 
GAMLSS derived study specific parameters (Fig. S7.2.2). Again, we find that smaller studies in 
specific age ranges tend to have somewhat wider confidence intervals on both mean and variance 
parameters.  
 
 

 
Fig. S7.2.1. Normative trajectories of median and bootstrapped confidence intervals for three 
extended global MRI phenotypes, from left to right: TCV, SA and CT. A | Sex-stratified curves plotted 
on a log scale. B | Sex-stratified curves plotted on natural scale. Shaded areas (bordered by dotted lines) 
indicate the 95% confidence intervals across the 1000 bootstrap iterations.  
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Fig. S7.2.2. Pointrange plot of study-specific estimation of the first (μ) and second (σ) parameters 
of the generalised gamma fitting (where present in the selected model). Confidence intervals across 
bootstraps (see above) are shown and dots, representing the median parameter offset across bootstrap 
iterations, are coloured by the range of the confidence interval. Where not observable, the confidence 
intervals are smaller than the size of the dots.  
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Analogous to the analyses reported in SI 3.2.3 for cerebrum tissue volumes, we also examined 
the linear relationships between study-specific random parameters estimated in the analysis of 
other global MRI phenotypes and 5 demographic or technical covariates: median age, standard 
deviation of age, sample size, scanner manufacturer, and scanner field strength; see Figs. S7.2.3-
7.2.7. For each of these models we corrected for multiple comparisons within each parameter 
(i.e., correcting for 3 tests on the Mu term and 3 tests on the Sigma term). We found only limited 
evidence for significant effects of any of these covariates on any of these random effect 
parameters. 
 

 
Fig. S7.2.3. Association between median age of participants and random effect parameters 
estimated by GAMLSS modelling of extended global MRI phenotypes for each primary study. Top 
row: random effects on Mu (y-axis) are plotted versus median age (x-axis) for each global MRI phenotype, 
left to right: total cerebrum volume, total surface area, mean cortical thickness. Fitted lines and confidence 
intervals indicate the strength of association estimated by linear modelling. Bottom row: random effects on 
Sigma (y-axis) are plotted versus median age for the same set of global MRI phenotypes. The associations 
between random effects and median age were not significant for any of these global phenotypes. Shaded 
regions indicate the 95% confidence intervals of the linear association.  
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Fig. S7.2.4. Association between the standard deviation of the age of participants and random effect 
parameters estimated by GAMLSS modelling of extended global MRI phenotypes for each primary 
study. Top row: random effects on Mu (y-axis) are plotted versus standard deviation of age (x-axis) for 
each global MRI phenotype, left to right: total cerebrum volume, total surface area, mean cortical thickness. 
Fitted lines and confidence intervals indicate the strength of association estimated by linear modelling. 
Bottom row: random effects on Sigma (y-axis) are plotted versus standard deviation of age for the same set 
of global MRI phenotypes. The associations between random effects and standard deviation of age were 
not significant (after FDR correction for multiple comparisons) for any of these global MRI phenotypes. 
Shaded regions indicate the 95% confidence intervals of the linear association. 
 

 
Fig. S7.2.5. Association between sample size and random effect parameters estimated by GAMLSS 
modelling of extended global MRI phenotypes for each primary study. Top row: random effects on Mu 
(y-axis) are plotted versus sample size (x-axis) for each global MRI phenotype, left to right: left to right: total 
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cerebrum volume, total surface area, mean cortical thickness. Fitted lines and confidence intervals indicate 
the strength of association estimated by linear modelling. Bottom row: random effects on Sigma (y-axis) are 
plotted versus sample size for the same set of global MRI phenotypes. The associations between random 
effects and sample size were not significant (after FDR correction for multiple comparisons) for any of these 
global MRI phenotypes. Study sample sizes are scaled using the natural logarithm for visualisation 
purposes. Shaded regions indicate the 95% confidence intervals of the linear association. 
 

 
Fig. S7.2.6. Association between the scanner manufacturer and random effect parameters estimated 
by GAMLSS modelling of extended global MRI phenotypes for each primary study. Top row: boxplots 
of Mu (x-axis) are plotted for primary studies using scanners manufactured by General Electric (GE, red), 
Siemens (purple), Philips (green), or a mixture of different scanners (cyan), for each global MRI phenotype, 
left to right: total cerebrum volume, total surface area, mean cortical thickness. Bottom row: boxplots of 
Sigma (x-axis) are plotted for primary studies stratified by scanner manufacturer (with the same colour 
coding) for the same set of global MRI phenotypes. There was no evidence for a significant difference in 
mean random effects of primary studies using different scanners (after FDR correction for multiple 
comparisons) for any of these global MRI phenotypes. 
 

 
Fig. S7.2.7. Association between the scanner field strength and random effect parameters estimated 
by GAMLSS modelling of extended global MRI phenotypes for each primary study. Top row: boxplots 
of Mu (x-axis) are plotted for primary studies using scanners at different field strengths (1T, red; 1.5T, purple; 
3T, green; or 7T, cyan) for each global MRI phenotype, left to right: total cerebrum volume, total surface 
area, mean cortical thickness. Bottom row: boxplots of Sigma (x-axis) are plotted for primary studies 
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stratified by scanner field strength (with the same colour coding) for the same set of global MRI phenotypes. 
There was no evidence for a significant difference in mean random effects of primary studies using scanners 
operating at different field strengths (after FDR correction for multiple comparisons) for any of these global 
MRI phenotypes. 

7.3 Quality control of extended global MRI phenotypes 
We applied similar quality control procedures for extended global MRI phenotypes as for cerebrum 
tissue volumes (SI2), but excluded individuals with below 2 median absolute deviation (~5%). No 
large effect of EI on centiles was found, nor did visual classification of a subset of raw images 
reveal centile differences across included QC classes—apart from in the 2 worst rated classes of 
images that constituted less than 5% of the data, exclusion of which did not affect models. We 
note, however, that especially for phenotypes extracted from the reconstructed surfaces, 
averaging (as in the case of mean thickness) and summing (as in the case of total surface area) 
likely mitigated the impact of regional reconstruction inaccuracies driven by bad data quality (see 
also SI8 on regional variability).  
 

 
Fig. S7.3.1. Association between EI and estimated centiles. Spearman correlations between Euler Index 
(EI) and centiles for extended phenotypes revealed a negligible association between EI estimated image 
quality and derived centiles. 
 

 



 
 

73 
 

Fig. S7.3.2. Manual quality control rating from visual inspection of raw data. A small subset (~5%) of 
the two worst categories of raw data showed significant deviations in their estimated centiles. Excluding this 
subset from model estimation did not impact the model. Bars are coloured by natural log-scaled sample 
size and the exact sample size per category per feature is noted above each bar. 
 
 

7.4 Stability of out of-sample centile scoring for extended global phenotypes: LOSO 
analyses 
Analogous to the primary four phenotypes (SI4) we conducted a LOSO analysis of all studies that 
included the extended phenotypes. While the overall variability, i.e., standard deviation across 
bootstrap iterations, across studies was low (<0.05 centiles), a similar pattern of increased 
variability of OoS estimation emerged whereby smaller studies or those in a narrow age range in 
a period of rapid change were slightly more variable (Fig. S7.4.1-2).  

 
Fig. S7.4.1. Stability of OoS estimates of centile scores on three extended global MRI phenotypes 
when each study was excluded from the reference dataset before bootstrapping. The standard 
deviation of bootstrapped centile scores (y-axis) is plotted for each study (x-axis) for each phenotype, from 
top to bottom panels: total cerebrum volume, mean cortical thickness and total surface area. Each study- 
and phenotype-specific boxplot is coloured according to log sample size. For each study, we estimated the 
normative model leaving that study out of the reference dataset and repeated this procedure after iteratively 
bootstrapping the reference dataset 1,000 times. We estimated the OoS centile scores for each individual 
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in the left-out study, normalised by each of the bootstrapped normative trajectories. This procedure allowed 
us to summarise the reliability of the OoS estimates of centile scores in terms of the standard deviation of 
the 1,000 centile scores generated for each bootstrapped resampling of the reference dataset. Studies are 
ordered by median standard deviation of out-of-sample centile scores (small to large) indicating that scans 
are reliably assigned centile scores with the out-of-sample approach. Study sample sizes are scaled using 
the natural logarithm for visualisation purposes. Exact sample sizes for each study and each feature are 
provided in ST1.6-1.8.  
 
 

 
Fig. S7.4.2. Stability of out-of-sample estimates of centile scores on extended global MRI 
phenotypes across age and sample size. Standard deviation (sd) of individual centile scores for the 
extended neuroimaging phenotypes were computed across leave-one-study-out lifespan models, and 
plotted as a function of age (top) and sample size (bottom) for each study.  
 
Analogous to our assessment of bias in centile scores of cerebrum tissue volumes in SI 4.1, we 
also assessed bias of centile scores of extended global MRI phenotypes, i.e., the difference 
between OoS-estimated and in-sample estimated centiles. Bias was generally very low except for 
a few studies (i.e., CHILD, NIHPD, FinnBrain) with smaller sample size or younger participants 
(Fig. S7.4.3). 
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Fig. S7.4.3. Bias of out-of-sample centile scores for extended global MRI phenotypes. Each panel 
shows boxplots of the bias in OoS centile scores (the signed difference between OoS and in-sample centile 
scores; y-axis) estimated for each primary study when it was excluded from the reference dataset. Studies 
are ordered on the x-axis from most negatively biased (left) to most positively biased (right) OoS centile 
scores. Boxplots are colour-coded according to log sample size, indicating that OoS centile scores tend to 
be most biased for smaller primary studies. From top to bottom, panels represent the bias in OoS centile 
scores for total cerebrum volume, total surface area, and mean cortical thickness. Study sample sizes are 
scaled using the natural logarithm for visualisation purposes. Exact sample sizes for each study and each 
feature are provided in ST1.6-1.8.  
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8. Regional cortical volumetric trajectories and milestones 
To analyse trajectories and milestones of brain development with finer-grained anatomical 
resolution, we extracted volumetric information from 34 bilateral regions in the Desikan Killiany 
parcellation67 for a subset of ~65,000 unique individuals (depending on the region) from birth until 
100 years (ST1.9-1.42). Since we expected data quality to have a greater impact on the accuracy 
of regional volumetrics, compared to the minor impact of data quality demonstrated for cerebrum 
tissue volumes (see SI2 “Quality control”), we only included quality controlled scans with (EI < 
2 median absolute deviations within each study) in these analyses, or scans that had undergone 
prior visual inspection. We applied exactly the same modelling pipeline to these regional 
volumetric phenotypes as previously applied to cerebrum tissue volumes. Briefly, we first specified 
the optimal combination of fractional polynomials in each term of the model using BIC, then fitted 
the optimal model to the sex-stratified data and to 1,000 bootstrapped resamples of the original 
data, and finally plotted the trajectories for the median and between-subject variability (with 
confidence intervals) of each regional volume. This work extends previous work on developmental 
trajectories of brain regional volumes in several important ways. Most prominently, for the first 
time, these trajectories encompass the full age-range of the lifespan, including the earliest period 
of development before postnatal year 2. There is evidently considerable variation between cortical 
regions in their developmental trajectories, but all regions show peak volume, and peak rate-of-
growth of volume, in the first decade, which is compatible with our results for global cortical volume 
estimated in a larger and more inclusive sample.  

8.1 Charting development of regional volumes 

 
Fig. S8.1.1. Raw regional volumetric data across the lifespan for 34 bilateral brain regions as defined 
in the Desikan-Killiany parcellation67 (mm3). These data are analogous to the raw data depicted in Figs. 
1 and 2 for cerebrum tissue volumes and other global cortical metrics (SA and CT), respectively. 
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Demographics for the QC’d sample available for estimation of each regional volume are provided in ST1.9-
1.42. 
 
 

 
Fig. S8.1.2. Normative trajectories of median regional volumes (and confidence intervals) across the 
lifespan for 34 bilateral brain regions as defined in the Desikan-Killiany parcellation67(mm3). Dotted 
lines indicate the 97.5% and 2.5% centile lines. These trajectories were fitted to the raw data in Fig. S8.1.1 
using the same GAMLSS model used for estimation of tissue volume trajectories, as shown in Fig. 1 and 
Fig. 2 of the main text Further details on milestones (age at peak volume and age at maximum 
rate-of-growth of volume) are provided for each region in ST2.2 and SI8.2 “Regional volumetric 
milestones”. 
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Fig. S8.1.3. Normative trajectories of between-subject variation of regional volumes (and confidence 
intervals) across the lifespan for 34 bilateral cortical regions as defined in the Desikan-Killiany 
parcellation67(mm3). Shaded areas represent the 95% confidence interval defined by 1,000 bootstrapped 
resamples of the original data, as identically done for estimation of between-subject variation in global brain 
phenotypes (Figs. 1 and 2 in the main text), lines represent the model estimated population variance. 
Further details on milestones (age at peak variation and age at maximum rate-of-growth of variation) are 
provided for each region in ST2.2. 
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Fig. S8.1.4. Estimated rates of change in regional volumes across the lifespan (first derivatives of 
the median trajectories) for 34 bilateral brain regions as defined in the Desikan-Killiany 
parcellation67. Shaded areas represent the 95% confidence interval defined by 1,000 bootstrapped 
resamples of the original data, as identically done for estimation of rate-of-growth curves for global brain 
phenotypes (Figs. 1 and 2 in the main text), lines represent the model estimated population rate-of-
change. The numbers displayed at the top of each chart denote age at peak rate-of-growth for each regional 
volume and the solid horizontal line at y=0 indicates the age at which regional volumes stop growing and 
start to shrink. Further details on milestones (age at peak volume and age at maximum rate-of-growth of 
volume) are provided for each region in ST2.2. 
 

 
Fig. S8.1.5. GAMLSS estimated confidence interval for model fits to regional volumes across the 
lifespan for 34 bilateral brain regions as defined in the Desikan-Killiany parcellation67. Shaded areas 
represent the 95% confidence interval estimated by 1,000 bootstraps, lines represent the model estimated 
50th centile trajectory. These results are analogous to the sensitivity analysis depicted in SI3.2.2 and show 
that for most regions the confidence intervals are extremely narrow, i.e., it barely extends beyond the 
thickness of the lines. However, in entorhinal cortex, frontal pole and temporal pole the bootstrapped 
variability is considerably greater in early development, possibly indicating marginal quality of data or 
cortical surface reconstruction for these regions in this age range. 
 

8.2 Regional volumetric milestones 
We also estimated the developmental milestones of each region in terms of age at peak volume 
or peak between-subject variation, and age at peak rate-of-growth in volume or between-subject 
variation. Fig. S8.2.1 shows the regions ordered by age at peak median volume alongside the 
bootstrapped confidence intervals of those milestones. The shaded grey bar shows the age at 
peak total cortical grey matter volume, with the width of the bar indicating the 95% confidence 
interval for that milestone. In the corresponding figure of the main text (Fig. 2), we excluded 
outlying data points, defined as age at peak volumes more than 2 median absolute deviations 
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away from the median of the regional distribution of age at peak volume. This removed the 3 
regions with the highest between-subject variability, especially in early development (entorhinal 
cortex, temporal and frontal poles). Perhaps unsurprisingly, both the temporal and frontal poles 
are regions with notoriously questionable signal quality68. The entorhinal cortex is the smallest 
cortical region defined by the Desikan-Killiany atlas and is often missing in parcellated foetal and 
neonatal MRI data for that reason. These results further underscore the need for conducting 
quality control on scanning data prior to estimation of brain charts at regional resolution. Further 
details on milestones (age at peak volume and age at maximum rate-of-growth of volume) are 
provided for each region in ST2.2. 

 
Fig. S8.2.1. Milestones for development of regional volumes estimated from the first derivatives of 
the trajectories of median volume and between-subject variation for each of 34 cortical regions 
defined by the Desikan-Killiany parcellation. Each point-range plot shows, from left to right, the age at 
peak volume, the age at peak between-subject variation, and the age at maximum rate-of-growth in volume. 
In each case, median milestones are shown in the context of their 95% confidence intervals, which are not 
always visible for narrow intervals. The shaded grey area in each panel shows the median and 95% 
confidence interval for the corresponding milestone for total cortical grey matter volume. 
 
To contextualise the spatial distribution of the regional volume peaks, we compared the age at 
peak volume to the x-, y-, and z-coordinates of the centroids of each region-of-interest in the 
Desikan-Killiany cortical parcellation. We observed a relatively wide distribution of age at peak 
regional volume, centred around the age of peak total cortical grey matter volume (grey dashed 
line in Fig. S8.2.2). Moreover, there was a clear trend for rostral and dorsal regions to have later 
peak volumes compared to caudal and ventral regions (Fig. S8.2.2). Regions in the cingulate and 
frontal cortices, which span greater distances (especially in rostral-caudal and dorsal-ventral 
dimensions), had a wider range of age peaks. 
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Fig. S8.2.2. Relative timing of regional volume peak milestones, highlighting spatial gradients in 
timing of peak volumes. Scatterplots show the relationship between age of peak volume for each region 
of the Desikan-Killiany parcellation (x-axes) versus x (left), y (middle), or z (right) coordinates in MNI space 
(y-axes). Coordinates are based on the left hemisphere, thus the interpretation (from negative to positive) 
is: x=lateral-to-medial, y=caudal-to-rostral, z=ventral-to-dorsal. Spearman’s r was computed for each 
scatterplot, represented by black lines: x-coordinates were not significantly correlated with age at peak 
volume, r=-0.21, P=0.26; y-coordinates were positively correlated with age at peak volume, r=0.42, P=0.02; 
and z-coordinates were negatively correlated with age at peak volume, r=-0.50, P=0.004). Labels represent 
the most extreme (top two and bottom two) region peaks relative to peak total cortical grey matter volume. 
Grey dashed lines represent the age atpeak total cortical grey matter volume. 
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9. Developmental windows and milestones 

9.1 Trajectories within developmental epochs 
To clarify the developmental trajectories at different stages across the lifespan below we provide 
the fitted trajectories on a non-log scale for each of the lifespan windows defined by Kang et al.69 

 
Fig. S9.1.1. Normative trajectories of median (and 2.5-97.5% centile boundaries) of cerebrum tissue 
volumes. As shown in main Fig. 1, but stratified by age-defined developmental windows – from late 
midfoetal to late adulthood – and plotted on a natural scale of age in years (x-axis) to allow further 
examination of the trajectory shapes over time. Dotted lines mark the 2.5-97.5% centile lines. 
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Fig. S9.1.2. Normative trajectories of median (and 2.5-97.5% centile boundaries) of extended global 
MRI phenotypes stratified by age-defined developmental windows – from late midfoetal to late 
adulthood – and plotted on natural scale of age in years (x-axis) to allow further examination of the 
trajectory shapes over time. Dotted lines mark the 2.5-97.5% centile lines. 
 
 

 
Fig. S9.1.3. Normative trajectories of between-subject variability (and bootstrapped confidence 
interval) of cerebrum tissue volumes. As shown in main Fig.1, but stratified by age-defined 
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developmental windows – from late midfoetal to late adulthood – and plotted on natural scale of age in 
years (x-axis) to allow further examination of the trajectory shapes over time. Shaded areas (bordered by 
dotted lines) indicate the 95% confidence intervals across 1000 bootstrap iterations. 
 

 
Fig. S9.1.4. Normative trajectories of between-subject variability (and bootstrapped confidence 
interval) of extended global MRI phenotypes stratified by age-defined developmental windows – 
from late midfoetal to late adulthood – and plotted on natural scale scale of age in years (x-axis) to 
allow further examination of the trajectory shapes over time. Shaded areas (bordered by dotted lines) 
indicate the 95% confidence intervals across 1000 bootstrap iterations. 
 

