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Summary
BackgroundMultiple sclerosis (MS) has a complex genetic, immune and metabolic pathophysiology. Recent studies
implicated the gut microbiome in MS pathogenesis. However, interactions between the microbiome and host
immune system, metabolism and diet have not been studied over time in this disorder.

Methods We performed a six-month longitudinal multi-omics study of 49 participants (24 untreated relapse remit-
ting MS patients and 25 age, sex, race matched healthy control individuals. Gut microbiome composition and func-
tion were characterized using 16S and metagenomic shotgun sequencing. Flow cytometry was used to characterize
blood immune cell populations and cytokine profiles. Circulating metabolites were profiled by untargeted UPLC-
MS. A four-day food diary was recorded to capture the habitual dietary pattern of study participants.

Findings Together with changes in blood immune cells, metagenomic analysis identified a number of gut micro-
biota decreased in MS patients compared to healthy controls, and microbiota positively or negatively correlated with
degree of disability in MS patients. MS patients demonstrated perturbations of their blood metabolome, such as lino-
leate metabolic pathway, fatty acid biosynthesis, chalcone, dihydrochalcone, 4-nitrocatechol and methionine. Global
correlations between multi-omics demonstrated a disrupted immune-microbiome relationship and a positive blood
metabolome-microbiome correlation in MS. Specific feature association analysis identified a potential correlation
network linking meat servings with decreased gut microbe B. thetaiotaomicron, increased Th17 cell and greater abun-
dance of meat-associated blood metabolites. The microbiome and metabolome profiles remained stable over six
months in MS and control individuals.

Interpretation Our study identified multi-system alterations in gut microbiota, immune and blood metabolome of
MS patients at global and individual feature level. Multi-OMICS data integration deciphered a potential important
biological network that links meat intakes with increased meat-associated blood metabolite, decreased polysacchar-
ides digesting bacteria, and increased circulating proinflammatory marker.

Abbreviations: MS, Multiple Sclerosis; RRMS, Relapsing-remitting MS; DMT, Disease modifying therapy; PCA, Principal compo-

nent analysis; CNS, central nervous system; mWGS, metagenomic shotgun sequencing; FDR, false discovery rate; EDSS, expanded

disability status scale; KOs, KEGG ortholog; GC�MS, gas chromatography/mass spectrometry; SAM, S-adenosyl-L-methionine
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Research in context

Evidence before this study

Previous studies have focused on single aspects of the
complex MS pathophysiology. Interactions among the
gut microbiome, immune system, metabolism and diet
have never been investigated in patients with MS, not
to mention the longitudinal stability of these profiles.

Added value of this study

Leveraging advanced multi-omics technologies, our
study revealed distinct interaction patterns between
immune, metabolic, and gut microbiome domains in
people with MS compared to healthy controls. We spe-
cifically identified a correlation network linking meat
servings with decreased gut microbe B. thetaiotaomi-
cron, increased Th17 cell and greater abundance of
meat-associated blood metabolites in MS patients. We
demonstrated that these OMICS profiles were stable
over a six-month period.

Implications of all the available evidence

Detection of multi-system alterations and interaction
patterns in MS patients suggests that an integrated
approach is needed for better MS diagnosis and treat-
ment. Our study also underscores the power of using
multi-OMICS to dissect the pathophysiology of this and
other complex human diseases.

Introduction
Multiple sclerosis (MS) is a chronic, autoimmune dis-
ease characterized by central nervous system (CNS)
inflammation, demyelination, and axonal loss. MS
affects 2¢5 million people worldwide, and imposes
major burdens on individuals and society.1 The

aetiology of MS remains elusive, but has been postu-
lated to result from host genetics and environmental
factors.2 Dysregulation of immune responses and
abnormal metabolism in MS patients suggest that mul-
tiple systems are involved in its pathophysiology.3�6

Gut bacterial communities modulate extra-intestinal
immune and metabolic responses in experimental auto-
immune encephalomyelitis (EAE),7 a commonly used
mouse model of MS. Recent human studies have shown
slight to moderate differences at the whole gut micro-
biome community level between MS patients and
healthy controls.7�11 Intriguingly, specific microbes
from MS patients or controls can either adversely or
beneficially influence EAE development.12�15 However,
confounding factors such as demographics and diet that
might influence gut microbial community have not
been well addressed in previous microbiome studies in
MS patients; their cross-sectional design is another
common limitation. Most importantly, interactions
between the gut microbiome, host immune responses
and metabolism, and diet have not been evaluated in an
integrated manner over time in MS patients. Thus, a
holistic and dynamic view of host-microbiome interac-
tions is critically needed, given the multi-factorial nature
of MS pathophysiology.

