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Mycobacterium tuberculosis (Mtb) infection accounts for 
nearly 1.5 million deaths each year1, prompting efforts 
to develop new host-directed therapies to treat TB dis-

ease. However, these efforts have been hindered by an incomplete 
understanding of how the human immune system responds to 
Mtb. Infection is initiated when bacteria are engulfed by phagocytic 
cells after being inhaled into the lungs2,3. This triggers an immune 
response that converges on formation of a granuloma, a dynamic 
and spatially organized tissue structure composed of macrophages, 
granulocytes, lymphocytes and fibroblasts. From the perspective of 
facilitating an effective host response, granulomas play contradic-
tory roles. On one hand, consolidation of infected cells within the 
myeloid core limits dissemination by partitioning them away from 
uninvolved lung parenchyma. On the other, tolerogenic pathways 
upregulated within this region may limit bacterial clearance4–6.

Granuloma composition can be highly variable7. Even within 
a single individual, infection can result in granulomas with dis-
tinct histologic features that each progress independently over 
time8. Controlled infections in non-human primates have revealed 
that a single individual can possess well over ten granulomas, and  
the inflammatory profile, size and bacterial ecology of these lesions 
differ dramatically9–11. Thus, the trajectory of each granuloma 
varies across a spectrum between complete bacterial clearance to 

uncontrolled dissemination. This discordance suggests that local 
host–bacterial dynamics within the tissue microenvironment (ME) 
play a central role in determining granuloma fate. Along these lines, 
a growing number of studies find that granuloma structure and 
immune cell function are interconnected12–15.

Taken together, these findings suggest that TB progression 
is impacted by focal, spatially encoded regulatory mechanisms  
within the granuloma ME. Thus, understanding how these mech-
anisms promote bacterial clearance or persistence is critical for 
designing effective therapies. A necessary first step toward this goal 
is to characterize immune cell dynamics and regulatory pathways 
in human TB granulomas. However, many facets of TB granuloma 
pathology are human specific and difficult to emulate in model 
systems. This is compounded by the fact that, unlike other tissue 
pathologies, biopsy specimens are rarely obtained during a typi-
cal TB clinical workup. In this respect, TB is a member of a larger 
class of diseases, where the paucity of human material and lack of 
high-fidelity model systems have impeded development of new 
therapies.

With this in mind, we applied a stepwise investigative frame-
work where limited amounts of archival tissue and publicly avail-
able transcriptome data are integrated to glean new insight into 
human-specific pathobiology in TB. We employed MIBI-TOF16 to 
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Tuberculosis (TB) in humans is characterized by formation of immune-rich granulomas in infected tissues, the architecture 
and composition of which are thought to affect disease outcome. However, our understanding of the spatial relationships that 
control human granulomas is limited. Here, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) to image 37 
proteins in tissues from patients with active TB. We constructed a comprehensive atlas that maps 19 cell subsets across 8 spa-
tial microenvironments. This atlas shows an IFN-γ-depleted microenvironment enriched for TGF-β, regulatory T cells and IDO1+ 
PD-L1+ myeloid cells. In a further transcriptomic meta-analysis of peripheral blood from patients with TB, immunoregulatory 
trends mirror those identified by granuloma imaging. Notably, PD-L1 expression is associated with progression to active TB 
and treatment response. These data indicate that in TB granulomas, there are local spatially coordinated immunoregulatory 
programs with systemic manifestations that define active TB.
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chart granuloma composition across eight computationally defined 
spatial MEs, revealing features of highly localized immune modula-
tion in granulomas, such as IDO1- and PD-L1-expressing myeloid 
cells, proliferative regulatory T cells (Treg cells) and high levels of 
transforming growth factor β (TGF-β) alongside depletion of IFN-γ. 
We find that IDO1 seems to be specific to TB granulomas, whereas 
PD-L1 and sparsity of activated T cells are also found in another 
granulomatous condition, sarcoidosis. Lastly, in an orthogonal anal-
ysis of blood transcriptomes from patients with TB, we observe that 
similar immunoregulatory expression dynamics define systemic 
immunity during active TB.

Results
Structured immune cell composition in human TB granulomas. 
To assess granuloma composition and architecture in TB, we curated 
a cohort of actively infected human tissues. Archival formalin-fixed 
paraffin-embedded (FFPE) specimens from patients treated in the 
United States or South Africa were procured from Stanford Health 
Care and University of Texas Health Science Center or University of 
KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital, respectively 
(Extended Data Table 1). The South African cohort comprised pul-
monary tissues from patients undergoing therapeutic resection 
for advanced TB (n = 3), whereas a subset of US specimens came 
from postmortem autopsy lung tissues from patients with fatal TB 
(n = 3). Although TB disease typically manifests in the lung, infec-
tion can disseminate to extrapulmonary sites17. To characterize  
TB infection at an earlier stage and assess how granuloma composi-
tion varies with infection site, we included diagnostic biopsy speci-
mens from lung (n = 2), pleural cavity (n = 3), lymph node (n = 2), 
vertebrae (n = 1) and endometrium (n = 1) (Fig. 1a).

Each specimen was reviewed by an anatomic pathologist and 
screened to include the presence of active granulomatous inflam-
mation (Extended Data Fig. 1a). MIBI-TOF was subsequently used 
to image two 500 μm × 500 μm fields of view (FOVs) per tissue 
after staining with a 37-plex panel of metal-labeled antibodies  
(Fig. 1b, Extended Data Fig. 1b,c and Extended Data Table 2)  
(ref. 16). The antibody panel included markers to phenotype major 
immune and nonimmune cell lineages, including lymphocytes, 
macrophages, granulocytes, stroma and epithelium. The panel also 
included antibodies for 12 functional markers, including those with 
well-documented immunoregulatory activity, such as PD-1, Lag3, 
PD-L1 and IDO1.

To extract single cells, multiplexed imaging data were processed 
with a low-level pipeline prior to single-cell segmentation (Fig. 1a 
and Extended Data Fig. 1d)18–20. Each FOV contained an average of 
~1,410 single cells (s.d. = 343) (Extended Data Fig. 2d). FlowSOM 
(Extended Data Fig. 2a,b) was employed to phenotype 19 unique 
cell subsets (Fig. 1c) (ref. 21). For each image, FlowSOM clusters 
and segmentation masks were combined to generate cell phenotype 
maps (CPMs), where each cell is labeled by its phenotype (Fig. 1d 
and Extended Data Fig. 2c).

Granuloma composition was predominated in most lesions by 
T cells and myeloid cells, (average myeloid/lymphoid ratio = 2.4, 
s.d. = 2.4). Myelomonocytic cells comprised multiple subsets of 
macrophages, dendritic cells (DCs) and monocytes that were dis-
tinguished by varying degrees of coexpression of CD11c, CD11b, 
CD209, CD68, CD14, CD16 and CD206 (Fig. 1c,e). Granulocytes 
consisted of neutrophils (mean = 2.5%, s.d. = 8.8%, of total immune 
cells) and mast cells (0.6% ± 0.9). We also identified γδ T cells (0.1% 
± 0.3), CD209+ DCs (0.2% ± 0.6) and Treg cells (1.0% ± 1.7), high-
lighting the capability of our approach to enumerate low-abundance 
cell populations that are suggested to play a key role in granuloma 
pathology. In line with increased vascularization in active dis-
ease22,23, nonimmune cells were predominated in most lesions by 
endothelial cells (3.7% ± 2.8, of total cells), whereas fibroblasts 
(5.6% ± 6.5) and epithelial cells (2.0% ± 3.7) varied between lesions 
(Extended Data Fig. 2e,f). Altogether, we assigned 94% (n = 39,709 
single cells) of cells to 19 subsets that ranged in frequency from 0.1% 
to 15% across our dataset.

To understand the relationship between granuloma composition 
and organ site, we compared cell abundances between pulmonary 
and extrapulmonary tissues. Interestingly, we found the vast major-
ity of subsets (13/19) occurred in similar proportions irrespective of 
organ site (Extended Data Fig. 2g,h). However, pulmonary tissues 
displayed increased proportions of mast cells (P = 0.002, Wilcoxon 
rank sum), CD68+ macrophages (P = 0.007), and multinucle-
ated giant cells (MNGCs; P = 0.03), along with a slight decrease in 
CD11b+ CD11c+ macrophages (P = 0.02). Likewise, the presence 
of CD14+ CD16+ intermediate monocytes was nearly exclusive to 
extrapulmonary tissues (P = 6 × 10−5).

Given the subtle differences across organ sites, we next evalu-
ated how granuloma composition varied with clinical origin. For 
this, we compared diagnostic biopsy specimens with advanced dis-
ease in postmortem and resection tissues (Fig. 1e–h and Extended  
Data Fig. 2i,j). First, we found differences in CD8+ T cell frequency 
drove skewing of the CD4+ to CD8+ T cell ratio between groups,  
with postmortem and resection tissues exhibiting the lowest 
and highest proportion of CD8+ T cells, respectively (P = 0.005, 
Wilcoxon rank sum). Second, therapeutic resections were prefe-
rentially depleted of CD11b+CD11c+ macrophages and instead 
enriched for CD14+ monocytes. Notably, we found these two trends 
were moderately correlated (R2 = 0.18, r = 0.43 and P = 0.026, t 
test; Fig. 1i). Although both sample types were from patients with 
advanced disease, the clinical course of patients undergoing resec-
tion differed from that of postmortem specimens due to the acute, 
presurgical antimicrobial treatment the patient had received. Thus, 
it is possible that coordinated CD8+ T cell and monocyte recruit-
ment is driven by presurgical antimicrobial therapy, although 
other differences between these specimens should be considered. 
Altogether, this comprehensive cell census revealed distinct types  
of granulomas that are defined by immune cell frequency and  
associate with TB disease status.

