Importance of CSF-based Aβ clearance with age in humans increases with declining efficacy of blood-brain barrier/proteolytic pathways

Supplementary Materials

Submitted to: Communications Biology

Supplementary Table 1: Subject characteristics

		Amyloid negative	Amyloid positive	p-value ⁴
		(mean ± S.D.)	(mean ± S.D.)	
Demographics	Total subjects (#)	58	38	
	Female (%)	51.7	47.4	
	Age (y)	65.8 ± 13.4	70.3 ± 12.7	0.10
	Height (in)	67.0 ± 4.18	66.0 ± 3.52	0.24
	Weight (lb)	179 ± 40.6	161 ± 29.7	0.013
	BMI	28.1 ± 5.82	25.9 ± 4.19	0.036
	PET-PIB performed (#)	51	26	
	ApoE4 carriers (#)	11	27	
	PSEN mutation (#)	4	5	
Study	LOAD (#)	44	33	
	FACS (#)	14	5	
Lumbar CSF	[Tau] (pg/mL)	291 ± 244 ¹	510 ± 186 ²	5.0 x 10 ⁻⁵
	[pTau] (pg/mL)	49.0 ± 22.5^{1}	89.7 ± 45.5^2	5.6 x 10 ⁻⁵
	[Aβ42] (ng/mL)	1.2 ± 0.44	0.68 ± 0.16	2.9 x 10 ⁻¹¹
	[Αβ42]/ [Αβ40]	0.16 ± 0.034	0.094 ± 0.017	1.2 x 10 ⁻²²
Steady state model ³	FTR38	0.095 ± 0.035	0.085 ± 0.026	0.13
	FTR40	0.10 ± 0.036	0.09 ± 0.025	0.046
	FTR42	0.11 ± 0.044	0.13 ± 0.054	0.027
	FTR42/FTR40	1.1 ± 0.21	1.5 ± 0.29	4.7 x 10 ⁻¹⁰
	Production rate ratio	0.17 ± 0.027	0.14 ± 0.031	2.6 x 10 ⁻⁷
	(<i>k</i> _{AB42} / <i>k</i> _{AB40})			
	k_{ex42} (h ⁻¹)	0.0031 ± 0.035	0.084 ± 0.086	1.7 x 10 -6

Notes:

(1) n = 42

(2) n = 30

(3) Steady state model previously published in Patterson, B. W. *et al.* Age and amyloid effects on human central nervous system amyloid-beta kinetics. *Ann. Neurol.* **78**, 439–453 (2015)

(4) t-test; *italics*: p < 0.05; *bold*: p < 0.01

Supplementary Table 2 – Turnover parameters from the steady state model

Steady state model parameters	Amyloid negative (n = 58)		Amyloid posit	ive (n = 38)
	Correlation coefficient with age	p-value	Correlation coefficient with age	p-value
FTR38	-0.79	1.2 x 10 ⁻¹³	-0.48	2.1 x 10 ⁻³
FTR40	-0.76	6.9 x 10 ⁻¹²	-0.43	7.6 x 10 ⁻³
FTR42	-0.60	7.5 x 10⁻ ⁷	-0.54	5.1 x 10⁻⁴
FTR42/FTR40	0.14	0.30	-0.49	1.6 x 10 ⁻³
Production rate ratio	0.34	8.9 x 10 ⁻³	-0.54	5.1 x 10⁻⁴
(<i>k</i> _{AB42} / <i>k</i> _{AB40})				
<i>k_{ex42}</i> (h ⁻¹)	-0.034	0.80	-0.37	0.020

Steady state model previously published in Patterson, B. W. *et al.* Age and amyloid effects on human central nervous system amyloid-beta kinetics. *Ann. Neurol.* **78**, 439–453 (2015). t-test; *italics*: p < 0.05; *bold*: p < 0.01

Supplementary Table 3 – MRI brain volumes, thicknesses and derived measures, differences by amyloid status (amyloid negative n = 58; amyloid positive n = 38)¹