We recently demonstrated the significance of applying
multi-omics in studying complex diseases.16 Here, we pres-
ent a longitudinal deep multi-omics profiling of host
immune status, metabolome, gut microbiome, and dietary
habits in MS patients and healthy controls. This will gener-
ate novel, comprehensive, and dynamic insights of host-
microbiome interactions in this complex disease.

Methods

Ethics
The study was approved by the Human Research Pro-
tection Office at Washington University in St. Louis
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School of Medicine (WUSM) (approval number:
201,502,105). All patients gave informed consent to par-
ticipation.

Study participants
This is a matched case and control longitudinal study.
MS patients were recruited at the John L. Trotter MS
Center of WUSM from 2015�2018. Inclusion criteria
for MS patients were: (1) diagnosis of MS using the
2010 revision of the McDonald criteria;17 (2) no DMT or
steroid treatments in the past 3 months; (3) ages 18 to
50 years; and (4) not in clinical relapse at study enrol-
ment. Exclusion criteria were: (1) coexistence of other
chronic inflammatory (e.g., asthma, chronic hepatitis,
inflammatory bowel disease, celiac disease, etc.) and
autoimmune (e.g., rheumatoid arthritis, SLE, type I dia-
betes, etc.), or metabolic (e.g., type II diabetes, familial
hypercholesterolemia, etc.) diseases; (2) antibiotics or
steroid therapy in the past 3 months; (3) history of
immunosuppressive or chemotherapeutic treatment;
(4) history of chronic infectious disease (e.g., TBC, HIV,
HBV, HCV, etc.); (5) neoplastic disease not in complete
remission, and (6) pregnancy. Age, sex, BMI and eth-
nicity-matched healthy controls were enrolled using the
same exclusion criteria. Table 1 details the demographic
and clinical characteristics for all participants at enrol-
ment.

MS and healthy control participants were studied
again six months after baseline. No relapse was reported
in any of the MS patients during the study. Although
DMTs commencement was strongly recommended to
the 24 MS patients by their clinicians, only 8 started
DMT treatment during the six-month study period. The
DMTs started were glatiramer acetate and fingolimod

(n=1 each), interferon-b1a (n=3), and dimethyl fumarate
(n=3).

Sample collection
Stool and blood of all participants were collected at the
time of enrolment and six months later. Collection of
stool and blood samples were done concomitantly (less
than 24 h difference). Stools were self-collected and
placed on frozen gel packs and shipped overnight to the
research laboratory. Upon receipt, stools were immedi-
ately stored at -80 °C until further processing. Stools
from baseline and six months were processed at the
same time for DNA extraction and microbiome
sequencing to minimize batch effects among the speci-
mens.

Blood was collected in heparinized tubes, insulated,
and shipped at room temperature overnight to Ohio
State University for immunophenotyping. Peripheral
blood mononuclear cells (PBMCs) were isolated imme-
diately on arrival and analyzed by flow cytometry.
Serum samples were stored frozen at -80 °C and sent
to University of Massachusetts for metabolomics.

Stool DNA extraction and microbiome sequencing
16S rRNA gene sequencing permits deep microbiota
profiling, especially of low abundance taxa. Metage-
nomic whole genome shotgun sequencing (mWGS)
classifies to species levels but may not enumerate low
abundance bacteria. We applied these complementary
platforms to sequencing the gut microbiome.

Stool DNA extraction and sequencing were per-
formed as we have done previously.16 Briefly, stool
DNAs were extracted using the MOBIO PowerSoil
DNA Extraction kit. For 16S rRNA gene sequencing,

Healthy control RRMS P value

Number 25 24

Sex M:F 3:22 3:21 P=0¢5
Age, Y, mean§SD 38¢9§7¢3 40¢2§8¢76 P=0¢5
BMI, kg/m2 26¢9 (6¢3) 27¢3 (6¢7) P=0¢8
Caucasian n (%n) 20 (80%) 23 (95¢83%) P=0¢1
Age at first symptoms Y, mean§SD NA 32¢9§5¢9 NA

Age at MS diagnosis Y, mean§SD NA 33¢9§5¢9 NA

OCB+ n (%n) NA 10 (45¢5%) NA

EDSSmedian (min-max) NA 2¢5 (0¢0�4¢5) NA

Tobacco use# 0 9 (37¢5%) P<0¢0005
Started DMTs during the study n (%n) NA 8 (33¢3%) NA

