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Abstract: Rapid methodological advances in statistical and computational genomics have enabled
researchers to better identify and interpret both rare and common variants responsible for complex
human diseases. As we continue to see an expansion of these advances in the field, it is now
imperative for researchers to understand the resources and methodologies available for various data
types and study designs. In this review, we provide an overview of recent methods for identifying
rare and common variants and understanding their roles in disease etiology. Additionally, we
discuss the strategy, challenge, and promise of gene therapy. As computational and statistical
approaches continue to improve, we will have an opportunity to translate human genetic findings
into personalized health care.

Keywords: rare variant; common variant; statistical genetics; genomics; bioinformatics; gene therapy;
precision medicine

1. Introduction

Over the past decade, genome sequencing technology has been one of the fastest
growing fields in biomedical science. Thanks to the progress in sequencing automation, the
cost of sequencing has dropped dramatically. As a result, an enormous amount of genomic
data has been generated, providing an informative profiling of human genetic variations,
disease-related mutations, and association between genotype and phenotype [1–4].

With the achievement of the Human Genome Project and the HapMap Project in the
early 2000s, human genetic research in complex diseases started a new chapter: genome-
wide association studies (GWAS). In 2005, a landmark GWAS found two single nucleotide
polymorphisms (SNPs) associated with age-related macular degeneration [5]. Later, GWAS
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identified many risk loci associated with diseases and traits, including coronary heart
disease [6], obesity [7,8], type 2 diabetes [9], schizophrenia [10], and so forth. As of
11 November 2021, the NHGRI-EBI GWAS catalog has documented 5457 publications and
318,587 associations [11]. Although these associations have led to novel insights into the
genetic architecture underlying numerous complex traits, individual common variants tend
to have weak effect sizes, and all common variants only explain a moderate proportion of
heritability [12]. This lingering gap of “missing heritability” suggests that rare variants
(defined as those genetic variants with a population allele frequency less than 1%) that are
difficult to detect by GWAS, and possibly the interplay between common and rare variants,
may play a major role in complex disease etiology.

With rapid advances in DNA sequencing technologies, assessment of rare genetic
variants in complex traits has become feasible. In particular, whole-exome sequencing
(WES) and whole-genome sequencing (WGS) have gained popularity in recent studies
on gene discovery. Herein, we review the recent analytical approaches for identifying
disease-associated rare variants in population-based or family-based studies based on WES
or WGS. We also discuss recent advances in common variant association analysis and
polygenic risk score methods. Finally, we discuss how to translate genetic discovery into
effective therapeutics or treatments. The flow diagram is illustrated in Figure 1.
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Figure 1. Overview of base pairs-to-bedside approach. Advances in genomic analysis, precision
medicine, and gene therapy allow for the genetic evaluation of sporadic and inherited variants in
families and large cohorts. Further elucidation of genetic etiology and disease pathomechanisms
through genomic and integrative multi-omics studies then catalyze the production of new therapeutic
options such as gene therapy for patient care.
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2. Rare Variant Analysis in Unrelated Individuals

A major challenge in rare variant analyses for complex traits is the limited statistical
power to identify individual variant associations due to the low allele counts. For example,
given a balanced case-control study of 3 K subjects (1.5 K cases vs. 1.5 K controls) at
a type I error α of 5 × 10−8 and a relative risk of 3, the power to detect a variant with
minor allele frequency (MAF) equal to 0.5% is around 0.05. To boost statistical power,
most rare-variant association methods combine association signals across multiple rare
variants in pre-defined variant sets (e.g., genes, genomic regions, pathways, and functional
annotations) and generally assume the presence of multiple trait-associated variants in the
same variant set [13]. We note several popular methods below.

The combined multivariate and collapsing (CMC) test is one of the first methods
to empower rare variant association analysis by collapsing all rare variants into a single
test [14]. A later study introduced the variable threshold (VT) method, which improves
statistical power by dynamically selecting the optimal MAF cutoff that distinguishes
causal rare variants from nonfunctional variants with higher allele frequencies [15]. The
development of the sequence kernel association test (SKAT) is particularly important
because it allows for the incorporation of covariates and can also consider rare variants with
opposite effect directions [16]. Other methods for studying the rare variant associations,
including the cohort allelic sums test (CAST) [17], weighted sum test (WST) [18], the
kernel-based adaptive clustering method (KBAC) [19], the versatile gene-based association
study (VEGAS) [20], the gene-based association test that uses extended Simes procedure
(GATES) [21], the multivariate association analysis using score statistics (MAAUSS) [22],
and multi-trait analysis of rare-variant associations (MTAR) [23], have since been developed
with subtle nuance in their algorithms. A summary of these methods is shown in Table 1.
We also note that study designs, inference algorithms, and statistical details of many
approaches have been extensively reviewed by Lee et al. [24].

Table 1. Statistical approaches for population-based or family-based rare variant analyses.

Type Methods Strengths Weaknesses Ref.

Rare
variant

analysis in
unrelated

individuals

Combined Multivariate
and Collapsing

(CMC) test

- More powerful and robust for
analyzing a set of rare variants
than testing each
variant individually

- Reduced power when the
grouped variants have
effects in opposite directions

[14]

Variable
Threshold (VT)

- Makes no assumption about
the causal variant’s
allele frequency

- Boosts power using functional
annotations that give higher
weights to functional variants

- Reduced power when the set
of variants grouped together
have effects in
opposite directions

- High computational burden
for permutation test

[15]

Sequence kernel
association test (SKAT)

- Considers rare variants with
opposite effect directions

- Test statistics have a closed
form approximation for their
null distribution

- Computationally efficient
- Can adjust for covariates

- Less powerful when causal
variants have the same
effect direction

[16]

Cohort allelic sums
test (CAST)

- More powerful and robust for
analyzing a set of rare variants
than testing each
variant individually

- Reduced power when the
grouped variants have
effects in opposite directions

[17]
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Table 1. Cont.

Type Methods Strengths Weaknesses Ref.

Weighted sum
test (WST)

- Can account for linkage
disequilibrium (LD)
between variants

- Lower statistical power
given few causal variants
within a gene

[18]

Kernel-based adaptive
clustering

method (KBAC)

- Has higher statistical power in
the presence of
variant interaction

- No closed form null
distribution for test statistics

- High computational burden
[19]

Versatile gene-based
association study

(VEGAS)

- Only uses summary statistics
as input

- Can account for LD
between variants

- Less powerful for detecting a
large gene with many typed
non- causal variants

- High computational burden

[20]

Gene-based association
test that uses extended

Simes procedure
(GATES)

- Only uses summary statistics
as input

- Can account for LD
between variants

- Variants can have opposite
effect directions

- Computationally efficient

- Designed for genome-wide
association studies (GWAS)
and has lower power in rare
variant analysis

[21]

Multivariate
Association Analysis
using Score Statistics

(MAAUSS)

- Leverages multiple
phenotypes to improve
statistical power

- High computational burden [22]

Multi-trait analysis of
rare-variant

associations (MTAR)

- Improved statistical power in
multi-trait multi-variant
association analysis

- Only uses summary statistics
as input

- Relies on a concordant
common and rare variant
genetic correlation
between traits

[23]

De novo
variants
analysis

DeNovoWEST

- Estimates positive predictive
values of each DNV being
pathogenic

- Incorporates a gene-based
weighting strategy

- Limited to exome [4]

Chimpanzee–human
divergence model

- Estimates the relative
locus-specific rates of DNVs

- Can only be applied to a
selected candidate gene set

[25]

denovolyzeR

- Adjusts for sequence depth
and the divergences based on
human–chimp differences

- Does not require any control
samples for comparison

- Relies on a pre-computed
tabulation of the probability
of DNVs arising in each gene

- Limited to exome

[26]

Autosomal
recessive
variant
analysis

Resampling-based
statistical framework

- Leverages trio data to compare
the observed number of
recessive genotypes with the
empirically estimated counts
under the null

- Accounts for confounding due
to population stratification
and consanguinity

- Limited to exome
- Strong assumption that all

subjects’ genotypes
are independent

[27]
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Table 1. Cont.

Type Methods Strengths Weaknesses Ref.

Sampling the observed
genotypes and

phenotypes by chance

- Incorporates the probabilities
of sampling the observed
genotypes and phenotypes
by chance

- Incorporates the phenotypic
similarity of patients with the
same recessive candidate gene

- Corrects for gene-specific
levels of autozygosity

- Takes account of
population structure

- Limited to exome
- Requires systematic

genotype and phenotype
data on a known number
of families

- Difficult to perform when
recording of phenotype
terms is incomplete
and inconsistent

[28]

The phased
haplotypes-based

framework

- Uses the phased haplotypes
from unaffected parents to
estimate the expected number
of biallelic genotypes in
affected probands

- Accounts for the fact that some
fraction of the variants
expected by chance are
actually causal

- Limited to exome
- Strong assumption that all

subjects’ genotypes
are independent

- Strong assumption of full
penetrance of all genotypes

[29]

Joint analysis
of transmitted
variants and

DNVs

Transmission and de
novo association test
(TADA), extTADA

- TADA is the first method
developed to jointly model de
novo and transmitted
mutations by a hierarchical
Bayesian modeling framework

- extTADA performs a Markov
chain Monte Carlo for the
Bayesian analysis

- Both are limited to exome
- Both cannot incorporate

recessive genotypes and
model across disease traits

[30,31]

TADA-Annotations
(TADA-A)

- Can combine information on
all DNVs in both coding and
nearby non-coding regions
across studies

- Cannot incorporate
transmitted variants

[32]

TADA-Recessive
(TADA-R)

- Can integrate signals from
DNVs, transmitted dominant,
and transmitted
recessive variants

- Limited to exome [33]

Multi-trait TADA
(M-TADA)

- Can jointly analyze DNVs
from multiple traits

- Limited to exome
- Cannot incorporate

transmitted variants
- Can only perform

pair-wise comparison

[34]

X-linked
variant
analysis

Various XCI modes
integrated

statistical approach

- Considers all X-linked
processes (random, skewed,
and escaped XCI)

- Performs a permutation-based
procedure to assess the
significance with
well-controlled type I
error rate

- Has lower power in the
random or escaped XCI test

- Cannot provide accurate
effect size estimate in the
escaped XCI model

[35]

1 and 2
degree-of-freedom tests

for association

- Easy to implement using the
contingency table approach

- False assumption of equal
phenotypic effects between
males’ hemizygotes and
females’ homozygotes

- Does not consider
nonrandom XCI and escape
from XCI

[36]
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Table 1. Cont.

Type Methods Strengths Weaknesses Ref.

Distinct XCI processes
combined using a

modified
Fisher’s method

- Considers all X-linked
processes (random, skewed,
and escaped XCI)

- Is the most statistically efficient
and not sensitive to the
unknown biological models

- Strong assumption that all
subjects’ genotypes
are independent

- Cannot adjust for covariates

[37]

Sex-specific
burden analyses

- Can estimate the fraction of
probands attributable to rare
X-linked variants

- Strong assumption of a
monogenic model with
full penetrance

- Wide confidence intervals for
several key parameters

[38]

Digenic
variant
analysis

The genetic
linkage method

- Takes account of phenocopies
and reduced penetrance

- Able to deal with
allelic heterogeneity

- Able to identify rare alleles
that are present in small
numbers of families

- Requires pedigrees of related
individuals (and
parents’ samples)

- Not suitable for common or
complex-trait diseases

- Unable to deal with high
dimensional data and
non-linear regression tests

[39]

The candidate
gene approach

- Useful as the first step in
exploring known pathways in
complex diseases

- Offers high statistical power
and is
computationally efficient

- Subjective in the process of
choosing specific
candidate genes

- Lack of replication studies
- Relies on prior hypotheses

about disease mechanisms
- Unable to deal with high

dimensional data and
non-linear regression tests

[40]

Case-only
study design

- No need for
control recruitment

- Improved statistical power
compared to the
case–control design

- Less multiple-testing correction

- Potential increase in type I
error rate if the
independence assumption
is violated

- Unable to deal with high
dimensional data and
non-linear regression tests

[41]

Random
forests

- Broad applications in data
mining and machine learning

- Flexible and powerful
statistical learning tools
for analysis

- Relatively fast and can handle
big GWAS

- Sensitive to insufficient
training data, confounding
effects, reproducibility,
and accessibility

- Potential slow-performing
algorithm when dealing with
large data set

- Requires much
computational power
and resources

[42]

Association analysis methods are ordered and grouped by different types of genetic variants. Each method for
certain types of genetic variants is listed in middle column. The references are indicated in the last column.