	Brain region	Amyloid negative	Amyloid positive	p-value
MRI volume (µL)	Amygdala_vol	1550 ± 260	1220 ± 237	8.0 x 10 ⁻⁹
differences with	Hippocampus_vol	3750 ± 515	3160 ± 559	1.3 x 10 ⁻⁶
p < 0.001	Precuneus_vol	9470 ± 1480	8380 ± 1070	6.2 x 10 ⁻⁵
	Supramarginal_vol	10,100 ± 1450	9040 ± 1230	1.3 x 10 ⁻⁴
	Inferiorparietal_vol	13,200 ± 2070	11,700 ± 1640	2.3 x 10 ⁻⁴
	Accumbensarea_vol	539 ± 133	446 ± 105	2.5 x 10⁻⁴
MRI cortical thickness	inferiorparietal_thick	2.46 ± 0.122	2.33 ± 0.148	4.4 x x 10⁻⁵
(mm) differences with	fusiform_thick	2.66 ± 0.153	2.55 ± 0.128	1.6 x 10 ⁻⁴
p < 0.001	precuneus_thick	2.32 ± 0.115	2.22 ± 0.153	4.2 x 10 ⁻⁴
	superiorparietal_thick	2.22 ± 0.114	2.11 ± 0.159	8.0 x 10 ⁻⁴
Summary MRI volumes	TotalGrayVol	599 ± 68.1	566 ± 41.5	0.0041
(mL) differences with				
p < 0.05				
	SupraTentorialVolNotVent	913 ± 114	866 ± 70.4	0.015
	Ventricle brain ratio	0.033 ± 0.017	0.043 ± 0.022	0.020
	(ventricle volume/total			
	brain parenchyma			
	volume) ²			
	VentricleVol	35.8 ± 18.0	45.9 ± 24.9	0.035
	Ventricle CSF vol	32.5 ± 17.4	42.2 ± 24.3	0.037
	(Total_CSF_vol)			

¹ Derived using Freesurfer version 5.3. Where applicable, values for each subject were the average of both cerebral hemispheres.

² Measure described in: Ott, B. R. *et al.* Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer's disease. *J. Alzheimer's Dis.* **20**, 647–657 (2010)

t-test; *italics*: p < 0.05; **bold**: p < 0.01

Supplementary Table 4 – MRI brain volumes, thicknesses and derived measures, correlation with age in amyloid negative subjects (n = 58)

Brain region	Correlation coefficient with age	p-value
Putamen volume	-0.70	1.3 x 10 ⁻⁹
Accumbens-area volume	-0.67	8.9 x 10 ⁻⁹
Thalamus Proper volume	-0.60	6.8 x 10 ⁻⁷
Hippocampus volume	-0.59	1.4 x 10 ⁻⁶
Banks of Superior Temporal Sulcus	-0.57	2.5 x 10 ⁻⁶
thickness		
Lingual thickness	-0.55	9.5 x 10⁻ ⁶
Ventricle brain ratio (ventricle volume/total brain parenchyma volume) ¹	0.54	1.1 x 10 ⁻⁵
Superior temporal volume	-0.51	4.7 x 10 ⁻⁵
Parstriangularis volume	-0.50	6.3 x 10 ⁻⁵

¹Measure described in: Ott, B. R. *et al.* Brain ventricular volume and cerebrospinal fluid biomarkers of Alzheimer's disease. *J. Alzheimer's Dis.* **20**, 647–657 (2010)

Supplementary Table 5 – Interactions between age and amyloid status

		Generalized linear model p-values (ANOVA)		
		Amyloid status	Age	Amyloid status x age
CSF leak	Q _{leak}	0.20	9.6 x 10⁻⁴	0.12
Ав clearance	<i>k_{BPD38}</i> (h ⁻¹)	0.033	7.0 x 10 ⁻⁹	2.6 x 10 ⁻⁴
	$k_{BPD40}(h^{-1})$	0.0050	1.0 x 10⁻ ⁶	8.5 x 10 ⁻⁴
	$k_{BPD42}(h^{-1})$	2.4 x 10 ⁻⁵	0.0020	0.27
	k _{BPD42} /k _{BPD38}	2.7 x 10⁻ ⁶	0.64	0.19
	k _{BPD42} /k _{BPD40}	1.6 x 10⁻ ⁸	0.35	0.019
	k _{bpd40} /k _{bpd38}	0.088	0.042	0.66
Aβ production (w/o mutation carriers)	V _{max, y42} /V _{max, y38}	0.73	0.35	0.006
	$V_{max,\gamma42}$ (µg/(mL·h))	0.60	0.13	0.007
APP production (w/o mutation carriers)	<i>k_f</i> (ng/h)	0.96	3.1 x 10 ⁻⁷	0.53
	Total Gray Volume (mL)	0.20	2.6 x 10⁴	0.51
Exchange	k_{ex42} (h ⁻¹)	3.6 x 10⁻⁴	0.23	0.024
CSF Fluid flow	$Q_{CSF} = Q_{glymph} (mL/h)$	0.40	0.088	0.032
	Q _{osc} (mL/h)	0.20	9.6 x 10 ⁻⁴	0.12
	[Aβ ₄₀] _{ISF} /[Aβ ₄₀] _{Iumbar}	0.91	6.4 x 10 ⁻⁴	0.33
	Predicted	0.41	0.24	0.025
	cisternography half- life (h)			
	V _{CSF} (mL/h)	0.55	0.005	0.17
Flux Aβ ₃₈	Glymphatic (ng/min)	0.58	0.007	0.43
	BBB +proteolysis (ng/min)	0.025	1.6 x 10 ⁻¹⁴	1.3 x 10 ⁻⁶
	% glymphatic flux	0.058	0.002	0.019
Flux Aβ ₄₀	Glymphatic (ng/min)	0.35	8.9 x 10⁻⁵	0.13
	BBB + proteolysis (ng/min)	0.011	4.5 x 10 ⁻¹⁴	3.6 x 10 ⁻⁶
	% glymphatic flux	0.007	0.012	0.013
Flux Aβ ₄₂	Glymphatic (ng/min)	0.16	1.5 x 10 ⁻⁴	0.18
	BBB + proteolysis (ng/min)	1.2 x 10 ⁻⁴	1.2 x 10 ⁻¹¹	2.7 x 10 ⁻⁵
	Deposition (ng/min)	9.0 x 10⁻ ⁶	3.5 x 10⁻⁴	0.0080
	% glymphatic flux	0.001	0.005	0.32