Fig. 1 | Multiplexed imaging of TB granulomas reveals structured immune cell composition. a, Conceptual overview of MIBI-TOF analysis of human TB 
granulomas, comparison with sarcoidosis and complementary analysis of systemic responses to TB. b, Representative images from a TB granuloma.  
c, Cell lineage assignments based on normalized expression of lineage markers (heatmap columns). Rows are ordered by absolute abundance shown on 
the bar plot (left), whereas columns are hierarchically clustered (Euclidean distance, average linkage). d, Cell identity overlaid onto the segmentation  
mask for a representative TB granuloma (left). Two insets (right) are shown. e, The relative abundance of immune cell types across all TB FOVs with cell 
types ordered by decreasing median abundance and bars ordered by specimen origin (resection, blue; postmortem, green; diagnostic biopsy, red).  
f, Frequency of CD14+ monocytes and 11b/c+ 206+ macrophages among total immune cells colored by specimen origin. Line represents the median.  
g, The CD4+ T cell/CD8+ T cell ratio represented as a log2 fold change for each TB FOV (top) colored by specimen origin (top) and frequency of CD4+ 
T cells (middle) and CD8+ T cells (bottom) among total immune cells. h, Frequency of CD4+ and CD8+ T cells among total immune cells colored by 
specimen origin. Line represents the median. i, Linear relationship between the CD4+ T cell/CD8+ T cell ratio and 11b/c+ 206+ macrophage/CD14+ 
monocyte ratio. Linear regression (black solid line) with 95% confidence interval (CI; black dashed line) displayed. Significance was established with  
a t test (two tailed). Unless specified, all other P values were calculated with a Wilcoxon rank-sum test (two tailed) (*P < 0.05; **P < 0.01; ***P < 0.001). 
Coll, collagen-1; mac, macrophage; mono, monocyte; MPO, myeloperoxidase; ROI, region of interest; VIM, Vimentin.
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Generation of multiplexed tissue atlas of human TB granulomas
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Mapping spatially coordinated biological responses in TB granu
lomas. To examine how granuloma structure and function are 
interrelated, we conducted a spatial enrichment analysis that quan-
tified the degree of co-occurrence between protein pairs (Extended 
Data Fig. 3a) (ref.18). Enrichment scores were used to construct an 
interaction network that was analyzed using a community detection 
algorithm24 (Fig. 2a). This revealed three spatial modules consistent 
with canonical granuloma structures, including the myeloid core, 
lymphocytic cuff and stromal compartment. Intriguingly, these 
modules also revealed granular, previously unknown features link-
ing cell function to spatial organization, such as association of the 
lymphocytic cuff with H3K9Ac and the myeloid core with IDO1 
and PD-L1. Notably, this linkage was present irrespective of speci-
men type, suggesting granuloma structure and function are coupled 
and conserved within these compartments (Fig. 2a).

These findings motivated us to assess how single-cell function and 
granuloma structure are connected. Therefore, we employed spatial 
latent Dirichlet allocation (spatial-LDA)25 to discover and assign cel-
lular MEs to each cell, where an ME is defined by cell types spatially 
co-occurring across the cohort (Fig. 2b). Using this approach, we 
identified eight MEs for summarizing the local frequency of cell 
subsets within a 50-μm radius of a target cell (Fig. 2b,c). We then 
labeled each cell with its highest-probability ME to generate a maxi-
mum probability map (MaxPM; Fig. 2c and Extended Data Fig. 3b). 
Through this approach, granuloma composition and structure were 
summarized with two spatial representations, a CPM and MaxPM, 
where cells are labeled by cell type or ME, respectively (Fig. 2c).

This allowed us to annotate canonical features of granuloma  
histology in an unbiased fashion while revealing previously unrec-
ognized niches (Fig. 2d,e). The majority of granuloma macrophages 
and monocytes belonged to one of three myeloid MEs (MEMcore1, 
MEIntMono and MEMcore2). MEMcore1 and MEMcore2 were found to some 
degree across all specimen types, whereas MEIntMono was notably 
enriched in extrapulmonary diagnostic biopsy specimens (Fig. 2f and 
Extended Data Figs. 3d,e and 2h). MEMcore1 exhibited the strongest  
preference for the sharply demarcated granuloma core region 
(Extended Data Fig. 3c). In contrast, MEMcore2 exhibited diffuse 
distribution of CD14+ monocytes and was enriched in therapeutic 
resections relative to pulmonary biopsy specimens, where MEMcore1 
was prevalent (Fig. 2d,e). In line with this, MEMcore1 was highly 
enriched in extrapulmonary tissues and moderately to highly abun-
dant in postmortem specimens (Extended Data Fig. 3e). Lastly, 
MEIntMono exhibited the lowest preference for the canonical myeloid 
core and was enriched for CD14+CD16+ intermediate monocytes 
(Fig. 2d,e and Extended Data Fig. 3c).

Next, we annotated two lymphoid MEs, the lymphocytic cuff 
(MELcuff) and tertiary lymphoid structures (METLS). MELcuff aligned 
with the second canonical granuloma ME (the lymphocytic cuff) 
and was composed of CD4+ and CD8+ T cells (Fig. 2d,e). METLS was 
predominated by B cells, with sparse numbers of follicular helper 
T cells (CD4+ PD-1+), consistent with TLSs (confirmed by hema-
toxylin and eosin (H&E); Fig. 2e) (refs. 26,27). This ME was highly 
abundant in FOVs that were B cell enriched across specimen groups 
(Figs. 1e and 2f).

In our composition analysis, we observed that some granulomas 
exhibited a fibrotic wound-healing response with fibroblasts and 

CD163+ M2-like macrophages (Fig. 1e). Spatial-LDA revealed these 
cells colocalized within ME fibrosis (MEFib), where CD36, a fibro-
blast marker, and collagen-1, a marker for fibrosis, were expressed 
(Fig. 2d,e)28. The last two MEs represented less characterized  
cellular environments in TB infection. ME vasculature (MEVasc)  
was predominated by blood vessels, neutrophils and mast cells, 
whereas MEEpi (lung parenchyma) was composed of IFN-γ+  
epithelial cells and CD206+ alveolar-like macrophages (Fig. 2d,e). 
Given that these cells are known to participate in angiogenesis, tissue 
repair, and immune cell recruitment29, perivascular localization of 
mast cells in the granuloma could suggest their involvement in these 
processes, especially considering the association between mast cell 
quantity and local bacterial burden30. On the other hand, because 
MEVasc was modestly lower in extrapulmonary biopsy specimens than  
pulmonary biopsy specimens (P = 0.06, Wilcoxon rank sum) and 
significantly lower than pulmonary resections (P = 0.04) (Fig. 2f 
and Extended Data Fig. 3d,e), this result may reflect organ-specific 
differences in the association between vascularity and granulocytes 
or abundance of tissue resident mast cells.

Given the association between granuloma composition and clin-
ical origin, we next sought to determine whether this relationship 
applied to granuloma structure. Using a correlation-based approach, 
we found that five ME frequency clusters accounted for 81% of vari-
ance in our dataset (Fig. 2f and Extended Data Fig. 3f). Notably, four 
out of five of these clusters contained samples from more than one 
group, supporting a recurrent spatial framework where granuloma 
composition and structure are coupled in a manner that is clinically 
agnostic (Fig. 2f). Altogether, this result suggests that MEs capture 
spatial features that are not discernible by bulk cell composition 
alone and indicate spatially coordinated biological responses.

Granuloma myeloid cells express an immunoregulatory program.  
Spatial modeling of granulomas revealed myeloid-rich regions of 
the granuloma are characterized by expression of IDO1 and PD-L1 
(Fig. 2a,d). Given the tolerogenic role of these proteins31–35, we 
sought to characterize the cellular and spatial nature of immuno-
regulatory phenotypes in the myeloid compartment. Coexpression 
of PD-L1 and IDO1 was correlated (Pearson r = 0.67, P < 2.2 ×10−16, 
t test) across 11 granulocyte, macrophage, monocyte and DC popu-
lations (Fig. 3a,b and Extended Data Fig. 4a,b) and was highest in 
CD11b+CD11c+ macrophages (Fig. 3b and Extended Data Fig. 4b), 
a phenotype identical to that of a recently described immunosup-
pressive tumor-associated macrophage36. CD16+CD14+ interme-
diate monocytes exhibited a bimodal distribution in which PD-L1 
and IDO1 associated with HLA-DR downregulation, which is 
consistent with immune evasion that disables antigen presentation 
to CD4+ T cells (Fig. 3b and Extended Data Fig. 4b) (ref. 37). With  
respect to clinical origin, PD-L1 and IDO1 expression was correlated 
in all specimens but only weakly correlated in resections because of 
PD-L1 depletion (Extended Data Fig. 4c,d). Notably, neutrophils also 
expressed IDO1 or PD-L1 (Extended Data Fig. 4e). Taken with pre-
vious work identifying neutrophils that secrete anti-inflammatory 
cytokines in TB granulomas38, these findings align with a regulatory 
effector function. Lastly, nearly 100% of MNGCs expressed IDO1, 
and ~85% expressed PD-L1, a feature present across specimen 
groups and organ site (Fig. 3e and Extended Data Fig. 4f).

Fig. 2 | Spatial analysis of granuloma protein expression and cellular MEs. a, Positive spatial enrichments (average z-score >0) between protein pairs 
as a weighted, undirected network (edge weight is proportional to average z-score) with three communities (myeloid core, green; lymphocytic cuff, blue; 
nonimmune/other, pink). b, Conceptual overview of spatial-LDA. c, Cell probability map (left), max probability map (right), and ME probability for 8 MEs 
(middle, scaled 0 to 1) for a representative TB granuloma. d, Heatmap of ME preferences for all subsets (standardized mean ME loading) with hierarchical 
clustering (Euclidean distance, complete linkage) and mean normalized expression of functional markers (probability weighted mean) with columns 
hierarchically clustered (Euclidean distance, complete linkage). e, Biological classification of MEs. f, Frequency of all MEs per FOV. Heatmap columns are 
hierarchically clustered (Pearson correlation, complete linkage). Paired ROIs from the same patient annotated with a black bar. ME cluster and sample 
clinical origin annotated below dendrogram. ExPulm, extrapulmonary; MC, mast cell; pulm, pulmonary; HH3, histone H3; Pan-CK, pan-cytokeratin.
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To assess how PD-L1 and IDO1 expression varies with loca-
tion in the granuloma, we calculated the frequency of PD-L1+ and 
IDO1+ nongranulocytic myeloid cells in each ME (Fig. 3f–h and 

Extended Data Fig. 4g). We found the majority of cells displayed 
preferential, ME-specific expression that was independent of  
subset frequency. For example, the frequency of PD-L1-expressing 
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CD163+ macrophages was highest in MEMcore1 (53.5%), MELcuff 
(71.6%) and MEIntMono (78.3%), despite this population being most 
prevalent in MEFib (Fig. 3h). Similarly, IDO1-expressing CD11c+ 
DCs were most enriched in MEFib (78.9%) and MEIntMono (83.7%) 
(Fig. 3h). Altogether, PD-L1 and IDO1 coexpression defines a newly  

identified, spatially coordinated immunoregulatory feature of TB 
granulomas. Given the observational nature of this study, a func-
tional role cannot be directly evaluated. However, these data sup-
port the possibility of highly localized, myeloid-mediated immune 
suppression in the granuloma.
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Fig. 3 | Granuloma myeloid cells express a spatially coordinated immunoregulatory program. a, UMAP visualization of all myeloid populations across all 
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overlaid on the UMAP. c, Representative images of TB granulomas showing expression of IDO1 (magenta) and PD-L1 (cyan). d, PD-L1 and IDO1 expression 
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f, The frequency of IDO1+ and PD-L1+ nongranulocytic myeloid cells in aggregate and broken down by ME. Bars represent mean ± s.e.m. (n = 30).  
g, MEMcore1 and MEIntMono maximum probability maps and representative images of a pulmonary (top) and pleural (bottom) TB sample showing expression 
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HLA, human leukocyte antigen; HLA-DR-DQ-DP, HLA-DR/HLA-DQ/HLA-DP.
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Granuloma lymphocytes are sparsely activated. We next wanted 
to evaluate to what extent the coordination between structure  
and function observed in myeloid cells extended to lymphocytes 
(Fig. 4a). On comparing the proportion of T cell subsets within 
each ME, Treg cells (CD3+CD4+Foxp3+) were uniquely enriched 
in MEMcore1 relative to the lymphocytic cuff (Fig. 4b (P = 0.0007, 
Wilcoxon rank sum)), and the total number of MEMcore1-infiltrating 
Treg cells was correlated to the number of IDO1+ cells (R2 = 0.32, 
P = 0.003, t test) and PD-L1+ cells (R2 = 0.33, P = 0.003) in this envi-
ronment (Extended Data Fig. 4h). All other lymphocyte subsets 
were enriched in MELcuff, including Foxp3−CD4+ T cells (Fig. 4b). 
Furthermore, the frequency of proliferating Treg cells exceeded that 
of all other lymphocyte subsets (Fig. 4c, P < 0.001, Wilcoxon rank 
sum). Taken together, these findings suggest that Treg cells, including 
those actively proliferating, and immunoregulatory myeloid cells 
colocalize in MEMcore1 to potentiate an immunomodulatory niche 
(Fig. 4d) (refs. 39–42).