9.2 Grey-white matter differentiation 
One of the emergent milestones that was delineated from the normative trajectories was the early 
period of grey-white matter differentiation. This was derived from the observation that these two 
major tissue classes show differential velocities in the early stages of development – GMV 
increases nonlinearly perinatally and WMV increases linearly through childhood and early 
adolescence. Thus, the intersection point of these two trajectories (around birth) marks the critical 
transition whereby GMV becomes the majority tissue compartment. Furthermore, this difference 
increases until ~3 years, when GMV velocity slows before peaking ~6 years. As such, the periods 
before and after this so-called differentiation can be characterised as grey-white consolidation and 
dedifferentiation, respectively. 
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Fig. S9.2. Definition of grey matter volume (GMV) and white matter volume (WMV) differentiation. 
This early developmental period (filled black segment) demarcates the point of intersection between the 
trajectories of GMV and WMV (shaded square; 298 post-conception days) until the point of maximum 
absolute difference between GMV and WMV (shaded rectangle; 1395 post-conception days). X-axis 
denotes age, calculated as log-scaled post-conception days. 
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10. Clinical applications of centile scores 
In addition to the relevance of healthy brain growth to the many facets of behaviour and cognition, 
reference models of typical development are important for understanding disorders that may result 
from or be characterised by atypical maturational trajectories70. For example, neuropsychiatric 
conditions generally have behavioural and cognitive antecedents in earlier developmental periods 
prior to when they are diagnosed71. Thus, the ability to chart human brain morphology from the 
earliest developmental stages through to old age would be a major advance towards the 
identification of imaging markers across a multitude of neurological and psychiatric diseases 72,73. 
Centiles provide a standardised measure that allows such clinical comparisons across the lifespan 
and across disorders.  

10.1 Case-control and between-disorder comparisons of centile scores on cerebrum 
tissue volumes and extended global MRI phenotypes 
For brevity our main paper only shows pairwise comparisons of centile differences for the healthy 
control group compared to groups of at least N=500 diagnosed casest (Fig. 4A). Tables ST3.1-
3.7 list the full results for each pairwise comparison conducted with the same Monte Carlo 
permutation tests (10,000 permutations). The tables also include Cohen’s d effect size estimates 
(including Hedges confidence intervals for these estimates74). Below we show all significant 
pairwise comparisons surviving FDR correction (corrected P<0.001). Clinical groups were 
aggregated by categorical diagnosis, per each individual study design, or for endorsement of 
symptomatology as in the case of population cohorts (e.g., ABCD and UKB).  
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Fig. S10.1.1. Case-control and between-disorder comparisons of centile scores on cerebrum 
volumes. The same as shown in main Fig. 4A but not limited to comparison with the CN group only. 
Asterisks indicate significance after FDR correction (q<0.001) as computed using Monte Carlo permutation 
tests and the Benjamini-Hochberg75 procedure to correct for multiple comparisons entailed by all possible 
pairwise tests. Abbreviations; Control (CN), Alzheimer's Disease (AD), Attention Deficit Hyperactivity 
Disorder (ADHD), Anxiety or Phobia (ANX), Autism Spectrum Disorder (ASD), Anxiety/Phobia (ANX), Mild 
Cognitive Impairment (MCI), Major Depressive Disorder (MDD), Schizophrenia (SCZ); Grey Matter Volume 
(GMV), Subcortical Grey Matter Volume (sGMV), White Matter Volume (WMV), Ventricular Cerebrospinal 
Fluid (CSF). The exact sample sizes for each feature, per sex and per diagnostic group are listed in ST3.1-
3.4. 
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Fig. S10.1.2. Case-control and between-disorder comparisons of centile scores on cerebrum 
volumes. Matrix plots show the pairwise Cohen’s d values for every combination. More positive d indicates 
that the centile score on the x-axis was higher relative to the corresponding label on the y-axis, more 
negative d indicates the opposite effects, i.e., CN > AD in both males and females. Abbreviations: control, 
CN; Alzheimer's disease, AD; attention deficit hyperactivity disorder, ADHD; autism spectrum disorder, 
ASD; anxiety/phobia (ANX), mild cognitive impairment, MCI; major depressive disorder, MDD; 
schizophrenia, SCZ; grey matter volume, GMV; subcortical grey matter volume, sGMV; white matter 
volume, WMV; ventricular cerebrospinal fluid volume, CSF. 
 
For example, we observed that men with a diagnosis of Alzheimer’s Disease (AD) and 
Schizophrenia (SCZ) showed a median centile difference significantly below the CN group for 
GMV (CN-AD=0.263, PFDR=0.0003, Cohen’s d=0.65; CN-SCZ=0.153, PFDR=0.0003, Cohen’s 
d=0.41), WMV (CN-AD=0.089, PFDR=0.0016, Cohen’s d=0.18; CN-SCZ=0.049, PFDR=0.0005, 
Cohen’s d=0.17) and sGMV (CN-AD=0.279, PFDR=0.0003, Cohen’s d=0.65; CN-SCZ=0.048, 
PFDR=0.0052, Cohen’s d=0.11), while Ventricular CSF volume in AD was significantly larger (CN-
AD=-0.322, PFDR=0.0003, Cohen’s d=-0.88). Interestingly, men with mild cognitive impairment 
(MCI), while overall showing a pattern similar to the AD group, did not differ significantly on WMV. 
For women this pattern was even stronger: GMV (CN-AD=0.345, PFDR=0.0003, Cohen’s d=0.88; 
CN-SCZ=0.269, PFDR=0.0003, Cohen’s d=0.58), WMV (CN-AD=0.12, PFDR=0.001, Cohen’s 
d=0.23; CN-SCZ=0.133, PFDR=0.001, Cohen’s d=0.33), sGMV (CN-AD=0.317, PFDR=0.0004, 
Cohen’s d=0.84; CN-SCZ=0.145, PFDR=0.0004, Cohen’s d=0.33) and Ventricular CSF volume 
(CN-AD=-0.332, PFDR=0.0004, Cohen’s d=-0.86, CN-SCZ=-0.132, PFDR=0.0004, Cohen’s d=-
0.29). Although different mechanisms underlie the neuroanatomical abnormalities observed in AD 
and schizophrenia76, and in the case of schizophrenia the cellular basis remains to be fully 
elucidated, cortical grey matter loss has been associated with cognitive impairment and 
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psychiatric symptomatology in both disorders77. It would be premature to speculate on the clinical 
interpretation of these consistencies between effect direction and size in SCZ and AD, and it 
should be noted in particular that the AD cohort includes some younger individuals where clinical 
status was confirmed with post-mortem pathology. 
 
Males with Attention Deficit Hyperactivity Disorder (ADHD) also showed evidence of overall lower 
GMV and WMV centiles (though note the discussion on centile distributions in S10.3): GMV (CN-
ADHD=0.131, PFDR=0.0003, Cohen’s d=0.34); WMV (CN-ADHD=0.114, PFDR=0.0005, Cohen’s 
d=0.3). Ventricular volumes were slightly decreased in ADHD (CN-ADHD= 0.087, PFDR=0.0003, 
Cohen’s d=0.18). In addition, males with ADHD showed a reduced sGMV pattern (CN-ADHD= 
0.124, PFDR=0.0003, Cohen’s d=0.32). These significant differences were less apparent in females 
and even showed a globally increased ventricular volume (CN-ADHD= -0.06, PFDR=0.0026, 
Cohen’s d=-0.18). Finally, it is interesting to note that the lower tissue volumes in ADHD were not 
accompanied by a commensurate increase in ventricular CSF as was observed in for example 
AD and SCZ. 
 
Males with Autism Spectrum Disorder (ASD) also showed marginal evidence of overall lower 
WMV centiles (though again note the discussion on centile distributions in S10.3): WMV (CN-
ASD=0.03, PFDR=0.0008, Cohen’s d=0.1). This was not the case for females with ASD. Ventricular 
volumes were slightly decreased in females with ASD (CN-ASD= 0.025, PFDR=0.0056, Cohen’s 
d=-0.08). In addition, females with ASD showed a reduced sGMV pattern (CN-ASD= 0.048, 
PFDR=0.0246, Cohen’s d =0.13). These significant differences in sGMV were not observed in 
males.  
 
The same case-control analysis was performed for the three extended global MRI phenotypes. 
Fig. S10.1.3 shows significant differences relative to the CN group in a similar presentation as 
represented in Fig. 4A. All significant pairwise combinations are visualised in Fig. S10.1.4 and all 
statistical pairwise effect-sizes and P-values are provided in ST3.5-3.7. 
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Fig. S10.1.3. Case-control differences of centile scores on extended global MRI phenotypes. Centile 
distributions for each of the clinical disorders with N>500 cases relative to the CN group median (depicted 
as a horizontal black line). The top row depicts the male only subset, the bottom the female only subset. 
The deviation in each clinical group is overlaid as a lollipop plot (white line with circle corresponding to the 
clinical group median). Pairwise tests for significance were done using Monte Carlo permutation (10,000 
permutations) and P-values adjusted using the Benjamini-Hochberg FDR procedure for the multiple 
comparisons entailed by testing all possible pairs. Only significant differences to CN (corrected P<0.001) 
are depicted here and highlighted with an asterisk. For a complete overview of all pairwise comparisons, 
see supplementary tables ST3.5-3.7. Abbreviations; control, CN; Alzheimer's disease, AD; attention deficit 
hyperactivity disorder, ADHD; autism spectrum disorder, ASD; anxiety/phobia (ANX), mild cognitive 
impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, GMV; 
subcortical grey matter volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid volume, 
CSF. 
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Fig. S10.1.4. Case-control and between-disorder comparisons of centile scores on extended global 
MRI phenotypes. The same as shown in main Fig. 4A and S10.1.1 but not limited to comparison with the 
CN group only. Asterisks indicate significance after FDR correction (q<0.001) as computed using Monte 
Carlo permutation tests and using a Benjamini-Hochberg75 correction to correct for multiple comparisons 
accounting for all possible pairwise combinations. Abbreviations; control, CN; Alzheimer's disease, AD; 
attention deficit hyperactivity disorder, ADHD; autism spectrum disorder, ASD; anxiety/phobia (ANX), mild 
cognitive impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ. 
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Fig. S10.1.5. Case-control and between-disorder comparisons of centile scores on extended global 
MRI phenotypes. Matrix plots show the pairwise Cohen’s d values for every combination. More positive d 
indicates that the centile score on the x-axis was higher relative to the corresponding label on the y-axis, 
more negative d indicates the opposite effects, i.e., CN > AD in both males and females. Abbreviations; 
control, CN; Alzheimer's disease, AD; attention deficit hyperactivity disorder, ADHD; autism spectrum 
disorder, ASD; anxiety/phobia (ANX), mild cognitive impairment, MCI; major depressive disorder, MDD; 
schizophrenia, SCZ. 
 
The threshold of a minimal sample size of N=500 restricted our analyses to the reported 7 clinical 
conditions. To provide a comprehensive assessment across multiple minimum sample size 
thresholds for clinical groups, ST3.8-3.28 lists the statistical values for these comparisons at 
thresholds of N=250, 100 and 50 (using non-parametric Monte Carlo permutation tests).  

10.2 Multimodality of centile distributions in clinical disorders 
It should be noted that while centile scores provide an age-normalised and sex specific 
assessment, these broad case-control comparisons do not explicitly account for the possibility of 
developmentally specific subgroups and or trajectories, especially in cross-sectional data. For 
example, it is possible the early developmental differences in cerebrum tissue volumes normalise 
or become less apparent later in life. Indeed recent studies would suggest such age-related 
patterns78,79. To explore the possible or even likely existence of subgroups within the space of 
centile scores, we assessed the number of peaks in the probability density function. Density plots 
were generated with the ‘geom_flat_violin’ option from the Raincloud package16. Estimation of 
densities and the resulting number of peaks were done using the default settings of the ‘density()’ 
function in the R stats package17 using a Gaussian smoothing kernel18,19 which defaults to 0.9 
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times the minimum of the standard deviation and the interquartile range divided by 1.34 times the 
sample size to the negative one-fifth power (Silverman's ‘rule of thumb’20); unless the quartiles 
coincide, when a positive result will be guaranteed. The number of peaks was defined as the 
inflection point on these Gaussian smoothed density curves. Unimodality of smoothed density 
curves was tested using Hartigan's dip-test80 which indicated that none of the distributions were 
perfectly unimodal (see ST4.1-4.7). 
 
Most distributions revealed at least 2 peaks and varying levels of skewness in the direction of 
global case control differences highlighted in Fig. 4 and below. For example, the AD cohort shows 
a clear peak and strong skewness toward the lower centile range for GMV and sGMV (and to a 
lesser extent for WMV), combined with a skew to the higher centile range for ventricular volume 
commensurate with the direction of main effects. The multiple peaks of these distributions are 
particularly salient in the context of ASD where there have been differing accounts of both micro- 
and macrocephaly81. Head circumference-based findings of macrocephaly in ASD were first 
reported in 2001 by Courchesne and colleagues82 and subsequently confirmed in a meta-
analysis83. This early overgrowth has also been thought to be accompanied by a later arrest in 
growth79,84. While our reference-based approach to derive centiles is age-agnostic to the extent 
that static time-points are normalised for age, the existence of peaks at both extreme ends and in 
the middle of the GMV and sGMV centile distribution would suggest that there may be both micro- 
and macro-cephalic subgroups of ASD. How these are clustered or aligned across the lifespan 
would be an interesting topic for follow-up research. One point worth highlighting is that the 
distributions in ASD do not show the level of extreme skewness observed in AD and so it is 
possible that canonical or mean-based case-control analyses may erroneously indicate little 
difference with typical development by the mere fact that the extremes balance each other out 
when calculating a mean difference. Furthermore, by aggregating subgroups all together, it is 
possible that case-control comparisons could show biased effects either driven by the 
predominance of a specific subgroup81, the effect size of a specific subgroup85 or the relative 
representation of specific age-ranges for specific clinical cohorts in the present dataset. 
Leveraging centiles to parse such within-disorder heterogeneity is an important area for follow-up 
research.  
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Fig. S10.2.1. Probability density plots of centile scores on cerebrum tissue volumes for clinical 
cohorts with at least N=500 diagnosed cases. Labels underneath each density plot show the estimated 
number of peaks or modes in the smoothed distribution. Abbreviations; control, CN; Alzheimer's disease, 
AD; attention deficit hyperactivity disorder, ADHD; autism spectrum disorder, ASD; anxiety/phobia (ANX), 
mild cognitive impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, 
GMV; subcortical grey matter volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid 
volume, CSF. 
 

 
Fig. S10.2.2. Probability density plots of centile scores on extended global MRI phenotypes for 
clinical cohorts with at least N=500 diagnosed cases. Labels underneath each density plot show the 
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estimated number of peaks in the smoothed distribution. Abbreviations; control, CN; Alzheimer's disease, 
AD; attention deficit hyperactivity disorder, ADHD; autism spectrum disorder, ASD; anxiety/phobia (ANX), 
mild cognitive impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, 
GMV; subcortical grey matter volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid 
volume, CSF. 
 

10.3 Case-control differences on CMD 
In order to determine whether centiles provided sensitivity to detect case-control differences over 
all clinical groups at specific developmental epochs, we conducted an exploratory analysis using 
developmental windows as defined by Kang et al.69 Specifically, we re-coded all diagnostic labels 
to either healthy controls (CN) or diagnosed cases of any disorder (DX), then estimated the centile 
Mahalanobis distance (CMD; analogous to Fig. 4) across the four cerebrum tissue volumes 
relative to the CN group mean (0.5). Then we ran two-sided Monte Carlo permutation tests (10,000 
permutations) on CMD within each developmental window. We found overall case-control 
differences in CMD across the lifespan (Fig. S10.3), indicating that relatively increased CMD - a 
multivariate marker of atypicality - was associated with DX status. These differences were most 
strongly pronounced in late adulthood (mean difference, 0.655, P<0.001; Cohen’s d=0.25), 
middle/late childhood (mean difference=0.493, P<0.001; Cohen’s d=0.24), adolescence (mean 
difference=0.512, P<0.001; Cohen’s d=0.24), young adulthood (mean difference, 0.363, P<0.001; 
Cohen’s d=0.17) and middle adulthood (mean difference, 0.133, P<0.001; Cohen’s d=0.06). In 
foetal, neonatal, and very early childhood, the current dataset was insufficiently powered to 
determine gross differences on disease status (Fig. S10.3, panel B label provides the number of 
individuals with any kind of diagnostic label).  
 



 
 

96 
 

 
Fig. S10.3. Case-control differences, between healthy controls (CN) and all diagnosed cases (DX), 
for centile Mahalanobis distance (CMD) over all four cerebrum tissue volumes at each 
developmental window over the lifespan. A | The relative distributions of CMD for CN and DX groups in 
each developmental window (NEarlyChildhoodCN = 1039, NEarlyChildhoodDx = 299, NMiddleLateChildhoodCN = 13187, 
NMiddleLateChildhoodDx = 1676, NAdolescenceCN = 8051, NAdolescenceDx = 1137, NYoungAdultCN = 9320, NYoungAdultDx = 1251, 
NMiddleAdulthoodCN = 12843, NMiddleAdulthoodDx = 2707, NLateAdulthoodCN = 24094, NLateAdulthoodDx = 5326). B | The point-
range plot of the P-values and their confidence intervals as computed using a Monte Carlo permutation test 
(10,000 permutations). Labels above each point indicate the number of individuals in the DX group in each 
developmental window. The red-dotted line shows P=0.01. 
 

10.4 Summary centile comparison  
Here we highlight the difference in two summary centile metrics that could be used to characterise 
(a)typicality across all neuroimaging phenotypes: the mean centile and the centile Mahalanobis 
distance. The mean centile is simply the average of the centile scores for all 4 cerebrum tissue 
volumes for a given subject. The centile Mahalanobis distance (CMD) is a summary dispersion 
metric, which is statistically distinct from the mean (see Fig. S10.3, Fig. S10.4.1 and SI1.6). 
Whereas the mean centile score is normally distributed across subjects, CMD is skewed—biased 
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towards lower estimates. Thus, while the mean centile can obscure correlated changes in 
phenotypes—such as increased CSF with decreased GMV in AD patients—CMD can directly 
capture this covariation. Overall, both metrics showed relatively similar distributions in diagnosed 
cases and healthy controls (Fig. S10.4.1), with highly varying estimates across diagnostic groups 
(medians for each category plotted in Fig. S10.4.2 and Fig. S10.4.3).  
 

 
Fig. S10.4.1. Hex plot showing all case-control differences (between healthy controls (CN) and all 
cases regardless of diagnostic category (DX) of centile scores averaged across phenotypes (mean 
centile) versus the preferred multivariate metric of centile dispersion (CMD: centile Mahalanobis 
distance). Count refers to the hex-binning percentage of the total dataset within the CN and DX groups. 
Thus, as each coloured hexagon represents multiple data points (subjects), it is clear that both groups show 
a skewed distribution for CMD despite a relatively normal distribution for the mean centile (with DX having 
a preponderance of subjects with low mean centiles, see Fig. S11.1).  
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Fig. S10.4.2. Case-control differences in mean centile scores averaged across all 4 cerebrum tissue 
volumes (GMV, WMV, sGMV, CSF). Black circles represent clinical conditions included in the main 
analyses in Fig. 4A (N>500 per condition); grey circles represent clinical conditions represented in multiple 
datasets with a total N<500 subjects. Abbreviations: Abbreviations: Alzheimer's disease, AD; attention 
deficit hyperactivity disorder, ADHD; anorexia nervosa or bulimia nervosa, AN/BN; anxiety or phobia, ANX; 
autism spectrum disorder, ASD; bipolar disorder, BD; fronto-temporal dementia, FTD; Lewy body dementia, 
LBD; mild cognitive impairment, MCI; major depressive disorder, MDD; obsessive-compulsive disorder, 
OCD; Parkinson’s disease, PD; schizophrenia, SCZ.  
 