		PSEN m	utation ne	gative	Amyloi	d negative	, PSEN
		Predicte	d marginal	means	mutation negative		
		(S.E.)	at age = 69).9 y	Mean (S.E.)		
		Amyloid	Amyloid	p-value	Age ≥ 60	Age <	p-value
		positive	negative		N = 47	60	
			_			N = 7	
Flow rate	Q _{CSF}	24 (2)	23 (1)	0.85	23 (1)	28 (4)	0.20
(mL/h)	Q _{osc}	10 (1)	9.4 (0.8)	0.69	9.5 (0.9)	3.7 (0.4)	<0.0001
Volume (mL)	V _{CSF}	300 (20)	300 (10)	0.82	300 (10)	270 (20)	0.10
	Total Gray Volume	570 (10)	590 (8)	0.15	590 (10)	650 (20)	0.0060
Conc. Ratio	[AB ₄₀] _{ISF} /[AB ₄₀] _{lumbar}	10 (1)	9.2 (0.8)	0.82	8.7 (0.7)	17 (1)	<0.0001
Brain	Conc. APP	2.2 (0.3)	2.3 (0.2)	0.79	2.0 (0.2)	5.9 (0.9)	0.0050
Concentration (ng/g)	C99	0.07 (0.01)	0.073 (0.007)	0.62	0.064 (0.006)	0.20 (0.03)	0.0052
	Αβ ₄₂	0.7 (0.1)	1.03 (0.08)	0.012	1.0 (0.1)	1.5 (0.2)	0.033
Lumbar CSF Concentration (ng/mL)	Αβ ₄₂	0.69 (0.07)	1.18 (0.05)	<0.0001	1.19 (0.06)	0.93 (0.08)	0.025
Flux (ng/min)	APP→C99	51 (8)	55 (5)	0.63	48 (5)	160 (20)	0.0019
	$C99 \rightarrow AB_{42}$	7 (1)	6.7 (0.7)	0.58	6.2 (0.5)	15 (2)	0.011
	Glymphatic/CSF- based	1.4 (0.3)	1.9 (0.2)	0.14	1.8 (0.2)	3.5 (0.6)	0.045
	Deposition	4.2 (0.5)	1.2 (0.4)	<0.0001	1.2 (0.3)	0.4 (0.3)	0.063
	BBB + proteolysis	1.6 (0.5)	3.5 (0.4)	0.0033	3.1 (0.4)	11 (2)	0.0056

italics: p < 0.05; *bold*: p < 0.01

Supplementary Figure 1: Box plot of measured concentrations of A β peptides in the lumbar CSF during SILK experiment (n = 96).

Supplementary Figure 2: a. In the previous steady state model, the production rate ratio was highly correlated with the lumbar CSF concentration ratio of $A\beta_{42}:A\beta_{40}$. The production rate in the steady state model is given exactly by:

$$Production \ rate \ ratio(A\beta_{42}; A\beta_{40}) = \frac{[A\beta_{42}]_{lumbar}}{[A\beta_{40}]_{lumbar}} \times \frac{FTR_{42}}{FTR_{40}}$$

This implied that the relative production of A β_{42} declined with amyloidosis, for which no plausible mechanism exists. This implied that the ratio FTR42:FTR40 was underestimated in the presence of amyloid plaques. The current physiological model does not show a relationship between production rate ratio and lumbar concentration ratio. Steady state model previously published in Patterson, B. W. *et al.* Age and amyloid effects on human central nervous system amyloid-beta kinetics. *Ann. Neurol.* **78**, 439–453 (2015) **b.** The production rate ratio (PRR42:40) from the steady state model was not higher in mutation carriers than in amyloid negative subjects. However, both were higher than amyloid positives. This is unexpected and related to the underestimation of FTR42:FTR40 as described above.

c. The V_{max} of gamma secretase for the production of A β_{42} in the physiological model was significantly elevated in mutation carriers compared to amyloid negative subjects, but not compared to amyloid positive subjects. In previous studies, production rates for A β_{42} were normalized by production rates for A β_{40} , which greatly reduced the coefficient of variation. However, gamma secretase V_{max} for A β_{40} production was set to a fixed literature value for all subjects. Thus, V_{max} for A β_{42} production was normalized by the V_{max} for A β_{38} production in Figure 5d.