3. Rare Variant Analysis for Family-Based Studies

Family-based association analysis has become increasingly popular in sequencing
studies because it provides an opportunity to identify genetic variants that complement
the findings in studies of unrelated individuals. The ability to determine whether genetic
variants segregate with disease status within families helps distinguish causal variants
from non-causal variants [43]. The trio-based study design makes it possible to distinguish
between de novo variants (DNVs) and transmitted variants [44,45]. Finally, family-based
designs can employ both between- and within-family comparisons in a two-step analysis
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to increase statistical power while staying robust to population stratification and other
confounding factors [46–49].

3.1. De Novo Variant

Spontaneously arising DNVs—those present in proband but absent in parents—play
an important role in the pathogenesis of rare congenital diseases such as congenital heart
disease [27,45,50,51]. On average, every subject carries one DNV affecting the protein-
coding region of the genome [52,53]. However, modeling DNVs has proven to be chal-
lenging because DNVs are not distributed equally across the genome and the sequencing
depth and distribution vary across sequencing platforms when combining samples from
different cohorts.

Several nuanced approaches have been developed to address these issues (Table 1).
The O’Roak study was the first to estimate the relative locus-specific rates of DNV by
incorporating locus-specific transition, transversion, and indel rates, gene length, and a
null expectation based on chimpanzee–human genome differences. However, one major
limitation of this approach is that it can only be applied to a selected candidate gene set [25].

To overcome this limitation and more broadly estimate the mutation rates, Samocha et al.
developed a de novo expectation model to quantify the mutation rates based on trinu-
cleotide sequence contexts and functional annotations, while adjusting for sequence depth
and the divergences based on human–chimp differences [54]. Importantly, this method
does not require any control samples for comparison, but instead quantifies the enrichment
of synonymous DNVs as a negative control group. Furthermore, this Poisson testing
framework for DNV enrichment can yield high statistical power that is difficult to achieve
in case–control analysis. An R package called “denovolyzeR” was developed to implement
this statistical framework [26].

More recently, Kaplanis et al. developed a method named DeNovoWEST to detect
gene-specific enrichments of damaging DNVs. DeNovoWEST is a simulation-based ap-
proach that scores all classes of variants on a unified, empirically estimated severity scale
quantifying pathogenicity [4]. Compared with denovolyzeR, DeNovoWEST incorporates
a gene-based weighting strategy derived from the deficit of protein truncating variants
in the general population (e.g., pLI scores) [55]. In the future, incorporation of functional
genomic information (e.g., gene expression in disease-relevant tissues) and other variant
prioritization metrics may further improve the performance of risk gene identification.

3.2. Autosomal Recessive Variant Analysis

To analyze recessive variants that include both homozygous and compound heterozy-
gous variants, a case–control burden test can be performed. However, the challenge in
case–control analysis lies in the often distinct ethnic composition and variable degrees
of consanguinity (i.e., marriage between closely related relatives) across study cohorts or
between cases and controls. Further, it is difficult to establish genome-wide significant
associations in case–control comparisons when studying ultra-rare recessive genotypes due
to limited statistical power [27].

Several analytical strategies have been developed to address these issues (Table 1).
Nadia et al. developed a statistical approach that incorporated the probabilities of sampling
the observed genotypes and phenotypes by chance and applied it to a cohort of 4125 families
with rare and genetically heterogeneous developmental disorders to identify four novel
autosomal recessive disorders [28]. Another study, by Jin et al., developed a resampling-
based statistical framework that leverages trio data to compare the observed number of
recessive genotypes with the empirically estimated counts under the null. This approach
enables a powerful enrichment test while accounting for confounding due to population
stratification and consanguinity [27]. Using this approach, they found recessive variants
are enriched in distinct biological pathways separate from those implicated by other forms
of inheritance and demonstrated that consanguinity is a stronger driver of the recessive
form of birth defects [27].
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More recently, Martin et al. devised a new approach to use the phased haplotypes
from unaffected parents to estimate the expected number of biallelic genotypes in af-
fected probands. Despite methodological differences in these approaches, recent studies
unequivocally suggested that recessive coding variants only account for a small propor-
tion of patients with rare congenital disorders (in the range of 1–4%), compared with
10–20% explained by coding DNVs [27–29]. The large proportion of unexplained patients
even amongst those with affected siblings or high consanguinity suggests that complex
inheritance (e.g., oligogenic and polygenic inheritance, gene–environment interaction) or
other genetic variations (e.g., non-coding regulatory elements or structural variants) await
discoveries using improved genomic technologies and statistical methods in the future.

3.3. Joint Analysis of Transmitted Variants and DNVs

Recent sequencing-based studies have revealed that disease risk genes could be af-
fected by multiple types of genetic variations (e.g., DNVs, transmitted rare variants, or
regulatory variants) [27,44,56]. To accelerate risk gene discovery, several groups have devel-
oped a novel statistical framework, known as the Transmission and De novo Association
(TADA) test, to combine information from multiple types of genetic variations or across
multiple genetically correlated disease phenotypes (Table 1). While these tools have been
proven effective, there are some differences and limitations of each TADA variation. We
provide a brief overview below.

The original TADA approach and an extended approach, extTADA, were designed to
incorporate DNVs and transmitted dominant variants in proband-parent trios, as well as
variants identified in unrelated cases and controls for risk gene mapping. A hierarchical
Bayesian strategy is used to rank and test risk genes for a disease of interest [30,31].
However, these approaches fail to consider variants in the non-coding genome. Liu et al.
employed an approach called TADA-Annotations (TADA-A), which combines information
of all DNVs of a gene in both coding and nearby non-coding regions to maximize the
power to detect risk genes [32]. The authors applied TADA-A to WGS data of ~300 ASD
family trios and found that the contribution of de novo non-coding mutations could be
comparable to that of de novo loss-of-function or missense mutations in the coding regions,
which suggests that incorporation of non-coding variants from WGS data can aid risk
gene discovery.

Another limitation of the original TADA approach is that it does not consider the con-
tribution from recessive variants. This limitation has been addressed by TADA-Recessive
(TADA-R), which is built upon TADA to include DNVs, autosomal dominant variants,
and autosomal recessive variants [33]. By applying TADA-R to 2645 congenital heart
disease-affected family trios, Li et al. identified 15 significant genes, half of which are novel,
leading to new insights into the genetic basis of congenital heart disease and once again
highlighting the importance of including recessive variants in genetic studies [33].

The development of multi-trait TADA (mTADA) coincided with the need for the ability
to perform a joint analysis of DNVs from multiple genetically correlated disease traits to
increase the statistical power for risk gene discovery [34]. The mTADA approach uses the
expectation–maximization algorithm to draw associations between the two diseases. By
applying mTADA to large datasets consisting of more than 13,000 trios for five correlated
neuropsychiatric disorders and congenital heart disease, the authors reported additional
risk genes and provided new insights into the shared and disorder-specific biological
mechanisms across these disorders [34].

4. X-Linked Variant Analysis

The sex chromosome constitution is one major source of genetic variation in hu-
mans [57]. Moreover, there are many differences in the phenotypes between females, who
typically have two X chromosomes, and males, who typically have one X and one Y chro-
mosome. However, the impact of genetic variations on the sex chromosomes has been
largely overlooked in genetic association studies. Additionally, the complex and dynamic X
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chromosome inactivation (XCI) creates challenges in X-linked variant analyses [35,58]. XCI,
as first described by Ohno et al. in 1959, usually occurs randomly for one of the two X chro-
mosomes in females to equalize dosage of gene products from the X chromosomes between
males and females [59]. Conventional approaches for X-linked variant analysis, such as the
Cochran–Armitage test, assume equal phenotypic effects between males’ hemizygotes and
females’ homozygotes (Table 1) [36]. However, recent studies showed that genes on the
silenced X chromosome can be nonrandomly selected for inactivation and some can escape
from XCI [35,60,61]. Thus, the contingency table approach could lead to a significant power
loss if the underlying biological mechanisms are nonrandom or escaped XCI.

To address this, Wang et al. took various XCI modes (i.e., random, nonrandom, or
escaped XCI) into consideration, and proposed a new statistical approach with greater
statistical power in which 0 or 2 were used for genotype coding in males and 0, d, or 2
were used in females. Here, d quantifies females’ heterogeneous effective allele counts
(Table 1) [35]. Although the improved efficiency and robustness of this approach are
suitable for genome-wide analysis, this method did not consider linkage disequilibrium
(LD) and lacked the ability to adjust for covariates such as age, which is likely to affect the
XCI ratio [37,62,63].

The recent development of very large WES cohorts such as the Deciphering Develop-
mental Disorders project, coupled with the improved understanding of the germline
mutation rate, have enabled more robust estimation of the absolute and relative fraction of
inherited variants and DNVs for complex diseases. Martin et al. conducted sex-specific bur-
den analyses of damaging DNVs to identify an enrichment of specific classes of X-linked
variants in probands and estimated the fraction of probands attributable to those vari-
ants [38]. They found that such variants do not fully account for the differential prevalence
between the sexes and that the bulk of X-linked burden is in known developmental disorder-
associated genes [38]. More robust X-linked variant analysis and better under-standing of
sex differences in X chromosome biology will require even larger cohorts and integration
of multi-omics data (e.g., RNA-seq or ATAC-seq) that can suggest which X chromosome is
silenced and to what degree a gene is expressed on the inactivated X chromosome.

5. Digenic Variant Analysis

Digenic inheritance (DI) refers to the simplest form of oligogenic inheritance [64]. Indi-
viduals with digenic diseases harbor two risk variants at two genomic loci that correspond
to the development of phenotypes that do not segregate in the typical Mendelian inheri-
tance fashion. While thousands of variants have been discovered and linked to monogenic
diseases, only a few hundred were linked to 54 digenic disorders according to the DIDA
database (http://dida.ibsquare.be/, accessed on 17 November 2021). This can be attributed
to several factors, including difficulties in establishing a genotype–phenotype correlation,
reduced penetrance, phenotypic and expression variability, and most importantly, the lack
of efficient and robust methods for detecting gene–gene interaction due to the overall small
effect of each variant on disease risk. The genetic linkage analysis method was successful
in detecting digenic diseases in some families [39], but other methods can be used specially
when the parents’ samples are not available for segregation analysis (Table 1). For example,
the candidate gene approach was very useful in some cases where a gene of interest is
selected to be investigated based on its relevance to the pathway(s) involved in the devel-
opment of the disease [40]. The approach is quick, cheap, and offers high statistical power.
However, it has been faced with criticisms due to the lack of replication studies and how
much is known about the biological aspect of the investigated disease [65]. Nowadays, the
case-only and machine learning approaches are heavily and continuously developed for
the prediction of digenic diseases.