Probiotic n (%n) 3 (12%) 4 (16¢6%) P=0¢7
Supplements n (%n) 9 (36%) 9 (37¢5%) P=0¢9

Table 1: Demographics and clinical characteristics of MS patients and healthy controls.
Data are provided as n (%), mean (SD) or range; # including cigars, pipes or electronic cigarettes. BMI: body mass index; EDSS: expanded disability status scale;

OCB: oligoclonal bands. DMTs: disease modifying therapies; SD=standard deviation.

Differences between groups were compared using Pearson chi-square test for categorical data and the t-test or non-parametric Mann-Whitney test as appropri-

ate for continuous data.
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hyper-variable regions V1�V3 of 16S gene were ampli-
fied using primers 27F and 534R (27F: 50-AGAGTTT-
GATCCTGGCTCAG-30 and 534R: 50-
ATTACCGCGGCTGCTGG-30). 16S libraries were pre-
pared and sequenced on the Illumina MiSeq sequenc-
ing platform using a V3 2 £ 300 bp paired end
sequencing protocol with a target read depth of
10,000 reads/sample. Illumina’s software handles the
initial processing of all the raw sequencing data. One
mismatch in primer and zero mismatch in barcodes
were applied to sample deconvolution. Reads were fur-
ther processed by removing sequences with low quality
(average qual <35) and ambiguous bases (Ns). Chimeric
amplicons were removed using UChime (v4¢2¢40), and
amplicon sequences were clustered and operational tax-
onomic units (OTU) picked by Usearch against SIL-
VA_132_SSURef_Nr99 database at 97% threshold.
Final taxonomic assignment was conducted using RDP-
classifier (v2¢11) with 0¢8 confidence value as cut-off.
Potential contaminant taxa present in DNA extraction
control and PCR controls were removed for downstream
analysis from the sequenced samples. mWGS libraries
were prepared using the Nextera XT DNA Library Prep-
aration kit (Illumina), according to the manufacturer’s
standard protocol. Pooled libraries were sequenced on
the Illumina HiSeq2500 instrument using a 2 £ 150 bp
paired end sequencing protocol, targeting 3 G bp/sam-
ple. We demultiplexed the raw reads, and further proc-
essed them by (a) removing human reads using NCBI’s
BMTagger (v3¢101) (ftp://ftp.ncbi.nlm.nih.gov/pub/agar
wala/bmtagger); (b) removing duplicated reads using
GATK-Picard 4¢1¢0 (MarkDuplicates); (c) trimming low-
quality bases and low-complexity screening using PRIN-
SEQ (v0¢20¢4). We used MetaPhlAn2 to classify species
and HUMAnN2 for microbiome functional potential
inference (gene ortholog or KEGG ortholog and meta-
bolic pathways),18 and Lefse (v1¢0) to determine the sta-
tistical difference of KOs or metabolic potentials
between MS patients and controls.19 We performed
sequencing and processed data at The Jackson Labora-
tory for Genomic Medicine.

Blood sample preparation and processing for non-
targeted metabolome
Serum samples were vortexed with 80% chilled metha-
nol aqueous in the ratio of 1:60 (v/v) to precipitate pro-
tein, following by centrifugation (14,000 g, 4 °C,
10 min). The supernatants were collected and dried
under vacuum. The dried residues were reconstituted
with 50% methanol aqueous and centrifuged (14,000 g,
4 °C, 15 min). We performed ultraperformance liquid
chromatography-mass spectrometry (UPLC-MS) at the
University of Massachusetts Amherst mass spectrome-
try facility to analyse serum for untargeted metabolo-
mics. Equal volume of each serum sample was pooled
to prepare the quality control (QC) sample. Five