Anti-inflammatory pathways can be induced as negative feed-
back that moderates the cytotoxic effects of unchecked immune 
activation43. In line with this, high expression of PD-L1 and IDO1 
by granuloma myeloid cells would be expected to be accompanied 
by T cell activation in the form of checkpoint expression (e.g., 
PD-1 and Lag3) (ref. 44). For example, when examining infiltrated 
triple-negative breast cancer (TNBC) tumors, we found the median 
ratio of PD-1+ to PD-L1+ immune cells to be near unity (Fig. 4f) and 

the prevalence of PD-1 or Lag3 positive lymphocytes to be 13.9% 
and 5.5% on average, respectively (Fig. 4e).

Surprisingly, a relationship consistent with compensatory nega-
tive feedback was not observed here. We found PD-L1+ granuloma 
immune cells far outnumbered PD-1+ immune cells (log2[PD-1+/
PD-L1+] = −5.1 ± 3.5; Fig. 4f). Furthermore, the small numbers 
of PD-1+ lymphocytes were largely restricted to METLS, consistent 
with T follicular helper cells rather than an activated phenotype 
(Extended Data Fig. 4i). These findings are consistent with reports 
from the cynomolgus macaque TB model that found low levels of 
PD-1, Lag3 and CTLA-4 (ref. 45), suggesting that IDO1 and PD-L1 
expression by myeloid cells could occur independently of local  
signaling by activated T cells.

Considering recent work demonstrating TGF-β signaling in 
granulomas46, the combination of tolerogenic myeloid cells and Treg 
cells along with the absence of T cell activation could indicate an 
immunoregulatory niche promoted through TGF-β. To measure 
the cytokine landscape underlying this ME, we performed in situ 
hybridization (ISH) for TGF-β and IFN-γ transcripts in a subset 
(n = 3) of samples (Extended Data Figs. 5 and 6). Consistent with 
measurements by MIBI-TOF, granulomas were depleted of IFN-γ 
and produced large quantities of TGF-β (Extended Data Figs. 4j and 
5a–g). The majority of TGF-β was produced by cells in the myeloid 
core, corresponding with expression of IDO1 and PD-L1 (Extended 
Data Fig. 5d). However, TGF-β was also produced by cells in the 
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lymphocytic cuff of granulomas (Extended Data Fig. 5d). There was 
no correlation between TGF-β and IFN-γ transcripts, suggesting 
that TGF-β expression may occur in the absence of T helper type 
1 signaling (Extended Data Fig. 5h). These results demonstrate that 
TGF-β expression underlies a granuloma ME producing IDO1 and 
PD-L1 and promoting Treg cell activity. Such an environment may 
potentiate a niche within the granuloma that impairs T cell activa-
tion and promotes Treg cell proliferation.

Common and diverging immunoregulatory features in TB and 
sarcoidosis. In addition to being the histological hallmark of TB, 
granulomas occur in response to foreign bodies and in autoim-
mune disorders, such as sarcoidosis47. Interestingly, gene expression 
studies that attempted to develop blood-based biomarkers for Mtb 
infection have struggled to differentiate TB from sarcoidosis48,49. To 
determine the extent to which features identified here overlap with 
other granulomatous diseases, we compared TB to ten sarcoidosis 
cases (Extended Data Fig. 7a). TB lesions were more variable in 
composition (Extended Data Fig. 7b,c) and had significantly higher 
frequencies of CD8+ T cells, fibroblasts, intermediate monocytes 
and giant cells and increased vascularity (Fig. 5a and Extended Data 
Fig. 7c). Sarcoid granulomas were heavily CD4+ T cell skewed, even 
relative to CD4-skewed TB granulomas, consistent with reports of 
sarcoidosis pathology being driven primarily by T helper type 17 
and type 1 T cells (Fig. 5b) (refs. 50,51).

Like TB, sarcoid lesions were PD-1 and Lag3 depleted (Fig. 5c),  
despite high levels of PD-L1+ myeloid cells (Fig. 5d and Extended 
Data Fig. 7d). However, unlike TB, IDO1 expression in sarcoid 
samples was almost entirely absent (Fig. 5d). Because we used a 
conservative threshold for IDO1 and PD-L1 positivity, our analysis  
biased toward the moderately to strongly expressing cells pres-
ent in TB granulomas and control tissues. Therefore, to evalu-
ate the specificity of macrophage PD-L1 and IDO1 expression in 
Mtb infection, we used immunohistochemistry (IHC) to compare 

both proteins on a tissue microarray of granulomas from sarcoid-
osis (n = 9), foreign body uptake (n = 4), endometriosis (n = 4) and 
xanthomatosis (n = 3) (Extended Data Fig. 7e). We identified weak 
expression of IDO1 in several sarcoidosis lesions along with bright 
expression of PD-L1, as observed by MIBI-TOF (Extended Data 
Fig. 7e). However, IDO1+ and PD-L1+ cells were nearly absent in  
all xanthomas and endometrial lesions and rare in foreign  
body granulomas. Notably, we observed high levels of IDO1  
and PD-L1 in a pulmonary Mycobacterium avium granuloma 
(Extended Data Fig. 7f). This suggests that whereas PD-L1 expres-
sion could be a broader feature of granulomatous conditions, strong 
coexpression of IDO1 and PD-L1 appears specific to mycobacterial 
granulomas.

Immunoregulatory features are reflected across granulomas and 
blood. The presence of immunoregulatory features observed in our 
MIBI-TOF study has important implications for understanding the 
immunologic basis of TB disease. We next wanted to analyze these 
features in blood from TB patients to understand how immuno-
regulatory properties of granulomas are reflected during systemic 
immunity. Moreover, by leveraging analysis of blood, we sought to 
look across infection stages and correlate immune features with dis-
ease severity and progression. Therefore, we used MetaIntegrator 
to perform multicohort analyses using publicly available peripheral 
blood transcriptome profiles from healthy subjects and patients 
with latent or active TB infection52,53.

We first asked whether immunoregulatory signals identified in 
granulomas could be detected in blood by comparing gene expres-
sion data of patients with active TB (n = 647) to healthy controls 
(n = 197) from 13 independent cohorts (Fig. 6a). We found sig-
nificant and consistent upregulation of IDO1 and CD274 (PD-L1) 
(effect size = 0.77 and 1.28, q = 0.0009 and 0.006 (false discovery 
rate = 5%), respectively) (Fig. 6b). Additionally, checkpoint deple-
tion in lymphoid cells was corroborated, with no observed increase 
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in expression of PDCD1 (PD-1) or LAG3 (effect size = −0.41 and 
−0.39, q = 0.09 and 0.05, respectively).

Next, we analyzed transcriptomic data from 1,549 patients across 
24 cohorts to evaluate if these features were specific to active TB 
(Fig. 6c). In line with our MIBI-TOF analysis, differential expres-
sion of genes associated with regulatory myeloid cells (e.g., PD-L1, 
PD-L2, CD11b, CD11c and CD163) or T cell immune checkpoint 
(e.g., PD-1 and CTLA4) delineated active from latent infections 
(Fig. 6d). Moreover, the majority of these genes returned to baseline 
levels of healthy controls after antimicrobial therapy (Fig. 6d and 
Extended Data Fig. 8a). Taken together, these results are consistent 
with a shift toward myeloid-mediated immune regulation that is 
specific to active TB.

Because PD-L1 gene expression exhibited the largest effect size 
relative to healthy controls and was upregulated in granulomas, we 
chose to further understand its relationship with infection dynamics. 
First, we analyzed the adolescent cohort study (ACS) to determine 
if PD-L1 expression preceded progression to active disease. Latently 
infected individuals enrolled in this study underwent regular blood 
collection and were monitored for symptoms of active infection 
(Fig. 6e)54,55. Within 8.5 to 5 months of clinical diagnosis, PD-L1 
transcript levels were significantly elevated in progressors and pre-
dictive of progression from latent to active disease (area under the 
curve = 0.73, CI 0.56-0.91) (Fig. 6f,g and Extended Data Fig. 8b,c). 
Strikingly, the predictive performance of PD-L1 in patients 7.5 to 1 
months before progression (area under the curve = 0.78, CI 0.64-
0.92) was comparable with previously published multigene sig-
natures, despite being a single gene identified by tissue analysis56. 
Taken together, these results support that a shift toward myeloid 
immune regulation defines the symptomatic stage of TB infection.

We corroborated these results by analyzing the catalysis treat-
ment response cohort to determine if PD-L1 was associated with 
disease burden and infection clearance (Extended Data Fig. 8d). 
Patients in this study provided venous blood and underwent PET/
CT imaging upon TB diagnosis57,58. PD-L1 expression at diagnosis 
was directly correlated with total glycolytic activity index, a radio-
graphic metric for lung inflammation (Extended Data Fig. 8e;  
Pearson r = 0.39, P = 4 × 10−4, t test). Twenty-four weeks after treat-
ment, patients were clinically stratified as definitely cured or not 
cured. Relative to diagnosis, the reduction in PD-L1 expression 
in patients was two times greater on average in patients who were 
definitely cured (n = 71) than in patients who were not cured (n = 7; 
Extended Data Fig. 8f). A nearly identical trend was observed for 
PD-L2 (PDCDLG2; Extended Data Fig. 8f). In summary, ortho-
gonal analysis of whole blood during TB infection demonstrated 
synchrony in the local and systemic immune responses during 
active TB disease.