 
Fig. S10.4.3. Case-control differences of median centile Mahalanobis distance (CMD) across tissue 
types (GMV, WMV, sGMV, CSF) for all clinical disorders. Black circles represent clinical conditions 
included in the main analyses in Fig. 4A (N>500 per condition); grey circles represent clinical conditions 
represented in multiple datasets with a total N<500 subjects. Abbreviations: Alzheimer's disease, AD; 
attention deficit hyperactivity disorder, ADHD; anorexia nervosa or bulimia nervosa, AN/BN; anxiety or 
phobia, ANX; autism spectrum disorder, ASD; bipolar disorder, BD; fronto-temporal dementia, FTD; Lewy 
body dementia, LBD; mild cognitive impairment, MCI; major depressive disorder, MDD; obsessive-
compulsive disorder, OCD; Parkinson’s disease, PD; schizophrenia, SCZ.  
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11. Cross diagnostic analyses 
The functional interpretations of centile scores of brain volume will ultimately be dependent on, 
and informed by, the particular context in which brain charts are implemented. But the brain 
lifespan models we have presented here provide a standardised reference point, normalised for 
age, that could be relevant to many investigations of brain-behaviour relationships. Further work 
will be needed to fully explore the applicability of GAMLSS centile scoring for individual 
assessments in clinical contexts. Like traditional growth charts, an individual’s centile score may 
not be clinically decisive on its own in many cases, i.e., someone could have a bigger or smaller 
brain, or be short or tall, without diagnostic implications. To explore the ability of GAMLSS derived 
centiles scores for case-control discriminability we conducted two cross-disorder analyses. 

11.1 Sliding window analyses of cross-disorder discriminability 
We computed odds ratios for clinical disorders using a sliding window across the full range of 
centile scores for cerebrum tissue volumes (window size=0.1, increment size=0.05). Major 
diagnostic categories (as in Fig. 4) were combined to form one group of all diagnosed cases (DX 
or non-CN) and compared to healthy controls (CN) to estimate the odds ratio of being diagnosed 
with any clinical disorder. These analyses indicated that lower centile scores, especially <5%, on 
cerebrum tissue volumes, cortical surface area and cortical thickness were all significantly over-
represented in individuals with neuropsychiatric disorders (Fig. S11.1). This means that a lower 
centile score on any or all of these brain MRI metrics was associated with a higher probability of 
any clinical disorder. It will be important to discover if low centile scores on brain MRI metrics are 
predictive of later clinical outcomes, meaning that brain charts could be used in future as paediatric 
growth charts are used now, to raise levels of clinical concern proportionately, rather than to make 
a specific diagnosis.  
 
 

 
Fig. S11.1. Brain MRI centile scores are related to the probability of any clinical disorder. The odds 
ratio for clinical disorder (versus healthy control) is plotted on the y-axis of both panels; positive OR indicates 
greater risk of disorder. Centile scores by GAMLSS modelling are plotted (on the x-axis) for global brain 
MRI phenotypes: left panel, 4 cerebrum tissue volumes; right panel, total cerebrum volume, cortical surface 
area, and mean cortical thickness. Odds ratios were computed using a sliding window across centiles 
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(window size=0.1, increment size=0.05). Diagnostic categories in Fig. 4 were combined (i.e., binarised to 
make any diagnosis, or 'dx' vs. 'cn') to estimate the odds ratio of being in any clinical cohort. Scans with 
lower centile scores on all phenotypes, especially centiles <5%, have increased odds ratio for all clinical 
disorders. 
 

11.2 Cross-diagnostic clustering 
Multivariate approaches can also be used to delineate neuroanatomical signatures across metrics 
and to compare neuroanatomical signatures across clinical conditions, while maintaining 
diagnostic labels. As such, we performed data-driven hierarchical clustering based on the group 
average and standard deviation of centiles, combined with the overall deviation metric CMD. 
Centile scores were derived for each subject across the four primary lifespan phenotypes (GMV, 
sGMV, WMV, Ventricular CSF). We calculated the median and the variance (as standard 
deviation) across patients within a cohort. An overall deviation score was also calculated for each 
subject as CMD across all four features. These nine scores were z-scored within clinical groups, 
and hierarchical (k-means) clustering was used to determine patterns of these centile profiles 
across conditions. The silhouette coefficient was computed (across a range of k clusters between 
1 and 12) to determine the optimal number of clusters for the extended clinical condition analysis 
(peak value, N=3). 
 
These analyses partially capture an age-stratification and sexual dimorphism of diagnostic 
conditions, despite the fact that the centiles themselves were normalized for age and sex. The 
across-condition clustering of neuroanatomical signatures broadly recovers plausible nosological 
groupings (Fig. S11.2.1-11.2.4). Interestingly, one exception was the high similarity observed 
between neurodevelopmental disorders and MCI, and the fact that Parkinson’s disease diverged 
from other neurodegenerative disorders. While these broad distributions of gross neuroanatomical 
centile scores may obscure specificity and interindividual variation, they showcase the potential 
for future investigations of disorder-specific neuroanatomical signatures defined relative to 
lifespan standards. 
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Fig. S11.2.1. Profiles of centile scores for median cerebrum tissue volumes (GMV, WMV, sGMV, 
CSF), centile scores for between-subject standard deviation of cerebrum tissue volumes (GMVv, 
WMVs, sGMVv, CSFv), mean age, percentage female, and number of primary studies for 7 clinical 
disorders with N > 500 cases, as per Fig. 4. Legend (x-axis and right annotation): 'years' corresponds to 
'age' and represents median age of the diagnostic groups, '% female' corresponds to 'sex' and represents 
the percentage of female patients in each diagnostic group, 'total' corresponds to 'study' and represents the 
number of studies containing patients in the respective diagnostic group. Values of each cell represent z-
scores of median centiles (row-wise across diagnostic groups) for visualisation. Clustering was determined 
using the gap statistic (k=1). Lowercase 'v' stands for the standard deviation and was Z-scored as per the 
median centiles for each phenotype across diagnostic groups. Abbreviations: Alzheimer's disease, AD; 
attention deficit hyperactivity disorder, ADHD; autism spectrum disorder, ASD; mild cognitive impairment, 
MCI; major depressive disorder, MDD; schizophrenia, SCZ; grey matter volume, GMV; subcortical grey 
matter volume, sGMV; white matter volume, WMV; ventricular cerebrospinal fluid volume, CSF. 
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Fig. S11.2.2. Hierarchical clustering of clinical disorder profiles of median and standard deviation 
of centile scores on cerebrum tissue volumes. Centile profiles using a less-stringent N<500 cutoff for 
the number of patients with similar diagnoses, as per Fig. S10.4.2 above. Legend (x-axis and right 
annotation): 'years' corresponds to 'age' and represents median age of the diagnostic groups, '% female' 
corresponds to 'sex' and represents the percentage of female patients in each diagnostic group, 'total' 
corresponds to 'study' and represents the number of studies containing patients in the respective diagnostic 
group. Values of each cell represent z-scores of median centiles (row-wise across diagnostic groups) for 
visualisation. Clustering was determined using the gap statistic (k=3). Lowercase 'v' stands for the standard 
deviation and was z-scored as per the median centiles for each feature across diagnostic groups. 
Abbreviations: Alzheimer's disease, AD; attention deficit hyperactivity disorder, ADHD; anorexia nervosa or 
bulimia nervosa, AN/BN; anxiety or phobia, ANX; autism spectrum disorder, ASD; bipolar disorder, BD; 
fronto-temporal dementia, FTD; Lewy body dementia, LBD; mild cognitive impairment, MCI; major 
depressive disorder, MDD; obsessive-compulsive disorder, OCD; Parkinson’s disease, PD; schizophrenia, 
SCZ; grey matter volume, GMV; subcortical grey matter volume, sGMV; white matter volume, WMV; 
ventricular cerebrospinal fluid volume, CSF.  
 
The same analyses were repeated after the inclusion of the 3 extended brain phenotypes and 
broadly similar clustering patterns were preserved (Fig. S11.2.3-11.2.4). 
 

 
Fig. S11.2.3. Profiles of centile scores for median cerebrum tissue volumes and extended global 
MRI phenotypes (GMV, WMV, sGMV, CSF, TCV, SA, CT), centile scores for between-subject standard 
deviation of cerebrum tissue volumes (GMVv, WMVs, sGMVv, CSFv, TCVv, SAv, CTv), age, 
percentage female, and number of primary studies, for 7 clinical disorders with N > 500 cases. 
Centile profiles using a stringent N > 500 cutoff for the number of patients with similar diagnoses, as per 
Fig. 4. Legend (x-axis and right annotation): 'years' corresponds to 'age' and represents median age of the 
diagnostic groups, '% female' corresponds to 'sex' and represents the percentage of female patients in each 
diagnostic group, 'total' corresponds to 'study' and represents the number of studies containing patients in 
the respective diagnostic group. Values of each cell represent Z-scores of median centiles (row-wise across 
diagnostic groups) for visualisation. Clustering was determined using the gap statistic (k=1). Lowercase 'v' 
stands for 'variance' and was calculated as the standard deviation (rather than median), and was Z-scored 
as per the median centiles for each phenotype across diagnostic groups. Abbreviations: Alzheimer's 
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disease, AD; attention deficit hyperactivity disorder, ADHD; anxiety or phobia, ANX; autism spectrum 
disorder, ASD; mild cognitive impairment, MCI; major depressive disorder, MDD; schizophrenia, SCZ.  
 
 

 
Fig. S11.2.4. Hierarchical clustering of clinical disorder profiles of median and standard deviation 
of centile scores on cerebrum tissue volumes and extended global MRI phenotypes. Centile profiles 
using a less-stringent N<500 cutoff for the number of patients with similar diagnoses, as per Fig. S11.2.2 
above. The Parkinson’s and anorexia/bulimia clinical groups were removed from this analysis due to the 
lack of available surface-based MRI phenotypes (cortical thickness and surface area). Legend (x-axis and 
right annotation): 'years' corresponds to 'age' and represents median age of the diagnostic groups, '% 
female' corresponds to 'sex' and represents the percentage of female patients in each diagnostic group, 
'total' corresponds to 'study' and represents the number of studies containing patients in the respective 
diagnostic group. Values of each cell represent Z-scores of median centiles (row-wise across diagnostic 
groups) for visualisation. Clustering was determined using the gap statistic (k=3). Lowercase 'v' stands for 
'variance' and was calculated as the standard deviation (rather than median), and was Z-scored as per the 
median centile for each phenotype across diagnostic groups. Abbreviations: Alzheimer's disease, AD; 
attention deficit hyperactivity disorder, ADHD; anxiety or phobia, ANX; autism spectrum disorder, ASD; 
bipolar disorder, BD; fronto-temporal dementia, FTD; Lewy body dementia, LBD; mild cognitive impairment, 
MCI; major depressive disorder, MDD; obsessive-compulsive disorder, OCD; schizophrenia, SCZ. 
 
The clustering results remained relatively consistent with the inclusion of the extended global MRI 
phenotypes, which is likely due to the intrinsic covariance or correlation between the phenotypes, 
i.e., TCV is a sum of tissue class volumes, and SA and CT are geometrically related to GMV. 
However, despite this general consistency, some phenotypes (e.g., WMV) showed relative 
variability across diagnostic categories within each cluster (Figs. S11.2.2 and S11.2.4) – 
speculatively due to the differential impact on brain tissue compartments based on variance in 
developmental trajectories. It is to be expected that hierarchical clustering results will evolve as 
more metrics, MRI modalities and diagnostic groups are included in the reference dataset in 
future. 
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12. Associations of birth weight and gestational duration with centile scores 
on cerebrum tissue volumes  
To examine the effects of early life stress on centile scores, we examined 5 independent samples 
across the lifespan with self-reported gestational age at birth and/or birth weight (dHCP, neonatal; 
UNC, neonatal and early infancy/childhood; ABCD, late childhood; NIH, 
childhood/adolescence/young adulthood; UKB, mid-late adulthood). Average centile scores on all 
four cerebrum tissue volumes were significantly related to multiple metrics of premature birth 
across datasets (gestational age at birth, t = 13.164, P < 2e-16; birth weight, t = 36.395, P < 2e-
16). This corroborates previous work indicating the ability to capture relationships between early 
life factors such as birth weight and brain volumetrics measured several decades later86.  
 

 
Fig. S12. Relationships between centile scores on cerebrum tissue volumes and birth weight (left 
panel) and gestational age at birth (right panel) for each of 5 primary studies with relevant data 
available. Centile-normalised Z-scores were computed for each global phenotype in each individual study 
and then averaged across phenotypes to compute a mean centile Z-score for each subject. The black 
dashed lines represent the relationships between mean centile scores and birth weight or gestational age 
at birth estimated by a linear mixed-effects model: for gestational age at birth, t = 12.624, P < 2e-16; for 
birth weight, t = 34.945, P < 2e-16. The black dotted line in the right panel denotes the commonly-used 
threshold for defining premature birth at 37 weeks post-conception. Conditional R-squared in each panel 
represents the variance explained by the entire model (black dashed lines). 
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13. Twin-based heritability of centile scores 
We examined the heritability of centile scores on cerebrum tissue volumes, leveraging available 
data of monozygotic (MZ) and dizygotic (DZ) twins in the ABCD cohort of adolescents (N=297 
MZ, N=400 DZ pairs), and in the HCP cohort of adults (N=138 MZ, N=78 DZ pairs). For both 
cohorts, zygosity was previously determined based on parental and/or self endorsement, and 
genetic kinship87–89. Heritability was estimated using Cholesky decomposition, allowing 'ACE' 
partitioning of the phenotypic variance into additive genetic (A), common environmental (C), and 
unique environmental (E) components, as implemented in the umx R package90. As shown in Fig. 
4, we found greater heritability of centile normalised scores compared to the respective raw, non-
centiled volumetric phenotypes (Table S13). 
 

phenotype a c e a_se c_se e_se study 

CMD 0.94138008 5.15E-24 0.33734783 0.0082932 0.04099064 0.0049381 ABCD 

GMV 0.89969676 0.35946553 0.24764949 0.0105855 0.02829313 0.00295643 ABCD 

sGMV 0.90745925 0.34875295 0.23428421 0.01037854 0.02893901 0.00275628 ABCD 

WMV 0.93712558 0.27625787 0.21325392 0.01043961 0.03738813 0.00251487 ABCD 

GMV_raw 0.74470131 0.62367295 0.23759634 0.00230908 0.00358526 0.0006938 ABCD 

sGMV_raw 0.78371164 0.58685322 0.20346837 0.00166154 0.00282263 0.0004374 ABCD 

WMV_raw 0.80826064 0.56171142 0.17662111 0.00148671 0.00269016 0.0003418 ABCD 

CMD 0.9242109 1.91E-26 0.38188246 0.01545033 1.45962732 0.00795172 HCP 

GMV 0.82268665 0.50098136 0.26870867 0.02227563 0.04036794 0.00451995 HCP 

sGMV 0.75762771 0.54899551 0.35299319 0.0254128 0.03848209 0.00595872 HCP 

WMV 0.85020809 0.4672182 0.24259711 0.02179317 0.04404564 0.00388202 HCP 

GMV_raw 0.69584921 0.69015904 0.19868159 0.00953083 0.01276001 0.00181394 HCP 

sGMV_raw 0.61950573 0.73986581 0.26231896 0.01139132 0.0131105 0.00269149 HCP 

WMV_raw 0.81364456 0.54983081 0.18886134 0.0100787 0.0172565 0.00163767 HCP 

Table S13. Heritability of global neuroimaging phenotypes from Fig. 4. Partitioned phenotypic variance 
for centiled and raw (denoted ‘_raw’, grey shading) additive genetic (a), common environmental (c), and 
unique environmental (e) components, and respective standard errors (denoted ‘_se’) for the ABCD (N=697 
twin pairs) and HCP (N=216 twin pairs) studies.  
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14. Longitudinal centiles 
Due to the relative scarcity of longitudinal neuroimaging datasets (<10% of the total dataset), 
normative lifespan trajectories were generated with cross-sectional data. However, with the 
available longitudinal samples, we tested the generalisability of the models to capture within-
subject variation of centile scores over time (quantified as the IQR). As described in the main text, 
IQR varied by only ~4% on average (see ST5.1-5.4) indicating highly stable centile scoring across 
multiple repeated scans.  
 

14.1 Longitudinal patterns in developmental epochs 
Consistent with the idea of emerging variability in periods of highly dynamic change, we found 
that IQR was moderately related to the age distribution of longitudinal sampling (e.g., higher 
variability in younger samples; Figs. S14.1 and SI14.2). This is in line with the level of variation 
expected from other anthropometrics derived from developmental longitudinal data91 (e.g., ~30% 
variation on average with height during childhood). While longitudinal centile scores were 
generally stable, we found a number of small but significant differences in centile stability across 
clinical cohorts (See Fig. S14.1 and ST5.1-5.4).  
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Fig. S14.1.1. Overview of possible associations between within-subject variation (interquartile 
range, IQR) of longitudinal centile scores on cerebrum tissue volumes and factors that could 
influence longitudinal stability of centile scores. First column shows the IQR in relation to the 
individual’s age (in years) at the time of their baseline scan. Second column shows the length of follow-up 
(in years, log-transformed) between the baseline scan and the final follow-up scan. Third column shows the 
IQR in relation to the number of longitudinally repeated scans available per participant. 
 

 
Fig. S14.1.2. Overview of possible associations between within-subject variation (interquartile 
range, IQR) of the longitudinal centile scores on extended global MRI phenotypes and likely factors 
that could influence longitudinal stability of centile scores. First column shows the IQR in relation to 
the individual’s age (in years) at the time of their baseline scan. Second column shows the length of follow-
up (in years, log-transformed) between the baseline scan and the final follow-up scan. Third column shows 
the IQR in relation to the number of longitudinally repeated scans available per participant. 
 

14.2 Longitudinal variability across studies 
In some studies, we observed that within-subject variability was greater compared to other studies 
over the course of longitudinal scanning. Without robust longitudinal reference data, it is not 
possible to disentangle whether this is meaningful biological variation or due to non-biological 
(e.g., technical) confounds. Increased longitudinal variability appeared more prevalent in younger 
cohorts, further emphasizing the need for robust and consistent high quality imaging data and 
unified processing protocols92,93 in that age range. It is important to acknowledge that in contrast 
to other scientific scenarios, a fully longitudinal neuroimaging study across the human lifespan is 
practically impossible. However, the current results emphasize the need for longitudinal initiatives 
that consistently measure the same phenotypes at different intervals across the lifespan. 
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Fig. S14.2.1. Overview of within-subject variability of longitudinal centile scores (IQR) on cerebrum 
tissue volumes for each primary study with repeated scans available for participants. Colour scales 
indicate the mean age for a given study and studies are ordered by mean IQR, from the lowest within-
subject variability at the top to the highest within-subject variability at the bottom. 
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Fig. S14.2.2. Overview of within-subject variability of longitudinal centile scores (IQR) on extended 
global MRI phenotypes for each primary study with repeated scans available for participants. Colour 
scales indicate the mean age for a given study and studies are ordered by mean IQR, from the lowest 
within-subject variability at the top to the highest within-subject variability at the bottom. 

14.3 Longitudinal variability in clinical samples 
Most clinical groups showed significantly lower variability of centile scores across time compared 
to CN (Fig. S14.3.1A). This would suggest that differences in cross-disorder centiles largely 
persist over time. Indeed, centiles showed lower IQR within clinical groups than within the CN 
group. However, as described in SI1.7, because centiles were derived relative to a CN reference, 
the IQR within clinical groups may be expected to be compressed compared to the IQR within the 
CN group.  
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Fig. S14.3.1. Within-subject variation (IQR) in longitudinal centile scores on cerebrum tissue 
volumes for control subjects (CN) and 6 clinical disorders. A | All disorders compared pair-wise to the 
CN group. Asterisks indicate P-values of <0.001 (***), <0.01 (**) and <0.05 (*) as computed using Monte 
Carlo permutation tests and using the Benjamini-Hochberg75 procedure to correct for multiple comparisons 
accounting for all possible pairwise combinations. B | The median difference of within-subject variability 
between each clinical disorder and the control groups. C | Comparison within-subject variability of 
longitudinal centile scores for cases of mild cognitive impairment (MCI) or Alzheimer’s disease (AD) who 
maintained the same diagnostic status over the course of repeated scanning (MCI+MCI, AD+AD) and 
participants who changed diagnostic status (CN→AD, MCI→AD, etc) over the course of longitudinal 
assessments. The exact sample size for each group and each feature are listed in ST5.1-5.4 and ST6.1-
6.4. 
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Fig. S14.3.2. Within-subject variation (IQR) in longitudinal centile scores on extended global MRI 
phenotypes for control subjects (CN) and 6 clinical disorders. A | All disorders compared pair-wise to 
the CN group. Asterisks indicate P-values of <0.001 (***), <0.01 (**) and <0.05 (*) as computed using Monte 
Carlo permutation tests and using the Benjamini-Hochberg75 procedure to correct for multiple comparisons 
accounting for all possible pairwise combinations. B | The median difference of within-subject variability 
between each clinical disorder and the control group. C | Within-subject variability of longitudinal centile 
scores for cases of mild cognitive impairment (MCI) or Alzheimer’s disease (AD) who maintained the same 
diagnostic status over the course of repeated scanning (MCI+MCI, AD+AD) and participants who changed 
diagnostic status (CN→AD, MCI→AD, etc) over the course of longitudinal assessments. The exact sample 
size for each group and each feature are listed in ST5.5-5.7 and ST6.5-6.7. 
 