Supplementary Figure 3: The predicted cisternography half-life from the Moriyama model¹ and values predicted by the current physiological model. While the age-dependence noted with the physiological model was in the opposite direction (declining with age in amyloid negative subjects, r = -0.30, n = 58, p = 0.021), the mean cisternography half-life was well-matched when the percentage of CSF lost down spinal nerves (Q_{SN}) was 10%. The mean cisternography half-life was much shorter with $Q_{SN} = 20\%$ and much longer with $Q_{SN} = 5\%$. Moriyama model published in: Moriyama, E., Ogawa, T., Nishida, A., Ishikawa, S. & Beck, H. Quantitative analysis of radioisotope cisternography in the diagnosis of intracranial hypotension. *J. Neurosurg.* **101**, 421–426 (2004)

Supplementary Methods 1: Model description

Model equations

The following system of differential equations was solved numerically, where $A\beta_x$ represents $A\beta_{38}$, $A\beta_{40}$ or $A\beta_{42}$. V_{gamma} and k_{BPD} were specific for each peptide. The exchange process was only active for $A\beta_{42}$.

$$\begin{split} \frac{d[APP]}{dt} &= k_{f} - \frac{V_{M1}/K_{M1} [APP]}{1 + [APP]/K_{M1} + [C99]/K_{M5}} - \frac{V_{M2}/K_{M2} [APP]}{1 + [APP]/K_{M2}} \\ \frac{d[C99]}{dt} &= \frac{V_{M2}/K_{M2} [APP]}{1 + [APP]/K_{M1}} - \frac{(V_{gamma38} + V_{gamma40} + V_{gamma42})/K_{M4} [C99]}{1 + [C99]/K_{M5}} - \frac{V_{M3}/K_{M3} [C83]}{1 + [C83]/K_{M4} + [C99]/K_{M5}} + \frac{V_{M5}/K_{M5} [C99]}{1 + [C99]/K_{M5}} - \frac{V_{M3}/K_{M3} [C83]}{1 + [C83]/K_{M4} + [C99]/K_{M5}} + \frac{V_{M5}/K_{M5} [C99]}{1 + [C83]/K_{M4} + [C99]/K_{M5}} - \frac{V_{M3}/K_{M3} [C83]}{1 + [C83]/K_{M3} + [C99]/K_{M4}} \\ \frac{d[A\beta x]_{ISF}}{dt} &= \frac{V_{gamma}/K_{M4} [C99]}{1 + [C83]/K_{M3} + [C99]/K_{M4}} - (k_{BPD} + k_{cx})[A\beta x]_{ISF} + k_{ret}[A\beta x]_{ex}}{\frac{Q_{glymph}}{1 + [C83]/K_{M3} + [C99]/K_{M4}} - (k_{BPD} + k_{cx})[A\beta x]_{ISF} + k_{ret}[A\beta x]_{ex}} \\ + \frac{Q_{glymph}}{V_{raniat}} ([A\beta x]_{ISF} - [A\beta x]_{craniat}) + \frac{(Q_{craniat} + Q_{asc})}{V_{craniat}} ([A\beta x]_{CV} - [A\beta x]_{craniat}) \\ \frac{d[A\beta x]_{craniat}}{dt} &= \frac{Q_{gglymph}}{V_{craniat}} ([A\beta x]_{ISF} - [A\beta x]_{craniat}) + \frac{(Q_{craniat} - 2[A\beta x]_{CV} - [A\beta x]_{craniat})}{V_{craniat}} ([A\beta x]_{CV} - [A\beta x]_{SP1}) \\ \frac{d[A\beta x]_{SP1}}{dt} &= \frac{Q_{asc}}{([A\beta x]_{casma} - [A\beta x]_{CV}) + \frac{Q_{osc}}{V_{CV}} ([A\beta x]_{craniat} - 2[A\beta x]_{CV} - [A\beta x]_{SP1})}{V_{SP1}} ([A\beta x]_{CV} - [A\beta x]_{SP1}) \\ \frac{d[A\beta x]_{SP2}}{dt} &= \frac{Q_{asc}}{([A\beta x]_{SP1} - 2[A\beta x]_{SP2} + [A\beta x]_{SP2}) + \frac{(Q_{LP} + Q_{SN})}{V_{SP2}} ([A\beta x]_{SP1} - [A\beta x]_{SP2}) \\ \frac{d[A\beta x]_{SP2}}{dt} &= Q_{osc} ([A\beta x]_{SP2} - [A\beta x]_{SP3}) + (Q_{LP} + \frac{1}{3}Q_{SN}) ([A\beta x]_{SP2} - [A\beta x]_{SP3}) + Q_{refull}[A\beta x]_{SP3} \\ \frac{d[A\beta x]_{SP2}}{dt} &= \frac{Q_{asc}} ([A\beta x]_{SP2} - [A\beta x]_{SP3}) + \frac{Q_{asc}}{M_{SP3}} \frac{d(1/V_{SP3})}{dt} \\ \frac{d[A\beta x]_{SP3}}{dt} &= \frac{Q_{osc}} ([A\beta x]_{SP3} - \frac{Mass}{A\beta x,SP3} \frac{dV_{SP3}}{dt} \\ \frac{d[A\beta x]_{SP3}}{dt} &= \frac{Q_{csf}} (Mass} \frac{Mass}{A\beta x,SP3} \frac{dV_{SP3}}{dt} \\ \frac{d[A\beta x]_{SP3}}{dt} &= \frac{Q_{csf}} (A\beta x]_{SP3} - k_{ret} [A\beta x]_{SP3} \\ \frac{d[A\beta x]_{SP3}}{dt} &= \frac{Q_{csf}} (A\beta x]_{SP3} - k_{csf} \frac{Mass}{A\beta x,SP3} \frac{dV_{SP3}}{dt} \\ \frac{d[A\beta x]_{SP3}}{dt} &= \frac{$$