Discussion
After nearly 140 years of research into the pathophysiology of 
human TB, central questions remain unresolved, in part because 
granuloma formation and progression are difficult to emulate in 
tractable animal models. Considering this, we developed a frame-
work in which a limited amount of archival tissue and publicly 
available transcriptomic data were used to identify features of 
active TB disease in humans. Using clinical specimens from three 
medical centers, we constructed a spatial cell atlas to relate granu-
loma structure and composition. We identified 19 cell subsets that 
organize into eight cellular MEs. TB granulomas appear to follow 
a consistent structural outline of spatially coordinated PD-L1 and 
IDO1 and myeloid core-infiltrating Treg cells and a striking absence 
of T cell activation. Although several of these immune features  
have been previously identified individually34,45,59,60, this study  
demonstrates an association between myeloid cell regulatory fea-
tures and reduced lymphocyte activation with spatial and single-cell 
resolution. Certain features, such as expression of PD-L1 and 

immunoregulatory macrophages, were present in noninfectious 
granulomas as well, pointing to universal immune programs asso-
ciated with granulomatous inflammation. However, compared to 
other granulomatous conditions, spatially coordinated coexpres-
sion of IDO1 and PD-L1 was unique to mycobacterial granulomas.

Granulomas can display a range of disparate outcomes with 
respect to bacterial burden and inflammatory trajectory10,11. The 
variation in our imaging dataset suggests local outcomes may be 
driven by unique cellular infiltrate and structure within each granu-
loma. We observed that features, such as high frequency of CD8+ 
T cells, corresponded with reduced levels of more differentiated 
macrophage phenotypes, a profile present in therapeutic resections 
where PD-L1 and IDO1 expression was diminished. Because CD8+ 
T cells are important contributors to TB immunity61,62, understand-
ing the immunological environments that promote their activity 
could reveal novel insights into immune features critical for bacte-
rial clearance.

The high levels of PD-L1 and IDO1 observed in the near absence 
of PD-1 offers clues into how an immunoregulatory niche during 
infection is initiated and maintained. We observed that IDO1 and 
PD-L1 in myeloid cells were colocalized with TGFβ, further con-
firming the immunoregulatory nature of granuloma macrophages. 
This is consistent with a TGF-β- or IL-10-driven process in which 
production of these cytokines suppresses inflammation and induces 
peripheral Treg cell activity28,63,64. These findings are supported in 
murine TB, where focal secretion of TGF-β within the myeloid core 
preferentially suppresses neighboring T cells, and in non-human 
primates, where granuloma formation associates with IL-10 secre-
tion46,65. The next step will be to establish a causal role for TGF-β 
in driving immune suppression in granulomas across the full spec-
trum of TB.

We next assessed the extent to which the immunoregulatory fea-
tures identified in archival tissue manifested in peripheral blood. In 
a multicohort meta-analysis, we identified signatures in blood and 
analyzed them with respect to disease burden and clinical outcome. 
As in granulomas, immunoregulatory genes such as PD-L1, IDO1 
and CD163 were upregulated in blood. Similarly, genes associated 
with T cell activation were downregulated, consistent with the rare 
incidence of PD-1 or Lag3 in tissue. Importantly, the magnitude of 
these trends was higher in patients with active disease relative to 
those with latent or treated infections. PD-L1 displayed the highest 
effect size of all genes analyzed here. Notably, its expression corre-
lated with pulmonary disease burden and preceded progression to 
active TB, in line with previous work demonstrating upregulation 
of CD274 in patients with active TB66. It should be noted that given 
the low prevalence of monocytes in the blood and prior reports of 
upregulation of PD-L1 by neutrophils during active TB, it is likely 
granulocytes drive this systemic gene signature66,67.

Both IDO1 and PD-L1 dampen antitumor immune responses 
in cancer, prompting immunotherapy development68. Our find-
ings suggest that similar approaches could be used to block 
PD-L1-mediated immune suppression in TB. However, evidence of 
T cell activation or exhaustion is absent in our dataset and other 
datasets. Given this, efficacy of PD-L1 blockade could differ sub-
stantially from PD-1 blockade. Recent reports of TB reactivation 
following PD-1 blockade yet fewer instances following PD-L1 block-
ade illustrate the paradoxical effects that occur with host-directed 
therapies69–73. In our dataset, the small numbers of PD-1 lympho-
cytes present were largely localized to neighboring TLSs. This raises 
the possibility that PD-1 blockade exacerbates immunopathology 
by stimulating TLS-resident and peripheral T cells while failing 
to activate granuloma T cells. This is supported by work in the 
ultra-low-dose murine model of TB, where a higher proportion of 
IFN-γ+-producing, activated CD4+ T cells were found at distal lung 
sites relative to the granuloma46. These data emphasize the need to 
map the temporal and spatial dynamics of these pathways. In line 
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with this, a critical next step will be to connect these features to bac-
terial burden, inflammatory dynamics, intraindividual variability 
and granuloma age in a primate model that accurately recapitulates 
human TB pathology.

In conclusion, with our generalizable framework, we identified  
how cellular composition and immunoregulatory pathways in TB 
granulomas relate to peripheral immune responses. This has impli-
cations for developing host-directed immunotherapies and under-
standing the immunologic basis of failed immunity in TB. Expression 
of proteins such as IDO1 and PD-L1 aligns with immune-evasion 
mechanisms observed in the tumor-immune ME. The interface of 
granuloma and tumor immunobiology offers new opportunities  
to explore how tactics of immune evasion in tumors contribute 
to bacterial persistence in granulomas. Future multiplexed imag-
ing studies of granulomas from controlled TB exposures will offer 
insight into how these local regulatory dynamics influence granu-
loma fate and, ultimately, infection outcome.

online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41590-021-01121-x.

Received: 25 May 2021; Accepted: 14 December 2021;  
Published online: 20 January 2022

References
 1. World Health Organization. Global Tuberculosis Report 2020 https://www.

who.int/publications/i/item/9789240013131 (WHO, 2020).
 2. Cohen, S. B. et al. Alveolar macrophages provide an early Mycobacterium 

tuberculosis niche and initiate dissemination. Cell Host Microbe 24, 439–446 
(2018).

 3. Wolf, A. J. et al. Mycobacterium tuberculosis infects dendritic cells with high 
frequency and impairs their function in vivo. J. Immunol. 179, 2509–2519 
(2007).

 4. Bold, T. D. & Ernst, J. D. Who benefits from granulomas, mycobacteria or 
host? Cell 136, 17–19 (2009).

 5. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and 
dissemination of early tuberculous infectionspan. Cell 136, 37–49 (2009).

 6. Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis.  
Nat. Rev. Immunol. 12, 352–366 (2012).

 7. Cadena, A. et al. Heterogeneity in tuberculosis.Nat. Rev. Immunol. 17, 
691–702 (2017).

 8. Subbian, S. et al. Lesion-specific immune response in granulomas of  
patients with pulmonary tuberculosis: a pilot study. PLoS ONE 10,  
e0132249 (2015).

 9. Coleman, M. T. et al. Early changes by (18)fluorodeoxyglucose positron 
emission tomography coregistered with computed tomography predict 
outcome after Mycobacterium tuberculosis infection in cynomolgus macaques. 
Infect. Immun. 82, 2400–2404 (2014).

 10. Lin, P. L. et al. Sterilization of granulomas is common in active and latent 
tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 
75–79 (2013).

 11. Martin, C. J. et al. Digitally Barcoding Mycobacterium tuberculosis reveals 
in vivo infection dynamics in the macaque model of tuberculosis. MBio 8, 
e00312–e00317 (2017).

 12. Carow, B. et al. Spatial and temporal localization of immune transcripts 
defines hallmarks and diversity in the tuberculosis granuloma. Nat. Commun. 
10, 1–15 (2019).

 13. Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis 
granulomas is spatially organized. Nat. Med. 22, 531–538 (2016).

 14. Kauffman, K. D. et al. Defective positioning in granulomas but not 
lung-homing limits CD4 T-cell interactions with Mycobacterium 
tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunol. 11, 
462–473 (2018).

 15. Ernst, J. D., Cornelius, A., Desvignes, L., Tavs, J. & Norris, B. A. Limited 
antimycobacterial efficacy of epitope peptide administration despite enhanced 
antigen-specific CD4 T-cell activation. J. Infect. Dis. 218, 1653–1662 (2018).

 16. Keren, L. et al. MIBI-TOF: a multiplexed imaging platform relates cellular 
phenotypes and tissue structure. Sci. Adv. 5, eaax5851 (2019).

 17. Krishnan, N., Robertson, B. D. & Thwaites, G. The mechanisms and 
consequences of the extra-pulmonary dissemination of Mycobacterium 
tuberculosis. Tuberculosis 90, 361–366 (2010).

 18. Keren, L. et al. A structured tumor-immune microenvironment in triple 
negative breast cancer revealed by multiplexed ion beam imaging. Cell 174, 
1373–1387 (2018).

 19. Van Valen, D. A. et al. Deep learning automates the quantitative analysis of 
individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12, 
e1005177 (2016).

 20. Bannon, D. et al. DeepCell Kiosk: scaling deep learning–enabled cellular 
image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).

 21. Van Gassen, S. et al. FlowSOM: using self-organizing maps for visualization 
and interpretation of cytometry data. Cytom. Part A 87, 636–645 (2015).

 22. Polena, H. et al. Mycobacterium tuberculosis exploits the formation of new 
blood vessels for its dissemination. Sci. Rep. 6, 33162 (2016).

 23. Oehlers, S. H. et al. Interception of host angiogenic signalling limits 
mycobacterial growth. Nature 517, 612–615 (2015).

 24. Girvan, M. & Newman, M. E. J. Community structure in social and biological 
networks. Proc. Natl Acad. Sci. USA 99, 7821–7826 (2002).

 25. Chen, Z., Soifer, I., Hilton, H., Keren, L. & Jojic, V. Modeling multiplexed 
images with spatial-LDA reveals novel tissue microenvironments. J. Comput. 
Biol. 27, 1204–1218 (2020).

 26. Shi, J. et al. PD-1 controls follicular T helper cell positioning and function. 
Immunity 49, 264–274 (2018).

 27. Ulrichs, T. et al. Human tuberculous granulomas induce peripheral lymphoid 
follicle-like structures to orchestrate local host defence in the lung. J. Pathol. 
204, 217–228 (2004).

 28. Difazio, R. M. et al. Active transforming growth factor-β is associated with 
phenotypic changes in granulomas after drug treatment in pulmonary 
tuberculosis. DARU, J. Pharm. Sci. 24, 6 (2016).

 29. Krystel-Whittemore, M. Mast cell: a multi-functional master cell. Front. Oncol. 
6, 620 (2016).

 30. Gideon, H. P. et al. Single-cell profiling of tuberculosis lung granulomas 
reveals functional lymphocyte. Preprint at bioRxiv https://doi.
org/10.1101/2020.10.24.352492 (2020).