Longitudinal centiles, Fig. S14.3.1 shows only significant case-control differences in the IQR, 
although significance was corrected for multiple comparisons using FDR (q < 0.001) across all 



 
 

112 
 

possible pairs. Statistics for all comparisons are provided in ST5.1-5.7, and Figs. S14.3.3-14.3.4 
provide visualisations of all significant pairs. 
 

 
Fig. S14.3.3. Case-control and between-disorder differences in within-subject variability of centile 
scores on cerebrum tissue volumes. This is the same figure as depicted in Fig. S14.3.1A, but including 
all pairwise comparisons, i.e., not just comparisons relative to the CN group. Asterisks indicate P-values of 
<0.001 (***), <0.01 (**) and <0.05 (*) as computed using Monte Carlo permutation tests and using the 
Benjamini-Hochberg75 procedure to correct for multiple comparisons accounting for all possible pairwise 
combinations. The exact sample size for each group and each feature are listed in ST5.1-5.4. 
 

 
Fig. S14.3.4. Case-control and between-disorder differences in within-subject variability of centile 
scores on extended global MRI phenotypes. This is the same figure as depicted in Fig. S14.3.1A, but 
including all pairwise comparisons, i.e., not just comparisons relative to the CN group. Asterisks indicate P-
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values of <0.001 (***), <0.01 (**) and <0.05 (*) as computed using Monte Carlo permutation tests and using 
the Benjamini-Hochberg75 procedure to correct for multiple comparisons accounting for all possible pairwise 
combinations. The exact sample size for each group and each feature are listed in ST5.5-5.7. 
 
To further visualise the stability of centiles across the lifespan in clinical cohorts, we filtered the 
longitudinal clinical data using a threshold of 3x the median absolute deviation within the cohort94. 
This filtering was mainly done to clarify the visualisation as the alternative is visually biased toward 
the few individuals that show an extreme change (which may be related to measurement error). 
We observed that between time points, individuals generally either stay within ~10% of their first 
centile measurement, or they progress towards the extreme end of the distribution (Fig. S14.3.5). 
For example, males with ASD tend to drop in their GMV centile scores in early development, 
consistent with the cross-sectional analysis showing that at the group level males with an ASD 
have lower GMV centile scores. A similar picture occurs for AD and MCI. For ADHD the changes 
appear more mixed. Note that in the CHILD study, individuals that were considered high risk for 
ASD are included here as ASD cases (hence the impression of individuals diagnosed with ASD 
in utero). 
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Fig. S14.3.5. Within-subject changes in longitudinal centile scores on cerebrum tissue volumes. 
Each line represents a single individual and their respective centile changes across the lifespan. Zoomed-
in panels emphasise the age-span beyond 55-years as a large proportion of longitudinal data included 
individuals with Alzheimer's disease and were repeatedly scanned in this phase of the lifespan. 
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Fig. S14.3.6. Within-subject changes in longitudinal centile scores on extended global MRI 
phenotypes. Each line represents a single individual and their respective centile changes across the 
lifespan. Zoomed-in panels emphasise the age-span beyond 55-years as a large proportion of longitudinal 
data included individuals with Alzheimer's disease and were repeatedly scanned in this phase of the 
lifespan. 
 

14.4 Longitudinal centile score changes and diagnostic progression 

Similar to paediatric growth charts, further value from having age-appropriate standardised 
reference curves will likely come from the ability to more reliably detect atypical longitudinal 
changes in brain changes within individuals. As an example of this approach, we have tracked 
centile scores in longitudinal (repeated) cerebrum tissue volumes for a large cohort of older 
individuals, some of whom transitioned between diagnostic categories during the period of 
longitudinal follow-up from CN to MCI (CN → MCI), from CN to AD (CN → AD), or from MCI to 
AD (MCI → AD). Interestingly, in contrast to the lower within-subject variability (IQR) of cases 
compared to healthy controls in general, there was a reverse trend of increased within-subject 
variation in cerebrum tissue volumes (especially GMV and Ventricles) in the subset of cases that 
changed diagnostic status. Specifically, there was faster than normal decrease of grey matter 
volume, and faster than normal increase of ventricular CSF volume, among participants who 
transitioned from CN or MCI to AD over the course of repeated scanning (Fig. S14.4.1 and ST6.1-
6.7).  
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Analysis of within-subject changes in centile scores focused on individuals with the most 
frequently observed diagnostic transitions, all in the direction of greater severity or disability: from 
CN to MCI, from CN to AD and from MCI to AD (ST6). The longitudinal change in centile scores 
occurred in the same direction as predicted by the cross-sectional case-control differences 
(compare Fig. 4A and SI10 “Clinical applications of centile scores”). We rescaled the 
longitudinal data to generate a group-level trajectory for each transition (CNI → AD, CN → MCI, 
and MCI → AD) using linear mixed effects models. As shown in Fig. S14.4.1, all clinical transitions 
were associated with significantly increased rates of cortical and subcortical grey matter loss, and 
ventricular CSF volume expansion — both reflected by decreases in centile scores. Because the 
significant age-related changes expected in healthy older individuals are incorporated into the 
reference norms, centile scores provide a clear indication of a change in trajectory for individuals 
with neurodegenerative disease.  
 

 
Fig. S14.4.1. Longitudinal changes in centile scores are associated with diagnostic transitions 
between the groups of healthy controls (CN), mild cognitive impairment (MCI), and Alzheimer’s 
disease (AD). A | Shows the within-subject changes in centile scores for CN→MCI, CN→AD, and 
MCI→AD, with the dotted black lines showing the median slope for all controls that had longitudinal 
measurements and the solid black lines showing the median slope for all controls from the datasets that 
contributed to the diagnostic change group. B | Shows the model fixed effects standardised coefficients 
(e.g., model fixed effects divided by two standard deviations, to denote the slope differences in longitudinal 
changes in centile scores between the groups. Asterisks indicate the level of uncorrected significance (* is 
P<0.05, ** is P<0.01, *** is P<0.001) as tested with a linear mixed model restricted maximum likelihood 
(REML) fit that included a subject-level random effect, but not a random slope as some individuals only had 
2 observations and including random slopes would cause convergence issues. The error bars in panel B 
depict the confidence intervals around the beta coefficients (represented as dots). These results show that 
for both GMV and Ventricular CSF the rate-of-change in centile scores is significantly greater in individuals 
undergoing a clinically documented transition (from less to more severe diagnostic categories) 
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15. Interactions between cerebrum tissue volumes 
It has been hypothesized that age-varying cellular processes could be captured by neuroimaging 
milestones, in terms of the growth trajectories of relative volumetric measurements95. In line with 
these expectations, we found an initial postnatal increase in GMV relative to WMV, likely due to 
increased complexity of neuropil including synaptic proliferation96,97. Subsequently, GMV declined 
relative to WMV (SI9.2 “Grey-white matter differentiation”), likely due to both continued 
myelination and synaptic pruning98. To further explore the patterning of tissue interactions, we 
performed supplementary analyses to empirically assess the correlations between global tissue 
classes. Fig. S15.1 presents these inter-relationships as Pearson’s correlation coefficients 
between each pair of global brain MRI phenotypes across participants within each study. These 
results highlight the variability of these relationships across studies (which themselves vary in 
terms of technical and biological variables – see Fig. 1A, ST1.1). However, it is also clear that 
there are generally high correlations between grey and white matter volumes and surface area 
(SA). Comparatively, GMV and WMV are less strongly correlated with CT and CSF. Additionally, 
we substantiated the prior consensus in the literature concerning the orthogonality of CT and SA 
by finding that these two global metrics were not correlated with each other (Fig. S15.1). 
 

 
Fig. S15.1. Box-plots of Pearson correlations between each pair of global neuroimaging metrics in 
each of the primary studies in the reference dataset. Each datapoint represents a single primary study; 
boxes highlight the median and interquartile range of between-study variation in correlations of “raw”, non-
centiled volumetrics for all possible pairs of global MRI phenotypes. Alternating colours are for visualisation 
purposes only.  
 
Given these findings in the context of each study in our aggregated dataset, we examined the 
same inter-relationships between phenotypes across age, in line with previous work examining 
regional correlations of diffusion-weighted imaging phenotypes across age99. We used a sliding 
window approach to apply this framework to global MRI phenotypes, binning segments of the 
lifespan based on age (each window = 300 days, sliding by 50 days). Pearson’s correlation 
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between phenotypes was then calculated within each bin, and locally-weighted (LOESS) 
regression was used to fit a nonlinear curve to the age-related changes in each pair-wise 
phenotypic correlation (Fig. S15.2). These results recapitulate some of the findings of the 
correlational analyses within each primary study, e.g., the GMV/WMV correlation is consistently 
more strongly positive than the CT/SA correlation. However, there are also some age-related 
shifts in the strength and/or sign of these phenotypic correlations, especially in late gestation and 
early postnatal life, that will be interesting to investigate in more detail as additional early-life MRI 
data become available in future.  
 

 
Fig. S15.2. Sliding-window analysis of age-related changes in pairwise correlations for all possible 
pairs of 7 global MRI phenotypes (4 cerebrum tissue volumes and 3 extended global MRI 
phenotypes) over the course of the lifespan. We used a window size of 300 days, sliding by 50 days. 
Plotted lines are colour-coded by pairwise correlation and represent the fitted lines and 95% confidence 
intervals from locally-weighted (LOESS) regression for each correlated pair of phenotypes. 
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16. Sex differences 
In line with prior literature100 we find that variance in males is higher than in females across imaging 
phenotypes. These variance differences across development demonstrate the importance of 
modelling age and sex-related differences in variability in addition to absolute size. Sex 
differences in brain development in relation to developmental psychopathology are an active field 
of research. Particularly in the case of ASD, ADHD, MDD, and SCZ, sex differences have been 
proposed to be of major importance for aetiology101,102 and a key driver of the clinically observed 
sex bias in diagnoses. While we did not explicitly model sex differences beyond their main additive 
effects, the present results indicate that this could be an important area for future research, 
especially given differences in finer regionally-specific profiling of brain morphology103. For 
example, in light of the mixed literature on sex differences in SCZ including neuroanatomy104,105, 
a post-hoc analysis showed a significant effect of sex in SCZ centiles—with biologically female 
SCZ patients showing significantly greater deviations in GMV, WMV, and sGMV (12.3%, 8.2%, 
9.2%, respectively; all P<0.01 after permutation testing scrambling group labels; ST8).  
 
It will be important for future studies to further refine the possible developmental interactions with 
biological sex, as current work already highlights it importance for mental health70,106. The 
GAMLSS approach could be adapted to study sex-by-development interactions. As noted in the 
Main Text, it important to stress that there are no known clinical, cognitive or behavioural 
implications for differences in brain size related to sex. It is also important to note the limitations 
of binary classification and conflation of sex and gender present in almost all available imaging 
data107.  
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Reference database details: demographics and 
processing pipelines 
This section provides an overview of primary datasets included in the aggregated reference 
dataset as of February 2022.  

17. Demographics of reference database 

Fig. S17.1 shows we have curated data from across the world, with the majority of studies coming 
from Europe and North America. Fig. S17.2 shows that we have strong representation across the 
lifespan with 500 or more subjects in each of the Kang- defined developmental windows69 from 
15 post-conception weeks (pcw) onwards. Interestingly, in addition to early development, the age-
range between 30 and 40 years is particularly under-represented in currently available data. 

Fig. S17.1. Locations of primary datasets included in the aggregated, reference database for the 
Lifespan Brain Chart project. 
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Fig. S17.2. Histograms and probability density plots of age of participants in the reference database, 
stratified by sex. 
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18. Data processing 
If T1- and T2/FLAIR-weighted raw data were available, as they were for approximately 95% of 
scans), these data were processed on the same server at the University of Cambridge with 
FreeSurfer 6.0.142 using the combined T1-T2 recon-all pipeline for improved grey-white matter 
boundary estimation. If only raw T1-weighted data were available, and subjects were aged over 
2 years, data were processed with FreeSurfer 6.0.1 using the standard recon-all pipeline. If 
subjects were aged 0–2 years, data were processed with Infant FreeSurfer v1108. Briefly, the first 
processing stage of recon-all includes: non-uniformity correction, projection to Talairach space, 
intensity normalisation, skull-stripping, automatic tissue and subcortical segmentation. 
Subsequently, surface interpolation, tessellation and registration are done at the second and third 
stages of the recon-all pipeline. ST1.1 lists the number of subjects per site per processing pipeline 
alongside their respective MRI acquisition and quality control protocols. We noticed that Infant 
FreeSurfer estimated total subcortical grey matter volume (sGMV) differently from other pipelines 
included in this dataset, while other cerebrum tissue volumes were estimated consistently across 
pipelines. We therefore excluded scans processed with Infant FreeSurfer from growth curve 
estimation for subcortical GMV. All four cerebrum tissue volumes were extracted from the 
aseg.stats files output by the recon-all process: 'Total cortical gray matter volume' for GMV; 'Total 
cortical/cerebral (FreeSurfer version dependent) white matter volume' for WMV; ‘Subcortical gray 
matter volume’ for sGMV (inclusive of thalamus, caudate nucleus, putamen, pallidum, 
hippocampus, amygdala, and nucleus accumbens area; 
https://freesurfer.net/fswiki/SubcorticalSegmentation); and the difference between 'BrainSegVol" 
and 'BrainSegVolNotVent' for Ventricular volume. Regional volume was estimated for each of 34 
bilaterally averaged cortical regions defined by the Desikan-Killiany67 parcellation template 
following the final stages of the recon-all pipeline and using the hemisphere-specific aparc.stats 
files generated by FreeSurfer. 
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19. Primary dataset descriptions 

The acquisition of primary datasets was approved by local Institutional Review Boards or ethics 
committees as detailed in references provided for each dataset individually and in ST1.1. 
 
3R-BRAIN - Brain Consortium for Reproducibility, Replicability and Reliability 
The 3R-BRAIN is built by the Chinese Academy of Sciences (CAS) and aims to recruit a total of 
200 adults (20-35 years), with each participant visiting three ultra-high field (two 3T and one 7T) 
MRI scanners located at the CAS Institute of Psychology (GE-MR750) and the CAS Institute of 
Biophysics (SMS-Prisma and SMS-Terra). Each participant received 5 repeated scans including 
two-week test-retest data at GE-MR750 and SMS-Prisma, respectively, as well as a single scan 
at SMS-Terra. This represents an open resource for reproducible, replicable and reliable brain 
research and imaging cognitive neuroscience 109. In the present study all the first scans are 
included and all raw structural T1-weighted scans were processed with FreeSurfer 6.0.1. 

 
ABCD - Adolescent Brain and Cognitive Development 
The ABCD Study is a landmark, longitudinal study of brain development and child health60. 
Investigators at 21 sites around the country will measure brain maturation in the context of social, 
emotional and cognitive development, as well as a variety of health and environmental outcomes. 
Minimally processed T1 and T2 weighted imaging for 10,588 individuals was downloaded through 
the NIMH Data Archive (NDAR) and processed using FreeSurfer 6.0.1 using the combined T1-T2 
processing pipeline when both modalities were available (and conventional T1 when no T2 was 
available). Individuals were included in the reference model as healthy controls (CN) based on 
the parental response to the ABCD screening and risk questionnaire 
(https://nda.nih.gov/data_structure.html?short_name=abcd_screen01) indicating the individual 
had never been diagnosed with a mental health disorder. 

 

ABIDE - Autism Brain Imaging Data Exchange  
The Autism Brain Imaging Data Exchange (ABIDE) initiative has aggregated functional and 
structural brain imaging data collected from laboratories around the world to accelerate our 
understanding of the neural bases of ASD110,111. All T1-weighted structural data from this collection 
was processed using recon-all as implemented in FreeSurfer 6.0.1. 

 

ABVIB - Aging Brain: Vasculature, Ischemia, and Behavior 
This study is based on a prospective, longitudinal cohort study started in 2008 known as the Aging 
Brain: Vasculature, Ischemia, and Behavior Study (ABVIB; 
https://ida.loni.usc.edu/login.jsp?project = ABVIB)112. The primary goal of ABVIB was to assess 
the contributions of cardiovascular risk factors (laboratory studies) and cerebrovascular disease 
(carotid intima media thickness and retinal vessels) to brain structure and function, alone or in 
combination with AD. Measures of brain structure and function included serial MRI and 
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neuropsychological testing. Exclusion criteria were: age younger than 55 years, non-English-
speaking, cortical strokes, severe illnesses other than cardiovascular or dementia, and use of 
medications that affect cognition. A total of 280 participants completed the neuropsychological 
assessments as well as the brain imaging. For the purpose of this study, here we only included 
data from those participants who had valid brain data112.  

 

ACE and IBIS 
The ACE and IBIS cohorts included in the reference database were aggregated from several 
NDAR projects: Longitudinal MRI Study of Infants at Risk for Autism (19), Biomarkers of 
Developmental Trajectories and Treatment in ASD (2026) and A Longitudinal MRI Study of Infants at 
Risk for Autism (ACE 2; 2027). Structural T1 weighted imaging was processed with Infant FreeSurfer108 
for individuals younger than 36 months, while individuals older than 36 months were processed 
with FreeSurfer 6.0.1. 

 

ADHD200 
The ADHD-200 Sample is a grassroots initiative, dedicated to accelerating the scientific 
community's understanding of the neural basis of ADHD through the implementation of open data-
sharing and discovery-based science. It includes the unrestricted public release of 776 anatomical 
datasets aggregated across 8 independent imaging sites, 491 of which were obtained from 
typically developing individuals and 285 in children and adolescents with ADHD (ages: 7–21 years 
old). Accompanying phenotypic information includes: diagnostic status, dimensional ADHD 
symptom measures, age, sex, intelligence quotient (IQ) and lifetime medication status. 
Preliminary quality control assessments (usable vs. questionable) based upon visual timeseries 
inspection are included for all resting state fMRI scans. T1-weighted structural data was 
processed using recon-all as implemented in FreeSurfer 6.0.1. 

 

ADNI - Alzheimer's Disease Neuroimaging Initiative 
Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The primary goal of ADNI has been 
to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), 
other biological markers, and clinical and neuropsychological assessment can be combined to 
measure the progression of MCIand early AD. For up-to-date information, see www.adni-info.org. 
MRI data is one component of the comprehensive data set collected in ADNI participants. ADNI 
began in 2004 and to date 3 different phases of ADNI have been undertaken. The MR protocol 
evolved over these 3 phases. The MRI protocol for ADNI1 (2004–2009) focused on consistent 
longitudinal structural imaging on 1.5T scanners using T1- and dual echo T2-weighted sequences. 
One-fourth of ADNI 1 subjects were also scanned using essentially the same protocol on 3T 
scanners. In ADNI-GO/ADNI2 (2010-2016), imaging was performed at 3T with T1-weighted 
imaging parameters similar to ADNI1. In place of the dual echo T2-weighted image from ADNI1, 
2D FLAIR and T2*-weighted imaging was added at all sites. Both fully sampled and accelerated 
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T1-weighted images were acquired in each imaging session. ADNI 3 imaging is being done 
exclusively on 3T scanners. Nearly all of the imaging sequences from ADNI2 have been updated 
for inclusion in ADNI 3. Each of the ADNI 2advanced imaging sequences is now included in the 
basic ADNI 3 protocol with a few site-wise exceptions related to sequence license issues. For the 
present study all structural T1-weighted scans were processed with FreeSurfer 6.0.1. 