identical QC sample runs were conducted prior to run-
ning test samples, and one QC sample run was per-
formed for every eight sample runs throughout the
experiment. Acquity UPLC HSS T3 column
(2¢1 mm £ 100 mm, 1¢8 µm, Waters Co., MA, USA)
was used to obtain the chromatographic separation by
injecting 5 µL aliquots of each sample. The column was
maintained at 40 °C, and the flow rate was 0¢5 mL/min.
Solvent A was 95% water with 5% ACN and 0¢1% for-
mic acid and solvent B was 100% ACN with 0¢1% for-
mic acid. The gradient started at 2% of solvent B and
linearly increased to 95% of solvent B at 8 min; held at
95% of solvent B for 2 min. The column was equili-
brated at 2% of solvent B for 5 min before the next run.
MS was conducted using the Thermo Fisher Orbitrap-
Fusion in negative electrospray ionization mode at the
detection range of 120�1000 m/z with 60,000 full
width at half maximum resolution. The following condi-
tions were used for MS: spray voltage 3500 V, sheath
gas flow rate 15 (arbitrary units), auxiliary gas flow rate
6 (arbitrary units), sweep gas flow rate 3 (arbitrary
units), vaporizer temperature 275 °C, ion transfer tube
temperature 325 °C.20

Short-chain fatty acids determination by GC
chromatography
SCFAs in stool samples were extracted by rigorous vor-
tex with 0¢05% phosphoric acid at the ratio of 1:15 (w/v),
followed by centrifugation. Supernatants were mixed
with ethyl acetate at the ratio of 1:1 (v/v), the SCFAs
were transferred to ethyl acetate, and the supernatants
were obtained after centrifugation. SCFAs were mea-
sured by gas chromatography with a flame ionization
detector (Schimadzu GC-QP2010 SE, Tokyo, Japan).
Acetate, propionate, butyrate, isobutyrate, valerate,
isovalerate were used as standards for the identifica-
tion, and 2-ethylbutyrate was used as the internal
standard.

Blood sample preparation for immune profiling
PBMCs were isolated on a Ficoll gradient, washed in
PBS, and resuspended in RPMI1640 medium (Corn-
ing) containing 5% heat-inactivated-human serum
(Sigma-Aldrich), 1% HEPES containing 1% L- gluta-
mine, and 1% penicillin/streptomycin. We used seven
flow cytometry antibody panels (from A to G) to analyze
lymphocyte and monocyte populations. Panel A
included: V450-CD3 (UCHT1), PECy7-CD19 (SJ25C1),
FITC-CD56 (NCAM16¢2), and APC-H7-CD27 (M-T271).
Panel B included: V450-CD3 (UCHT1), V500-CD4
(L200), PECy7-CD8 (RPA-T8), APC-CD45RA (HI100),
and APC-H7-CD27 (M-T271). Panel C included: V450-
CD3 (UCHT1), V500-CD4 (L200), FITC-CD25 (M-
A251), and PE-FOXP3 (PCH101). Panel D included:
V450-CD3 (UCHT1), V500-CD4 (L200), PECy7-CD8
(RPA-T8), APC-CD45RA (HI100), FITC-Tbet (4B10),
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PE- IFNg (4S.B3), PerCP-Cy5¢5-GMCSF (BVD2�21C11),
and APC-Cy7-IL17 (BL168). Panel E included: V450-
CD3 (UCHT1), PECy7-CD19 (SJ25C1), PerCP-Cy5¢5-
CD5 (L17F12), PE-CD1d (42¢1), APC-H7-CD27 (M-T271),
FITC-IL10 (BT-10), and APC-IL35/27(EB13). Panel F
included: V450-CD3 (UCHT1), V450-CD19 (SJ25C1),
PE-HLA-DR (G46�6), PE-Cy7-CD11c (B-ly6), PerCP-
CD14 (M’P9), APC-CD123 (7G3), and FITC-BDCA2
(201A). Panel G included: V450-CD3 (UCHT1), V450-
CD19 (SJ25C1), PE-HLA-DR (G46�6), PE-Cy7-CD11c
(B-ly-6), PerCP-CD14 (M’P9), APC-CD16 (B73¢1), and
APC-H7-CD80 (L307¢4). For panel D, the PBMCs were
stimulated with 50 ng/ml of PMA (Sigma
cat#16,561�29�8) and 1 mg/ml of ionomycin (Sigma
cat#I0634), and treated with 0¢2 ul of Golgi plug (BD
cat#555,029) for 4 h before staining. For Panel E, we
stimulated PBMCs with 50 ng/ml of PMA (Sigma
cat#16,561�29�8), 1 mg/ml of ionomycin (Sigma
cat#I0634), and CpG for 4 h before staining. We per-
formed staining as previously described.21 Briefly,
1 £ 106 cells were washed and resuspended in cold
PBS/1% BSA, incubated with FcR Blocking Reagent
(Miltenyi) for 10 min, and incubated with antibody cock-
tails for 30 min. Samples were washed and fixed with
either PFA (0¢5%), Cytofix/Cytoperm Solution Kit (BD
Biosciences), or Foxp3 Transcription Factor Staining Set
(eBioscience). Intracellular molecules were stained in
their appropriate permeabilization wash buffers for
30 min (cytokines) or 45 min (Foxp3). After a final wash
with PBS/1% BSA, we acquired and analyzed cytometric
data using BD FACSCanto II, FACSDiva, and FlowJo
Software v.10¢7 (Becton, Dickinson and Company,
2019). Table S2 and Figure S5 describe the gating strat-
egy for each panel, and the percentage of each cell sub-
set population within the parent gate.