5.1. Case-Only Approach

The case-only design provides an estimation of gene–gene interactions without requir-
ing negative control samples [66] and demonstrates improved statistical power compared to

http://dida.ibsquare.be/
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the case–control design [67,68]. Recently, Kerner et al. proposed a genome-wide, case-only
study based on WES data [41]. This approach uses each gene as the unit of analysis and
tests all pairs of genes to detect gene-pair interactions underlying diseases. Furthermore,
Kerner et al. used a classic variant aggregation approach to combine multiple variants
within a gene, and the CAST approach was used to perform burden tests, allowing for
further improved statistical power. The proposed method appears to be simple and flexible
to apply, with a major advantage of the eliminated need for control recruitment. Moreover,
performing hypothesis testing at the gene level greatly reduces the burden of multiple test-
ing and computational time. However, this approach is not robust to gene–gene correlation
(e.g., variants in LD) and will have substantially inflated type I error if the independence
assumption is violated.

5.2. Machine Learning

Although the aforementioned methods have contributed significantly to unraveling
oligogenic diseases, they are often met with limitations and criticism, predominantly due
to their inability to deal with high dimensional data and non-linear regression tests. For
these reasons, machine learning methods started to gain recognition and popularity in the
field of genetics, particularly supervised machine learning where the algorithm predicts
potential gene–gene interaction as an output depending on the input data and the set of
rules obtained through model training. Among the supervised machine learning models,
random forests (RFs), neural networks, cellular automata, and multifactor dimensionality
reduction are the most used [69]. RFs, a tree-based ensemble approach with several
decision-tree classifiers, is especially popular in the field. Where each tree in the forest is
trained with a set of data to predict the outcome, in this context the RFs algorithm would
predict the gene–gene interaction causing the phenotype in question [42]. The Oligogenic
Resource for Variant AnaLysis (ORVAL), which has been used to study digenic diseases, is
also a popular online platform that integrates innovative machine learning methods for
combinatorial variant pathogenicity prediction with visualization techniques [70–73]. The
candidate digenic predictions are then used to rank gene pairs and build an interactive
oligogenic network that can be further explored.

It is understandable that traditional methods alone are unable to detect digenic variants
due to the limitations imposed by the used statistical tests and the often-required pre-
knowledge of biological aspects of diseases. Likewise, limitations can be faced with
the machine learning approach due to insufficient training data, confounding effects,
reproducibility and accessibility, and the potential slow-performing algorithm when dealing
with large data sets [74,75]. Furthermore, the lack of large case–control cohorts hinders
the chances of conforming causative genetic variant combinations. Recent studies on
oligogenic diseases provide evidence of the crucial need to combine genetic analysis
methods along with functional and experimental studies for validation. Li et al. have
provided the first experimental evidence of oligogenic inheritance in heterotaxy, using
sequencing analysis and functional studies on zebrafish and mouse [76]. Additionally,
Gifford et al. published interesting findings of a family with affected children suffering
left ventricular non-compaction cardiomyopathy (LVNC) [77]. In their study, affected
children were found to harbor three genetic variants that were proven to cause LVNC
when combined all together. CRISPR-Cas9 technology and human induced pluripotent
stem cells were used for validation. This suggests that traditional methods alone are not
efficient to detect or confirm the subtle effect of combined genetic variants, and that the use
of advanced gene-editing coupled with in vivo/in vitro approaches is necessary in future
diagnosis of oligogenic diseases.

6. Common Variant Association Analysis

A GWAS aims to identify associations between (typically millions of) SNPs and
a disease or trait of interest. SNP genotypes are usually obtained using a genotyping
microarray for a set of pre-determined variants. The genotype information for each bi-
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allelic SNP is stored as the count of a reference allele, which can be coded as 0, 1, or 2.
It is also a common practice to impute relatively common but ungenotyped SNPs based
on a population haplotype reference panel [78]. A GWAS performs a genome-wide scan
looking for SNPs that are significantly associated with the trait of interest while adjusting
for covariates such as sex, age, and genetic principal components. Due to the large number
of tests in GWAS, the convention is to use a stringent p-value threshold of 5 × 10−8 to
account for multiple testing correction. Different from sequencing-based studies, a GWAS
typically has a larger sample size due to the lower cost of microarray genotyping, but it
is better powered to examine common variant associations than those for variants with
lower frequencies due to poor imputation quality of rare variants, and a lack of ability for
common variants to tag rare variants through LD.

Despite the simplicity, GWAS have identified tens of thousands of associations for
numerous diseases and traits [79]. In particular, the recent emergence of large population-
based biobanks (e.g., UK Biobank [1]) with comprehensive genotype and phenotype data,
coupled with meta-analysis techniques [80] that allow a combination of summary-level
association results across multiple independent cohorts, provides a golden opportunity
for human geneticists to investigate the genetic basis of many human traits. It has been
shown that GWAS-informed genes for disease traits are more likely to be drug targets [81].
Polygenic risk scores (PRS) based on large GWAS have shown substantially improved
prediction accuracy and may have great potential for applications in the clinical setting [82].

GWAS also has some inherent limitations. One major challenge in population-based
GWAS is the unadjusted confounding due to population stratification where different
ancestry groups differ in both variant allele frequencies and the trait under study. In
addition, recent evidence suggests that parental genotypes can be a major confounder for
genetic associations identified in GWAS [83]. A person’s genetic variants exist in both
himself/herself and the biological parents. Thus, these variants can affect a person’s
phenotype both directly (through the inherited genetic variants) and indirectly (through
the parents and the environment they create). GWAS results from a population cohort
are a mixture of both the direct and indirect effects [84]. Because of these limitations,
family-based GWAS, which investigate genotype–phenotype associations within families
(e.g., between siblings), have gained renewed popularity [85]. Within-family GWAS is more
robust to population stratification compared to studies conducted on unrelated individuals.
Leveraging family data with shared environment also improves estimation of direct and
indirect genetic effects, which provides more complete insights into the genetic basis of
human complex traits [85,86]. However, statistical power remains moderate in family-based
GWAS due to the limited number of families even in large biobanks.

Since the proportion of complex trait variance explained by the additive genetic com-
ponents in GWAS is often smaller than heritability estimated from twin studies, gene–gene
interactions have been hypothesized to partially account for this discrepancy [87,88]. How-
ever, testing all pairwise (or higher order) SNP interactions is computationally challenging
and will severely reduce statistical power. Additionally, recent studies suggested very
limited evidence for common SNP epistasis in complex trait genetics [89,90]. However,
a growing literature suggests that both common and rare variants contribute to the risk
of many diseases, and there may be a polygenic background for even rare “Mendelian-
type” diseases [91,92]. For example, numerous genes harboring rare pathogenic variants
as well as intergenic regulatory SNPs with higher frequencies have been implicated in
diseases such as congenital heart disease and ASD [27,93–97]. It remains an open question
whether the common, potentially polygenic genetic background can explain the incomplete
penetrance of rare causal variants [98,99]. Increasing samples of WGS data in population
biobanks (e.g., UK Biobank and All of Us) as well as ascertained disease cohorts (e.g.,
Simons Simplex Collection) will provide new opportunities for studying how common and
rare variants jointly shape complex human phenotypes [100].
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7. Disease Risk Prediction

A key goal in human genetic research is to identify individuals at higher disease risks
for early screening and intervention. Thanks to the widely accessible summary-level data
from GWAS, PRS models that can be trained directly using GWAS summary statistics have
quickly gained popularity in recent years. In a nutshell, a PRS is a weighted (by variant
effect sizes) sum of risk allele counts across a (possibly large) number of SNPs. It quantifies
the genetic predisposition of disease risk for an individual and thus can be used to stratify
individuals into high and low risk groups [82].

Methodological challenges in computing PRS reside in estimating the highly polygenic
yet typically weak SNP effects for most complex traits and accounting for extensive LD in
the human genome. Recently, penalized regression models that re-estimate SNP effects from
GWAS summary statistics while explicitly modeling LD have been shown to effectively
improve the predictive performance of PRS [101–103], and novel resampling approaches
now allow model fine-tuning without individual-level genotype and phenotype data [104].
Additionally, Khera et al. convincingly demonstrated that individuals with very high
PRS show substantially elevated coronary artery disease risk that is comparable to having
monogenic mutations with large effects [105]. These studies showcase a promising future
for PRS application in disease prevention and early intervention.

However, challenges remain before clinical use of PRS becomes a reality. Currently,
the vast majority of published GWAS have been conducted on the non-Hispanic white
population [106]. PRS trained from European samples are known to have drastically
reduced prediction accuracy in non-European populations [107]. In addition, substantially
reduced predictive performance has been observed across different demographic groups
even within an ancestry population [108]. Similar reduction of PRS predictive power is also
observed within families (e.g., between siblings), suggesting that a substantial fraction of
genetic association estimated from GWAS may be mediated by the family environments [84].
To better understand the biological mechanisms of genetic associations underlying the
trait-associated loci, it will be critical to distinguish causal effects from environmental (and
familial) confounding, and to explain the lack of portability of PRS between the sexes,
across the social economic status spectrum, and in diverse ancestral populations before we
can appropriately apply PRS to the general populations.

8. Gene Therapy

A primary objective of human genetic studies is to uncover novel genetic etiology
to disease and elucidate pathomechanistic features to develop meaningful therapies for
patients. Among the most-promulgated forms of novel therapies stemming from human
genetic studies is gene therapy, which seeks to alter the biological properties of living
cells by modifying or modulating the gene function and expression in cells [109]. Being
potentially curative, gene therapy has the capacity to spare patients’ years of drug intake in
favor of one-time treatments with lifelong efficacy.

While gene therapy techniques can target both somatic and germline cells, ethical
concerns about introducing heritable changes to humans have prevented the U.S. Food
and Drug Administration (FDA) from approving any therapies targeting germline cells.
Different strategies for different types of diseases have been developed in past decades:
(a) inserting a functional copy of a gene to restore the biological function disrupted by a
deficient copy [110]; (b) providing an interference molecular segment (i.e., small interfering
RNA, suppressor gene, etc.) to inhibit the deficient gene function [111]; (c) correcting the
deficient copy of a gene using genome editing techniques; and (d) adoptively transferring
genetically engineered cells (e.g., hematopoietic stem cells or T cells) to restore or eliminate
the dysfunctional cells [112].

Generally, drug development is divided into five steps: discovery, preclinical research,
clinical research, FDA review, and post-market monitoring. This process is lengthy and
expensive, taking up to 12–15 years with costs of more than USD 1 billion and increasing
every year. At the same time, conventional drug development has slowed exponentially,
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with the number of new drugs brought to market per billion USD spent on research and
development decreasing ten-fold since 1980 and fifty-fold since 1960 [113]. Thus, robust
human genetic studies and integrative multi-omics analyses have become an attractive
high-throughput, hypothesis-free methodology to identify potential targets and explicate
pathomechanisms to better inform drug development [114]. Moreover, these targets feed
into gene therapy development, which, with further study, may present a safe and adaptable
system to provide curative therapies for a variety of genetic disorders. Currently, thousands
of clinical trials for gene therapy targeting different diseases are ongoing in the US, but the
gene therapy technologies are still in a constant state of development and improvement.