 

AIBL - Australian Imaging. Biomarkers and. Lifestyle Flagship Study of Ageing  
The Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL) is a study to 
discover which biomarkers, cognitive characteristics, and health and lifestyle factors determine 
subsequent development of symptomatic AD. The AIBL MRI and PiB images were acquired with 
ADNI protocols. Data was collected by the AIBL study group. AIBL study methodology has been 
reported previously113. T1-weighted structural data was processed with FreeSurfer 6.0.1. 

 

AOBA 
The subjects were Japanese volunteers recruited by the Aoba Brain Imaging Research Center, 
Sendai, Japan. All were normal and right-handed. The group consisted of 772 men (age range: 
16–79 years) and 775 women (age range: 18–79 years). Data from subjects who had a history or 
symptoms of a central nervous system disease of any kind or brain injury were excluded from the 
database. Each subject was interviewed by medical doctors of the Institute of Development, Aging 
and Cancer (IDAC), Tohoku University. For the present study raw structural T1-weighted scans 
were processed with FreeSurfer 6.0.1.  

 

AOMIC ID1000, PIOP1 & PIOP2 - Amsterdam Open MRI Collection 
The Amsterdam Open MRI Collection (AOMIC) consists of three datasets with multimodal (3T) 
MRI data including structural (T1-weighted), diffusion-weighted, and (resting-state and task-
based) functional BOLD MRI data, as well as detailed demographics and psychometric variables 
from a large set of healthy participants (N=928, N=226, and N=216). Data from all three datasets 
were scanned on the same Philips 3T scanner (Philips, Best, the Netherlands), but underwent 
several upgrades in between the three studies. The ID1000 dataset was scanned on the 'Intera' 
version, after which the scanner was upgraded to the 'Achieva' version (converting a part of the 
signal acquisition pathway from analog to digital) on which the PIOP1 dataset was scanned. After 
finishing the PIOP1 study, the scanner was upgraded to the 'Achieva dStream’’ version (with even 
earlier digitisation of the MR signal resulting in less noise interference), on which the PIOP2 study 
was scanned. All studies were scanned with a 32-channel head coil (though the head coil was 
upgraded at the same time as the dStream upgrade). Full dataset description and methods are 
found in Snoek et al.114 All T1-weighted structural data was processed using FreeSurfer 6.0.1. 
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ARWIBO - Alzheimer's disease Repository Without Borders 
Data used in the preparation of this article were obtained from the Alzheimer's Disease Repository 
Without Borders (ARWiBo) (www.arwibo.it). The primary aim of ARWiBo is to publish all clinical, 
neuropsychological, EEG, neuroimaging, and biological data of patients with neurodegenerative 
diseases and CN individuals collected in over 10 years by a number of researchers of IRCCS 
Fatebenefratelli, Brescia, Italy115,116. The overall goal of ARWiBo is to contribute, through synergy 
with neuGRID (https://neugrid2.eu), to global data sharing and analysis in order to develop 
effective therapies, prevention methods and a cure for AD and other neurodegenerative diseases. 
All structural T1-weighted scans were processed with FreeSurfer 6.0.1.  

 

ASRB - Australian Schizophrenia Research Bank 
The Australian Schizophrenia Research Bank (ASRB) is a comprehensive biobank of clinical, 
neuroimaging and genetic data acquired in individuals with schizophrenia and healthy comparison 
individuals. Certain data comprising the biobank can be accessed subject to approval of the ASRB 
Access Committee. Participants were recruited from five sites in Australia, with all sites 
implementing the same recruitment procedures and MRI acquisition protocols. Exclusion criteria 
included any neurological disorder, history of brain trauma followed by a long period of amnesia 
(>24 h), intellectual disability (full-scale IQ<70), current drug or alcohol dependence, as well as 
electroconvulsive therapy in the past 6 months. Patients had a confirmed diagnosis of 
schizophrenia or schizoaffective disorder, based on DSM-IV criteria. Structural and diffusion-
weighted MRI scans of brain anatomy were acquired using Siemens Avanto MRI scanners located 
in Melbourne, Sydney, Brisbane, Perth and Newcastle. The same acquisition sequence was used 
at all sites. An individual traveled to all five sites and was scanned at each site to quantify gross 
inter-site differences. A Siemens MRI phantom was also scanned at each site to enable inter-site 
calibration. This calibration was done prior to MRI acquisition to help minimize potential inter-site 
variability. Structural T1-weighted images were acquired using an optimized MPRAGE sequence 
(voxel resolution: 1 mm3 isotropic, TR: 1980 ms, TE: 4.3 ms). Participants showing gross artefacts, 
cerebellar cropping and/or significant head motion were excluded, following protocols established 
as part of a prior study in this cohort. For the current study, the T1-weighted scans were processed 
using FreeSurfer 6.0.1. The reconstructed cortical surfaces were not manually edited. Approval 
to contribute ASRB data to this study was granted by the ASRB Access Committee on December 
17, 2020. The ASRB is funded by a National Health and Medical Research Council (NHMRC) 
Enabling Grant (386500; Carr V, Schall U, Scott R, Jablensky A, Mowry B, Michie P, Catts S, 
Henskens F, Pantelis C, Loughland C), and the Pratt Foundation, Ramsay Health Care, the Viertel 
Charitable Foundation, and the Schizophrenia Research Institute, using an infrastructure grant 
from the NSW Ministry of Health.  
 

BCP - Baby Human Connectome Project 
The Baby Connectome Project (BCP) is a four-year study of children from birth through five years 
of age, intended to provide a better understanding of how the brain develops from infancy through 
early childhood and the factors that contribute to healthy brain development. Data is collected at 
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two sites, UNC and UMN, using a Siemens 3T Prisma (32-channel coil) at both sites. The imaging 
modalities are structural, diffusion, and functional (resting state). For the present study all 
structural T1-weighted scans were processed with a customised version of FreeSurfer 6.0.1 and 
has undergone quality control. For more information on the BCP see Howell et al.117 

 

BGSP - Brain Genomics Superstruct Project 
The Brain Genomics Superstruct Project Open Access Data Release118,119 comprises a carefully 
vetted collection of neuroimaging, behaviour, cognitive, and personality data for over 1,500 human 
participants. Each neuroimaging data set includes one high-resolution MRI acquisition and one or 
more resting-state functional MRI acquisitions. Each functional acquisition is accompanied by a 
fully-automated quality assessment and pre-computed brain morphometrics. For the present 
study raw structural T1-weighted scans were processed with FreeSurfer 6.0.1.  

 

BHRCS - Brazilian High Risk Cohort Study for Mental Conditions 
The Brazilian High Risk Cohort Study for Childhood Psychiatric Disorders (BHRC)120 is a large 
community school-based study that is following 2,511 children from Brazil since 2010. 
Psychological, genetic, and neuroimaging data were obtained with the aim to investigate typical 
and atypical trajectories of psychopathology and cognition over development. Investigators first 
assessed childhood symptoms and family history of psychiatric disorders in a screening interview, 
collecting information from 9,937 index children at 57 schools in the cities of São Paulo and Porto 
Alegre, as well as from 45,394 family members. In the second stage, a random subsample 
(intended to be representative of the community, N=957) and a high-risk subsample (children at 
increased risk for mental disorders, based on family risk and childhood symptoms, N=1,554) were 
selected for further evaluation. In addition, 750 children were invited to take part in a neuroimaging 
study and to provide blood samples for the assessment of peripheral blood biomarkers. 
Participants were re-scanned in the same scanner for all follow-up assessments. The sample has 
two completed follow-up waves at 3 and 6 years. Recreational activities were performed for 
desensitisation on the day of scanning. All three waves were collected in the same scanners for 
each participant. For the present study raw structural T1-weighted scans were processed with 
FreeSurfer 6.0.1. 
 
BioDep - Biomarkers of Depression 
BioDep is an observational, multi-site (KCL, Cambridge & Oxford), case-control study to 
investigate depression. Depressed cases screened positive for current depressive symptoms on 
the Structured Clinical Interview for DSM-5 (SCID)121 and had a total score >13 on the Hamilton 
Rating Scale for Depression122. CN individuals screened negative for past or current depressive 
disorder on the SCID. Complete data was collected for 143 eligible participants categorised into 
three groups: CN (N=53), depressed cases with CRP <3mg/L (loCRP MDD, N=55), and 
depressed cases with CRP >3 mg/L (hiCRP MDD, N=35). All groups were matched for mean age, 
sex and handedness. For the present study raw structural T1-weighted scans were processed 
with FreeSurfer 6.0.1. 
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BSNIP - Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes 
BSNIP (Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes) is a multi-
centre dataset available through NDAR (ID: 2274) comprising individuals with psychosis, BD, their 
1st degree relatives as well as non-psychiatric CN individuals. For the present study raw structural 
T1-weighted scans were processed with FreeSurfer 6.0.1.  

 

Calgary 
The Calgary Preschool MRI Dataset was obtained from the Developmental Neuroimaging Lab at 
the University of Calgary123. The dataset consists of multi-modal imaging of 244 individuals in 
early childhood (2–8 years) and was processed using FreeSurfer 6.0.1.  

 

CALM - Centre for Attention Learning and Memory 
The children with problems of attention, learning and memory (CALM) cohort 124 consists of 800 
children with problems in attention, learning and memory, as identified by a health or educational 
professional, and 200 typically-developing children recruited from the same schools as those with 
difficulties. A subset of this cohort underwent a voluntary brain scan at the MRC CBU (www.mrc-
cbu.cam.ac.uk). Ethical approval was obtained from the Cambridgeshire Research Ethics 
Committee and participants or their carers gave written informed consent. MRI measures were 
collected in a one-hour session conducted on the same site as the CALM clinic on a 3T Siemens 
Prisma with a 32-channel quadrature head coil. Prior to scanning all children were acquainted 
with the scanning procedure in a mock scanner. Subsequently a high-resolution 3D T1-weighted 
structural image was acquired using a Magnetisation Prepared Rapid Gradient Echo (MPRAGE). 
For the present study raw structural scans were processed with FreeSurfer 6.0.1 using the 
combined T1 and T2 pipeline where both scans were available and T1 only if T2-weighted images 
were absent. 
 

 

Cam-CAN - Cambridge Centre for Aging and Neuroscience 
The present study included 648 participants from the Cambridge Centre for Aging and 
Neuroscience (Cam-CAN, www.cam-can.org)125,126. These participants were cognitively healthy 
adults (age range, 18–88) recruited from the local community. Ethical approval was obtained from 
the Cambridgeshire Research Ethics Committee and participants gave written informed consent. 
The MRI data come from the same MRC CBU scanner and sequences as the CALM sample 
above. This sample has previously been processed using FreeSurfer 5.3 and quality 
controlled127,128. 
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CAM-FT - Cambridge foetal testosterone 
CAM-FT is the Cambridge foetal testosterone cohort 129,130 comprised of 68 individuals recruited 
from a longitudinal study of the effects of FT on cognitive, behavioural, and brain development 131 
to undergo neuroimaging. All imaging for the FT cohort took place at the Wolfson Brain Imaging 
Centre at Addenbrooke’s Hospital (Cambridge, UK) on a Tim Trio 3T magnet (Siemens Medical 
Solutions). For the present study all raw structural T1-weighted scans were processed with 
FreeSurfer 6.0.1.  

 

CCNP-devCCNP - Chinese Color Nest Project devCCNP 
The Chinese Color Nest Project (CCNP) is a a twenty-year project, with a long-term goal to create 
neurobiologically sound developmental curves for the brain to characterize phenomenological 
changes associated with the onset of varying forms of mental health and learning disorders, as 
well as to predict the developmental status (i.e., age-expected values) of an individual brain’s 
structure or function132. It consists of three phases (see more details at 
http://deepneuro.bnu.edu.cn/?p=163): developing CCNP (devCCNP), maturing CCNP (matCCNP) 
and aging CCNP (ageCCNP). The devCCNP was named as 'Growing Up in China', targeting 
longitudinal data from 480 typically developing kids. As an initial sample the devCCNP design has 
been tested at Southwest University, which includes 3 waves of neuroimaging data from 192 
developing children (6–18 years) across five years (2013–2017)133. More details of these samples 
can be found in Dong et al.,134,135. In the present study all time-points from this cohort are included 
and all raw structural T1-weighted scans were processed with FreeSurfer 6.0.1.  

 

Cuban Human Brain Mapping Project (CHBMP) 
The Cuban Human Brain Mapping Project (CHBMP) repository is an open multimodal 
neuroimaging and cognitive dataset from 282 young and middle age healthy participants 
(31.9 ± 9.3 years, age range 18–68 years)136. This dataset was acquired from 2004 to 2008 as a 
subset of a larger stratified random sample of 2,019 participants from La Lisa municipality in La 
Habana, Cuba. Magnetic resonance imaging (MRI) was performed on a 1.5T scanner 
(MAGNETOM Symphony Siemens Erlangen Germany). All data was subsequently processed 
using FreeSurfer 6.0.1. 
 
CHILD - Cambridge Human Imaging and Longitudinal Development 
Cambridge Human Imaging and Longitudinal Development (CHILD) Study will follow the 
development of babies who have an autistic mother or an autistic older sibling from pregnancy 
until 36 months old in order to better understand early brain and behaviour differences in babies 
who have an increased genetic likelihood of being autistic. The current cohort includes one pre- 
(~33 pcw) and one post-natal (~52 pcw) 1.5T T1-weighted MRI scan. Scans were completed using 
a GE Optima MR450w 1.5T scanner at the Evelyn Perinatal Imaging Centre, Addenbrookes. Total 
scan time for each participant was approximately 30 minutes. At the postnatal stage, scans were 
completed during natural sleep, without sedation. Preprocessing was not done using standard 
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FreeSurfer pipelines; instead the following procedure was followed. Firstly, the orientation of the 
foetal scans were determined. This was achieved through manually drawing an oil capsule next 
to left temporal lobe using an image viewer which does not employ orientation codes (MRIcro) 
and then, using an image viewer which does employ orientation codes (itksnap), manually 
resetting the orientation code so that the oil capsule appears on the left. The image origin was 
then reset to the ACPC fibre bundle. To perform skull stripping brain ROIs were manually drawn 
and multiplied with original head images. A study specific template was then created from a 
random sample of participants with corresponding foetal and infant scans using the 
'buildtemplateparallel.sh' script from the Advanced Normalisation Toolkit. To move STA31 
anatomical ROIs137 into participant space the STA31 template was co-registered to the study 
specific template, the study specific template itself being co-registered to each participant. After 
concatenation of the resulting transformations and re-slicing of ROIs, the number of voxels under 
each warped STA31 ROI was counted and multiplied by appropriate millimeter dimensions 
resulting in a volume estimate. 

 

COBRE - Center for Biomedical Research Excellence 
The Cobre dataset138 was downloaded from the SchizConnect database (http://schizconnect.org), 
where it had been obtained from the COllaborative Informatics and Neuroimaging Suite Data 
Exchange tool (COINS; http://coins.mrn.org/dx). In this dataset, a diagnosis of schizophrenia was 
made using the Structured Clinical Interview for DSM Disorders (SCID; Diagnostic and Statistical 
Manual of Mental Disorders, DSM-IV). Exclusion criteria included confirmed or suspected 
pregnancy, any history of neurological disorders and a history of mental retardation. The data was 
acquired using a 3T Siemens scanner. For more details on the included sample and processing 
see139. For the present study all structural T1-weighted scans were processed with FreeSurfer 
6.0.1. 

 

CONTE 
Participants were part of the University of North Carolina (UNC) Early Brain Development Study, 
approved by the institutional review boards of UNC and Duke University 140. Mothers of singletons 
and twins were recruited at the prenatal diagnostic clinics of UNC Hospitals and Duke University 
Medical Center, as well as by local advertising. Informed consent was obtained on enrollment 
from each mother and from a parent at each postnatal imaging visit. Exclusion at enrollment 
included major maternal medical or psychiatric illness, substance use during pregnancy, or 
abnormalities on prenatal ultrasound. All magnetic resonance images were acquired at UNC using 
either a Siemens Allegra head-only 3T scanner or a Siemens TIM Trio 3T scanner, which replaced 
the Allegra in 2011 (Siemens Medical System, Inc., Erlangen, Germany). Infants were scanned 
during natural sleep after being fitted with earplugs and secured using a vacuum-fixed 
immobilisation device after birth and at ages 1 and 2 years. At 4 and 6 years, children were 
scanned awake watching a movie after being trained in a mock scanner. T1- and T2-weighted 
images were rated for motion artefacts on a scale of 1 to 4; images with a rating of 4 were excluded 
if artefacts were present in more than a few slices. Neonatal global tissue volumes were 



 
 

131 
 

determined using an atlas-based expectation-maximisation segmentation algorithm based on 
both T1- and T2-weighted images specifically adapted to the neonate brain141. Tissues were 
automatically segmented into GM, WM, and CSF; and cortical tissue volumes were derived from 
a 28-region parcellation of the cerebrum achieved by nonlinear warping of a parcellation atlas 
template as previously described142. Data were processed using CIVET, see 140 for full processing 
details. 

 

Cornell 
The Cornell dataset is based on a multi-site study of MDD that has been previously described in 
detail143. All psychiatric diagnoses were based on structured clinical interviews (MINI or SCID) 
conducted by a trained clinician. High-resolution T1-weighted anatomical scans (MP–RAGE or 
SPGR) were obtained with specific scanning parameters variable by site. Most sites used a TR of 
∼2 s, in-plane resolution of ∼3.5 mm, and obtained 150–180 volumes in ∼5–6 min. Detailed 
scanning parameters for each site have previously been reported143.  

 

CTAAC - Cape Town Adolescent Antiretroviral Cohort  
The purpose of the Cape Town Adolescent Antiretroviral Cohort (CTAAC) is to investigate chronic 
disease processes in perinatally HIV-infected South African adolescents. The focus is on four key 
domains: the impact of chronic HIV infection on development; the neuropsychiatric manifestations 
of HIV in adolescence; the development of chronic lung disease; and early markers of 
cardiovascular dysfunction. Throughout, the emphasis of this research is on understanding the 
interactions between chronic disease processes across organ systems. The proposal will enroll 
520 perinatally-infected children ages 9-14 years established on antiretroviral therapy. We will 
follow these children with regular measures (including measures of physical and psychological 
development, clinical well-being, lung function, cardiovascular status, and emergent risk 
behaviours) at 6-monthly intervals over 36 months. A CN group of 80 HIV-negative controls will 
be matched on age, gender and socioeconomic status, in order to collect normative data on key 
parameters.  

 

cVEDA - Consortium on Vulnerability to Externalizing Disorders and Addictions 
The full characteristics of the cVEDA cohort are described elsewhere144: In short cVEDA is a 
longitudinal planned cohort study of 10,000 individuals between 6 and 23 years of age, of all 
genders, representing five geographically, ethnically, and socio-culturally distinct regions in India. 
Structural (T1, T2, DTI) and functional (resting state fMRI) MRI brain scans have been performed 
on approximately 15% of the individuals. In addition, 250 T1w scans from individuals aged 
between 6 and 60y were obtained from the India Brain Template project145. For the present study 
raw structural T1-weighted scans were processed with FreeSurfer 6.0.1.  
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dHCP - Developing Human Connectome Project 
The Developing Human Connectome Project (dHCP) is an Open Science project funded by the 
European Research Council to provide a large dataset of functional and structural brain images 
from 20 to 44 weeks of gestational age (GA). Neuroimaging was acquired in a single scan session 
for each infant at the Evelina Newborn Imaging Centre, Evelina London Children’s Hospital, using 
a 3T Philips Achieva system (Philips Medical Systems, Best, The Netherlands). All infants were 
scanned without sedation in a scanner environment optimized for safe and comfortable neonatal 
imaging, including a dedicated transport system, positioning device and a customized 32-channel 
receive coil, with a custom-made acoustic hood 92. MR-compatible ear putty and earmuffs were 
used to provide additional acoustic noise attenuation. Infants were fed, swaddled and comfortably 
positioned in a vacuum jacket prior to scanning to promote natural sleep. All scans were 
supervised by a neonatal nurse and/or paediatrician who monitored heart rate, oxygen saturation 
and temperature throughout the scan. Using data from the 2nd DHCP release, tissue 
segmentation and cortical surface extraction was performed using the MCRIBS pipeline for 
neonatal cortical parcellation146 utilizing DHCP tools DrawEM147 and Deformable148, respectively. 
Cortical surfaces were parcellated using the following sequence of steps: inflation and spherical 
mapping149, registration to a template149 and Bayesian labelling150. Structural volumes were 
obtained from segmented tissue images corrected by the location of the surfaces. 