Food diary and conversion to food serving
A four consecutive days food diary was self-recorded to
provide qualitative dietary information before the stool
sample collection at baseline and at six months. The
four days included two weekend days and two week-
days.22�24 The participants were asked to continue their
usual eating habits before the initial stool collection and
for the next six months.

We analyzed the food diaries using the Nutrition
Coordinating Center (NCC) Food Group Serving Count
System which estimates intake of food groups (e.g.,
daily servings of sugar sweetened beverages).25 This sys-
tem assigns foods in the Nutrition Data System for
Research (NDSR) database (2017 version) to food
groups that fit within nine major categories. Eighteen
food groups including average daily servings of fruit,
vegetable, whole grain, refined grain, meat, poultry, fish
and shellfish, cold cuts and sausage, eggs, nuts and
seeds, butter and animal fats, plain and flavored cow’s
milk, dairy cheese, yogurt live active cultures, vegetable

oils, salad dressings, beer and liquor and wine, sugar
sweetened soft drinks (soda, punch, tea), and their daily
serving sizes were used for our study. Serving sizes are
assigned to each NDSR food based on the 2000 Dietary
Guidelines for Americans recommendations when
available.26 For foods not included in recommendations
(e.g., cookies, fruit drinks), United States Food and
Drug Administration (FDA) serving sizes are used.

Statistical analysis of the microbiome data
We performed both formal and exploratory statistical
testing of the microbiome data. To visualize differences
in overall microbial community structure, principal
component analysis (PCA) was conducted after log-ratio
transformation of the microbiome data and scaling
using ‘Compositions’ package from R. To determine if
the overall microbiome differs significantly between MS
patients and controls, we employed permutational mul-
tivariate analysis of variance (PERMANOVA) using the
‘vegan’ package, after which we tested the homogeneity
of dispersion among groups after controlling for tobacco
use, given tobacco use is statistically different between
MS and controls. To identify specific microbes (>0¢1%
relative abundance) that statistically differ between MS
patients and controls, we performed differential analysis
based on the negative binomial distribution using
DESeq2 software packages.27 All P values were two
sided. Adjusted P values with a False Discovery Rate
(FDR) of <0¢05 was considered as statistically signifi-
cant. The FDR statistical adjustment of P values and
their cut-offs were applied to other omics data analysis
involving multiple comparisons unless otherwise noted.
Because of potential high false positive rate of DESeq,28

we further inspected the results by plotting raw and rel-
ative abundance data. We removed results that are low
in relative abundance (<0¢1%) from final reporting. As
a sensitivity analysis, DESeq was also run after exclud-
ing these low abundance taxa.

We conducted PERMANOVA with Bray-Curtis dis-
tance to quantify the microbiome variance explained by
individual factors, as described previously.29 We tested
age, BMI, smoking, family history of autoimmune dis-
eases, probiotics intake and diagnosis (MS vs controls)
individually in the PERMANOVA model. Note the total
variance explained by each variable was calculated inde-
pendent of other variables and should therefore be con-
sidered the total variance explainable by that variable.

Statistical analysis of immune profile
We present immune cell populations from the flow
cytometry as proportions and scaled for PCA analysis to
estimate the overall similarity of the immune profile
among all participants. Wilcoxon Rank Sum Test was
used to identify significantly different immune cell pop-
ulations between MS and controls. P values were
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further adjusted by FDR approach. All p-values were
two-tailed.