 31. Shen, L. et al. PD-1/PD-L pathway inhibits M.tb-specific CD4+ T-cell 
functions and phagocytosis of macrophages in active tuberculosis. Sci. Rep. 6, 
38362 (2016).

 32. Mehra, S. et al. Granuloma correlates of protection against tuberculosis  
and mechanisms of immune modulation by Mycobacterium tuberculosis.  
J. Infect. Dis. 207, 1115–1127 (2013).

 33. Munn, D. H. & Mellor, A. L. IDO in the tumor microenvironment: 
inflammation, counter-regulation, and tolerance. Trends Immunol. 37, 
193–207 (2016).

 34. Gautam, U. S. et al. In vivo inhibition of tryptophan catabolism reorganizes 
the tuberculoma and augments immune-mediated control of Mycobacterium 
tuberculosis. Proc. Natl Acad. Sci. USA 115, E62–E71 (2018).

 35. Jurado, J. O. et al. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 
pathway inhibits T cell effector functions during human tuberculosis.  
J. Immunol. 181, 116–125 (2008).

 36. Mulder, K. Cross-tissue single-cell landscape of human monocytes and 
macrophages in health and disease. Immunity 54, 1883–1900 (2021).

 37. Veglia, F., Perego, M. & Gabrilovich, D. Myeloid-derived suppressor cells 
coming of age review-article. Nat. Immunol. 19, 108–119 (2018).

 38. Gideon, H. P., Phuah, J., Junecko, B. A. & Mattila, J. T. Neutrophils express 
pro- and anti-inflammatory cytokines in granulomas from Mycobacterium 
tuberculosis-infected cynomolgus macaques. Mucosal Immunol. 12, 1370–1381 
(2019).

 39. Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A.  
Induced regulatory T cells: their development, stability, and applications. 
Trends Immunol. 37, 803–811 (2016).

 40. Scott-Browne, J. P. et al. Expansion and function of Foxp3-expressing T 
regulatory cells during tuberculosis. J. Exp. Med. 204, 2159–2169 (2007).

 41. Guyot-Revol, V., Innes, J. A., Hackforth, S., Hinks, T. & Lalvani, A. 
Regulatory T cells are expanded in blood and disease sites in patients with 
tuberculosis. Am. J. Respir. Crit. Care Med. 173, 803–810 (2006).

 42. Green, A. M. et al. CD4 + regulatory T cells in a cynomolgus macaque 
model of Mycobacterium tuberculosis infection. J. Infect. Dis. 202, 533–541 
(2010).

 43. Bagaitkar, J. Cellular dynamics of resolving inflammation. Blood 124, 
1701–1703 (2014).

 44. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell 
exhaustion. Nat. Rev. Immunol. 15, 486–499 (2015).

 45. Wong, E. A. Low levels of T cell exhaustion in tuberculous lung granulomas. 
Infect. Immun. 86, e00426-18 (2018).

 46. Gern, B. H. et al. TGFβ restricts expansion, survival, and function of  
T cells within the tuberculous granuloma. Cell Host Microbe 29,  
594–606 (2021).

 47. Baughman, R. P. Sarcoidosis.Lancet 361, 1111–1118 (2003).

NATuRE IMMuNoLoGy | VOL 23 | FEBRUARy 2022 | 318–329 | www.nature.com/natureimmunology328

https://doi.org/10.1038/s41590-021-01121-x
https://doi.org/10.1038/s41590-021-01121-x
https://www.who.int/publications/i/item/9789240013131
https://www.who.int/publications/i/item/9789240013131
https://doi.org/10.1101/2020.10.24.352492
https://doi.org/10.1101/2020.10.24.352492
http://www.nature.com/natureimmunology


ResouRceNaTurE IMMuNOLOGy

 48. Koth, L. L. et al. Sarcoidosis blood transcriptome reflects lung inflammation 
and overlaps with tuberculosis. Am. J. Respir. Crit. Care Med. 184,  
1153–1163 (2011).

 49. Maertzdorf, J. et al. Common patterns and disease-related signatures in 
tuberculosis and sarcoidosis. Proc. Natl Acad. Sci. USA 109, 7853–7858 (2012).

 50. Rossi, G. A. et al. Helper T-lymphocytes in pulmonary sarcoidosis: functional 
analysis of a lung T-cell subpopulation in patients with active disease.  
Am. Rev. Respir. Dis. 133, 1086–1090 (1986).

 51. Facco, M. et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 66, 
144–150 (2011).

 52. Haynes, W. A. Empowering multi-cohort gene expression analysis to increase 
reproducibility. Pac. Symp. Biocomput. 22, 144–153 (2017).

 53. Sweeney, T. E., Haynes, W. A., Vallania, F., Ioannidis, J. P. & Khatri, P. 
Methods to increase reproducibility in differential gene expression via 
meta-analysis. Nucleic Acids Res. (2017).

 54. Scriba, T. J. et al. Sequential inflammatory processes define human 
progression from M. tuberculosis infection to tuberculosis disease. PLoS 
Pathog. 13, e1006687 (2017).

 55. Zak, D. E. et al. A blood RNA signature for tuberculosis disease risk: a 
prospective cohort study. Lancet 387, 2312–2322 (2016).

 56. Warsinske, H., Vashisht, R. & Khatri, P. Host-response-based gene signatures 
for tuberculosis diagnosis: a systematic comparison of 16 signatures.  
PLoS Med. 16, e1002786 (2019).

 57. Roy Chowdhury, R. et al. A multi-cohort study of the immune factors 
associated with M. tuberculosis infection outcomes. Nature 560,  
644–648 (2018).

 58. Malherbe, S. T. et al. Persisting positron emission tomography lesion activity 
and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat. Med. 22, 
1094–1100 (2016).

 59. Collins, J. M. et al. Tryptophan catabolism reflects disease activity in human 
tuberculosis. JCI Insight 5, e137131 (2020).

 60. Elkington, P. T., Bateman, A. C., Thomas, G. J. & Ottensmeier, C. H. 
Implications of tuberculosis reactivation after immune checkpoint inhibition. 
Am. J. Respiratory Crit. Care Med. 198, 1451–1453 (2018).

 61. Flynn, J. L., Goldstein, M. M., Triebold, K. J., Koller, B. & Bloom, B. R. Major 
histocompatibility complex class I-restricted T cells are required for resistance 
to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA 89, 
12013–12017 (1992).

 62. Lalvani, A. et al. Human cytolytic and interferon γ-secreting CD8+ T 
lymphocytes specific for Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 
95, 270–275 (1998).

 63. Li, M. O., Sanjabi, S. & Flavell, R. A. A. Transforming growth factor-β 
controls development, homeostasis, and tolerance of T cells by regulatory 
T cell-dependent and -independent mechanisms. Immunity 25,  
455–471 (2006).

 64. Jarnicki, A. G., Lysaght, J., Todryk, S. & Mills, K. H. G. Suppression of 
antitumor immunity by IL-10 and TGF-β-producing T cells infiltrating the 
growing tumor: influence of tumor environment on the induction of CD4 + 
and CD8 + regulatory T cells. J. Immunol. 177, 896–904 (2006).

 65. Wong, E. A. et al. IL-10 impairs local immune response in lung granulomas 
and lymph nodes during early Mycobacterium tuberculosis infection.  
J. Immunol. 204, 644–659 (2020).

 66. McNab, F. W. et al. Programmed death ligand 1 is over-expressed by 
neutrophils in the blood of patients with active tuberculosis. Eur. J. Immunol. 
41, 1941–1947 (2011).

 67. Matthew, P. R. Berry et al. An interferon-inducible neutrophil-driven blood 
transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010).

 68. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of  
biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 
133–150 (2019).

 69. Barber, D. L. et al. Tuberculosis following PD-1 blockade for cancer 
immunotherapy. Sci. Transl. Med. 11, eaat2702 (2019).

 70. Anastasopoulou, A., Ziogas, D. C., Samarkos, M., Kirkwood, J. M. &  
Gogas, H. Reactivation of tuberculosis in cancer patients following 
administration of immune checkpoint inhibitors: current evidence and 
clinical practice recommendations. J. Immunother. Cancer 7, 239 (2019).

 71. Tezera, L. B. et al. Anti-PD-1 immunotherapy leads to tuberculosis 
reactivation via dysregulation of TNF-α. Elife 9, 52668 (2020).

 72. Sharpe, A. H., Sher, A., Barber, D. L., Mayer-Barber, K. D. & Feng, C. G. CD4 
T cells promote rather than control CD4 T cells promote rather than control 
tuberculosis in the absence of PD-1–mediated inhibition. J. Immunol. 6, 
1598–1607 (2017).

 73. Anand, K. et al. Mycobacterial infections due to PD-1 and PD-L1 checkpoint 
inhibitors. ESMO Open 5, e000866 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022, corrected publication 2022

NATuRE IMMuNoLoGy | VOL 23 | FEBRUARy 2022 | 318–329 | www.nature.com/natureimmunology 329

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natureimmunology


ResouRce NaTurE IMMuNOLOGy

Methods
Human TB granuloma cohort. All human samples were acquired in accordance 
with institutional review board protocol 46586 (‘Generation of an Immune Atlas of 
Human Tuberculosis Granulomas with Multiplexed Ion Beam Imaging’). Patient 
consent was not acquired, as only archival clinical specimens were analyzed, 
with no active participation of humans. FFPE Mtb-infected tissues were acquired 
from Stanford Health Care’s tissue repository from nine patients undergoing a 
pretreatment diagnostic biopsy (n = 9). Tissues were screened to include those 
that were positive for acid-fast Bacillus and Mtb DNA by polymerase chain 
reaction. Archival surgical resection tissues were acquired from University of 
KwaZulu-Natal, Inkosi Albert Luthuli Central Hospital from three patients with 
Mtb infection who underwent therapeutic resection of infected tissue due to 
infection severity or treatment failure (n = 3). Patients with documented HIV 
coinfection were excluded. Postmortem autopsy specimens were acquired from 
the University of Texas Health Science Center (n = 3). Postmortem diagnosis 
of Mtb infection was confirmed with clinical history, culture, autopsy findings 
and IHC for Mtb antigens. All clinical details for specimens can be found in 
Extended Data Table 1. Serial sections (5 μm) of each specimen were stained 
with H&E and inspected by an anatomic pathologist to screen for the presence 
of granulomatous inflammation. Regions with histologically solid granulomas or 
cellular granulomatous inflammation surrounding central necrosis were included. 
Regions with excessive fibrosis or necrosis that were sparsely cellular or acellular 
were excluded. Two 500 μm × 500 μm FOVs were chosen from each tissue block 
for imaging. No statistical methods were used to predetermine sample sizes.