In a poignant example of this ‘base pairs-to-bedside’ approach to drug development,
until 2017 sickle cell disease (SCD), one of the most common inherited blood disorders, had
seen no therapeutic innovation to meet unmet clinical needs in over 20 years. Thanks to the
progress of disease association analysis and advanced genetic engineering, more-specific
drugs (i.e., Oxbryta and Adakveo) have become available in the past 3 years [115–117].
Since the SCD phenotype arises from a monogenic defect affecting the β-globin gene [118],
the current strategies for gene therapy treatment are relatively straightforward. The defec-
tive β-globin gene function is corrected either by providing a fully functional copy of the
gene or by restoring the expression of the γ-globin gene, a transitory paralog of β-globin
appearing in fetal development. The approach for SCD requires gene modification in
hematopoietic stem cells from the patient followed by transplantation of the functional
cells. An ongoing clinical trial (ClinicalTrials.gov numbers, NCT03282656) showed a
promising outcome, whereby the patient had prompt hematopoietic reconstitution after
treatment [119]. There are many other inherited diseases with FDA-approved gene therapy
treatments, including β-thalassemia [120], amyotrophic lateral sclerosis [121], autosomal
dominant non-syndromic hearing loss [122], hemophilia A and B [123,124], retinal dystro-
phy [125–129], spinal muscular atrophy [130], and cystic fibrosis [131] (Table 2). With many
more gene therapy treatments still in ongoing development or clinical trials, it is reasonable
to expect significant growth in gene therapy applications as the technology matures and
analytical genomic science further increases successful therapeutic yield.

Table 2. Commercially Available Gene Therapies in the U.S. in Alphabetical Order (2021) [132].

Name Manufacturer Target Disease Gene of Interest FDA
Approval Date

Abecma
(idecabtagene vicleucel)

Celgene
Corporation

(Bristol-Myers
Squibb Company)

Relapsed or refractory
multiple myeloma

BCMA
(B-cell maturation

antigen)
March 2021 [133]

Breyanzi
(lisocabtagene
maraleucel)

Juno Therapeutics
(Bristol-Myers

Squibb Company)

Relapsed or refractory
large B-cell lymphoma

CD137 (4-1BB TNF-
receptor) and CD3-zeta February 2021 [134]

Imlygic (talimogene
laherparepvec)

BioVex
(Subsidiary of Amgen)

Melanoma
(unresectable

cutaneous,
subcutaneous, and

nodal lesions)

GM-CSF (immune
stimulatory protein) October 2015 [135]

Kymriah
(tisagenlecleucel)

Novartis
Pharmaceuticals

Corporation

Pediatric B-cell
precursor acute
lymphoblastic

leukemia (ALL)

CD137 (4-1BB TNF-
receptor) and CD3-zeta August 2017 [136]

Relapsed or refractory
large B-cell lymphoma

in adult

CD137 (4-1BB TNF-
receptor) and CD3-zeta May 2018 [136]

ClinicalTrials.gov
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Table 2. Cont.

Name Manufacturer Target Disease Gene of Interest FDA
Approval Date

Luxturna
(voretigene

neparvovec-rzyl)

Spark
Therapeutics

Retinal dystrophy
(biallelic RPE65

mutation-
associated)

RPE65 (human retinal
pigment epithelial 65

kDa protein)
December 2017 [137]

Provenge
(sipuleucel-t)

Dendreon
Corporation

Asymptomatic or
minimally

symptomatic metastatic
castration-resistant

prostate
cancer (mCRPC)

ACP3
(prostate acid
phosphatase)

April 2010 [138]

Tecartus
(brexucabtagene

autoleucel)
Kite Pharma

Relapsed or refractory
mantle cell lymphoma

(MCL) in adult
CD28 and CD3-zeta July 2020 [139]

Relapsed or refractory
B-cell precursor acute

lymphoblastic
leukemia (ALL)

in adult

CD28 and CD3-zeta October 2021 [139]

Yescarta
(axicabtagene

ciloleucel)
Kite Pharma

Relapsed or refractory
large B-cell lymphoma CD28 and CD3-zeta October 2017 [140]

Relapsed or refractory
follicular lymphoma CD28 and CD3-zeta March 2021 [140]

Zolgensma
(onasemnogene

abeparvovec-xioi)

Novartis Gene
Therapies

(Formerly AveXis)

Spinal muscular
atrophy (Type I)

SMN1 (human
survival motor neuron

1 protein)
May 2019 [141]

Licensed gene therapies in the U.S. approved by the Office of Tissues and Advanced Therapies (OTAT) as of
26 October 2021. Name = trade name (proper name); Manufacturer = name of pharmaceutical / biotechnology
company licensed; Target Disease = FDA approved indication(s) excluding disease state(s) in ongoing clinical trials;
Gene of Interest = biological/therapy target (and encoded protein if applicable); FDA approval date = indication
license date based on FDA approval letters.

9. Conclusions

The past decade has been the most fascinating era in the field of human genetics. We
have witnessed unprecedented advances in biotechnologies for high-throughput omics,
the creation of numerous global biobank cohorts with rich genotypic and phenotypic
information, and the emergence of sophisticated statistical and computational methods for
disease gene mapping and risk prediction. In this review, we introduced the state-of-art
methods for research applications based on the study design (i.e., population, or trio-
based family), genomic technology (i.e., WES, WGS, and GWAS), and the type of genetic
variations under investigation (i.e., de novo, recessive, transmitted, X-linked, and digenic).
We also discussed the current best practices of genomic study in human disorders—gene
therapy—and summarized currently available treatments for diseases (Table 2).

As demonstrated in many studies, genetic variations alter patient responses to clinical
treatments [142–144]. Although much progress has been made in identifying the genetic
etiologies of many complex diseases, additional investigation is required to functionally
connect most genetic variants with disease phenotypes through molecular pathomech-
anisms. The advent of GWAS/WES and, more recently, WGS has equipped molecular
geneticists with the tools needed to decipher the genetic etiologies of rare and complex
diseases. Current multi-omics studies using single-cell RNA-sequencing, ChIP-seq, and
ATAC-seq have revealed more comprehensive complex biological molecules involved in
the structure, function, and dynamics of a cell, tissue, or organism (reviewed in Ref. [145]).
The integration of these novel technologies presents new hope in explicating the functional
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impact of many disease risk variants and the genetic pathology of complex disease traits.
For many patients, this represents the end of a lifelong diagnostic odyssey preventing them
from receiving precision therapy, understanding their prognosis, and making important
life-planning decisions.

Many in the field speculate that, as WES/WGS becomes increasingly more common
and affordable, increased understanding of variant–phenotype relationships and novel
integrative genomic and pharmacogenomic therapeutic approaches tailored to patient-
specific genetic information may revolutionize clinical care by increasing treatment speci-
ficity [146,147]. Quantitative phenomics is a critical component of the evolving integrative
genomic approach. Standardized human phenotype annotation databases [148,149] and
novel phenotype clustering algorithms [150,151] are developing to enable much more
comprehensive and intelligent phenomics analysis. Transitioning to high quality, elec-
tronic, and increasingly standardized phenomics information can improve the phenotypic
characterization of various heterogeneous disorders and identify associations between
certain genetic variants and their respective clinical outcomes or presentation. This thereby
provides better prognostication and clinical management, particularly of disorders with
highly varied and poorly differentiated intra-disorder phenotypes [152,153]. Incorporating
patient genetic information into clinician-friendly data platforms (i.e., electronic medical
records) will maximize drug efficacy and minimize adverse effects, enriching precision
medicine in practice [154]. The interface between genomic information and electronic
health records coupled with increasingly improved methods can facilitate more precise
discovery of genetic variants to guide more accurate therapeutic decisions in the future.

Author Contributions: Conceptualization, S.C.J. and Q.L.; writing—original draft preparation,
Y.-C.W., Y.W., J.C., G.A., S.Z., M.K., K.Y., Q.L. and S.C.J.; writing—review and editing, Y.-C.W.,
Y.W., J.C., G.A., S.Z., M.K., K.Y., P.-Y.F., M.W., X.Y., K.Y.M., J.O., H.S., J.S., K.T.K., Q.L. and S.C.J.;
supervision, Q.L., S.C.J. project administration, Y.-C.W., Y.W., J.C., G.A., S.Z., M.K., K.Y., Q.L. and
S.C.J.; funding acquisition, K.T.K., Q.L. and S.C.J. All authors have read and agreed to the published
version of the manuscript.

Funding: S.C.J. is supported by NIH/National Heart Lung and Blood Institute (NHLBI) Pathway to
Independence award R00HL143036-02, the Hydrocephalus Association Innovator Award, the Clinical
& Translational Research Funding Program award (CTSA1405), and the Children’s Discovery Institute
Faculty Scholar award (CDI-FR-2021-926). K.T.K. is supported by the NIH (NRCDP K12 228168,
1RO1NS109358, and R01 NS111029-01A1); the Hydrocephalus Association; the Rudi Schulte Research
Institute; and the Simons Foundation. G.A. is supported by the Gruber Science Fellowship. Q.L. and
Y.W. gratefully acknowledge support from the Center for Demography of Health and Aging at the
University of Wisconsin-Madison, funded by NIA Center Grant P30 AG017266. This project was
funded, in whole or in part, by the Foundation for Barnes-Jewish Hospital and their generous donors
and by the NIH/National Center for Advancing Translational Sciences grant UL1TR002345, as well
as the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al.

The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [CrossRef] [PubMed]
2. Consortium ITP-CAoWG. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [CrossRef] [PubMed]
3. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]

[PubMed]
4. Kaplanis, J.; Samocha, K.E.; Wiel, L.; Zhang, Z.; Arvai, K.J.; Eberhardt, R.Y.; Gallone, G.; Lelieveld, S.H.; Martin, H.C.;

McRae, J.F.; et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature 2020, 586,
757–762. [CrossRef] [PubMed]

http://doi.org/10.1038/s41586-018-0579-z
http://www.ncbi.nlm.nih.gov/pubmed/30305743
http://doi.org/10.1038/s41586-020-1969-6
http://www.ncbi.nlm.nih.gov/pubmed/32025007
http://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
http://doi.org/10.1038/s41586-020-2832-5
http://www.ncbi.nlm.nih.gov/pubmed/33057194


J. Pers. Med. 2022, 12, 175 16 of 21

5. Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.;
Mayne, S.T.; et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005, 308, 385–389.
[CrossRef]

6. Samani, N.J.; Erdmann, J.; Hall, A.S.; Hengstenberg, C.; Mangino, M.; Mayer, B.; Dixon, R.J.; Meitinger, T.; Braund, P.;
Wichmann, H.-E.; et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007, 357, 443–453.
[CrossRef]

7. Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.;
Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and
adult obesity. Science 2007, 316, 889–894. [CrossRef]

8. Herbert, A.; Gerry, N.P.; McQueen, M.B.; Heid, I.M.; Pfeufer, A.; Illig, T.; Wichmann, H.-E.; Meitinger, T.; Hunter, D.; Hu, F.B.; et al.
A common genetic variant is associated with adult and childhood obesity. Science 2006, 312, 279–283. [CrossRef]

9. Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.W.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.;
Daly, M.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316,
1331–1336. [CrossRef]

10. Stefansson, H.; Ophoff, R.A.; Steinberg, S.; Andreassen, O.A.; Cichon, S.; Rujescu, D.; Werge, T.; Pietilainen, O.P.; Mors, O.;
Mortensen, P.B.; et al. Common variants conferring risk of schizophrenia. Nature 2009, 460, 744–747. [CrossRef]

11. Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.;
Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [CrossRef]

12. Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.;
Chakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [CrossRef] [PubMed]

13. Guo, M.H.; Dauber, A.; Lippincott, M.; Chan, Y.-M.; Salem, R.; Hirschhorn, J.N. Determinants of Power in Gene-Based Burden
Testing for Monogenic Disorders. Am. J. Hum. Genet. 2016, 99, 527–539. [CrossRef] [PubMed]

14. Li, B.; Leal, S.M. Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence
data. Am. J. Hum. Genet. 2008, 83, 311–321. [CrossRef] [PubMed]