$$Q_{LP} = \begin{cases} Q_{CSF} & 0 < t - \lfloor t \rfloor < t_{CSF \ draw} \\ Q_{CSF} & t_{CSF \ draw} < t - \lfloor t \rfloor < \frac{V_{LP}}{Q_{CSF}} \\ 0 \ or \ Q_{leak} & \frac{V_{LP}}{Q_{CSF}} < t - \lfloor t \rfloor < 1 \end{cases}$$

$$Q_{SN} = \begin{cases} 0 & 0 < t - \lfloor t \rfloor < t_{CSF \, draw} \\ 0 & t_{CSF \, draw} < t - \lfloor t \rfloor < \frac{V_{LP}}{Q_{CSF}} \\ Q_{SN} & \frac{V_{LP}}{Q_{CSF}} < t - \lfloor t \rfloor < 1 \end{cases}$$

ISF = brain interstitial fluid

CV = cisterns and ventricles

SP = spinal SAS

ex = exchange

ret = return

LP = lumbar puncture

SN = spinal nerve

osc = oscillatory

glymph = glymphatic

gamma = gamma secretase

Model parameters

Supplementary Table 7: Parameter meaning, values and sources

Parameter	Interpretation	Value	Units	Source
<i>К</i> _{ВРD38,40,42}	Transport	Fit to SILK and lumbar	1/h	
	across BBB,	concentration timecourses		
	proteolysis,			
	and			
	deposition			
SF _{38,40,42}	Scaling		N/A	
	factors for			
	SILK data,			
	needed due			
	to non-			
	linearities in			
	mass			
	spectrometer			
	response as a			
	function of			
	sample			
	amount			
Qosc	Bi-directional		mL/h	
	flow rate			
	between SAS			
	compartment			
	S			
Q _{CSF}	CSF		mL/h	
	Production			
	rate			
k _{ex42}	Exchange of		1/h	
	Aβ ₄₂ with			
	presumably			
	existing			
	amyloid			
	plaques			
VISF	Volume of ISF	10% of TotalGrayVol	mL	Bender, B. & Kiose, U. Cerebrospinal fluid and interstitial
				EPI. Magn. Reson. Med. 61, 834–841 (2009)
TotalGrayVo	Total gray	"the sum of IhCortex +	μL	https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometrySta
1	matter	rhCortex + SubCortGray +		ts
	volume from	CerebellumGM"		
	FreeSurfer			
	analysis of			
	MRI scans			
V _{CSF}	Volume of	Estimated from FreeSurfer	mL	
	cranial,	'Estimated Total Intra Cranial Vo		
	cisternal and	l' minus ('SupraTentorialVol',		
	ventricular	'CerebellumCortex vol',		
	CSF	'CerebellumWhiteMatter vol'		
		, 'BrainStem vol') and brain		
		thickness fraction		