 
DCHS - Drakenstein Child Health Study 
The Drakenstein Child Health Study as included in the present study consists of two related 
cohorts: 

DCHS Infants 
This is a nested sub-study that included infants enrolled in a larger population-based birth cohort 
study, the Drakenstein Child Health Study (DCHS). This DCHS is located in South Africa, in a low 
to middle-income community of approximately 200,000 people in which there is limited migration. 
Mothers were recruited at 20–24 weeks gestation, written informed consent obtained, and 
background data collected for the DCHS. In this nested sub-study, data from two to four week old 
infants underwent brain magnetic resonance imaging. They were wrapped, fed and then imaged 
in quiet, natural (unsedated) sleep. Earplugs and mini-muffs were used for double ear protection; 
a pulse oximeter was used to monitor pulse and oxygenation, and a qualified neonatal nurse or 
pediatrician was present with the infant in the scanner room for the duration of the imaging 
session. Multimodal neuroimaging assessment was done at the Cape Universities Body Imaging 
Centre (CUBIC). The imaging modalities performed included: (1) structural MRI with T1-weighting 
and T2-weighting to examine cortical and subcortical volumes; (2) diffusion tensor imaging for 
white matter microstructure; magnetic resonance spectroscopy; and (4) resting state functional 
MRI for regional connectivity151. 

DCHS Mothers 
In addition to the recruitment of neonates as described above the DCHS cohort also included 
mothers. In brief, participants were recruited from two primary health care clinics (TC Newman 
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clinic and Mbekweni clinic) in the Paarl area of the Western Cape152. Inclusion criteria for the 
DCHS included: women over the age of 18 years, who were between 20 and 28 weeks pregnant, 
who presented to one of two health care clinics for antenatal care (TC Newman and Mbekweni 
clinics), and had no intention of moving out of the area within the following year, and were able to 
give written consent153. Imaging for this cohort took place at the Cape University Body Imaging 
Centre (CUBIC) at Groote Schuur Hospital at the University of Cape Town (3T Magnetom Skyra 
(Siemens).  

 
DLBS - Dallas Lifespan Brain Study 
The Dallas Lifespan Brain Study (DLBS) is an open imaging dataset aiming to provide 
understanding of the antecedents of preservation and decline of cognitive function at different 
stages of the adult lifespan, with a particular interest in the early stages of a healthy brain’s march 
towards AD. It includes 350 healthy adults, aged 20-89 thoroughly characterized in terms of 
cognition, brain structure and brain function across the adult lifespan. Participants received a 
structural MRI with DTI, three task-based functional MRI scans, and a resting state scan on a 
Philips 3T scanner. All participants were scanned on a single 3T Philips Achieva scanner 
equipped with an 8-channel head coil. For the present study raw structural T1-weighted scans 
were processed with FreeSurfer 6.0.1.  

EDSD - European DTI Study on Dementia 
The EDSD data include 471 Diffusion Tensor Imaging (DTI) and 471 structural MRI scans 
(MPRAGE) from patients with AD, MCI, and Healthy Elderly subjects. EDSD is a cross-sectional 
multicenter study. As of March 2016, the EDSD study sample consists of 139 AD patients, 160 
MCI patients and 194 HC. Dementia patients were diagnosed with clinically probable AD 
according to the NINCDS-ADRCA criteria154 and were required to be free of any other significant 
neurological, psychiatric, or medical conditions. Patients with MCI were diagnosed according to 
the Petersen criteria, exhibiting subjective and objective cognitive impairment (exceeding 1.5 
standard deviations in the Consortium to Establish a Registry of Alzheimer's Disease [CERAD] 
testing battery, controlled for age and education) and being free of dementia155. Some MCI 
patients (N=19) exhibited past or current psychiatric symptoms such as depressive or anxiety 
symptoms, which were recorded in the clinical data. Cerebrospinal fluid (CSF) information on 
biomarkers of amyloid and tau pathology is available for 76 MCI subjects, allowing a classification 
according to the revised diagnostic criteria156. CN were required to be free of cognitive complaints 
and to have performed according to the age and education adjusted norms in all subtests of the 
CERAD testing battery 157. For the present study all structural T1-weighted scans were processed 
with FreeSurfer 6.0.1. 

 

EMBARC - Establishing Moderators and Biosignatures Of Antidepressant Response for 
Clinical Care 
The Establishing Moderators and Biosignatures Of Antidepressant Response for Clinical Care 
(EMBARC) Study is a comparative effectiveness trial of three mechanistically distinct treatments 
for Major Depressive Disorder (MDD) (citalopram, bupropion, and cognitive behavioural therapy) 



 
 

134 
 

in which investigators will assess a comprehensive array of carefully selected clinical (i.e., anxious 
depression, early life trauma) and biological (i.e., genetic, neuroimaging, serum, epigenetic) 
moderators and mediators of outcome. For the present study raw structural T1-weighted scans 
were processed with FreeSurfer 6.0.1.  

 
Female ASD 
The dataset termed 'Female ASD' corresponds to the NDAR dataset 'Multimodal Developmental 
Neurogenetics of Females with ASD' under ID 2021. It includes a sex-balanced cohort of 
individuals with and without ASD scanned at George Washington University. For the present study 
raw structural T1-weighted scans were processed with FreeSurfer 6.0.1.  

 

FinnBrain 
Participants were mother–infant dyads recruited from the FinnBrain Birth Cohort Study 
(www.finnbrain.fi)158, which is a population-based cohort that included participants from 
Southwestern Finland (Turku region and Åland islands). The studies were conducted according 
to the Declaration of Helsinki and were reviewed and approved by the Ethics Committee of the 
Hospital District of Southwest Finland (ETMK:31/180/2011). Infant T1-weighted data were 
successfully processed with Infant FreeSurfer (N=106) (for total cortical grey matter and white 
matter), using majority vote segmentation for the subcortex 159. Toddler data were obtained with 
a silent T1-weighted PETRA sequence (N=11), and we averaged two images before processing 
with FreeSurfer 6.0. For T1-weighted (MPRAGE) images from 4-year-olds (N=31) and 5-year-
olds (N=121) we obtained GMV, WMV and CSF measures with FreeSurfer 6.0 and used FSL 
FIRST (FSL v6.0) for segmenting subcortical volumes (based on validation against manual 
segmentations of the subcortical structures160). 
 
Frankfurt 
The Frankfurt dataset is an openly available multi-modal imaging dataset linked to Genc et al. 161 
made available through OSF. It includes a T1-weighted high-resolution anatomical image data 
preprocessed with FreeSurfer 5.3 included in the public release. 
 
GOBS - Genetics of Brain Structure and Function study 
Since 2006, the Genetics of Brain Structure and Function study (GOBS), has recruited randomly 
ascertained extended pedigrees of Mexican American descent living in San Antonio (McKay et al. 
2014). High-resolution structural MRI scans were acquired on a Siemens 3T TIM Trio at 
UTHSCSA. The sample included 1,443 individuals (836 female) with mean age of 40.7 years 
(SD=15.5, range=18–85). Only a subset of individuals with minimal relatedness (1/8th) were used 
for the normative models in this study.  
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GOSICH - Great Ormond Street Institute for Child Health 
GOSICH is a neurotypical control cohort from within the larger MELD project1 scanned at Great 
Ormond Street Institute for Child Health. All participants were scanned on a 3T whole body MRI 
system (Magnetom Prisma, Siemens Medical Systems), using a 20-channel receive head coil and 
body coil for transmission and 80mT/m magnetic field gradients. For the present study raw 
structural T1-weighted scans were processed with FreeSurfer 5.3.  

 
GUSTO - Growing Up in Singapore Towards Healthy Outcomes 
The Growing Up in Singapore Towards Healthy Outcomes (GUSTO)162 cohort consists of 
pregnant Asian women attending the first trimester antenatal ultrasound scan clinic at the National 
University Hospital and KK Women's and Children's Hospital in Singapore. The parents were 
Singapore citizens or permanent residents of Chinese, Malay or Indian ethnic background. Birth 
outcomes and pregnancy measures were obtained from hospital records. Socioeconomic status 
(household income) was extracted from survey questionnaires conducted as a part of a scheduled 
appointment during pregnancy. The GUSTO study was approved by the National Healthcare 
Group Domain Specific Review Board and the Sing Health Centralized Institutional Review Board, 
and all participating mothers provided informed consent. Children were scanned at different ages 
throughout their development. The present study includes longitudinal data (3 time points) from 
children between the age of 4 and 8 (with scanning completed around years 4, 6 and 8). For the 
present study, structural T1-weighted MPRAGE scans were processed with FreeSurfer 6.0.1.  

 

HABS - Harvard Aging Brain Study 
The Harvard Aging Brain Study (HABS NIH-P01AG036694)163 is a longitudinal observational 
study designed to further our understanding of differentiating 'normal' aging from preclinical AD. 
Longitudinal data collection in HABS is ongoing and now in its eleventh year. Inclusion criteria 
included: 50 years of age or older (minimum age for the lifespan MRI project at enrollment was 
62); a score of 0 on the Clinical Dementia Rating Scale; a score of greater than 25 on the Mini-
Mental State Examination; scores above age and education-adjusted cutoffs on the 30-Minute 
Delayed Recall of the Logical Memory Story A164 (ADNI based cut-offs, http://www.adni-info.org/); 
and a score of less than 11 on the Geriatric Depression Scale. Exclusion criteria included: history 
of alcoholism, drug abuse, head trauma, or current serious medical/psychiatric illness. The criteria 
utilized for inclusion/exclusion ensures the HABS cohort consists of a diverse group of cognitively 
normal, healthy older individuals at study enrollment. As of March 2020, 15% of the initial cohort 
had progressed to MCI, and we expect additional individuals to progress over the next five years. 
For the present study raw structural T1-weighted scans were processed with FreeSurfer 6.0.1.  

 

 
1 https://www.protocols.io/view/meld-protocol-1-patient-and-control-inclusion-in-t-ne2dbge  
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Harvard foetal 
Harvard foetal cohort of in-utero foetal MRIs combines (i) foetal MRIs of pregnant mothers that 
were prospectively recruited as control subjects for previous research projects and (ii) clinical 
foetal MRIs that were performed to screen for foetal brain abnormalities but were clinically 
interpreted as normal by two board-certified radiologists, experienced in foetal MRI. Inclusion 
criteria for enrollment were as follows: no serious maternal medical conditions during pregnancy, 
between 15 and 37 GWs; fetuses recruited prospectively as controls in other research studies; 
and fetuses with MRI that were read as normal by radiologists and pediatric neuroradiologists. 
Exclusion criteria were as follows: multiple gestation pregnancies, dysmorphic features on US 
examination, brain malformations or brain lesions identified on MRI or US, other identified organ 
anomalies, known chromosomal abnormalities, and known congenital infections. The gestational 
age of fetuses was estimated based on the available clinical data (crown-rump length and/or the 
first day of the last menstrual period) as recommended by the American College of Obstetricians 
and Gynecologists and Committee on Obstetric Practice, 2017. For the present study, the raw 
structural T2-weighted scans were processed using in-house-built pipelines that involved inter-
slice motion correction for super-resolution volume reconstruction followed by brain extraction and 
tissue segmentation165–167. 
 
HBN - Healthy Brain Network 
The Healthy Brain Network (HBN)168, is an ongoing initiative focused on creating and sharing a 
biobank of data from 10,000 New York area participants (ages 5–21) organised by the Child Mind 
Institute. The HBN Biobank houses data about psychiatric, behavioural, cognitive, and lifestyle 
phenotypes, as well as multimodal brain imaging (resting and naturalistic viewing fMRI, diffusion 
MRI, morphometric MRI), electroencephalography, eye-tracking, voice and video recordings, 
genetics and actigraphy. In the present project pre-processed FreeSurfer output was used 
alongside the primary diagnostic labels from all data available up to and including release 7. 

 

Human Connectome Project 
Publically available data from the human connectome project (HCP; 
http://www.humanconnectome.org/), comprised MRI data from 1,113 individuals (606 female) 
from 457 unique families (including 170 dizygotic twins, 286 monozygotic twins, 576 non-twin 
siblings, and 25 non-sibling familial relations) with mean age 28.8 years (SD=3.7, range=22–37). 
As previously described in detail88,169, T1-weighted and T2-weighted structural images were 
acquired on a 3T Siemens Skyra employing a 32-channel head coil.  
 
Human Connectome Project Aging and Development 
The Human Connectome Project Aging170 and Development studies, HCPa and HCPd 
respectively are extensions of the aforementioned HCP study, specifically aimed at extending the 
coverage of HCP to a fuller lifespan. They follow a comparable acquisition and recruitment 
protocol to HCP171, albeit with some key adaptations aimed to tackle the challenges of scanning 
younger and older populations compared to HCP. Key differences include a slightly larger T1w 
voxel size (0.8mm) to allows some additional SNR margins, use of volumetric navigators for 
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prospective motion correction, only one acquisition per modality to reduce scanning time, multi-
echo acquisition for T1 (TE=1.8, 3.6, 5.4 and 7.2ms), slower TR (800ms) to allows maintenance 
of full Fourier k-space acquisition necessitated by the increased number of echoes. For the 
present project, minimally processed data was obtained directly from HCP and was run through 
FreeSurfer 6.0.1. 

 

iADNI - Italian Alzheimer's Disease Neuroimaging Initiative 
I-ADNI is a cross sectional study and consists of 262 patients with subjective memory impairment, 
mild cognitive impairment, AD dementia and frontotemporal dementia enrolled in 7 Italian centers. 
Few cognitively healthy elderly CN individuals were also included. This study has provided 
standardisation of MRI acquisition and imaging marker collection across different Italian clinical 
units and equipment. This is a mandatory step to the implementation of imaging biomarkers in 
clinical routine for early and differential diagnosis. MRI site qualification and MP-RAGE quality 
assessment was applied following the ADNI-1 procedures. For the present study all structural T1-
weighted scans were processed with FreeSurfer 6.0.1. 

 

ICBM 
The International Consortium for Brain Mapping aims to collect comprehensive neuroimaging and 
genetics data from 7000 individuals in an effort to generate a probabilistic human brain atlas172,173. 
Current data are available through the University of Southern California’s Laboratory of 
Neuroimaging (LONI; http://loni.usc.edu/about_loni). For the present project all T1-weighted 
anatomical images were downloaded from the LONI repository and processed using FreeSurfer 
6.0.1.  

 

IMAGEN 
IMAGEN is a European research project examining how biological, psychological, and 
environmental factors during adolescence may influence brain development and mental health174. 
It includes longitudinal data of up to 3 time-points for an early adolescent sample from across 
Europe. All T1-weighted structural data was processed using the standard recon-all pipeline 
included in FreeSurfer 6.0.1. 

 

IMAP - Multi-modal Neuroimaging in Alzheimer's Disease 
Two hundred and fifteen cognitively unimpaired individuals from the IMAP study (multimodal 
neuroimaging of early Alzheimer’s disease; Caen, France; PIs: Gaël Chételat (scientific) & Vincent 
de La Sayette (MD); sponsor: Caen University Hospital) 175, aged between 19 and 85 (88 
participants < 40 years old, 56 between 40 and 60 years old, and 71 participants > 60 years old), 
were included in this study. Participants were recruited from the general population through 
advertisement or word of mouth. They had no history or clinical evidence of major neurological or 
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psychiatric disorder and performed in the normal range in all neuropsychological tests (including 
tests of episodic memory, working memory, language skills, executive functions, and visuospatial 
abilities). A regional review board has approved the use of human participants for this study, and 
consent forms from all participants were obtained. All neuropsychological, MRI, and PET 
assessments were performed in close temporal proximity (within 3 months). MRI scans were 
acquired at the Cyceron Center (Caen, France) on a Philips (Eindhoven, The Netherlands) 
Achieva 3T scanner using a 3D fast-field echo sequence. All T1-weighted structural data was 
processed using the standard recon-all pipeline included in FreeSurfer 6.0.1. 

 

IXI 
The IXI data set consists of a variety of MR images176 from nearly 600 normal, healthy subjects 
with their respective demographic information that are freely available for download (https://brain-
development.org/ixi-dataset/). Only the T1-weighted images were used in the present project. MRI 
data were acquired in three different scanners, two of which were 1.5T and one was 3T. The 3T 
scanner was a Philips Intera and the T1-weighted acquisition consisted of a standard T1 with the 
following parameters TR=9.6, Echo Time=4.6, FoV=208 x 208, Flip Angle=8.0. The 1.5T scanner 
was a Philips Gyroscan Intera using a T1 weighted (TR=9.6, Echo Time=4.6, Flip Angle=8.0) 
acquisition. All scans were processed with FreeSurfer 6.0.1. 

 

KNE96 - Korean normal elderly brain template study 
The KNE96 dataset includes 96 (M/F=48/48) right-handed, cognitively normal (CDR=0) Koreans 
aged 60 year or older (M=69.5±6.2 years, F=70.1±7.0 years) selected from the participants of the 
Korean Longitudinal Study on Cognitive Aging and Dementia (KLO-SCAD). Three-dimensional 
(3D). 
 
LA5c - UCLA Consortium for Neuropsychiatric Phenomics LA5c Study 
The LA5c dataset comprises data on OpenNeuro from the UCLA Consortium for Neuropsychiatric 
Phenomics LA5c Study 177 which includes 272 subjects with and without psychiatric diagnoses. 
For the present study all structural T1-weighted scans were processed with FreeSurfer 6.0.1. 

 

LATAM 
The cohort referred to as LATAM in the present dataset was collected as part of the Latin 
American Network for the Study of Early Psychosis (ANDES; www.cyted.or/ede/NDES), a 
consortium of research groups from six Latin American countries: Argentina, Bolivia, Brazil, Chile, 
Colombia and Mexico178. The data was specifically collected at the Pontificia Universidad Católica 
de Chile and included a T1 weighted acquisition from a Philips Ingenia 3T MRI scanner with a 16-
channel coil179. 
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LIFE - Leipzig Research Centre for Civilization Diseases Study 
The Leipzig Research Centre for Civilization Diseases Study (LIFE Study) is a population-based 
study from Leipzig, Germany, with the objective to investigate the development of major modern 
diseases180. Overall, 10,000 participants were randomly drawn from the local population, of whom 
2,667 underwent MRI and detailed screening. With age-associated diseases such as mild and 
major neurocognitive disorder being one of the main focuses of this study, most participants were 
adults older than 60 years of age.  

 

MCIC 
The Mental Illness and Neuroscience Discovery Institute (MIND) Institute, now the Mind Research 
Network (MRN, www.mrn.org) formed the MIND Clinical Imaging Consortium (MCIC) in 2003 to 
conduct a multi-institutional, cross-sectional study of patients with schizophrenia and 
demographically matched, by sex and age, healthy controls to identify quantitative neuroimaging 
biomarkers for this devastating disease181. Standardisation of acquisition across sites was 
previously evaluated in a separate calibration and validation study182. Structural T1 weighted 
imaging data from this consortium was made available through the Collaborative Informatics 
Neuroimaging Suite (COINS). For the present study all data was processed with FreeSurfer 6.0.1.  
 

MCSA (Mayo Clinic Olmsted Study of Aging) 
The objectives of the Mayo Clinic Study of Aging were to determine in the population of Olmsted 
County, Minn., (1) the prevalence of MCI; (2) the incidence of MCI; (3) conversion rates from MCI 
to dementia or AD; (4) risk factors for MCI; and (5) risk factors for the progression from MCI to 
dementia or AD183. Details on the recruitment procedure and study design can be found in Roberts 
et al.183 For the current project the first time-point scans of the first 1,000 subjects were shared. 
All images were processed using FreeSurfer software version 6.0.1. 