Statistical analysis of blood metabolome
The ion data set was subjected to peak detection, nonlin-
ear alignment, and integration by XCMS (https://
xcmsonline.scripps.edu). The data set in the mzXML
data matrix converted by XCMS was normalized by sum
of total of the observed peaks. The peaks with RSD >

20% in QC samples was excluded to guarantee the qual-
ity of data set, following by the univariate and multivari-
ate analysis to differentiate the unbiased metabolites.
We subjected resulting m/z values to the “MS peaks to
pathways” analysis in Metaboanalyst (https://www.
metaboanalyst.ca/) to analyze pathways and identify
metabolites with a maximum error of 5 ppm using
KEGG and Metlin databases. Welch’s t-test was used to
determine significant changes between the control and
MS groups. Previous studies supported that parametric
and non-parametric univariate tests result in very simi-
lar results for metabolome data.30 P values were further
adjusted by FDR approach. All p-values were two-tailed.

Mantel correlation and multi-OMIC feature-feature
correlation
We quantified covariation between multi-omics using
Mantel tests (Pearson correlation between distances of
two matrices). A pair-wised inter-participant variation/
distance matrix was first computed for each OMIC data-
set, with Bray-Curtis dissimilarity for the microbiome
data and Euclidean distance for the immune profile,
blood metabolome and food intakes. Inter-participant
dissimilarity matrices were then compared using the
mantel function in the vegan package. Mantel correla-
tion analysis was also conducted in similar manner to
quantify longitudinal covariation for two given omics
data. The significance of the statistic is produced by per-
muting rows and columns of the first dissimilarity
matrix for 1000 times.

We performed feature-feature correlations within
and between omics datasets using Pearson correlation
with cor.test function in the stats package in R. Because
of potential for different interactions in MS patients and
controls, all correlations were performed separately for
the two groups, accounting for BMI and age. P values
were corrected based on FDR approach. FDR <0¢2 was
considered significant for correlations among features
from the microbiome, immune profile and food intakes
and FDR <0¢05 was considered significant for correla-
tions with features from the blood metabolome. To fur-
ther remove the false positive or negative correlations
that were driven by single values, we generated x-y scat-
ter plots all statistically significant correlations, and con-
firmed them by manual inspection. The resulting
correlations with absolute correlation coefficient >0¢7
were considered strong correlations and the network of

correlation was illustrated using Cytoscape. A hub in
the correlation network was defined as nodes with at
least 20 connections. All correlation results including
before and after FDR corrections and after manual
inspections are summarized in Table S4.

MS classification using machine learning models
We tested three machine learning models (random for-
est (RF), elastic net regularized linear regression (ENL),
and elastic net regularized support vector machine
(SVM)) to classify MS patients and controls. All three
models can be used to analyze high-dimensional data
(when the number of features is larger than the sample
size) and to generate measures of feature
importance.31�33 The models were trained by each indi-
vidual omics to determine the importance of a given
omics data in classification performance (Figure 3a, b,
c), or by the combination of all the omics to determine
whether it achieves a better classification performance
(Figure 3d). For the microbiome data, OTUs with 0
abundances were firstly replaced by a small value 1e-5.
Then the centred log-ratio transformation was applied,34

so that the transformed data obey the Euclidean geome-
try. The number of raw features could greatly exceed
the sample size and many of them are either redundant
or irrelevant in distinguishing MS patients and controls.
Hence, we reduced the size of the feature set before fit-
ting any machine learning model, by applying a statisti-
cal marginal screening procedure through multiple
hypothesis testing with false discovery rate control.35

Such a hybrid “marginal screening + machine learning”
approach facilitated the model training and consistently
improved the performance of the classifiers in our
study.

We randomly divided the data into a training set with
»80% samples to build a classifier and a testing set
with the remaining »20% of the samples to evaluate
the performance of the resulting classifier. Under each
setting, this random-splitting procedure were repeated
200 times in order to stably assess the out-of-sample
predictability of a classifier and its associated feature
importance. Specifically, in each random split, when
training the ENL and the SVM, we used Leave-one-out
Cross Validation (LOOCV) to tune their regularization
parameters.36 For RF, we set the maximum number of
features allowed to try in an individual tree as the square
root of the number of features, and the number of trees
as 30,000, a sufficiently large number. The feature
importance in the RF is measured by the Mean
Decrease Gini. After building a classifier using the
training samples, we used the testing samples to com-
pute its pairs of out-of-sample true positive rate (TPR)
and false positive rate (FPR), based on which we con-
structed the sample receiver operating characteristic
(ROC) curve and calculated the corresponding area
under the ROC curve (AUC) value. By aggregating these
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results from 200 random splits, we draw the average
ROC curve and computed the average AUC and its
90% confidence interval for each classifier. Missing
data were imputed based on group mean.