		Allowed to vary to better fit		
		lumbar concentration		
		timecourse		
brain	Measure of	See description below	N/A	
thickness	distance from			
fraction	ventricle to			
	brain surface			
V _{cranial}	Volume of	VCSF x 0.838	mL	Bottan, S., Poulikakos, D. & Kurtcuoglu, V. Phantom model of
	CSF in cranial			physiologic intracranial pressure and cerebrospinal fluid dynamics IEEE Trans Biomed Eng 59 1532–1538 (2012)
	SAS			
V _{CV}	Volume of	VCSF x 0.162 + FreeSurfer	mL	
	CSF in cisterns	'TotalCSF'		
	and ventricles			
V _{SP1} , V _{SP2} ,	Volumes of	Literature values applied	mL	Alperin, N., Bagci, A. M., Lee, S. H. & Lam, B. L. Automated
V _{SP3}	cervical,	uniformly to all subjects, total		craniospinal CSF redistribution following lumbar withdrawal
	thoracic and	volume of 80 mL, allowed to		in idiopathic intracranial hypertension. Am. J. Neuroradiol.
	lumbar SAS	vary to better fit lumbar		37, 1957–1963 (2016) Chazen II. <i>et al.</i> Automated segmentation of MR imaging
		concentration timecourse		to determine normative central nervous system
				cerebrospinal fluid volumes in healthy volunteers. <i>Clin.</i>
				Sass, L. R. et al. A 3D subject-specific model of the spinal
				subarachnoid space with anatomically realistic ventral and
				dorsal spinal cord nerve rootlets. Fluids Barriers CNS 14, 1– 16 (2017)
V _{LP}	Volume of	6 during withdrawal,	mL	
	hourly lumbar	otherwise 0	each	
	puncture		hour	
	withdrawal			
t _{CSF draw}	Time for CSF	0.1	h	Range: 5-10 min (authors: RJB and BPL)
	withdrawal			
Q _{LP}	Rate of CSF	$V_{LP}/t_{CSFdraw}$	mL/h	
	withdrawal			
Q _{refill}	Rate of	$Q_{CSF} - Q_{LP}$	mL/h	
	change of			
	lumbar SAS			
	volume			
	during CSF			
	withdrawal			
Q _{leak}	Rate of CSF	Allowed to vary to better fit	mL/h	
	leakage due	lumbar concentration		
	to catheter	timecourse	-	
Q _{SN}	Rate of loss of	Q _{CSF} x 10%	mL/h	strongly affects prediction of cisternography half-life, adjusted from 5% - 20%, with 10% selected as value that
	CSF down			provides most reasonable value for cisternography half-life
	spinal nerves,			Moriyama, E., Ogawa, T., Nishida, A., Ishikawa, S. & Beck, H.
	or CSF			diagnosis of intracranial hypotension. J. Neurosurg. 101,
	absorption in			421–426 (2004)
	spinal SAS			
Q _{cranial}	Rate of loss of	$Q_{CSF} - Q_{SN} - Q_{LP}$		
	CSF from the			
	cranial space		1	

Qglymph	Bi-directional flow rate between cranial SAS and brain ISF	Q _{CSF}		 Strongly affects concentration of Aβ peptides in brain ISF. Chosen to achieve 10-fold gradient between brain ISF and lumbar concentrations of Aβ peptides. Wang, J., Dickson, D. W., Trojanowski, J. Q. & Lee, V. MY. The levels of soluble versus insoluble brain Abeta distinguish Alzheimer's disease from normal and pathologic aging. Exp. Neurol. 158, 328–337 (1999) Roberts, K. F. <i>et al.</i> Amyloid-β efflux from the central nervous system into the plasma. <i>Ann.</i> <i>Neurol.</i> 76, 837–844 (2014) Freeman, S. H., Raju, S., Hyman, B. T., Frosch, M. P. & Irizarry, M. C. Plasma Aβ levels do not reflect brain Aβ levels. <i>J. Neuropathol. Exp. Neurol.</i> 66, 264–271 (2007) Lue, L. <i>et al.</i> Soluble Amyloid Beta Peptide Concentration as a Predictor of Synaptic Change in Alzheimer's Disease. <i>Am. J. Pathol.</i> 155, 853– 862 (1999)
k _f	Rate of synthesis of APP	Determined from parameters, steady state equations and measured lumbar	ng/ mL h	
САРР	Cortex concentration of APP	concentrations of AB ₃₈ , AB ₄₀ and AB ₄₂	ng/g	
cC83	Cortex concentration of C83		ng/g	
cC99	Cortex concentration of C99		ng/g	
V _{max,gamma38}	Maximum rate of C99→Aβ38		ng/ mL h	
V _{max,gamma42}	Maximum rate of C99→Aβ42		ng/ mL h	
Vmax,gamma40	Maximum rate of C99→Aβ40	609,798	ng/ mL h	Ortega, F., Stott, J., Visser, S. A. G. & Bendtsen, C. Interplay between α -, β -, and γ -secretases determines biphasic amyloid- β protein level in the presence of a γ -secretase inhibitor. <i>J. Biol. Chem.</i> 288 , 785–792 (2013) Stockley, J. H., Ravid, R. & Neill, C. O. Altered β -secretase enzyme kinetics and levels of both BACE1 and BACE2 in the Alzheimer's disease brain. <i>FEBS Lett.</i> 580 , 6550–6560 (2006)
fLeu	Fraction of plasma Leu that is isotope labeled	Timecourse measured by GC- MS from plasma samples	N/A	
[Āβx] _{plasma}	Concentration of Aβ peptides in CSF generated at choroid plexus	Assumed to be zero due to the low concentration of $A\beta$ peptides in plasma compared to CSF and the filtering properties of the choroid plexus. Would allow consideration of the effects of	0 ng/m L	