 

MRi-Share 
The i-Share (for internet-based Student Health Research enterprise; www.i-share.fr) cohort 
project was conceived to investigate the impact of learning and social changes associated with 
higher education on maturational changes in the brain, and how it interacts with the personal traits, 
physical and mental health status to influence immediate as well as later-life events. An important 
sub-component of the i-Share study, which was called 'MRi-Share', is a multi-modal brain 
magnetic resonance imaging (MRI) database collected in a subset of i-Share participants 184. The 
specific motivations behind MRi-Share were to 1) characterize late-maturational changes of post-
adolescence brain; 2) investigate the impact of higher education on late maturational processes 
of the brain; 3) study the associations between brain phenotypes and neuropsychiatric conditions 
prevalent in young adults, such as migraine, depression and anxiety disorders, and substance 
abuse; and 4) establish the early occurrence of imaging biomarkers of late-life disorders, such as 
white matter hyperintensities (WMH) and enlarged perivascular space (ePVS)'. The MRI 
acquisition protocol for the MRi-Share database was designed to closely emulate that of the UKB 
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MR brain imaging study, in terms of both modalities and scanning parameters for each. All 
neuroimaging data were acquired on the same Siemens 3T Prisma scanner with a 64-channels 
head coil (gradients: 80 mT/m - 200 T/m/s), in the 2-year period between November 2015 and 
November 2017. All T1-weighted images were processed using FreeSurfer software version 
6.0.1. 

 

Narratives 
The "Narratives" collection185 aggregates auditory story-listening fMRI datasets acquired over the 
course of roughly seven years (2011–2018). Stimuli comprised 28 naturalistic spoken stories 
ranging from ~3 to ~56 minutes for a total of ~5 hours of unique audio stimuli. The collection 
includes 345 unique subjects participating in over 750 functional scans with accompanying 
anatomical data. For the present study all structural T1-weighted scans were processed with 
FreeSurfer 6.0.1. 

 

NeuroScience and Psychiatry Network 
The Neuroscience and Psychiatry Network (NSPN) study comprises a primary cohort of 2402 
healthy young people, recruited from schools, colleges, NHS primary care services and direct 
advertisements in north London and Cambridgeshire. Participants were stratified into five age 
groups (14–15, 16–17, 18–19, 20–21 and 22–25 years) and each stratum was evenly balanced 
for sex and ethnicity. Primary participants completed demographic, medical, childhood trauma 
and mental health questionnaires by post. The secondary cohort sub-sampled approximately 60 
individuals from each stratum in the primary cohort, maintaining the sex and ethnicity balance. 
Secondary participants completed MRI scanning as part of a whole-day assessment at one of two 
sites (Cambridge and London, UK), on at least two occasions. Cohort retention for the MRI follow-
up was 74%186. The present study included 295 individuals for which baseline T1 images were 
available. These data were preprocessed using FreeSurfer 5.3 and manually quality controlled as 
detailed previously187,188. 

 

NHGRI 
The NHGRI dataset refers to NDAR project 2936 and consists of imaging data shared by the 
NIMHP-IRP Data Science and Sharing Team. All T1-weighted images were processed using 
FreeSurfer 6.0.1.  

 

NIH 
The National Institute of Health (NIH) sample 54 was part of a study of normal brain development 
where participants submitted a blood sample, underwent a comprehensive neuropsychological 
evaluation, and a T1-weighted structural brain scan every two years over a period of up to 12 
years. All T1-weighted images were processed using FreeSurfer 6.0.1.  
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NIHPD Infant and Adult 
The NIH study of pediatric development (NIHPD) is a multisite, combined cross-sectional and 
longitudinal study of normal, healthy developing children (representative of US Census 2000 
statistics for gender, family income, race/ethnicity) from early childhood through young adulthood. 
A complete list of the sites and procedures can be found at: 
https://www.nitrc.org/docman/view.php/98/288/MRI_Manual_Nov06.pdf.  

 

NKI - Nathan Kline Institute Rockland Sample 
The Nathan Kline Institute (NKI) Rockland Sample is an ongoing initiative to generate a deeply 
phenotype and community ascertained lifespan sample with advanced neuroimaging and 
genetics189. For the present study we downloaded multi-modal imaging data from the 100- 
functional connectomes project for 532 quality controlled T1 images and these were processed 
using FreeSurfer 5.3. 

 

NTB_Yale 
The Turk-Browne lab dataset (NTB_Yale) comprises anatomical scans from the initial three 
cohorts of data collection in an ongoing awake infant fMRI project. Participants were scanned at 
one of three sites on a 3T MRI: the Scully Center for the Neuroscience of Mind and Behavior at 
Princeton University (Siemens Skyra), the Magnetic Resonance Research Center (MRRC) at Yale 
University (Siemens Prisma), and the Brain Imaging Center at Yale University (Siemens Prisma). 
Participants in the Princeton cohort were recruited through flyers and word-of-mouth, and in the 
Yale cohorts from maternity ward visits at the Yale-New Haven Hospital. Informed consent was 
obtained from a parent or guardian according to a protocol approved by the institutional IRB. The 
sample included healthy participants between 3 and 36 months of age. Most of the scans were 
collected while the infant was watching a movie, though on rare occasions they had fallen asleep. 
See reference190 for further details about data acquisition for the first two cohorts. 

 

OASIS3 - Open Access Series of Imaging Studies 
The Open Access Series of Imaging Studies (OASIS) is a multimodal collection of data focused 
on the effects of healthy aging and AD that is freely available to the scientific community. OASIS-
3 incorporates data from 1,098 participants covering the adult life span aged 42 to 95, including 
cognitively normal individuals and individuals with early-stage AD dementia. OASIS-3 includes 
participants enrolled into several ongoing studies through the Charles F. and Joanne Knight 
Alzheimer Disease Research Center (Knight ADRC) at Washington University in St. Louis 
spanning over 15 years and several research studies - Memory and Aging Project, Adult Children 
Study191, and Healthy Aging and Senile Dementia. Each study targets varying cohorts but includes 
similar assessments and visit intervals. The following cohorts were recruited: (1) Individuals who 
were generally healthy, were cognitively normal (CDR=0), and had a family history of AD, defined 
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as being a biologic child of at least one parent with a reported history of AD dementia with onset 
age 80 years; (2) individuals who were generally healthy, were cognitively normal (CDR=0), and 
had no family history of AD for either biological parent and lived at least to age 70 years; and (3) 
healthy individuals 65 and older, both those who were cognitively normal (CDR 0) and this with 
very mild-mild symptomatic AD (CDR 0.5 and 1). Exclusion criteria included medical conditions 
that precluded longitudinal participation (e.g., end-stage renal disease requiring dialysis) or 
medical contraindications for the study arms (e.g., pacemaker for MRI, anticoagulant use for 
lumbar puncture). Participants were recruited from the community via flyers, word of mouth, and 
community engagements. Participants from all cohorts agreed to submit an initial blood sample 
for genetic testing, complete regular cognitive testing, and neuroimaging and lumbar punctures 
approximately every 2-3 years. Each participant was enrolled along with a collateral source, 
someone who knew the participants well (e.g., spouse or adult child) and could report whether 
the participant’s current cognitive and functional performance was or was not at previously 
attained levels. Participants enrolled in studies at the Knight ADRC Clinical Core were referred to 
the Knight ADRC Research Imaging (KARI) Program for magnetic resonance imaging (MRI) and 
positron emission tomography (PET) scans. All participants were required to have a CDR ≤1 at 
the time of most recent Clinical Core assessment. Participants completed screening for general 
health information to assess any contraindications to PET or MR imaging. Participants were 
excluded for the following health reasons: women who were pregnant or breastfeeding; implanted 
medical devices such as pacemakers and drug pump; history or risk of metal in the eye; and 
history of claustrophobia. Eligible participants signed informed consent for one of the KARI 
imaging studies that included MR only, PET only, or MR and PET scans. To the best effort of 
investigators, participants underwent scan sessions within six months of Clinical Core visits. 
Across the years of scanning, gaps in funding, funding for additional sub-studies, or participant 
related delays, have caused variations in visit timelines resulting in extended or decreased 
intervals. 

 

OHSU 
The Oregon Health & Science University (OHSU) study (PIs: Damien Fair, Joel Nigg) included 
individuals with ADHD, ASD and typically-developing CN individuals as previously described192–

196. Participants were recruited via mailings to commercial mailing lists and public advertisements. 
Families participated in a multi-gated procedure that included an initial phone screen. Parents of 
children who remained eligible upon completion of the initial phone screen were invited to 
complete the ADHD Rating Scale, Conner's Rating Scale, 3rd edition, and the Strengths and 
Difficulties Questionnaire, and an in-person semi-structured diagnostic interview (Kiddie Schedule 
for Affective Disorders and Schizophrenia, KSADS) while the child completed IQ screening and 
brief academic achievement testing. A best estimate DSM-IV diagnosis was established by a 
multidisciplinary diagnostic team. Blind to one another's ratings and to the subsequent cognitive 
test scores, they formed a diagnostic opinion based on all available information. Their agreement 
rate was excellent (ADHD diagnosis kappa =.88). Disagreements were conferenced and 
consensus reached. Cases where consensus was not readily achieved were excluded. ASD youth 
were recruited in a more targeted fashion. Children who met criteria for DSM-IV diagnosis of either 
Autistic Disorder, Asperger's Disorder, or Pervasive Developmental Disorder Not Otherwise 
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Specified were recruited through the University's Autism Clinic in the Child Development and 
Rehabilitation Center, community support groups and outreach, and targeted mailings based on 
charted ICD-9 codes. After passing initial screening criteria, participants in the ASD group were 
administered the Autism Diagnostic Observation Schedule and parents completed the Autism 
Diagnostic Interview–Revised. Parents also completed the Social Responsiveness Scale, 2nd 
edition (SRS-2), Children's Communication Checklist, and a detailed developmental history 
questionnaire. Parents had the option to provide any existing documentation regarding a previous 
ASD diagnosis including IEP's, chart records, and psychological evaluations. A multi-disciplinary 
diagnostic team that included three licensed clinicians then utilized all of the aforementioned 
materials to determine a consensus diagnosis. Children in all three diagnostic groups were 
excluded if they: were prescribed long-acting psychotropic medications; had neurological 
impairment, seizure history, head injury with loss of consciousness, other major medical 
conditions, or substance abuse; had a prior diagnosis of intellectual disability, or psychosis; were 
currently experiencing a major depressive episode; or had estimated IQ <70. Other comorbidities 
were assessed by the multi-disciplinary teams, but were not exclusionary in any of the diagnostic 
groups except that children in the ADHD and Control samples were excluded if they had a parent-
reported history of ASD diagnosis or if the multidisciplinary team identified a diagnosis of ASD. 
Children with ASD or ADHD taking stimulant medications were included in the study but were 
required to be off medication for 24 (for short-acting preparations) to 48 hours (for long-acting 
preparations) prior to testing or MRI. 

 

OpenPain 
The OpenPain (https://www.openpain.org) project (PI : A. Vania Apkarian, Northwestern 
University) is supported by the National Institute of Neurological Disorders and Stroke (NINDS) 
and National Institute of Drug Abuse (NIDA). It is an aggregation of several subcohorts described 
below. For the present study all structural T1-weighted scans from these cohorts were processed 
with FreeSurfer 6.0.1. 

Placebo 1 (PL1) 
This study was conducted in the setting of a clinical randomized controlled trial specifically 
designed for assessing the placebo response (registered at 
https://www.clinicaltrials.gov/ct2/show/NCT02013427). The study consisted of 6 visits spread 
over ~8 weeks, including a baseline monitoring/screening period and two treatment periods, each 
followed by a washout period. The overall protocol included four scanning sessions collected 
before and after each treatment period. 

Subacute longitudinal study (SA1 & SA2): 
Subjects with SBP were recruited who reported a single intense episode of back pain lasting 4-
16 weeks and no prior back pain for at least 1 year, performed brain scans as soon as possible 
(mean ± SEM pain duration from injury at visit 1: 9.14 ± 0.48 weeks) and followed their pain and 
mood parameters, as well as brain activity, over three additional visits for the next year (visit 2: 
7.15 ± 0.26 weeks; visit 3: 29.20 ± 0.63 weeks; visit 4: 54.36 ± 2.14 weeks; from visit 1). 
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Placebo predict Tetreault (PLOA) 
Data includes a discovery group used to identify and localize brain functional differences between 
placebo responders and nonresponders. Additionally, a validation study is included, which 
involved a double-blinded trial in which patients received placebo or duloxetine for 3 mo.For all 
patients, brain scans were collected prior to treatment. 

Brain network change Mano (RS) 

All the scans were performed on a 3T Magnetom Trio with TIM system (Siemens, Erlangen, 
Germany) equipped with echo planar imaging (EPI) capability and a standard 12-channel phased 
array head coil either at Addenbrooke’s hospital (Cambridge, UK) or CiNet (Osaka, Japan). 
Participants remained supine and wore MR-compatible headphones with their heads immobilised 
with cushioned supports during scanning.  

Accumbens Chronic Pain Signature (SAB) 
Subacute back pain patients were followed longitudinally. The Data were collected at Yale 
University. The study recruited 40 SBP patients (16 females, average age ± SEM: 31.7 ± 1.7 y), 
28 CLBP patients (17 females, 32.2 ± 2.0 y), and 30 healthy controls (14 females, 31.1 ± 2.0 y). 
CLBP patients were studied at one time point only. The SBP patients and healthy controls were 
followed up longitudinally for a median duration of ∼1 y. Of the 40 SBP patients, 35 (87.5%) 
presented for follow-up (32.5 ± 1.9 y, 14 females) and completed questionnaires, 26 (65%) 
consented to scan, and 5 were lost to follow-up. Of the 30 healthy controls, 16 (53.3%) presented 
for follow-up (age=31.6 ± 2.5 y, 7 females) 14 (46.7%) consented to scan, 11 (36.7) were not yet 
due for follow-up, and 5 (16.7%) were lost to follow-up. The median duration at follow-up was 59.4 
wk. SBP patients were dichotomized into recovered back-pain patients (SBPr, N=19) if their back-
pain intensity dropped ≥30% on the VAS relative to the pain at entry into the study or into 
persistent back-pain patients (SBPp, N=16) otherwise. This study was approved by the Yale 
University Institutional Review Board. All participants gave informed consent for inclusion in our 
study. 

 

Oslo 
The sample was drawn from a longitudinal research project run by Center for Lifespan Changes 
in Brain and Cognition and was an extension of a previously published protocol197. The study was 
approved by the Regional Ethical Committee of South Norway (REK-Sør), and written informed 
consent was obtained from all participants prior to the examinations. Volunteers were primarily 
recruited by advertisements in newspapers and social media. Participants were required to be 
right-handed native Norwegian speakers, feel healthy, not use medicines known to affect central 
nervous system (CNS) functioning, including psychoactive drugs, not be under psychiatric 
treatment, be free from worries regarding their memory abilities, and not have injury or diseases 
known to affect CNS function, including neurological or psychiatric illness, serious head injury, or 
history of stroke. All MR scans were subjected to a radiological evaluation by a specialist in 
neuroradiology, and the participants were required to be deemed free of significant injuries or 
conditions. Data were processed using FreeSurfer 6.0.1. 
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Oulu 
The Oulu dataset refers to a dataset shared as part of the International Neuroimaging Datasharing 
Initiative (INDI)198 and includes 103 subjects (37M, 66F) between the ages of 20 and 23. All 
structural T1-weighted images from this dataset were processed with FreeSurfer 6.0.1 to obtain 
tissue segmented volumes. 

 

Penn-CHOP Developmental Connectome (PCDC) 
PCDC (www.brainmrimap.org) is a cohort on typical brain development including infancy (0-2 
years) at Children’s Hospital of Philadelphia (CHOP) for establishing next-generation 
developmental brain MRI atlases (quantitative UPenn-CHOP brain atlases). The study was 
approved by CHOP IRB, and guardians of all participants provided informed consent. Infant MRI 
data of PCDC was used. All participants were scanned on a 3T Siemens Prisma scanner, using 
a 32-channel receive head coil. In addition to a T1 MPRAGE, high-resolution 3D T2-weighted 
structural images were acquired using Sampling Perfection with Application-optimized Contrasts 
using different flip angle Evolutions (SPACE) with the following parameters: TR=3200ms, TE=564 
ms, 208 slices, sagittal acquisition, FOV=256×240mm, and voxel size=0.8mm isotropic. 

 

PING - Pediatric Imaging, Neurocognition, and Genetics 
The PING Data Resource is the product of a multi-site project involving developmental 
researchers across the United States including UC San Diego the University of Hawaii UC Los 
Angeles Children's Hospital of Los Angeles of the University of Southern California UC Davis 
Kennedy Krieger Institute of Johns Hopkins University Sackler Institute of Cornell University 
University of Massachusetts Massachusetts General Hospital at Harvard University and Yale 
University. The Data Resource includes neurodevelopmental histories, information about 
developing mental and emotional functions, multimodal brain imaging data, and genotypes for 
well over 1,000 children and adolescents between the ages of 3 and 20. The current data was 
obtained from the NIMH Data Archive (NDAR ID: 2607) and all T1 weighted structural imaging 
was run through FreeSurfer 6.0.1. 

 

Pixar 
Pixar199 is an OpenNeuro dataset comprising 155 children who watched Disney Pixar’s 'Partly 
Cloudy' while lying in the scanner. There was no task; participants were simply instructed to lie 
still and watch the movie. The movie began after 10s of rest (black screen; TRs 1-5). The first 10s 
of the movie are the opening credits (disney castle, pixar logo; TRs 6-10). For the present study 
all structural T1-weighted scans were processed with FreeSurfer 6.0.1. 

 



 
 

146 
 

PNC - Philadelphia Neuroimaging Cohort 
Recruitment and study protocols for the PNC have been described in detail previously200–202. 
Briefly, 9,498 individuals 8 to 21 years old were recruited from the Children’s Hospital of 
Philadelphia care network. Study procedures were approved by the institutional review boards of 
both the University of Pennsylvania and the Children’s Hospital of Philadelphia. All MRI scans 
were acquired on a single 3T Siemens TIM Trio scanner with 32-channel head coil as described 
previously202.  

 

POND - Province of Ontario Neurodevelopmental Disorders 
T1-weighted images were obtained from the Province of Ontario Neurodevelopmental Disorders 
(POND) study2, which was approved by each of the participating research ethics boards and 
conducted in accordance with its guidelines. Informed written consent was obtained from all 
participants and/or their parents. Participants were recruited via the Province of Ontario 
Neurodevelopmental Disorders Network, across five Centers in Ontario, Canada (Holland 
Bloorview Kids Rehabilitation Hospital, Toronto; The Hospital for Sick Children, Toronto; 
McMaster Children’s Hospital, Hamilton; Queen’s University, and Lawson Health Research 
Institute, London). Controls were recruited through advertising in public transit, in hospitals, and 
on social media. Inclusion criteria were age <18 years, and a clinical diagnosis of ADHD, ASD, or 
OCD. Controls had no developmental diagnosis, and no first-degree family history of these 
disorders203. The majority of scans (74%) were done on a 3T Siemens Trio TIM; a hardware 
upgrade to the Siemens Prisma scanner took place in June, 2015 (this affected 26% of the ADHD 
sample, 24% of the ASD sample, 62% of controls, and 7% of the OCD sample). All images were 
processed with FreeSurfer 6.0.1. 

 

PPMI - Parkinson's Progression Markers Initiative 
The Parkinson’s Progression Markers Initiative (PPMI)204 is an observational study to better define 
and measure Parkinson’s disease to speed therapeutic development. PPMI makes its data set 
and biorepository—the most robust in Parkinson’s to date—available to academia and industry to 
accelerate breakthroughs. PPMI has gathered longitudinal data from more than 1,400 individuals 
at 33 clinical sites in 11 countries. These data are shared through the University of Southern 
California’s Neuroimaging Laboratories database (https://ida.loni.usc.edu/). T1-weighted images 
were downloaded from the LONI database and processed using FreeSurfer 6.0.1. 