Nontuberculous granulomas and controls tissues. Regions of granulomatous 
inflammation from FFPE sarcoidosis and foreign body reactions from Stanford 
Health Care were chosen by an anatomic pathologist; 0.5-mm cores were selected 
and constructed into a tissue microarray. A pulmonary M. avium case was acquired 
from Stanford Health Care through selection criteria of positive for acid-fast 
Bacillus staining and polymerase chain reaction positivity for M. avium complex. 
A 5-μm serial section of this specimen was stained with H&E and inspected by an 
anatomic pathologist to screen for the presence of granulomatous inflammation. 
Control tissues of FFPE tonsil, spleen and placenta were acquired from Stanford 
Health Care. Small regions of each tissue were selected and placed in a tissue 
microarray.

Incorporation of additional specimens. It should be noted that the original 
study cohort comprised 20 FOVs across 10 patients, and 10 FOVs from 5 patients 
were added a later date. Any additional steps taken to process these specimens 
differently or incorporate them into the dataset are indicated in the relevant 
sections below.

Antibody preparation. Antibodies were conjugated to isotopic metal reporters 
as described previously18. Following conjugation antibodies were diluted in 
Candor PBS Antibody Stabilization solution (Candor Bioscience). Antibodies 
were either stored at 4 °C or lyophilized in 100 mM D-( + )-Trehalose dehydrate 
(Sigma-Aldrich) with ultrapure distilled H2O for storage at −20 °C. Before 
staining, lyophilized antibodies were reconstituted in a buffer of Tris (Thermo 
Fisher Scientific), sodium azide (Sigma-Aldrich), ultrapure water (Thermo Fisher 
Scientific) and antibody stabilizer (Candor Bioscience) to a concentration of 
0.05 mg ml−1. The antibodies, metal reporters and staining concentrations are 
listed in Extended Data Table 2. A limitation of this study is that we did not have 
an antibody for labeling bacteria due to the inherent difficulty of antibody-based 
detection of Mtb in FFPE tissue.

Tissue staining. Tissues were sectioned (5 μm section thickness) from tissue 
blocks on gold and tantalum-sputtered microscope slides. Slides were baked at 
70 °C overnight, followed by deparaffinization and rehydration with washes in 
xylene (3×), 100% ethanol (2×), 95% ethanol (2×), 80% ethanol (1×), 70% ethanol 
(1×) and ddH2O with a Leica ST4020 Linear Stainer (Leica Biosystems). Tissues 
next underwent antigen retrieval by submerging sides in 3-in-1 Target Retrieval 
Solution (pH 9, DAKO Agilent) and incubating at 97 °C for 40 min in a Lab Vision 
PT Module (Thermo Fisher Scientific). After cooling to room temperature, slides 
were washed in 1× PBS IHC Washer Buffer with Tween 20 (Cell Marque) with 
0.1% (w/v) bovine serum albumin (Thermo Fisher). Next, all tissues underwent 
two rounds of blocking, the first to block endogenous biotin and avidin with an 
Avidin/Biotin Blocking Kit (BioLegend). Tissues were then washed with wash 
buffer and blocked for 1 h at room temperature with 1× TBS IHC Wash Buffer with 
Tween 20 with 3% (v/v) normal donkey serum (Sigma-Aldrich), 0.1% (v/v) cold 
fish skin gelatin (Sigma-Aldrich), 0.1% (v/v) Triton X-100, and 0.05% (v/v) Sodium 
Azide. The first antibody cocktail was prepared in 1x TBS IHC Wash Buffer with 
Tween 20 with 3% (v/v) normal donkey serum (Sigma-Aldrich) and filtered 
through a 0.1-μm centrifugal filter (Millipore) prior to incubation with tissue 
overnight at 4 °C in a humidity chamber. Following the overnight incubation, 
slides were washed twice for 5 min in wash buffer. The second day, an antibody 
cocktail was prepared as described and incubated with the tissues for 1 h at 4 °C 
in a humidity chamber. Following staining, slides were washed twice for 5 min in 
wash buffer and fixed in a solution of 2% glutaraldehyde (Electron Microscopy 

Sciences) solution in low-barium PBS for 5 min. Slides were washed in PBS (1×), 
0.1 M Tris at pH 8.5 (3×) and ddH2O (2×) and then dehydrated by washing in 70% 
ethanol (1×), 80% ethanol (1×), 95% ethanol (2×) and 100% ethanol (2×). Slides 
were dried under vacuum prior to imaging.

MIBITOF imaging. Imaging was performed using a MIBI-TOF instrument with 
a Hyperion ion source. Xe+ primary ions were used to sequentially sputter pixels 
for a given FOV. The following imaging parameters were used: acquisition setting, 
80 kHz; field size, 500 μm x 500 μm (TB, M. avium and controls) or 450 μm × 450 
μm (sarcoidosis) at 1,024 ×1,024 pixels; dwell time, 4 ms; median gun current on 
tissue, 1.45 nA Xe+; ion dose, 3.38 nAmp h per mm2 (500-μm2 FOVs) and 3.75 
nAmp h per mm2 (450 μm2 FOVs).

For samples added to the cohort at a later time, the following imaging 
parameters were used: acquisition setting, 80 kHz; field size, 500 μm × 500 μm; 
dwell time, 1–2 ms; median gun current on tissue, 4.36 nA Xe+; ion dose, 2.54 × 
5.08 nAmp h per mm2.

Lowlevel image processing. Multiplexed image sets were extracted, slide 
background-subtracted, denoised and aggregate filtered as previously described18. 
All parameters for these steps can be found in Extended Data Table 2. In addition 
to these processing steps, image compensation was performed to account for signal 
spillover due to adducts and oxides for the following interferences: collagen-1 to 
IDO1 and Lag3, H3K9Ac to pan-CK and MPO, Chym/Tryp to MPO, Ki-67 to 
CD209, CD20 to CD16, CD16 to IFN-γ, CD11c to IDO1 and HLA-DR-DQ-DP to 
CD11b.

Singlecell segmentation. Nuclear segmentation was performed using an 
adapted version of DeepCell20. DeepCell is a convolutional neural network that 
can be trained to predict single-cell segmentation across a range of biological 
platforms. One of the key challenges with segmentation of tissue data is the 
highly overlapping nature of adjacent nuclei. Previous work found that, although 
DeepCell is able to generate accurate segmentations using just a nuclear channel, it 
made errors where the tissue was very densely packed18. To improve the accuracy 
on these densely packed cells, especially immune cells, a modified version of the 
network was trained which included both a nuclear channel and a membrane 
channel as the basis for prediction.

First, training data were generating by manually annotating all of the nuclei 
in five separate images taken from a MIBI-TOF study of patients with melanoma, 
where each image was stained with HH3 to identify nuclei and Na+K+ATPase to 
identify the cell membrane (Extended Data Fig. 1d). For each image, the ImageJ 
platform was used to identify the location of each unique nuclei, which was then 
used to generate three distinct masks: one representing the interior of each nuclei, 
one representing the border of each nuclei and one representing the background 
of the image (which is all pixels not belonging to the first two classes). These three 
masks were created for each of the five images.

These masks, along with the image data, were used to train DeepCell. Each 
image was divided into overlapping crops of 64 × 64 pixels. Each crop was 
randomly flipped, rotated and sheared during training to further augment the 
available data. Stochastic gradient descent was used to train the network, with the 
performance assessed on a held-out portion of the data not seen by the network 
during training. This was combined with early stopping to prevent overfitting to 
the training data.

The network was trained to the predict which of the three classes each 
pixel in an image belongs to. The output of the network was a probability mask 
representing the confidence of the network in assigning each pixel to one of the 
three classes. All MIBI-TOF images from our cohort were provided as input 
to the network, with HH3 as the nuclear channel and CD45 as the membrane 
channel. To generate single-cell segments, the probability mask for the nuclear 
interior was thresholded, smoothed and run through the watershed algorithm 
as previously described18. Post-processing parameters such as the background 
threshold and smooth value were manually defined to balance the tradeoff between 
oversegmenting and undersegmenting the cells. Finally, we applied a three-pixel 
radial expansion around each nucleus to define the cell object boundaries.

A correction was applied to FOVs that contained MNGCs. Each MNGC 
was identified using a combination of HH3, CD45 and Vimentin and manually 
segmented in ImageJ to produce a mask of each MNGC. All pixels within the 
binary mask were reassigned to belong to the MNGC cell object(s). In total, 15 
of 30 regions imaged contained MNGCs, with the number of MNGCs per field 
ranging from 1 to 9.

Singlecell phenotyping and composition. Single-cell data were extracted for all 
cell objects and area normalized. Cells with a sum of <0.1 area-normalized counts 
across all lineage channels were excluded from analysis. Single-cell data were 
linearly scaled with a scaling factor of 100 and asinh-transformed with a cofactor 
of 5. All mass channels were scaled to the 99.9th percentile. In order to assign each 
cell to a lineage, the FlowSOM clustering algorithm was used in iterative rounds 
with the Bioconductor ‘FlowSOM’ package in R (ref. 21). The first clustering round 
separated cells into four major lineages using the ‘Metaclustering_consensus’ 
function (immune, epithelial, fibroblast and endothelial). Immune cells were 
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then clustered again to delineate B cells, CD4+ T cells, CD8+ T cells, Treg cells, 
neutrophils, mast cells and mononuclear phagocytes (macrophages, monocytes 
and DCs). Immune cells with an expression profile not consistent with any of those 
subsets were annotated as ‘other immune.’ Lastly, the mononuclear phagocytes 
were clustered to 25 metaclusters that were merged into 7 groups. Giant cells were 
manually identified. γδ T cells were annotated as T cells with CD3 signal greater 
than or equal to the mean expression of CD4+ T cells and TCR-δ signal >0.5 
normalized expression. CD163 macrophages were identified as those myeloid 
cells with CD163 signal >0.5 normalized expression. Criteria used for assigning 
cell phenotypes can be found in Extended Data Table 3. Single-cell data that 
were collected for samples added to the cohort at a later date were extracted and 
normalized as described above, with 99.9th-percentile scaling done separately 
for the batch. In order to assign each cell to a lineage, the FlowSOM clustering 
algorithm was used in iterative rounds, and each resulting cluster was manually 
mapped to one of the original 20 phenotypic clusters. CD209+ DCs, CD14+CD16+ 
monocytes and epithelial cells were not annotated in samples 4–6 and 15 due to 
exclusion of CD209, CD16 and pan-Keratin in the panel used to stained these 
additional specimens. The relative abundance of all major lineages was calculated 
out of total cells per FOV, and the relative frequency of immune cell subsets was 
calculated out of total immune cells per FOV.