	a leaky choroid plexus if non-	
	zero	

Supplementary Table 8 – Cisternography half-life predicted by current model

Q_{SN} (% of Q_{CSF})	Predicted cisternography half-life (h)
5	27 ± 7.4
10	21 ± 4.5
20	14 ± 3.2

Supplementary Table 9: Rate constants for enzymatic production of Aβ. 'x' notates the listed reaction.

	Secretase	х	К _{мх} (ng/mL)	V _{max,x} (ng/mL h)
APP \rightarrow C83	α	1	2578.063	392,228.7
APP \rightarrow C99	β	2	22,731.31	54,555.45
C83 → p3	γ	3	399,184	5,205,945
C99 → Aβ40	γ	4	12,682.41	609,737.72
$C99 \rightarrow C83$	α	5	931.4293	7951.546

Supplementary Figure 4: *Example of results from simulation.* A. Timecourse for isotope labeling of proteins and peptides in a amyloid negative subject. Leu = plasma Leucine, APP = APP in neuronal membrane, C99 = C99 in neuronal plasma membrane, ISF = $A\beta_{38}$ in cortical interstitial fluid, cranial = $A\beta_{38}$ in cranial SAS, CV= $A\beta_{38}$ in cistern/ventricles, SP3 = $A\beta_{38}$ in third spinal compartment, *i.e.* lumbar SAS. B. Lumbar volume, response to hourly withdrawal of 6 mL. Because the rate of CSF withdrawal is large compared to the rate of CSF production, a volume decrease must occur in the system, which MRI studies suggest is mainly in the lumbar space (Alperin, N., Bagci, A. M., Lee, S. H. & Lam, B. L. Automated quantitation of spinal CSF volume and measurement of craniospinal CSF redistribution following lumbar withdrawal in idiopathic intracranial hypertension. Am. J. Neuroradiol. 37, 1957–1963 (2016)). C. Fits to SILK data. D. Fits to lumbar concentration data. Green circles = smoothed data. Black circles = raw data.

Supplementary Methods 2: Estimation of CSF volumes

Measurement of total CSF volumes by MRI is challenging due to low contrast between bone and CSF.² In the current dataset, a trend was observed between the FreeSurfer 'Estimated intracranial volume' and 'total brain volume', with some outliers that approach or achieve negative total cranial CSF volumes (Supplementary Figure 5A; 'total brain volume' is the supratentorial volume + cerebellum cortex and white matter + brain stem) The outliers were removed (Supplementary Figure 5B). We then sought to find a surrogate measure of CSF volumes that was less sensitive to measurement error.

We explored alternative measures of brain morphology that could better correlate with age. The total ventricle volume was converted to a 'ventricle radius' by assuming a spherical shape for the sum of the lateral, third and fourth ventricle volumes. The same was done for the total supratentorial brain volume, producing a 'brain radius'. Assuming that the brain parenchyma 'sphere' perfectly surrounded the ventricle 'sphere', the difference between these two radii yielded a 'brain thickness' (Equation 1, with n = 1/3). This is distinct from MRI-measured cortical thicknesses, due to the inclusion of white matter and basal ganglia.

Brain thickness =
$$\left(\frac{V_{supratentorial}}{\frac{4}{3}\pi}\right)^n - \left(\frac{V_{ventricle}}{\frac{4}{3}\pi}\right)^n$$
 [1]

'Brain thickness' was more highly correlated with age than any MRI-measured value in amyloid positive subjects (r = -0.54, p = 4.8×10^{-4} , n = 38). It was the third highest correlated measure in amyloid negative subjects (r = -0.64, p = 4.9×10^{-8} , n = 58), behind putamen volume and accumbens-area volume (compare to Supplementary Table 4).