15. Price, A.L.; Kryukov, G.; de Bakker, P.I.; Purcell, S.M.; Staples, J.; Wei, L.-J.; Sunyaev, S.R. Pooled association tests for rare variants
in exon-resequencing studies. Am. J. Hum. Genet. 2010, 86, 832–838. [CrossRef] [PubMed]

16. Wu, M.C.; Lee, S.; Cai, T.; Li, Y.; Boehnke, M.; Lin, X. Rare-variant association testing for sequencing data with the sequence
kernel association test. Am. J. Hum. Genet. 2011, 89, 82–93. [CrossRef] [PubMed]

17. Morgenthaler, S.; Thilly, W.G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: A
cohort allelic sums test (CAST). Mutat. Res. 2007, 615, 28–56. [CrossRef] [PubMed]

18. Wang, T.; Elston, R.C. Improved power by use of a weighted score test for linkage disequilibrium mapping. Am. J. Hum. Genet.
2007, 80, 353–360. [CrossRef]

19. Liu, D.J.; Leal, S.M. A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait
associations with rare variants due to gene main effects and interactions. PLoS Genet. 2010, 6, e1001156. [CrossRef]

20. Liu, J.Z.; Mcrae, A.F.; Nyholt, D.R.; Medland, S.E.; Wray, N.R.; Brown, K.M.; Hayward, N.K.; Montgomery, G.; Visscher, P.;
Martin, N.; et al. A versatile gene-based test for genome-wide association studies. Am. J. Hum. Genet. 2010, 87, 139–145. [CrossRef]

21. Li, M.-X.; Gui, H.-S.; Kwan, J.S.; Sham, P.C. GATES: A rapid and powerful gene-based association test using extended Simes
procedure. Am. J Hum Genet. 2011, 88, 283–293. [CrossRef] [PubMed]

22. Lee, S.; Won, S.; Kim, Y.J.; Kim, Y.; Consortium, T.D.-G.; Kim, B.J.; Park, T. Rare variant association test with multiple phenotypes.
Genet. Epidemiol. 2017, 41, 198–209. [CrossRef] [PubMed]

23. Luo, L.; Shen, J.; Zhang, H.; Chhibber, A.; Mehrotra, D.V.; Tang, Z.-Z. Multi-trait analysis of rare-variant association summary
statistics using MTAR. Nat. Commun. 2020, 11, 2850. [CrossRef] [PubMed]

24. Lee, S.; Abecasis, G.R.; Boehnke, M.; Lin, X. Rare-variant association analysis: Study designs and statistical tests. Am. J. Hum.
Genet. 2014, 95, 5–23. [CrossRef]

25. O’Roak, B.J.; Vives, L.; Fu, W.; Egertson, J.D.; Stanaway, I.B.; Phelps, I.G.; Carvill, G.; Kumar, A.; Lee, C.; Ankenman, K.; et al.
Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 2012, 338, 1619–1622.
[CrossRef]

26. Ware, J.; Samocha, K.; Homsy, J.; Daly, M.J. Interpreting de novo Variation in Human Disease Using denovolyzeR. Curr. Protoc.
Hum. Genet. 2015, 87, 7.25.1–7.25.15. [CrossRef]

27. Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of
rare inherited and de novo variants in 2871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [CrossRef]

28. Akawi, N.; McRae, J.; Ansari, M.; Balasubramanian, M.; Blyth, M.; Brady, A.F.; Clayton, S.; Cole, T.; Deshpande, C.;
Fitzgerald, T.W.; et al. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching
among 4125 families. Nat. Genet. 2015, 47, 1363–1369. [CrossRef]

29. Martin, H.C.; Jones, W.D.; McIntyre, R.; Sanchez-Andrade, G.; Sanderson, M.; Stephenson, J.D.; Jones, C.P.; Handsaker, J.;
Gallone, G.; Bruntraeger, M.; et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science
2018, 362, 1161–1164. [CrossRef]

http://doi.org/10.1126/science.1109557
http://doi.org/10.1056/NEJMoa072366
http://doi.org/10.1126/science.1141634
http://doi.org/10.1126/science.1124779
http://doi.org/10.1126/science.1142358
http://doi.org/10.1038/nature08186
http://doi.org/10.1093/nar/gky1120
http://doi.org/10.1038/nature08494
http://www.ncbi.nlm.nih.gov/pubmed/19812666
http://doi.org/10.1016/j.ajhg.2016.06.031
http://www.ncbi.nlm.nih.gov/pubmed/27545677
http://doi.org/10.1016/j.ajhg.2008.06.024
http://www.ncbi.nlm.nih.gov/pubmed/18691683
http://doi.org/10.1016/j.ajhg.2010.04.005
http://www.ncbi.nlm.nih.gov/pubmed/20471002
http://doi.org/10.1016/j.ajhg.2011.05.029
http://www.ncbi.nlm.nih.gov/pubmed/21737059
http://doi.org/10.1016/j.mrfmmm.2006.09.003
http://www.ncbi.nlm.nih.gov/pubmed/17101154
http://doi.org/10.1086/511312
http://doi.org/10.1371/journal.pgen.1001156
http://doi.org/10.1016/j.ajhg.2010.06.009
http://doi.org/10.1016/j.ajhg.2011.01.019
http://www.ncbi.nlm.nih.gov/pubmed/21397060
http://doi.org/10.1002/gepi.22021
http://www.ncbi.nlm.nih.gov/pubmed/28039885
http://doi.org/10.1038/s41467-020-16591-0
http://www.ncbi.nlm.nih.gov/pubmed/32503972
http://doi.org/10.1016/j.ajhg.2014.06.009
http://doi.org/10.1126/science.1227764
http://doi.org/10.1002/0471142905.hg0725s87
http://doi.org/10.1038/ng.3970
http://doi.org/10.1038/ng.3410
http://doi.org/10.1126/science.aar6731


J. Pers. Med. 2022, 12, 175 17 of 21

30. He, X.; Sanders, S.; Liu, L.; De Rubeis, S.; Lim, T.T.; Sutcliffe, J.S.; Schellenberg, G.D.; Gibbs, R.A.; Daly, M.J.; Buxbaum, J.; et al.
Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. PLoS Genet. 2013, 9,
e1003671. [CrossRef]

31. Nguyen, H.T.; Bryois, J.; Kim, A.; Dobbyn, A.; Huckins, L.M.; Munoz-Manchado, A.B.; Ruderfer, D.M.; Genovese, G.; Fromer, M.;
Xu, X.; et al. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental
disorders. Genome Med. 2017, 9, 114. [CrossRef] [PubMed]

32. Liu, Y.; Liang, Y.; Cicek, A.E.; Li, Z.; Li, J.; Muhle, R.A.; Krenzer, M.; Mei, Y.; Wang, Y.; Knoblauch, N.; et al. A Statistical
Framework for Mapping Risk Genes from De Novo Mutations in Whole-Genome-Sequencing Studies. Am. J. Hum. Genet. 2018,
102, 1031–1047. [CrossRef] [PubMed]

33. Li, M.; Zeng, X.; Jin, C.; Jin, S.C.; Dong, W.; Brueckner, M.; Lifton, R.; Lu, Q.; Zhao, H. Integrative modeling of transmitted and de
novo variants identifies novel risk genes for congenital heart disease. Quant. Biol. 2021, 9, 216–227. [CrossRef]

34. Nguyen, T.-H.; Dobbyn, A.; Brown, R.C.; Riley, B.P.; Buxbaum, J.; Pinto, D.; Purcell, S.M.; Sullivan, P.F.; He, X.; Stahl, E.A. mTADA
is a framework for identifying risk genes from de novo mutations in multiple traits. Nat. Commun. 2020, 11, 2929. [CrossRef]

35. Wang, J.; Yu, R.; Shete, S. X-chromosome genetic association test accounting for X-inactivation, skewed X-inactivation, and escape
from X-inactivation. Genet. Epidemiol. 2014, 38, 483–493. [CrossRef]

36. Clayton, D. Testing for association on the X chromosome. Biostatistics 2008, 9, 593–600. [CrossRef]
37. Jin, H.; Park, T.; Won, S. Efficient Statistical Method for Association Analysis of X-Linked Variants. Hum. Hered. 2016, 82, 50–63.

[CrossRef]
38. Martin, H.C.; Gardner, E.J.; Samocha, K.E.; Kaplanis, J.; Akawi, N.; Sifrim, A.; Eberhardt, R.Y.; Tavares, A.L.T.; Neville, M.D.C.;

Niemi, M.E.K.; et al. The contribution of X-linked coding variation to severe developmental disorders. Nat. Commun. 2021,
12, 627. [CrossRef]

39. March, R.E. Gene mapping by linkage and association analysis. Mol. Biotechnol. 1999, 13, 113–122. [CrossRef]
40. Tabor, H.K.; Risch, N.J.; Myers, R.M. Candidate-gene approaches for studying complex genetic traits: Practical considerations.

Nat. Rev. Genet. 2002, 3, 391–397. [CrossRef]
41. Kerner, G.; Bouaziz, M.; Cobat, A.; Bigio, B.; Timberlake, A.T.; Bustamante, J.; Lifton, R.P.; Casanova, J.-L.; Abel, L. A genome-wide

case-only test for the detection of digenic inheritance in human exomes. Proc. Natl. Acad. Sci. USA 2020, 117, 19367–19375.
[CrossRef] [PubMed]

42. Chen, X.; Ishwaran, H. Random forests for genomic data analysis. Genomics 2012, 99, 323–329. [CrossRef] [PubMed]
43. Thomas, D.C.; Yang, Z.; Yang, F. Two-phase and family-based designs for next-generation sequencing studies. Front. Genet. 2013,

4, 276. [CrossRef] [PubMed]
44. Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J.; Ercan-Sencicek, A.G.; DiLullo, N.M.;

Parikshak, N.N.; Stein, J.L.; et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
Nature 2012, 485, 237–241. [CrossRef] [PubMed]

45. Zaidi, S.; Choi, M.; Wakimoto, H.; Ma, L.; Jiang, J.; Overton, J.D.; Romano-Adesman, A.; Bjornson, R.D.; Breitbart, R.E.;
Brown, K.K.; et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013, 498, 220–223.
[CrossRef]

46. Feng, T.; Zhang, S.; Sha, Q. Two-stage association tests for genome-wide association studies based on family data with arbitrary
family structure. Eur. J. Hum. Genet. 2007, 15, 1169–1175. [CrossRef] [PubMed]

47. Lange, C.; DeMeo, D.; Silverman, E.K.; Weiss, S.T.; Laird, N.M. Using the noninformative families in family-based association
tests: A powerful new testing strategy. Am. J. Hum. Genet. 2003, 73, 801–811. [CrossRef]

48. Murphy, A.; Weiss, S.T.; Lange, C. Screening and replication using the same data set: Testing strategies for family-based studies in
which all probands are affected. PLoS Genet. 2008, 4, e1000197. [CrossRef]

49. Van Steen, K.; McQueen, M.B.; Herbert, A.; Raby, B.; Lyon, H.; DeMeo, D.L.; Murphy, A.; Su, J.; Datta, S.; Rosenow, C.; et al.
Genomic screening and replication using the same data set in family-based association testing. Nat. Genet. 2005, 37, 683–691.
[CrossRef]

50. Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.;
Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies.
Science 2015, 350, 1262–1266. [CrossRef]

51. Sifrim, A.; Hitz, M.-P.; Wilsdon, A.; Breckpot, J.; Al Turki, S.H.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.;
Swaminathan, G.J.; et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by
exome sequencing. Nat. Genet. 2016, 48, 1060–1065. [CrossRef] [PubMed]