Protein enrichment analysis. A spatial enrichment approached was used as 
previously described18,74 to identify patterns of protein enrichment or exclusion 
across all protein pairs in all samples. HH3, Na+K+ATPase and HLA class 1 were 
excluded from the analysis. For each pair of markers, X and Y, the number of 
times cells positive for protein X was within a ~50-μm radius of cells positive for 
protein Y was counted. Thresholds for positivity were customized to each marker 
individually using a silhouette scanning approach from the MetaCyto software 
in R (ref. 75). Thresholds were validated both by visual inspection of positive 
and negative cells in image sets and by inspection of the threshold overlaid on a 
histogram of signal distribution in single cells per marker (Extended Data Fig. 1e). 
A null distribution was produced by performing 1,000 bootstrap permutations 
where the locations of cells positive for protein X and Y were randomized. A 
z-score was calculated comparing the number of true cooccurrences of cells 
positive for protein X and Y relative to the null distribution. For each pair of 
proteins, X and Y, the average z-score was calculated across all TB FOVs. Next, all 
positive enrichments between protein pairs (average z-score >0, excluded self–self 
protein enrichment scores) were used to produce a weighted, undirected network, 
where the nodes are the individual markers and the edge weights are proportional 
to the average z-score (where a higher z-score indicates a shorter edge length). 
The leading eigenvector algorithm for community detection was used to identify 
protein enrichment communities in this network76.

SpatialLDA. Spatial-LDA is an adaptation of LDA, a machine-learning approach 
used to model topics in text documents, where topics consist of words with a high 
probability of co-occurrence, allowing mapping of topics to abstract definitions 
(e.g., [‘cat’, ‘frog’, ‘horse] → ‘animals’). Spatial-LDA builds on this paradigm by 
representing CPMs as documents and cell types as words. Spatial-LDA was 
conducted to identify topics (here referred to as MEs) across 26 TB FOVs. This 
included 20 FOVs from 10 patients in the current cohort along with 6 FOVs 
from 3 patients that were excluded from later analysis due to presence of HIV 
coinfection. All input data for producing the spatial-LDA model can be found in 
the data and code availability sections. Cell types with fewer than 100 cells across 
the entire cohort were excluded from analysis (γδ T cells and CD209+ DCs). 
Furthermore, MNGCs were excluded due to their cell size. Spatial-LDA was 
implemented as described previously25, with d = 1,000, a spatial radius r = 50 μm 
to complement the protein enrichment analysis and an ME number of n = 8. The 
ME number was determined empirically. For each FOV, a MaxPM was produced 
by classifying each cell to the ME with the highest probability and coloring that cell 
by its ME and probability. The 10 FOVs added at a later date were not included in 
generation of the spatial-LDA model but were assigned topic probabilities based 
on the same model built on the original 26 FOVs using the same cell types and 
spatial parameters as input. The cell type preferences for each ME were defined 
by assessing the mean probability for all cell types across all MEs. The mean 
expression for each functional marker across MEs was calculated by weighting 
protein expression by ME probability and calculating the mean of weighted 
expression values across markers and MEs. To cluster FOVs based on ME profile, 
the Pearson correlation coefficient was calculated between all pairs of TB FOVs 
based on the relative frequency of cells in each ME. The coefficients were used to 
hierarchically cluster the FOVs using complete linkage and a distance metric of 
1 − correlation coefficient. To identify consensus clusters, the percent variance 
explained was measured across a range of 1–10 clusters. The elbow point of this 
plot was used to select the optimal number of clusters to capture the maximal 
variance in our dataset.

Identification of the myeloid core. In order to assess which MEs represented 
the histologically defined myeloid core, binary masks of the myeloid core were 
generated for 15 FOVs. The masks were generated by first combining the signal 
of CD11c, CD11b, CD14, CD206, CD68 and PD-L1. The combined images were 

imported into ImageJ and hand-annotated using ROI annotation tools. The 
annotated ROI was exported as a binary mask. This mask was further processed 
in MATLAB to close any holes, exclude objects smaller than 1,000 pixels and 
dilate the mask to smooth edges. Next, cells were assigned to belonging to the 
myeloid core if they had complete overlap with the binary mask. Cells on the 
mask boundary or outside of the mask were designated as ‘nonmyeloid core.’ 
The proportion of cells in the myeloid core was assessed across each ME for 
the 15 FOVs and MEs with a median frequency in the myeloid core >50% were 
designated as myeloid core MEs.

Myeloid cell UMAP visualization. UMAP embeddings were determined for all 
myeloid cells using the R implementation77 with the parameters n_neighbors = 
15 and min_dist = 0.5 and the following markers: CD45, CD68, CD206, CD11c, 
CD11b, CD14, CD16, CD209, CD163, MPO/calprotectin and mast cell chymase/
tryptase.

Immunoregulatory protein analysis. Positivity thresholds for IDO1, PD-L1, 
PD-1 and Lag3 were automatically identified as described above. Immune control 
tissues tonsil, spleen and placenta were used to validate antibody performance. 
Correlation between IDO1 and PD-L1 was analyzed across the entire cohort in 
myeloid cells using Pearson correlation analysis. The frequencies of cells positive 
for IDO1 and PD-L1 were enumerated across all subsets. To assess PD-L1 and 
IDO1 positivity with respect to ME and cell subset, the total number of cells across 
all myeloid subsets per ME was pooled across all FOVs. The quantity of cells for 
each subset positive for IDO1 or PD-L1 was enumerated per ME. Any ME with 
<1% of the total for a subset was excluded from analysis. PD-1 and Lag3 expression 
was analyzed on lymphocytes or total immune cells. PD-1 and Lag3 expression was 
also analyzed on immune cells from a human TNBC cohort that was previously 
reported by our group18. Positivity for PD-1 and Lag3 for TNBC immune cells was 
defined as described in the original study (normalized signal >0.5).

Regression analysis. In Fig. 1i and Extended Data Fig. 4h, linear regression was 
performed using the lm() command in R. The quality of the fit was evaluated and 
reported with the r2, Pearson R, and P value as measured by a two-tailed t test.

ISH. ISH studies were performed with the commercially available RNAscope 
HD Reagent Kit (Advanced Cell Diagnostic) for single-plex chromogenic ISH. 
Following this protocol, FFPE tissue sections were baked, deparaffinized and 
incubated with RNAscope Hydrogen Peroxide solution for 10 min at room 
temperature. Antigen retrieval was carried out in 1× RNAscope Target retrieval 
solution for 30 min at 99 °C followed by protease digestion for 30 min at 40 °C in 
the HybEZ oven (Advanced Cell Diagnostic). All granuloma tissue along with 
human spleen and melanoma was probed for human IFNG, human TGFB1, 
positive control probe human UBC and negative control probe bacterial DapB. 
Additionally, commercially available HeLa cell pellet control slides were stained for 
UBC and DapB. Target probes were hybridized for 2 h at 40 °C using the HybEZ 
oven, followed by a series of six amplification steps. Following amplification, 
slides were stained using a chromogenic substrate (fast red) and counterstained 
using 50% Gill’s hematoxylin (American MasterTech) before evaluation by 
light microscopy, where each RNA transcript appeared as a distinct dot of red 
chromogen. QuPath software was used for quantification of results78. Briefly, each 
image was annotated to include only granulomatous inflammation and exclude 
surrounding tissue where present. Necrotic regions were also excluded. QuPath 
cell detection was used to detect cell objects in each image via the hematoxylin 
channel. Next subcellular detection was run on the fast-red channel with 
parameters set to include spot clusters. Total estimated spots, cell object counts and 
region areas were exported and analyzed in R. To separately analyze the myeloid 
core and lymphocytic zones of the granuloma, individual regions representing each 
histological zone were annotated based off the hematoxylin channel per image, and 
the signal was quantified as described previously.

Cell composition analysis of sarcoidosis and TB. Single cells from sarcoidosis 
FOVs were segmented as described above. Single-cell data were extracted, 
transformed and normalized along with TB single-cell data. Single cells were 
included in the described FlowSOM clustering procedure.

IHC of PDL1 and IDO1. IHC for PD-L1 and IDO1 was performed using the 
antibody reagents listed in Extended Data Table 2 at a concentration of 1 μg ml−1. 
The IHC protocol mirrors the MIBI-TOF protocol, with the addition of blocking 
endogenous peroxidase activity with 3% H2O2 (Sigma-Aldrich) in ddH2O after 
epitope retrieval. On the second day of staining, instead of proceeding with 
the MIBI-TOF protocol, tissues were washed twice for 5 min in wash buffer 
and stained using ImmPRESS universal (Anti-Mouse/Anti-Rabbit) kit (Vector 
Laboratories).

Wholeblood transcriptomic analysis. Publicly available gene expression datasets 
(Extended Data Table 4) were collected, annotated and used for meta-analysis 
conducted using MetaIntegrator52. Gene expression matrices were prepared for 
each dataset to determine effect sizes for genes of all proteins included in the 

NATuRE IMMuNoLoGy | www.nature.com/natureimmunology

http://www.nature.com/natureimmunology


ResouRce NaTurE IMMuNOLOGy

MIBI-TOF analysis and an additional set of genes with similar biological function, 
such as ICOS and CTLA4 (Extended Data Table 5). Summary effect sizes were 
calculated to assess gene expression differences across clinical groups (healthy, 
active TB, latent TB, end of treatment, TB progression and during treatment). For 
the catalysis treatment response cohort gene expression measurements at diagnosis 
of TB were correlated with matched total glycolytic activity index, a readout of 
PET-CT activity. A linear regression was fit between CD274 gene expression 
and TGAI and the correlation was assessed with Pearson correlation analysis. To 
assess CD274 and PDCDLG2 gene expression overtreatment, expression values 
were normalized to the measurement taken at diagnosis (day 0). Gene expression 
data in the ACS were separated by progression status. Local regression was 
used to fit the gene expression data over time in each group. The significance 
of separation between progressors and non-progressors was calculated in two 
different time intervals using a Student’s t-test. We selected time points for this 
analysis by looking at the peak of separation (−1 to +1 months) and the earliest 
time point where we observed substantial separation between groups (i.e., where 
the error regions were not overlapping), which was around −6 months. The time 
interval was extended to capture a sufficient number of progressors around the 
−6-month time point to power the analysis. CD274 expression was also compared 
in a ‘before/after’ analysis with the baseline measurement reflecting the earliest 
measurement prior to diagnosis and the diagnosis measurement representing the 
closest measurement taken to diagnosis with active TB (within 30 days before or 
after diagnosis). The predictive power of CD274 expression was evaluated using 
ROC analysis. Negative and positive predicted values represent the proportion of 
samples that were actually negative/positive over the number of negative/positive 
samples reported by setting the threshold using Youden’s method.

Statistics and reproducibility. All FOVs were included in all analyses. Data 
collection and analysis were not performed blind to the type of specimen. 
Processed images were displayed to show representative imaging data, but 
quantification of results was performed on unaltered images. For significance 
testing of cell, phenotypic and ME data, we conservatively applied tests that did not 
assume normality. t tests were applied for linear regression and correlation analyses 
in line with the assumption that errors and residuals are normally distributed. 
Statistical analysis of the transcriptomic data employed multiple hypothesis 
correction and significance testing as previously established57.