 
PREVENT-AD - PRe-symptomatic EValuation of Experimental or Novel Treatments for 
AD 
In 2010 investigators at McGill University and the Douglas Mental Health University Institute 
Research Centre created a Centre for Studies on Prevention of Alzheimer’s Disease (StoP-AD 
Centre). The Centre’s prime objective was to pursue innovative studies of pre-symptomatic AD, 

 
2 https://offordcentre.com/studies/pond-network-imaging-sub-study/  



 
 

147 
 

with efforts to provide relatively enriched samples for prevention trials requiring individuals at-risk 
of developing the disease. To this end, the StoP-AD Centre developed an observational cohort 
for PRe-symptomatic EValuation of Experimental or Novel Treatments for AD (PREVENT-AD)205. 
To increase the probability that participants would harbor the earliest changes associated with 
pre-symptomatic AD, entry criteria required intact cognition and a parental or multiple-sibling 
family history of AD. Participants had to be 60 years of age or older, with an exception that 
individuals between 55–59 years old were eligible if their own age was within 15 years of symptom 
onset of their youngest-affected first-degree relative. All participants were scanned longitudinally 
on a Siemens TIM Trio 3T MRI scanner at the Brain Imaging Centre of the Douglas Mental Health 
University Institute using a Siemens standard 12 or 32-channel coil (Siemens Medical Solutions, 
Erlangen, Germany) using the same acquisition protocol as ADNI. For the present study all 
structural T1-weighted scans were processed with FreeSurfer 6.0.1. 

 

PSYSCAN Maastricht 
The Maastricht GROUP dataset comes from an MRI study in Maastricht, the Netherlands, led by 
the GROUP consortium. Patients were identified by screening caseloads of representative 
clinicians for inclusion criteria in selected representative geographic areas of the Netherlands and 
Belgium. All patients satisfied DSM-IV diagnostic criteria for schizophrenia or other nonaffective 
psychotic disorders. The data was acquired using a 3T Siemens Magnetom Allegra head scanner. 
For more information, see 139,206. For the present study all structural T1-weighted scans were 
processed with FreeSurfer 6.0.1. Note that this dataset forms part of legacy data collated as part 
of the PSYSCAN project. 
 

PSYSCAN Dublin 
The Dublin dataset was acquired and scanned in the Trinity College Institute of Neuroscience as 
part of a Science Foundation Ireland-funded neuroimaging genetics study—a structural and 
functional MRI investigation of genetics, cognition and emotion in schizophrenia. Patients were 
recruited through local clinical services whilst healthy control subjects reported no history of 
psychiatric disease. All patients satisfied DSM-IV diagnostic criteria for schizophrenia or other 
nonaffective psychotic disorders. Both groups were recruited in the same geographical area 
through local advertisement and exclusion criteria for both groups included confirmed or 
suspected pregnancy, any history of neurological disorders or intellectual disability and substance 
misuse in the preceding 3 months. The data was acquired using a 3T Philips Intera Achieva 
scanner. For more information and details on the included sample have been described 
previously139. For the present study all structural T1-weighted scans were processed with 
FreeSurfer 6.0.1. Note that this dataset forms part of legacy data collated as part of the PSYSCAN 
project.  
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RDB 
This dataset includes 494 subjects from the Robert Debré Hospital (RDB) in Paris. It spans an 
age range with most subjects being young children and adolescents (age range 1.5–55.2, average 
10.83, median 8). It includes both individuals diagnosed with ASD (N=325) and undiagnosed 
control subjects (N=169). The majority of subjects were male (127 female, 367 male). 
Accompanying phenotypic information include sex, age at scan and diagnosis of the participants, 
as well as a standardized evaluation of their cognitive abilities using a variety of tests depending 
on chronological age, productive language skills and functioning level of subjects. All T1-weighted 
imaging data were processed using recon-all as implemented in FreeSurfer 6.0.1. The MRI and 
volume data were visually quality controlled. 
 
SALD - Southwest University Adult Lifespan Dataset  
The data generated in the Southwest University Adult Lifespan Dataset (SALD) comprises a large 
cross-sectional sample (N=494; age range=19–80) undergoing a multi-modal (sMRI, rs-fMRI, and 
behavioural) 207. The goals of the SALD are to give researchers the opportunity to map the 
structural and functional changes the human brain undergoes throughout adulthood and to 
replicate previous findings. The data were collected at the Center for Brain Imaging, Southwest 
University. For the present study all structural T1-weighted scans were processed with FreeSurfer 
6.0.1. 

 

SCZIowa 
The SCZIowa cohort refers to the Phenomenology and Classification of Schizophrenia (Iowa 
Longitudinal Study)77,208 listed in NDAR (2125; description below taken from NDAR). This study 
follows first-episode patients, some of whom have been followed for as long as 15 years. The 
study emphasizes understanding the phenomenology of schizophrenia by examining the lifetime 
trajectory of the illness and its long-term outcome. Since the disorder is characterized by a 
prolonged lifetime course, longitudinal study of a large group of informative patients is one of the 
most powerful strategies for examining measures that will illuminate its mechanisms or refine the 
definition of its phenotype. This study examines 4 domains of variables: Symptoms, psychosocial 
function, brain morphology as measured by morphometric magnetic resonance imaging, and 
cognition as measured by both standard neuropsychological tests and a group of experimental 
tests. We have found that, although symptoms stabilise relatively quickly after initial onset in the 
majority of patients, the other domains tend to worsen throughout the first decade after onset. 
This suggests that the disorder may have a worse prognosis, despite adequate treatment, than 
originally anticipated. We also will divide the patients into groups based on levels of recovery and 
determine the predictors of the recovery group. In order to understand the long-term outcome of 
schizophrenia at the clinical, neural, and cognitive levels, it is important that we continue to study 
this large group of patients longitudinally on into the second decade of the illness so that we can 
examine the interrelationships between these four domains and determine whether the downward 
trends persist or stabilise. For the present study all structural T1-weighted scans were processed 
with FreeSurfer 6.0.1. 
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SLIM - Southwest University Longitudinal Imaging Multimodal Dataset 
The SLIM dataset includes brain and behavioural data across a long-term retest-duration within 
three and a half years. MRI scans provided a set of structural, diffusion and resting-state functional 
MRI images, along with rich samples of behavioural assessments addressed including cognitive 
and emotional information209. A total of 167 healthy undergraduate students from the local 
community of Southwest University in China participated in this study as a part of our ongoing 
project investigating the associations among brain imaging, mental health, and creativity. For the 
present study all structural T1-weighted scans were processed with FreeSurfer 6.0.1. 

 

STRIvE - Stress in Eating 
The Stress in Eating (STRIvE) dataset was acquired from the University of Cambridge as a part 
of a multimodal neuroimaging study, which sought to examine the neurobiological correlates of 
disordered eating. The study was approved by the Cambridge East NHS Research Ethics 
Committee (HRA Ref. 17/EE/0304). Eighty-five women (age range 18–34 years) were recruited 
to three groups: those acutely ill with DSM-5 anorexia nervosa (binge-eating/purging subtype; AN-
BP), DSM-5 bulimia nervosa (BN) and women with no personal history of mental illness. 
Participants underwent scanning on two consecutive days on a 3T Siemens SkyraFit MR scanner 
(Erlangen, Germany) at the Wolfson Brain Imaging Center at Addenbrooke’s hospital in 
Cambridge, UK. Anatomical scans were co-registered with a linear transformation (AFNI program 
3dAllineate) and averaged across days via 3dMean. The averaged structural image was then 
processed with FreeSurfer 6.0.1.  

 

SYS Adults & Adolescents 
The Saguenay Youth Study (SYS)3 is a two-generational study of adolescents and their parents 
(N=1,029 adolescents and 962 parents) aimed at investigating the aetiology, early stages and 
trans-generational trajectories of common cardiometabolic and brain diseases210,211. High-
resolution anatomical T1 images are acquired using the following parameters: 3D RF-spoiled 
gradient echo scan with 140–160 slices, 1mm isotropic resolution, TR=25 ms, TE=5 ms, flip 
angle=30° 212. Scans were processed using FreeSurfer 5.3.  
 
TEBC - Theirworld Edinburgh Birth Cohort 
Theirworld Edinburgh Birth Cohort (TEBC) is a prospective longitudinal cohort study213. We plan 
to recruit 300 infants born at <33 weeks of gestational age (GA) and 100 CN infants born after 37 
weeks of GA. Multiple domains are assessed: maternal and infant clinical and demographic 
information; placental histology; immunoregulatory and trophic proteins in umbilical cord and 
neonatal blood; brain macrostructure and microstructure from structural and diffusion MRI (dMRI); 
DNA methylation; hypothalamic-pituitary-adrenal axis activity; social cognition, attention and 

 
3 https://academic.oup.com/ije/article/46/2/e19/2617159?login=true#112555109  
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processing speed from eye tracking during infancy and childhood; neurodevelopment; gut and 
respiratory microbiota; susceptibility to viral infections; and participant experience. A Siemens 
MAGNETOM Prisma 3T MRI clinical scanner (Siemens Healthcare, Erlangen, Germany) and 16-
channel phased-array paediatric head receive coil are used to acquire three-dimensional (3D) T1-
weighted magnetisation-prepared rapid acquisition with gradient echo (MPRAGE) structural 
volume scan (acquired voxel size=1 mm isotropic); a 3D T2-weighted sampling perfection with 
application-optimised contrasts by using flip angle evolution (SPACE) structural scan (voxel 
size=1mm isotropic); and a multishell axial dMRI scan with optimal angular coverage. A subset 
has axial 3D susceptibility-weighted imaging and axial 2D fluid-attenuated inversion-recovery 
BLADE imaging, and magnetisation transfer saturation imaging is acquired for evaluation of tissue 
myelin content, consisting of three sagittal 3D multiecho spoiled gradient echo scans, 2mm 
isotropic acquired resolution, magnetisation-transfer, proton density-weighted and T1w 
acquisitions. For this project, tissue volumes were derived from structural data that were 
preprocessed using the developing Human Connectome Project (dHCP) minimal structural 
processing pipeline for neonatal data93. 
 
TOPSY 
TOPSY refers to a high-resolution 7T MRI/spectroscopy study of untreated first episode psychosis 
(NCT02882204)214. Data were acquired on a Siemens MAGNETOM 7.0T MRI (Erlangen, 
Germany) using an 8-channel transmit/32-channel receive, head-only, radiofrequency coil at the 
Centre for Metabolic Mapping at Western University in London, Ontario. Images were first 
corrected for gradient nonlinearities using spherical harmonic coefficients provided by the 
manufacturer, and implemented in a BIDS app using spline interpolation and modulation by the 
determinant Jacobian of the warp (gradcorrect, https://github.com/khanlab/gradcorrect). In the 
current aggregated dataset a mixed sample of cognitively normal volunteers, individuals with 
schizophrenia and schizoaffective disorder for which the tissue segmentations were manually 
quality controlled were included. 

 

UKB - UK Biobank 
The UK BioBank (UKB) provides a unique, large and comprehensive dataset that includes both 
extensive phenotypic information as well as neuroimaging and genetics48,215,216. Structural 
minimally processed4 T1- and T2-FLAIR weighted data was obtained from UK BioBank 
(application 20904) and further preprocessed with FreeSurfer 6.0.1150 using the T2-FLAIR 
weighted image to improve pial surface reconstruction. Recon-all reconstruction included bias 
field correction, registration to stereotaxic space, intensity normalisation, skull-stripping, and white 
matter segmentation. A triangular surface tessellation fitted a deformable mesh model onto the 
white matter volume, providing grey-white and pial surfaces with >160,000 corresponding vertices 
registered to fsaverage standard space. When no T2-FLAIR image was available FreeSurfer 
reconstruction was done using the T1-weighted image only. Individuals were included in the 
reference dataset as healthy controls (CN) based on the response recorded in data-field 20544 

 
4 https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf 
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(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20544) of the UKB mental health 
questionnaire, including only individuals who never had mental health problems as diagnosed by 
a mental health professional. 

 

VETSA - Vietnam Era Twin Study of Aging 
As outlined previously53, VETSA is a longitudinal multi-modal (behavior, cognition, genetics, 
neuroimaging) study, comprising over 1,200 adult male twin pairs recruited from the Vietnam Era 
Twin Registry. All participants were in some branch of the United States military at some point 
between 1965 and 1975, with most not participating in combat or deployed in Vietnam. Data from 
‘Wave 1’, which was conducted between 2003 and 2007, were included in the present study. 
Structural MRIs on 545 twins were collected on a Siemens 1.5T scanner, and were processed 
with FreeSurfer 6.0.1.  
 
VITA - Vienna Transdanube Aging study 
VITA is a population based cohort-study of all 75-years old inhabitants of a geographically defined 
area of Vienna. VITA is composed of 606 subjects followed longitudinally for 4 years. Recruitment 
took place between May, 2000 and October, 2002. The primary focus of the VITA work group was 
to establish a prospective age cohort for evaluation of prognostic criteria for the development of 
AD. All subjects derive from the prospective Vienna Trans-Danube Aging (VITA) study that 
targeted all 1,750 inhabitants of the age of 75 in the starting year of 2000 in two districts of Vienna 
and included irregular follow-ups until death, irrespective of clinical symptoms or diagnoses. All 
subjects featured in this analysis underwent one MRI measurement at the age of 75–76 years. 
Thereby, a 1T unit (Siemens Impact Expert; Siemens Medical Systems, Inc., South Iselin, NJ) 
and a circular polarised skull coil were used. For the present study all structural T1-weighted scans 
were processed with FreeSurfer 6.0.1. 

 

20. Replication/validation datasets 
We used several external datasets throughout the sensitivity analyses, all of which are described 
in more detail below. 

10k-in-a-day 
The 10k-in-a-day dataset originated from a large collaborative international workshop where 
participants worked on ‘connectomising’ their own dataset for joined analysis217. The subsequent 
data has been made publicly available with minimal demographic information and age-binned age 
windows. Together, a total of 15,947 MRI datasets were processed using standard FreeSurfer 
pipelines and approximately 8000+ were made publicly available. While the lack of more detailed 
demographic data (e.g., age in years) and the likelihood that data may overlap with existing 
cohorts included in the present sample precluded us from using the full dataset into the original 
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modelling. It did provide us with the opportunity to validate the generalisability of our derived data 
against a potentially noisy OoS dataset. We used the mean age of each 5-year age bracket, 
extracted the total grey matter volume from the dataset and compared these against the summed 
trajectories of GMV and sGMV generated by our model. 

Hsu et al. (Ultrasound) - estimated 
Using the software digitizeit (https://www.digitizeit.xyz/) we extracted total brain volume from Hsu 
et al.218 who assessed the total volume and the blood flow index of the foetal brain in normal 
pregnancies using 3D ultrasound (Voluson 730). The study included 126 fetuses, ranging from 15 
to 38 weeks of gestation. These total volumes were compared against the summed model 
trajectories from all 4 phenotypes. 

Chang et al. (Ultrasound) - estimated 
Analogous to Hsu et al.218, this study evaluated foetal brain volume using 3D ultrasound. Chang 
and colleagues219 measured total brain volume in 203 singleton fetuses ranged between 20 and 
40 weeks of gestation. These total brain volumes were extracted using digitizeit 
(https://www.digitizeit.xyz/) and compared against the summed model trajectories from all 4 
phenotypes. 

Roelfsema et al. (Ultrasound) - estimated 
Roelfsema et al.220 used serial 3D sonography to measure foetal brain volume in 68 normal 
singleton pregnancies at 18 to 34 weeks of gestation. These 3D measurements were internally 
validated against foetal brain volume estimates from two-dimensional (2D) sonography 
measurement of head circumference and published postmortem foetal brain weights. We 
extracted these reported total brain volumes using digitizeit (https://www.digitizeit.xyz/) and 
compared them against the summed model trajectories from all 4 phenotypes. 

Brain Weight 
Postmortem brain weight estimates were available from the authors of two studies containing 
multiple historical data sources51,221. Additional postmortem brain weight data was aggregated 
from two recent large-scale genomic and transcriptomic initiatives GTEx222 and PsychEncode 223. 
The former was accessed through the GTEx access portal (https://www.gtexportal.org/home/) and 
dbGap (application https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000424.v8.p2), the latter through the PsychENCODE website 
(http://www.psychencode.org) and a Synapse application 
(https://www.synapse.org/#!Synapse:syn4921369/wiki/235539). These post-mortem brain 
weights were compared against the total cerebrum volume estimates obtained from the summed 
individual trajectories as a further validation of the trajectory slope. 

International prenatal (HC) 
The INTERGROWTH-21st consortium is a population-based project that assessed foetal growth 
and newborn size in eight geographically defined urban populations224. The project provided 
growth curve standards for head circumference during prenatal development. The head 
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circumference values at each percentile (3rd, 5th, 10th, 50th, 90th, 95th, 97th) from 14–40 weeks 
gestation was averaged across males and females, and compared with total cerebrum volume 
estimates. 

WHO postnatal (HC) 
The WHO international standards on postnatal growth are an openly available resource for growth 
charts for height, weight, and head circumference36. These charts were used as input into digitizeit 
(https://www.digitizeit.xyz/) to extract the averaged percentile estimates across males and 
females, and were analyzed as above for the INTERGROWTH-21st cohort. 
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21. A note on data sharing 
The complete dataset aggregated for the purposes of this study contains primary datasets that 
differ quite widely in terms of their “openness,” i.e., their availability for secondary use without 
restrictions or special efforts by the primary study team. Primary studies ranged from fully open 
and downloadable datasets in the public domain to more restricted datasets that could only be 
used for specific purposes, under specific agreements, or after special efforts had been made to 
provide QC’d data in shareable form. There can be several reasons why data aren’t always and 
immediately shared openly and/or without the active involvement of the researchers who collected 
the data225. In our experience within the context of this project, the various factors operating to 
prevent complete openness can be organised roughly into four categories: 
 

- No informed consent was obtained for the open sharing of data at the time of collection226 
(or the informed consent does not extend to other uses in general). 

- Data protection regulations, either at national or institutional levels, prevent the sharing of 
more detailed data such as essential demographics. 

- The funding agency mandated or encouraged explicit involvement of researchers who 
collected primary study data in secondary studies where data was shared.  

- Primary studies are still ongoing and data cannot be shared openly until the primary study 
objectives and/or milestones have been achieved. 

 
There are also several reasons for not sharing data openly that cut across these categories such 
as general concerns about privacy or confidentiality of participants (which may be expressed by 
researchers, funders or governance bodies), as well as issues of data ownership (which are 
actively evolving as a result of changing legislation in some jurisdictions, e.g., General Data 
Protection Regulations [GDPR] in the European Union since 2016). 
 
For these reasons, in practice, data is often shared under individually tailored and specific data 
usage or material transfer agreements. In the absence of a unified standard academic agreement 
this means that there is considerable variability in the terms under which data is or can be shared. 
For the present project, we sometimes had to make the difficult decision not to include potentially 
relevant datasets because abiding by the terms of the proposed sharing agreements would not 
have satisfied journal criteria for authorship and/or would have created an unbalanced 
acknowledgement of individual authors’ contributions. 
 
The benefits of truly open data are very clear from a scientific perspective. More open datasets 
would increase the number and diversity of researchers who are able to conduct secondary or 
meta-analytic studies without the need to negotiate multiple individual usage agreements. The 
present project would not have been possible without the availability of several exemplary open 
datasets110,123,168,176,199,227–232, which were particularly valuable at the outset of this project, by 
facilitating pilot studies of brain charting methods. However, journal authorship criteria meant that 
we could not include members of some of the most open consortia as co-authors because their 
data were readily available to us without any significant additional contribution meriting authorship. 
We note that this situation perversely disincentivises open science, since the people who do most 
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to make their data openly available could be least likely to merit recognition by co-authorship of 
secondary studies. We therefore consider it is important for all stakeholders (funders, journals, 
investigators) to continue to think about how open human brain science can be properly 
recognised and rewarded. Here we have explicitly referenced and acknowledged our debt to the 
several open MRI datasets without which this study would not have been possible, because and 
although it has not always been appropriate to list the principal architects of these datasets as co-
authors of this paper. 
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