Justification for statistical approaches used in single
and multi-OMICS analysis
All the analysis were conducted using a complete case
analysis except for the multi-omics predictive modelling
analysis, in which multi-OMICS data were combined to
evaluate classification accuracy for MS and controls.
There was no missing in microbiome and metabolome
data. In the immune data, 36.0% of the subjects have
missing values. This is largely attributed by one
immune feature that has very low level of immune cells.
In the metadata, 14.0% of subjects have missing values.
In the nutrition data, 27 % of subjects have missing val-
ues. In the multi-omics predictive modeling analysis, as
much as 82.7% of subjects have at least one missing
value. Therefore, due to the already limited sample size,
it is not practical to run a complete case study. On the
other hand, the overall missing rate (total missing val-
ues among all value) of the multi-omics data is very low:
it is 4.6%. We thus chose the simple imputation
method of using group means (by MS/Control).

For our immune data analysis, some immune cell
populations are not normally distributed, thus we chose
a robust non-parametric Wilcoxon Rank Sum test for
two group comparisons. For metabolome data, because
of large variation of the data, log transformation is con-
ventionally encouraged and performed, followed by
Welch's t-test. Mantel correlations between two matrices
were based on continuous data derived from Euclidean
distance or Bray-Curtis dissimilarity and showed good
linear relationships as demonstrated by scatter plots.
Generally, if the scatter plot shows linear trend, instead
of other curvature trend, ex quadratic trend, the data sat-
isfies the linearity assumption. Due to the limited sam-
ple size, our general strategy is to use parametric
methods to gain more power when their underlying
assumptions are not violated, otherwise non-parametric
tests are adopted to ensure robustness.

Role of funding source
The funders had no role in the conceptualization, study
design, data collection, analysis, interpretation of data,
in writing the paper, or in the decision to submit the
paper for publication.

Results

Baseline characteristics of the study population
Twenty-four relapsing-remitting MS (RRMS) patients
and 25 unrelated healthy controls matched for age, gen-
der and other important clinical variables were enrolled

in this study. The majority of the participants are
females. At baseline, no MS patient was in active relapse
or had received any disease modifying therapies (DMTs)
in the prior three months. Mean disease duration at study
entry was 6¢4 (SD 1¢5) years. Table 1 summarizes the
characteristics of the participants at baseline. The MS
group used more tobacco (P<0¢0005, chi-square test),
but other characteristics of the control and MS groups
did not differ significantly. Stool and blood samples were
collected at entry (baseline) and six months later for gut
microbiome, blood metabolome and blood immune cell
analyses (Figure 1a). Participants collected four-day food
diaries to provide qualitative dietary information.

Overall gut microbiota profile and factors underlying
microbial variation in MS patients and controls
We first compared gut microbiome profiles at baseline
in MS and control groups using 16S rRNA gene
sequencing. Principal component analysis (PCA) plot
(Figure 1b) demonstrated no clustering that distin-
guished the MS microbiome from that of controls at the
operational taxonomic unit (OTU) level. PERMANOVA
analysis after adjusting for confounding factor (tobacco
use) further confirmed no statistically significant differ-
ence between groups (P=0¢28), suggesting similar over-
all gut bacterial community structures in the two
groups. Alpha and beta diversity of the gut microbiome
were also similar between groups (Figure S1a). We addi-
tionally conducted metagenomic whole genome shot-
gun (mWGS) sequencing to map bacterial community
structure at species level (Figure S1b-c). Similar to what
observed for 16S sequencing, PCA analysis and PER-
MANOVA test using mWGS data failed to define a dis-
tinctive MS microbiome community structure at the
species level (P=0¢20) (Figure S1d). These findings are
consistent with prior studies that showed only modest
gut microbiome difference between MS patients and
healthy controls.7,37

Next, we quantified the variance explained by indi-
vidual host characteristics and other factors that might
influence the microbiome community structure
(Figure 1c). By PERMANOVA, the tested variables
explained only a small proportion of microbiome vari-
ance. Body mass index (BMI) accounted for 4¢0% of
total variance in the gut microbiome (P=0¢03), whereas
participant status (MS or control), age, race, sex and use
of oral supplements (i.e., vitamins) accounted for small
proportions of total microbiome variation (Figure 1c),
none of which achieved statistical significance. Hence,
BMI is modestly associated with the configuration of
the gut microbial community in MS and controls, but
other yet-to-be determined factors may play larger roles.