Software. Image processing was conducted with MATLAB 2016a and MATLAB 
2019b. Statistical analysis was conducted in MATLAB 2016a, MATLAB 2019b 
and R v3.6.2. Python 3.6 was used for implementation of spatial-LDA. Data 
visualization and plots were generated in R. Representative images were processed 
in Adobe Photoshop, and figures were prepared in Adobe Illustrator. Schematic 
visualizations were produced at https://biorender.com.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All images and annotated single-cell data are deposited in Mendeley’s data repository 
and can be accessed using the following link: https://doi.org/10.17632/dr5fkgtrb6.

Code availability
All custom code used to analyze data has been deposited in GitHub and can be 
accessed using the following link: https://github.com/angelolab/publications/tree/
master/2022-McCaffrey_etal_HumanTB.
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Extended Data Fig. 1 | Multiplexed imaging of human TB granulomas. a, Hematoxylin and eosin-stained serial sections of FOVs for MIBI-TOF imaging. 
b, Multiplexed antibody panel grouped by marker category. c, Grayscale images of endogenous ion signal and proteins in control tissues (tonsil, spleen, 
placenta). d, Workflow for Deepcell-based segmentation of single cells from multiplexed images. e, Histograms of non-zero signal for all proteins from 
single-cell data. Blue line represents Gaussian smoothed density fit of histogram. Red line represents automatically identified threshold for marker 
positivity.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Single-cell phenotypic composition of human TB granulomas. a, Conceptual overview of hierarchical FlowSOM algorithm 
application. b, Heatmap of cell lineages clustered by mean normalized protein expression of markers shown along columns. c, Cell phenotype maps for 
all FOVs. d, Total cell counts across all FOVs sorted by descending order. e, Major cell lineage composition across all FOVs. Bars represent mean ± SEM 
(n = 30). f, Major cell lineage frequency of total cells broken down by FOV. g, Frequency of major lineages in pulmonary (blue) versus extrapulmonary 
(grey) TB granulomas. h, Frequency of immune cell subsets (of total immune cells) in pulmonary (blue) versus extrapulmonary (grey) TB granulomas. i, 
Count of CD14+ monocytes and 11b/c+ 206+ macrophages cells colored by specimen origin. Line represents the median. j, Count of CD4+ and CD8+ T cells 
colored by specimen origin. Line represents the median. Boxplots display the median and interquartile range (IQR, 25-75%) with whiskers representing the 
upper- and lower-quartile ± 1.5*IQR. P-values were determined with a Wilcoxon Rank Sum Test (two-tailed) where: * p < 0.05, ** p < 0.01, *** p < 0.001.
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Extended Data Fig. 3 | Spatial protein enrichment and microenvironment modeling of TB granulomas. a, Spatial enrichments of protein expression 
averaged across all TB granuloma FOVs and visualized as a heatmap hierarchically clustered (Euclidean distance, average linkage). Dashed boxes 
correspond to modules of protein enrichment corresponding to the myeloid core (green), lymphocytic cuff (blue), and a nonimmune/other niche (pink).  
b, Max probability maps (MaxPM) for all FOVs. c, Representative hematoxylin & eosin and combined myeloid channel of a pleural TB FOV for 
identification of the myeloid core (left) and frequency of cells in the myeloid core across microenvironments (right). Boxplots display the median and 
interquartile range (IQR, 25-75%) with whiskers representing the upper- and lower-quartile ± 1.5*IQR (n = 15). d, Counts of cells broken down by 
phenotype across all FOVs and microenvironments. e, Frequency of cells across microenvironments broken down by specimen type. Line represents 
the median (n = 30). f, Percent variance explained per clusters based on clustering in Fig. 2f. P-values were determined with a Wilcoxon Rank Sum Test 
(two-tailed) where: ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Immunoregulatory protein expression in TB granulomas. a, Frequency of cells positive for IDO1 (top) or PD-L1 (bottom) broken 
down by FOV and cell phenotype. b, Normalized expression of IDO1 (top) and PD-L1 (bottom) for major myeloid subsets ordered by decreasing median 
expression value. Dashed line indicates the cutoff for positivity for IDO1 (cutoff = 0.26) and PD-L1 (cutoff = 0.25). c, Frequency of IDO1+ or PD-L1+ cells 
(of total cells) across specimen type (postmortem specimen = green, biopsy = red, therapeutic resection = blue) with dot shape representing organ site 
(lung = triangle, extrapulmonary = circle). d, Pearson correlation coefficient and p-value determined by t-test (two-tailed) broken down by specimen type. 
e, Frequency of neutrophils (left) and epithelial cells (right) positive for PD-L1 or IDO1 across all FOVs. f, The count of giant cells across all regions, colored 
by specimen origin as in c. g, The frequency of IDO1+ and PD-L1+ myeloid cells for all non-granulocytic myeloid cell subsets across ME. Any ME with fewer 
than 1% of the total cell subset is shaded gray. h, Linear relationship between count of Tregs in Mcore1 with count of IDO1+ (left) and PD-L1+ (right) cells 
in Mcore1. Linear regression (black solid line) with 95% confidence interval (grey silhouette) displayed. Significance was established with a two-tailed 
t-test. i, Count of PD-1+ cells across all MEs with >0 positive cells. j The count of IFNγ+ cells in all FOVs with > 0 positive cells, colored by cell type. Unless 
otherwise specified all p values were determined with a Wilcoxon Rank Sum Test (two-tailed) where: * p < 0.05, ** p < 0.01, **** p < 0.0001.
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Extended Data Fig. 5 | In situ hybridization of TGFB and IFNG transcripts in human TB granulomas. a, Representative images from a pulmonary TB 
granuloma section showing hematoxylin & eosin staining (upper left), MIBI-TOF images (left: CD45 = magenta, VIM = cyan, CD31 = red, αSMA = green, 
HH3 = blue, right: CD11c = green, PD-L1 = cyan, IDO1 = magenta) and ME assignment with zoomed insets indicated by white or black boxes.  
b, Representative chromogenic ISH of TB granuloma from a with zoomed inset indicated by black box and colored with fire LUT. c, Quantification of 
transcripts per area (left) and dots per cell (right). Solid line represents the median for probe (n = 11). Dashed line represents the median DapB signal.  
d, Quantification of transcripts per cell broken down by granuloma region (orange = myeloid core, pink = lymphocytic cuff). Solid line represents the 
median for probe (n = 11). Dashed line represents the median DapB signal per region type. e, Representative image of chromogenic ISH in a TB granuloma 
with zoomed insets indicated by black box. ISH signal colored with fire LUT. f, Quantification of TGFB, IFNG, and DapB transcripts per cell (left) and per 
area (right). Solid line represents the median for probe (n = 11). g, Proportion IFNγ+ cells measured by MIBI-TOF in MEMcore1 as a fraction of total IFNγ+ 
cells per ROI. h, Linear relationship between IFNG and TGFB dots per cell (left) and dots per mm2 (right). Linear regression (black solid line) with 95% 
confidence interval (grey silhouette) displayed. Pearson correlation coefficient displayed. Significance was established with a t-test (two-tailed). Unless 
specified, all p values were determined with a Wilcoxon Rank Sum Test (two-tailed) where: ns p > 0.05, * p < 0.05, *** p < 0.001, **** p < 0.0001.
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Extended Data Fig. 6 | In situ hybridization workflow and supplemental analysis. a, Conceptual overview of combined ISH and MIBI-TOF experimental 
workflow. b, Representative images of control probes UBC ( + ) and DapB (-) in HeLa cell pellets. c, Representative images of all probes in human spleen 
and melanoma at 40x magnification. d, Grouped bar plots of total counts (left), area-normalized counts (middle), and cell-normalized counts (right) for 
all granuloma regions analyzed. e, The ratio of TGFB: IFNG transcripts as a log2 fold-change for total counts (left), area-normalized counts (middle), and 
cell-normalized counts (right) for all granuloma regions analyzed.
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Extended Data Fig. 7 | Immunoregulatory protein expression in nontuberculous granulomas. a, Hematoxylin & eosin-stained sections of sarcoidosis 
granuloma FOVs. b, Frequency of immune cell subsets out of total immune cells broken down by sarcoidosis FOV. c, Comparison of cell type frequency 
(out of total cells) between tuberculosis (dark green) and sarcoidosis (light green). Boxplots display the median and interquartile range (IQR, 25-75%) 
with whiskers representing the upper- and lower-quartile ± 1.5*IQR (TB n = 30, sarcoid n = 10). P-values were determined with a Wilcoxon Rank Sum  
Test (two-tailed) where: ns p > 0.05, * p < 0.05, and ** p < 0.01. d, Frequency of PD-L1+ cells across all sarcoidosis FOVs broken down by cell subset.  
e, Representative immunohistochemistry images of PD-L1 or IDO1 (brown) of controls (top = spleen, bottom=placenta), a sarcoid granuloma, xanthoma 
granuloma, foreign body lesion, and endometrial lesion with hematoxylin nuclear counterstaining (purple). f, Hematoxylin and eosin (left) and MIBI-TOF 
staining for major cell lineage markers (middle) or IDO1 (magenta) and PD-L1 (cyan) (right) of a representative pulmonary Mycobacterium avium FOV.
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Extended Data Fig. 8 | Transcriptomic analysis of peripheral blood in TB patients. a, Gene effect sizes in latent TB (n = 173) versus healthy controls 
(n = 197), latent TB (n = 372) versus active TB (n = 479), and active TB (n = 168) versus end-of-treatment (n = 160). Bars represent the mean and 
standard deviation. Dashed red lines represent a relative effect size of 0.6. b, CD274 scaled gene expression in progressors (red) and non-progressors 
(gray) with zoomed insets displaying groups individually. c, CD274 expression in progressors at the earliest recorded time point prior to progression and 
the closest time point to diagnosis with ATB (within 30 days). P-values were calculated with a one-sided paired sample t-test. d, Conceptual overview of 
the Catalysis Treatment Response Cohort (CTRC). e, Correlation between PD-L1 gene expression and total glycolytic activity index (TGAI) represented 
as log2-transformed values. Linear regression (black line) with 95% confidence interval (grey) displayed. A Pearson correlation of 0.39 (p = 4 ×10-4) is 
displayed below the linear fit. Significance was established with a t-test (two-tailed). f PD-L1 (left) and PD-L2 (right) gene expression across treatment 
time broken down by cure status (blue = definite cure and yellow = no cure). Line represents mean expression in each time point, connected across time 
points. P-value determined with Student’s t-test for PD-L1 expression at d0 versus wk24 in the definite cure (DC, n = 71) and not-cured (NC, n = 7) groups.
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Extended Data Table 1 | Tuberculosis granuloma cohort clinical information
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Extended Data Table 2 | Multiplexed imaging antibody panel staining conditions and low-level processing parameters
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Extended Data Table 3 | Cell phenotyping criteria
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Extended Data Table 4 | Gene Expression cohort description
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Extended Data Table 5 | MetaIntegrator analysis of active TB and healthy controls
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