52. Conrad, D.F.; Keebler, J.E.; De Pristo, M.A.; Lindsay, S.J.; Zhang, Y.; Cassals, F.; Idaghdour, Y.; Hartl, C.L.; Torroja, C.;
Garimella, K.V.; et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 2011, 43,
712–714. [CrossRef] [PubMed]

53. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 2010, 107, 961–968.
[CrossRef] [PubMed]

54. Samocha, K.; Robinson, E.; Sanders, S.; Stevens, C.; Sabo, A.; McGrath, L.; Kosmicki, J.A.; Rehnström, K.; Mallick, S.; Kirby, A.; et al.
A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 2014, 46, 944–950. [CrossRef]

http://doi.org/10.1371/journal.pgen.1003671
http://doi.org/10.1186/s13073-017-0497-y
http://www.ncbi.nlm.nih.gov/pubmed/29262854
http://doi.org/10.1016/j.ajhg.2018.03.023
http://www.ncbi.nlm.nih.gov/pubmed/29754769
http://doi.org/10.15302/J-QB-021-0248
http://doi.org/10.1038/s41467-020-16487-z
http://doi.org/10.1002/gepi.21814
http://doi.org/10.1093/biostatistics/kxn007
http://doi.org/10.1159/000478048
http://doi.org/10.1038/s41467-020-20852-3
http://doi.org/10.1385/MB:13:2:113
http://doi.org/10.1038/nrg796
http://doi.org/10.1073/pnas.1920650117
http://www.ncbi.nlm.nih.gov/pubmed/32719112
http://doi.org/10.1016/j.ygeno.2012.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22546560
http://doi.org/10.3389/fgene.2013.00276
http://www.ncbi.nlm.nih.gov/pubmed/24379824
http://doi.org/10.1038/nature10945
http://www.ncbi.nlm.nih.gov/pubmed/22495306
http://doi.org/10.1038/nature12141
http://doi.org/10.1038/sj.ejhg.5201902
http://www.ncbi.nlm.nih.gov/pubmed/17653107
http://doi.org/10.1086/378591
http://doi.org/10.1371/journal.pgen.1000197
http://doi.org/10.1038/ng1582
http://doi.org/10.1126/science.aac9396
http://doi.org/10.1038/ng.3627
http://www.ncbi.nlm.nih.gov/pubmed/27479907
http://doi.org/10.1038/ng.862
http://www.ncbi.nlm.nih.gov/pubmed/21666693
http://doi.org/10.1073/pnas.0912629107
http://www.ncbi.nlm.nih.gov/pubmed/20080596
http://doi.org/10.1038/ng.3050


J. Pers. Med. 2022, 12, 175 18 of 21

55. Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.;
Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443.
[CrossRef]

56. An, J.-Y.; Lin, K.; Zhu, L.; Werling, D.M.; Dong, S.; Brand, H.; Wang, H.Z.; Zhao, X.; Schwartz, G.B.; Collins, R.L.; et al. Genome-
wide de novo risk score implicates promoter variation in autism spectrum disorder. Science 2018, 362, eaat6576. [CrossRef]

57. Sayres, M.A.W. Genetic Diversity on the Sex Chromosomes. Genome Biol. Evol. 2018, 10, 1064–1078. [CrossRef]
58. Peeters, S.B.; Cotton, A.M.; Brown, C.J. Variable escape from X-chromosome inactivation: Identifying factors that tip the scales

towards expression. Bioessays 2014, 36, 746–756. [CrossRef]
59. Heard, E.; Chaumeil, J.; Masui, O.; Okamoto, I. Mammalian X-chromosome inactivation: An epigenetics paradigm. Cold Spring

Harb. Symp. Quant. Biol. 2004, 69, 89–102. [CrossRef]
60. Wong, C.; Caspi, A.; Williams, B.; Houts, R.; Craig, I.W.; Mill, J. A longitudinal twin study of skewed X chromosome-inactivation.

PLoS ONE 2011, 6, e17873. [CrossRef]
61. Wang, J.; Talluri, R.; Shete, S. Selection of X-chromosome Inactivation Model. Cancer Inform. 2017, 16, 1176935117747272.

[CrossRef] [PubMed]
62. Busque, L.; Paquette, Y.; Provost, S.; Roy, D.-C.; Levine, R.L.; Mollica, L.; Gilliland, D.G. Skewing of X-inactivation ratios in blood

cells of aging women is confirmed by independent methodologies. Blood 2009, 113, 3472–3474. [CrossRef] [PubMed]
63. Knudsen, G.; Pedersen, J.; Klingenberg, O.; Lygren, I.; Ørstavik, K. Increased skewing of X chromosome inactivation with age in

both blood and buccal cells. Cytogenet. Genome Res. 2007, 116, 24–28. [CrossRef] [PubMed]
64. Schaffer, A.A. Digenic inheritance in medical genetics. J. Med. Genet. 2013, 50, 641–652. [CrossRef] [PubMed]
65. Pasche, B.; Yi, N. Candidate gene association studies: Successes and failures. Curr. Opin. Genet. Dev. 2010, 20, 257–261. [CrossRef]

[PubMed]
66. Yang, Q.; Khoury, M.J.; Sun, F.; Flanders, W.D. Case-only design to measure gene-gene interaction. Epidemiology 1999, 10, 167–170.

[CrossRef] [PubMed]
67. Begg, C.B.; Zhang, Z.F. Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol. Biomark.

Prev. 1994, 3, 173–175.
68. Piegorsch, W.W.; Weinberg, C.R.; Taylor, J.A. Non-hierarchical logistic models and case-only designs for assessing susceptibility

in population-based case-control studies. Stat. Med. 1994, 13, 153–162. [CrossRef]
69. McKinney, B.A.; Reif, D.; Ritchie, M.D.; Moore, J.H. Machine learning for detecting gene-gene interactions: A review. Appl.

Bioinform. 2006, 5, 77–88. [CrossRef]
70. Byrjalsen, A.; Hansen, T.V.O.; Stoltze, U.K.; Mehrjouy, M.M.; Barnkob, N.M.; Hjalgrim, L.L.; Mathiasen, R.; Lautrup, C.K.;

Gregersen, P.A.; Hasle, H.; et al. Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients
reveals a high incidence of cancer prone syndromes. PLoS Genet. 2020, 16, e1009231. [CrossRef]

71. Costantini, A.; Valta, H.; Suomi, A.-M.; Mäkitie, O.; Taylan, F. Oligogenic Inheritance of Monoallelic TRIP11, FKBP10, NEK1,
TBX5, and NBAS Variants Leading to a Phenotype Similar to Odontochondrodysplasia. Front. Genet. 2021, 12, 680838. [CrossRef]
[PubMed]

72. Dallali, H.; Kheriji, N.; Kammoun, W.; Mrad, M.; Soltani, M.; Trabelsi, H.; Hamdi, W.; Bahlous, A.; Ben Ahmed, M.;
Mahjoub, F.; et al. Multiallelic Rare Variants in BBS Genes Support an Oligogenic Ciliopathy in a Non-obese Juvenile-Onset
Syndromic Diabetic Patient: A Case Report. Front. Genet. 2021, 12, 664963. [CrossRef] [PubMed]

73. Zhao, T.; Ma, Y.; Zhang, Z.; Xian, J.; Geng, X.; Wang, F.; Huang, J.; Yang, Z.; Luo, Y.; Lin, Y. Young and early-onset dilated
cardiomyopathy with malignant ventricular arrhythmia and sudden cardiac death induced by the heterozygous LDB3, MYH6,
and SYNE1 missense mutations. Ann. Noninvasive Electrocardiol. 2021, 26, e12840. [CrossRef] [PubMed]

74. Libbrecht, M.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [CrossRef]
[PubMed]

75. Nicholls, H.L.; John, C.R.; Watson, D.; Munroe, P.B.; Barnes, M.R.; Cabrera, C.P. Reaching the End-Game for GWAS: Machine
Learning Approaches for the Prioritization of Complex Disease Loci. Front. Genet. 2020, 11, 350. [CrossRef] [PubMed]

76. Li, Y.; Yagi, H.; Onuoha, E.O.; Damerla, R.R.; Francis, R.; Furutani, Y.; Tariq, M.; King, S.M.; Hendricks, G.; Cui, C.; et al. DNAH6
and Its Interactions with PCD Genes in Heterotaxy and Primary Ciliary Dyskinesia. PLoS Genet. 2016, 12, e1005821. [CrossRef]

77. Gifford, C.A.; Ranade, S.S.; Samarakoon, R.; Salunga, H.T.; de Soysa, T.Y.; Huang, Y.; Zhou, P.; Elfenbein, A.; Wyman, S.K.;
Bui, Y.K.; et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science 2019, 364, 865–870. [CrossRef]

78. Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-
generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [CrossRef]

79. Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 years of GWAS discovery: Biology,
function, and translation. Am. J. Hum. Genet. 2017, 101, 5–22. [CrossRef]

80. Willer, C.; Li, Y.; Abecasis, G.R. METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010, 26,
2190–2191. [CrossRef]

81. Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D.
Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59. [CrossRef]

82. Chatterjee, N.; Shi, J.; García-Closas, M. Developing and evaluating polygenic risk prediction models for stratified disease
prevention. Nat. Rev. Genet. 2016, 17, 392–406. [CrossRef]

http://doi.org/10.1038/s41586-020-2308-7
http://doi.org/10.1126/science.aat6576
http://doi.org/10.1093/gbe/evy039
http://doi.org/10.1002/bies.201400032
http://doi.org/10.1101/sqb.2004.69.89
http://doi.org/10.1371/journal.pone.0017873
http://doi.org/10.1177/1176935117747272
http://www.ncbi.nlm.nih.gov/pubmed/29308008
http://doi.org/10.1182/blood-2008-12-195677
http://www.ncbi.nlm.nih.gov/pubmed/19202126
http://doi.org/10.1159/000097414
http://www.ncbi.nlm.nih.gov/pubmed/17268174
http://doi.org/10.1136/jmedgenet-2013-101713
http://www.ncbi.nlm.nih.gov/pubmed/23785127
http://doi.org/10.1016/j.gde.2010.03.006
http://www.ncbi.nlm.nih.gov/pubmed/20417090
http://doi.org/10.1097/00001648-199903000-00014
http://www.ncbi.nlm.nih.gov/pubmed/10069253
http://doi.org/10.1002/sim.4780130206
http://doi.org/10.2165/00822942-200605020-00002
http://doi.org/10.1371/journal.pgen.1009231
http://doi.org/10.3389/fgene.2021.680838
http://www.ncbi.nlm.nih.gov/pubmed/34149817
http://doi.org/10.3389/fgene.2021.664963
http://www.ncbi.nlm.nih.gov/pubmed/34691137
http://doi.org/10.1111/anec.12840
http://www.ncbi.nlm.nih.gov/pubmed/33949037
http://doi.org/10.1038/nrg3920
http://www.ncbi.nlm.nih.gov/pubmed/25948244
http://doi.org/10.3389/fgene.2020.00350
http://www.ncbi.nlm.nih.gov/pubmed/32351543
http://doi.org/10.1371/journal.pgen.1005821
http://doi.org/10.1126/science.aat5056
http://doi.org/10.1038/ng.3656
http://doi.org/10.1016/j.ajhg.2017.06.005
http://doi.org/10.1093/bioinformatics/btq340
http://doi.org/10.1038/s43586-021-00056-9
http://doi.org/10.1038/nrg.2016.27


J. Pers. Med. 2022, 12, 175 19 of 21

83. Kong, A.; Thorleifsson, G.; Frigge, M.L.; Vilhjalmsson, B.J.; Young, A.I.; Thorgeirsson, T.E.; Benonisdottir, S.; Oddsson, A.;
Halldorsson, B.V.; Masson, G.; et al. The nature of nurture: Effects of parental genotypes. Science 2018, 359, 424–428. [CrossRef]
[PubMed]