To further explore the 'brain thickness' measure, the value of the exponent *n* in equation 1 was varied from 0.001 to 3. The highest correlation with age was found with an exponent of 0.346 for amyloid negative subjects (0.330 when excluding presenilin mutation carriers), and 0.331 for all subjects, supporting the choice of 1/3 for the exponent. This result suggests that brain thinning in normal aging occurs at a more uniform rate over time than volumetric changes.

With outliers removed, the ratio of brain thickness to brain radius was highly-correlated with the total cranial CSF volume (Supplementary Figure 5C; total CSF volume is the total brain volume subtracted from the intracranial volume; r = -0.71, n = 94, $p = 1.0 \times 10^{-15}$).

The 'brain thickness'/'brain radius' ratio was used to predict cranial CSF volume for all subjects using the regression line in Supplementary Figure 5C. The mean MRI-estimated cranial + cisternal + ventricular CSF volumes were higher (429 \pm 73 mL) than those in the literature (Alperin et al. : 180 \pm 33 mL; Chazen et al. : 179 \pm 56 mL).^{3,4} All values were scaled so that the average volume of the entire cohort was 180 mL. Although a total CSF amount of 150 mL is widely quoted, this value has been refuted by numerous MRI studies.³

Supplementary Figure 5: A. Intracranial volume estimated from MRI scans exhibited some outliers that showed negligible or negative volumes for the CSF space. B. Outliers were removed. C. The CSF volume was calculated by subtracting the total brain volume from the intracranial volume. Correlation of CSF volume (with outliers removed) was high versus the ratio of brain thickness to brain radius. This ratio accounts for both ventricle enlargement and brain

thinning. The regression line was then used to estimate CSF volume for each subject, based only on their ratio of brain thickness to brain radius.

The CSF volume determined from the linear regression was split between a cranial CSF compartment and the sum of the cisternal volumes. A previous study reported that 16.2% of cranial CSF (excluding ventricles) was in the pontine and cerebelomedullary cisterns.⁵ This value was applied uniformly to all subjects.

No information about the subjects' spinal CSF volumes were available in the MRI dataset. An initial value of 80 mL was used for all subjects, which is a value in close agreement with multiple studies, even including elderly subjects.^{6–8} These studies report that the correlation between height and CSF volume is weak, so spinal CSF volumes were not corrected for subject height.

Cross-sectional areas of the spinal SAS generally show a constriction near the junction of the cervical and thoracic vertebrae and the junction of the thoracic and lumbar vertebrae.^{6,8} The spinal SAS volume was therefore divided into three compartments, roughly corresponding to cervical, thoracic and lumbar volumes. The volume of each compartment was set to 26.9%, 29.5% and 43.6% of the total spinal SAS volume, respectively,⁶ which was applied uniformly to all subjects.

Supplementary References

- 1. Moriyama, E., Ogawa, T., Nishida, A., Ishikawa, S. & Beck, H. Quantitative analysis of radioisotope cisternography in the diagnosis of intracranial hypotension. *J. Neurosurg.* **101**, 421–426 (2004).
- 2. Eritaia, J. *et al.* An optimized method for estimating intracranial volume from magnetic resonance images. *Magn. Reson. Med.* **44**, 973–977 (2002).
- 3. Chazen, J. L. *et al.* Automated segmentation of MR imaging to determine normative central nervous system cerebrospinal fluid volumes in healthy volunteers. *Clin. Imaging* **43**, 132–135 (2017).
- 4. Alperin, N., Bagci, A. M., Lee, S. H. & Lam, B. L. Automated quantitation of spinal CSF volume and measurement of craniospinal CSF redistribution following lumbar withdrawal in idiopathic intracranial hypertension. *Am. J. Neuroradiol.* **37**, 1957–1963 (2016).
- 5. Bottan, S., Poulikakos, D. & Kurtcuoglu, V. Phantom model of physiologic intracranial pressure and cerebrospinal fluid dynamics. *IEEE Trans. Biomed. Eng.* **59**, 1532–1538 (2012).
- 6. Sass, L. R. *et al.* A 3D subject-specific model of the spinal subarachnoid space with anatomically realistic ventral and dorsal spinal cord nerve rootlets. *Fluids Barriers CNS* **14**, 1–16 (2017).
- 7. Alperin, N., Bagci, A. M., Lee, S. H. & Lam, B. L. Automated quantitation of spinal CSF volume and measurement of craniospinal csf redistribution following lumbar withdrawal in idiopathic intracranial hypertension. *Am. J. Neuroradiol.* **37**, 1957–1963 (2016).
- 8. Edsbagge, M., Starck, G., Zetterberg, H., Ziegelitz, D. & Wikkelso, C. Spinal cerebrospinal fluid volume in healthy elderly individuals. *Clin. Anat.* 24, 733–740 (2011).