84. Young, A.I.; Benonisdottir, S.; Przeworski, M.; Kong, A. Deconstructing the sources of genotype-phenotype associations in
humans. Science 2019, 365, 1396–1400. [CrossRef]

85. Howe, L.J.; Nivard, M.G.; Morris, T.T.; Hansen, A.F.; Rasheed, H.; Cho, Y.; Chittoor, G.; Lind, P.A.; Palviainen, T.;
van der Zee, M.D.; et al. Within-sibship GWAS improve estimates of direct genetic effects. bioRxiv 2021. [CrossRef]

86. Wu, Y.; Zhong, X.; Lin, Y.; Zhao, Z.; Chen, J.; Zheng, B.; Li, J.J.; Fletcher, J.M.; Lu, Q. Estimating genetic nurture with summary
statistics of multigenerational genome-wide association studies. Proc. Natl. Acad. Sci. USA 2021, 118, e2023184118. [CrossRef]

87. Cooper, D.N.; Krawczak, M.; Polychronakos, C.; Tyler-Smith, C.; Kehrer-Sawatzki, H. Where genotype is not predictive of
phenotype: Towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum. Genet.
2013, 132, 1077–1130. [CrossRef]

88. Wei, W.; Hemani, G.; Haley, C. Detecting epistasis in human complex traits. Nat. Rev. Genet. 2014, 15, 722–733. [CrossRef]
89. Sinnott-Armstrong, N.; Naqvi, S.; Rivas, M.; Pritchard, J.K. GWAS of three molecular traits highlights core genes and pathways

alongside a highly polygenic background. eLife 2021, 10, e58615. [CrossRef]
90. Wainschtein, P.; Jain, D.; Zheng, Z.; TOPMed Anthropometry Working Group; NHLBI Trans-Omics for Precision Medicine

(TOPMed) Consortium; Cupples, L.A.; Shadyab, A.H.; McKnight, B.; Shoemaker, B.M.; Mitchell, B.D.; et al. Recovery of trait
heritability from whole genome sequence data. bioRxiv 2021. [CrossRef]

91. Crowley, J.J.; Szatkiewicz, J.; Kähler, A.K.; Giusti-Rodríguez, P.; Ancalade, N.; Booker, J.K.; Carr, J.L.; Crawford, G.E.; Losh, M.;
Stockmeier, C.A.; et al. Common-variant associations with fragile X syndrome. Mol. Psychiatry 2019, 24, 338–344. [CrossRef]
[PubMed]

92. Claussnitzer, M.; Cho, J.H.; Collins, R.; Cox, N.J.; Dermitzakis, E.T.; Hurles, M.E.; Kathiresan, S.; Kenny, E.E.; Lindgren, C.M.;
MacArthur, D.G.; et al. A brief history of human disease genetics. Nature 2020, 577, 179–189. [CrossRef] [PubMed]

93. Cordell, H.J.; Bentham, J.; Topf, A.; Zelenika, D.; Heath, S.; Mamasoula, C.; Cosgrove, C.; Blue, G.M.; Granados-Riveron, J.T.;
Setchfield, K.; et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility
locus for atrial septal defect at chromosome 4p16. Nat. Genet. 2013, 45, 822. [CrossRef] [PubMed]

94. Agopian, A.J.; Goldmuntz, E.; Hakonarson, H.; Sewda, A.; Taylor, D.; Mitchell, L.E.; Pediatric Cardiac Genomics Consortium.
Genome-wide association studies and meta-analyses for congenital heart defects. Circ. Cardiovasc. Genet. 2017, 10, e001449.
[CrossRef] [PubMed]

95. Weiner, D.J.; iPSYCH-Broad Autism Group; Wigdor, E.M.; Ripke, S.; Walters, R.K.; Kosmicki, J.A.; Grove, J.; Samocha, K.E.;
Goldstein, J.I.; Okbay, A.; et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to
create risk for autism spectrum disorders. Nat. Genet. 2017, 49, 978–985. [CrossRef] [PubMed]

96. Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al.
Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [CrossRef]

97. Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.-Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al.
Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell
2020, 180, 568–584. [CrossRef]

98. Timberlake, A.T.; Choi, J.; Zaidi, S.; Lu, Q.; Nelson-Williams, C.; Brooks, E.D.; Bilguvar, K.; Tikhonova, I.; Mane, S.; Yang, J.F.; et al.
Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 2016, 5, e20125.
[CrossRef]

99. Huang, K.; Wu, Y.; Shin, J.; Zheng, Y.; Siahpirani, A.F.; Lin, Y.; Ni, Z.; Chen, J.; You, J.; Keles, S.; et al. Transcriptome-wide
transmission disequilibrium analysis identifies novel risk genes for autism spectrum disorder. PLoS Genet. 2021, 17, e1009309.
[CrossRef]

100. Halldorsson, B.V.; Eggertsson, H.P.; Moore, K.H.S.; Hauswedell, H.; Eiriksson, O.; Ulfarsson, M.O.; Palsson, G.; Hardarson, M.T.;
Oddsson, A.; Jensson, B.O.; et al. The sequences of 150,119 genomes in the UK biobank. bioRxiv 2021. [CrossRef]

101. Hu, Y.; Lu, Q.; Powles, R.; Yao, X.; Yang, C.; Fang, F.; Xu, X.; Zhao, H. Leveraging functional annotations in genetic risk prediction
for human complex diseases. PLoS Comput. Biol. 2017, 13, e1005589. [CrossRef] [PubMed]

102. Ruan, Y.; Anne Feng, Y.-C.; Chen, C.-Y.; Lam, M.; Sawa, A.; Martin, A.R.; Qin, S.; Huang, H.; Ge, T. Improving polygenic
prediction in ancestrally diverse populations. medRxiv 2021. [CrossRef]

103. Privé, F.; Arbel, J.; Vilhjálmsson, B.J. LDpred2: Better, faster, stronger. Bioinformatics 2020, 36, 5424–5431. [CrossRef] [PubMed]
104. Zhao, Z.; Yi, Y.; Song, J.; Wu, Y.; Zhong, X.; Lin, Y.; Hohman, T.J.; Fletcher, J.; Lu, Q. PUMAS: Fine-tuning polygenic risk scores

with GWAS summary statistics. Genome Biol. 2021, 22, 257. [CrossRef]
105. Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.;

Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic
mutations. Nat. Genet. 2018, 50, 1219–1224. [CrossRef]

106. Mills, M.C.; Rahal, C. The GWAS diversity monitor tracks diversity by disease in real time. Nat. Genet. 2020, 52, 242–243.
[CrossRef]

107. Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical use of current polygenic risk scores may
exacerbate health disparities. Nat. Genet. 2019, 51, 584–591. [CrossRef]

http://doi.org/10.1126/science.aan6877
http://www.ncbi.nlm.nih.gov/pubmed/29371463
http://doi.org/10.1126/science.aax3710
http://doi.org/10.1101/2021.03.05.433935
http://doi.org/10.1073/pnas.2023184118
http://doi.org/10.1007/s00439-013-1331-2
http://doi.org/10.1038/nrg3747
http://doi.org/10.7554/eLife.58615
http://doi.org/10.1530/ey.16.14.15
http://doi.org/10.1038/s41380-018-0290-3
http://www.ncbi.nlm.nih.gov/pubmed/30531935
http://doi.org/10.1038/s41586-019-1879-7
http://www.ncbi.nlm.nih.gov/pubmed/31915397
http://doi.org/10.1038/ng.2637
http://www.ncbi.nlm.nih.gov/pubmed/23708191
http://doi.org/10.1161/CIRCGENETICS.116.001449
http://www.ncbi.nlm.nih.gov/pubmed/28468790
http://doi.org/10.1038/ng.3863
http://www.ncbi.nlm.nih.gov/pubmed/28504703
http://doi.org/10.1038/s41588-019-0344-8
http://doi.org/10.1016/j.cell.2019.12.036
http://doi.org/10.7554/eLife.20125
http://doi.org/10.1371/journal.pgen.1009309
http://doi.org/10.1101/2021.11.16.468246
http://doi.org/10.1371/journal.pcbi.1005589
http://www.ncbi.nlm.nih.gov/pubmed/28594818
http://doi.org/10.1101/2020.12.27.20248738
http://doi.org/10.1093/bioinformatics/btaa1029
http://www.ncbi.nlm.nih.gov/pubmed/33326037
http://doi.org/10.1186/s13059-021-02479-9
http://doi.org/10.1038/s41588-018-0183-z
http://doi.org/10.1038/s41588-020-0580-y
http://doi.org/10.1038/s41588-019-0379-x


J. Pers. Med. 2022, 12, 175 20 of 21

108. Mostafavi, H.; Harpak, A.; Agarwal, I.; Conley, D.; Pritchard, J.K.; Przeworski, M. Variable prediction accuracy of polygenic
scores within an ancestry group. eLife 2020, 9, e48376. [CrossRef]

109. Friedmann, T. A brief history of gene therapy. Nat. Genet. 1992, 2, 93–98. [CrossRef]
110. Rogers, S.; Lowenthal, A.; Terheggen, H.G.; Columbo, J.P. Induction of arginase activity with the Shope papilloma virus in tissue

culture cells from an argininemic patient. J. Exp. Med. 1973, 137, 1091–1096. [CrossRef]
111. Tabernero, J.; Shapiro, G.I.; Lorusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.;

Alsina, M.; et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver
involvement. Cancer Discov. 2013, 3, 406–417. [CrossRef] [PubMed]

112. Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of
human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther. 2020, 5, 1–23. [CrossRef] [PubMed]

113. Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug
Discov. 2012, 11, 191–200. [CrossRef] [PubMed]

114. Spreafico, R.; Soriaga, L.B.; Grosse, J.; Virgin, H.W.; Telenti, A. Advances in Genomics for Drug Development. Genes 2020, 11, 942.
[CrossRef] [PubMed]

115. Aschenbrenner, D.S. Two New Drugs for Sickle Cell Disease. Am. J. Nurs. 2020, 120, 24. [CrossRef]
116. Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.;

Gordeuk, V.R.; et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 429–439.
[CrossRef]

117. Vichinsky, E.; Hoppe, C.C.; Ataga, K.I.; Ware, R.E.; Nduba, V.; El-Beshlawy, A.; Hassab, H.; Achebe, M.M.; Al Kindi, S.;
Brown, R.C.; et al. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. N. Engl. J. Med. 2019, 381, 509–519. [CrossRef]

118. Sebastiani, P.; Solovieff, N.; Hartley, S.W.; Milton, J.N.; Riva, A.; Dworkis, D.A.; Melista, E.; Klings, E.; Garrett, M.E.;
Telen, M.J.; et al. Genetic modifiers of the severity of sickle cell anemia identified through a genome-wide association study. Am.
J. Hematol. 2010, 85, 29–35. [CrossRef]

119. Esrick, E.B.; Lehmann, L.E.; Biffi, A.; Achebe, M.; Brendel, C.; Ciuculescu, M.F.; Daley, H.; MacKinnon, B.; Morris, E.;
Federico, A.; et al. Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease. N. Engl. J. Med. 2021, 384,
205–215. [CrossRef]

120. Cavazzana, M.; Payen, E.; Negre, O.; Wang, G.; Hehir, K.; Fusil, F.; Down, J.; Denaro, M.; Brady, T.; Westerman, K.; et al.
Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 2010, 467, 318–322.
[CrossRef]

121. Stoica, L.; Sena-Esteves, M. Adeno Associated Viral Vector Delivered RNAi for Gene Therapy of SOD1 Amyotrophic Lateral
Sclerosis. Front. Mol. Neurosci. 2016, 9, 56. [CrossRef] [PubMed]

122. Shibata, S.B.; Ranum, P.T.; Moteki, H.; Pan, B.; Goodwin, A.T.; Goodman, S.S.; Abbas, P.J.; Holt, J.R.; Smith, R.J.; Shibata, S.B.; et al.
RNA Interference Prevents Autosomal-Dominant Hearing Loss. Am. J. Hum. Genet. 2016, 98, 1101–1113. [CrossRef] [PubMed]

123. Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.;
Raj, D.; et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 2014, 371, 1994–2004.
[CrossRef] [PubMed]

124. Batty, P.; Lillicrap, D. Hemophilia Gene Therapy: Approaching the First Licensed Product. Hemasphere 2021, 5, e540. [CrossRef]
[PubMed]

125. Hauswirth, W.; Aleman, T.S.; Kaushal, S.; Cideciyan, A.V.; Schwartz, S.B.; Wang, L.; Conlon, T.J.; Boye, S.L.; Flotte, T.R.;
Byrne, B.J.; et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-
associated virus gene vector: Short-term results of a phase I trial. Hum. Gene Ther. 2008, 19, 979–990. [CrossRef]

126. Maguire, A.M.; High, K.A.; Auricchio, A.; Wright, J.F.; Pierce, E.A.; Testa, F.; Mingozzi, F.; Bennicelli, J.L.; Ying, G.-S.; Rossi, S.; et al.
Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: A phase 1 dose-escalation trial. Lancet 2009, 374,
1597–1605. [CrossRef]

127. Bainbridge, J.W.; Mehat, M.S.; Sundaram, V.; Robbie, S.J.; Barker, S.E.; Ripamonti, C.; Georgiadis, A.; Mowat, F.; Beattie, S.G.;
Gardner, P.; et al. Long-term effect of gene therapy on Leber’s congenital amaurosis. N. Engl. J. Med. 2015, 372, 1887–1897.
[CrossRef]

128. Wright, A.F. Long-term effects of retinal gene therapy in childhood blindness. N. Engl. J. Med. 2015, 372, 1954–1955. [CrossRef]
129. Bennett, J.; Wellman, J.; Marshall, K.A.; McCague, S.; Ashtari, M.; DiStefano-Pappas, J.; Elci, O.U.; Chung, D.C.; Sun, J.;

Wright, J.F.; et al. Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with
childhood-onset blindness caused by RPE65 mutations: A follow-on phase 1 trial. Lancet 2016, 388, 661–672. [CrossRef]

130. Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.;
Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722.
[CrossRef]

131. Griesenbach, U.; Pytel, K.M.; Alton, E.W. Cystic Fibrosis Gene Therapy in the UK and Elsewhere. Hum. Gene Ther. 2015, 26,
266–275. [CrossRef] [PubMed]

132. U.S. Food and Drug Administration. Approved Cellular and Gene Therapy Products. Available online: https://www.fda.
gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (accessed on 26
October 2021).

http://doi.org/10.7554/eLife.48376
http://doi.org/10.1038/ng1092-93
http://doi.org/10.1084/jem.137.4.1091
http://doi.org/10.1158/2159-8290.CD-12-0429
http://www.ncbi.nlm.nih.gov/pubmed/23358650
http://doi.org/10.1038/s41392-019-0089-y
http://www.ncbi.nlm.nih.gov/pubmed/32296011
http://doi.org/10.1038/nrd3681
http://www.ncbi.nlm.nih.gov/pubmed/22378269
http://doi.org/10.3390/genes11080942
http://www.ncbi.nlm.nih.gov/pubmed/32824125
http://doi.org/10.1097/01.NAJ.0000656312.23070.38
http://doi.org/10.1056/NEJMoa1611770
http://doi.org/10.1056/NEJMoa1903212
http://doi.org/10.1002/ajh.21572
http://doi.org/10.1056/NEJMoa2029392
http://doi.org/10.1038/nature09328
http://doi.org/10.3389/fnmol.2016.00056
http://www.ncbi.nlm.nih.gov/pubmed/27531973
http://doi.org/10.1016/j.ajhg.2016.03.028
http://www.ncbi.nlm.nih.gov/pubmed/27236922
http://doi.org/10.1056/NEJMoa1407309
http://www.ncbi.nlm.nih.gov/pubmed/25409372
http://doi.org/10.1097/HS9.0000000000000540
http://www.ncbi.nlm.nih.gov/pubmed/33604517
http://doi.org/10.1089/hum.2008.107
http://doi.org/10.1016/S0140-6736(09)61836-5
http://doi.org/10.1056/NEJMoa1414221
http://doi.org/10.1056/NEJMe1503419
http://doi.org/10.1016/S0140-6736(16)30371-3
http://doi.org/10.1056/NEJMoa1706198
http://doi.org/10.1089/hum.2015.027
http://www.ncbi.nlm.nih.gov/pubmed/25838137
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products


J. Pers. Med. 2022, 12, 175 21 of 21

133. U.S. Food and Drug Administration. ABECMA (Idecabtagene Vicleucel). Available online: https://www.fda.gov/vaccines-
blood-biologics/abecma-idecabtagene-vicleucel (accessed on 21 April 2021).

134. U.S. Food and Drug Administration. BREYANZI (Lisocabtagene Maraleucel). Available online: https://www.fda.gov/vaccines-
blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel (accessed on 4 March 2021).

135. U.S. Food and Drug Administration. IMLYGIC. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-
therapy-products/imlygic (accessed on 9 December 2021).

136. U.S. Food and Drug Administration. KYMRIAH (Tisagenlecleucel). Available online: https://www.fda.gov/vaccines-blood-
biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel (accessed on 14 June 2021).

137. U.S. Food and Drug Administration. LUXTURNA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-
gene-therapy-products/luxturna (accessed on 26 July 2018).

138. U.S. Food and Drug Administration. PROVENGE (sipuleucel-T). Available online: https://www.fda.gov/vaccines-blood-
biologics/cellular-gene-therapy-products/provenge-sipuleucel-t (accessed on 28 May 2019).

139. U.S. Food and Drug Administration. TECARTUS (Brexucabtagene Autoleucel). Available online: https://www.fda.gov/vaccines-
blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel (accessed on 17 November 2021).

140. U.S. Food and Drug Administration. YESCARTA (Axicabtagene Ciloleucel). Available online: https://www.fda.gov/vaccines-
blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel (accessed on 11 May 2021).

141. U.S. Food and Drug Administration. ZOLGENSMA. Available online: https://www.fda.gov/vaccines-blood-biologics/
zolgensma (accessed on 26 October 2021).

142. Roden, D.M.; Wilke, R.A.; Kroemer, H.K.; Stein, C.M. Pharmacogenomics: The genetics of variable drug responses. Circulation
2011, 123, 1661–1670. [CrossRef] [PubMed]

143. Schärfe, C.P.I.; Tremmel, R.; Schwab, M.; Kohlbacher, O.; Marks, D.S. Genetic variation in human drug-related genes. Genome Med.
2017, 9, 117. [CrossRef] [PubMed]

144. Aneesh, T.P.; Sekhar, M.S.; Jose, A.; Chandran, L.; Zachariaha, S.M. Pharmacogenomics: The right drug to the right person. J. Clin.
Med. Res. 2009, 1, 191–194. [CrossRef]

145. Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [CrossRef] [PubMed]
146. Cobain, E.F.; Wu, Y.-M.; Vats, P.; Chugh, R.; Worden, F.; Smith, D.C.; Schuetze, S.M.; Zalupski, M.M.; Sahai, V.; Alva, A.; et al.

Assessment of Clinical Benefit of Integrative Genomic Profiling in Advanced Solid Tumors. JAMA Oncol. 2021, 7, 525–533.
[CrossRef]

147. Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [CrossRef]
148. Köhler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.;

Campbell, J.; et al. The Human Phenotype Ontology project: Linking molecular biology and disease through phenotype data.
Nucleic Acids Res. 2014, 42, D966–D974. [CrossRef]

149. Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;
Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [CrossRef]

150. Hwang, T.; Atluri, G.; Xie, M.; Dey, S.; Hong, C.; Kumar, V.; Kuang, R. Co-clustering phenome-genome for phenotype classification
and disease gene discovery. Nucleic Acids Res. 2012, 40, e146. [CrossRef]

151. Sánchez-Rico, M.; Alvarado, J.M. A Machine Learning Approach for Studying the Comorbidities of Complex Diagnoses. Behav.
Sci. 2019, 9, 122. [CrossRef] [PubMed]

152. Narita, A.; Nagai, M.; Mizuno, S.; Ogishima, S.; Tamiya, G.; Ueki, M.; Sakurai, R.; Makino, S.; Obara, T.; Ishikuro, M.; et al.
Clustering by phenotype and genome-wide association study in autism. Transl. Psychiatry 2020, 10, 290. [CrossRef] [PubMed]

153. Westbury, S.K.; on behalf of the BRIDGE-BPD Consortium; Turro, E.; Greene, D.; Lentaigne, C.; Kelly, A.M.; Bariana, T.K.;
Simeoni, I.; Pillois, X.; Attwood, A.; et al. Human phenotype ontology annotation and cluster analysis to unravel genetic defects
in 707 cases with unexplained bleeding and platelet disorders. Genome Med. 2015, 7, 36. [CrossRef] [PubMed]

154. Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [CrossRef]

https://www.fda.gov/vaccines-blood-biologics/abecma-idecabtagene-vicleucel
https://www.fda.gov/vaccines-blood-biologics/abecma-idecabtagene-vicleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/imlygic
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/luxturna
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/luxturna
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/provenge-sipuleucel-t
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/provenge-sipuleucel-t
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel
https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel
https://www.fda.gov/vaccines-blood-biologics/zolgensma
https://www.fda.gov/vaccines-blood-biologics/zolgensma
http://doi.org/10.1161/CIRCULATIONAHA.109.914820
http://www.ncbi.nlm.nih.gov/pubmed/21502584
http://doi.org/10.1186/s13073-017-0502-5
http://www.ncbi.nlm.nih.gov/pubmed/29273096
http://doi.org/10.4021/jocmr2009.08.1255
http://doi.org/10.1186/s13059-017-1215-1
http://www.ncbi.nlm.nih.gov/pubmed/28476144
http://doi.org/10.1001/jamaoncol.2020.7987
http://doi.org/10.1038/nature15817
http://doi.org/10.1093/nar/gkt1026
http://doi.org/10.1093/nar/gkaa1043
http://doi.org/10.1093/nar/gks615
http://doi.org/10.3390/bs9120122
http://www.ncbi.nlm.nih.gov/pubmed/31766665
http://doi.org/10.1038/s41398-020-00951-x
http://www.ncbi.nlm.nih.gov/pubmed/32807774
http://doi.org/10.1186/s13073-015-0151-5
http://www.ncbi.nlm.nih.gov/pubmed/25949529
http://doi.org/10.1038/nrg.2016.86

	Computational genomics in the era of precision medicine: Applications to variant analysis and gene therapy
	Recommended Citation
	Authors

	Introduction 
	Rare Variant Analysis in Unrelated Individuals 
	Rare Variant Analysis for Family-Based Studies 
	De Novo Variant 
	Autosomal Recessive Variant Analysis 
	Joint Analysis of Transmitted Variants and DNVs 

	X-Linked Variant Analysis 
	Digenic Variant Analysis 
	Case-Only Approach 
	Machine Learning 

	Common Variant Association Analysis 
	Disease Risk Prediction 
	Gene Therapy 
	Conclusions 
	References