Specific gut microbiota associated with MS
Next, we sought to identify differences in specific
microbes that might be associated with MS. To do so,
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Figure 1. The gut microbiome in MS and control individuals at baseline. (a) Study design�Stool and blood samples were collected
from RRMS patients (n=24) and healthy controls (n=25) at baseline and six months later. Stools were used for gut microbiome char-
acterization, and blood samples were used for immunophenotyping and global metabolome characterization. 4-day food diary was
obtained to inform on habitual dietary patterns of study participants. (b) Principal component analysis (PCA) of the gut microbiome
in MS patients and controls using baseline 16S rRNA data. The microbiome proportional data was subjected to log-ratio transforma-
tion. The resulting data were used for PCA analysis to view inter-participant variation in MS patients and controls. The first two prin-
cipal components and their corresponding proportion of variance explained are shown. (c) Variance of baseline microbiome
explained by clinical and demographic factors. BMI significantly contributed to microbiome variance, accounting for 4¢0% of total
variance. Status (MS vs controls) did not have significant impact on the microbiome variation. (d). Taxa that are significantly different
between MS patients and controls at baseline in 16S rRNA gene sequencing (FDR <0¢05). Differential taxa were identified by
DESeq2. (e) Taxa that are significantly different between MS patients and controls at baseline in metagenomic whole genome shot-
gun sequencing (FDR <0¢05, DESeq2).
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we compared the gut microbiota compositions between
MS and controls at baseline by differential microbiome
abundance analysis using DESeq2. 16S rRNA gene
sequencing demonstrated that the relative abundances
of two Faecalibacterium OTUs, one Prevotella, one
unclassified Lachnospiraceae, and one Anaerostipes OTU
were significantly decreased in MS patients after multi-
ple comparison correction by false discovery rate (FDR)
(Figure 1d, FDR < 0¢05). The relative abundance of Pre-
votella were bimodally distributed, with high abundan-
ces in only several healthy controls, in accordance with
Human Microbiome Project data, in which only a small
fraction of healthy American adults harbours this genus
in high abundance.29 mWGS data identified six species
that are significantly lower in abundance in MS patients
than in controls, three of which have known immuno-
modulatory properties (Bifidobacterium longum, Clostrid-
ium leptum, Faecalibacterium prausnitzii) (FDR
<0¢05).38�40 Bacteroides thetaiotaomicron and two
unclassified Parabacteroides and Escherichia species were
also significantly different between two groups
(Figure 1e). Thus, lower abundance of Faecalibacterium
species was consistently detected by both sequencing
technologies in MS patients compared to healthy con-
trols. The average relative abundance of B. fragilis,
which is protective in the EAE model,41 was 0¢34% at
baseline, with no statistically significant differences
between MS and controls by univariate analysis (Figure
S2). In summary, decreased relative abundances of bac-
teria with immunomodulatory properties seem to char-
acterize gut microbiome changes in MS patients vs.
controls.

Among MS patients, the gut microbiome differed
significantly by the degree of disability at baseline
(P=0¢035, PERMANOVA), as measured using the
expanded disability status scale (EDSS) (mean 2¢9,
range 0�6¢5). The difference maintained statistically
significance after controlling for BMI (P= 0¢045). EDSS
was positively correlated with BMI (Spearman correla-
tion r=0¢80, P=4¢4e-05) (Figure S3) and was greater in
MS patients who smoked, but the difference did not
achieve statistical significance (p=0¢06). Correlation
analysis using mWGS data showed that Collinsella aero-
faciens (r=0¢49, FDR=0¢046), Coprococcus comes
(r=0¢62, FDR=0¢016), Phascolarctobacterium succinatut-
ens (r=0¢63, FDR=0¢016), Sutterella wadsworthensis
(r=0¢56, FDR=0¢025) were positively correlated with the
EDSS. Notably, Collinsella is increased in patients with
rheumatoid arthritis and is associated with increased
gut permeability.42 Sutterella, a Gram-negative genus
from Proteobacteria, has been associated with various
diseases including autism and inflammatory bowel dis-
ease (IBD).43 Eubacterium siraeum (r=-0¢47,
FDR=0¢049) was negatively correlated with EDSS.
These findings suggest that specific gut microbes may
be associated with the degree of disability in MS
patients.

Next, we inferred the metabolic potentials of the gut
microbiome for all study participants using mWGS data
by HUMAnN2 and LEfSe. Sixty-six metabolic pathways
and 276 gene Ortholog or KEGG ortholog (KOs) signifi-
cantly differed between MS patients and controls before
adjusting for multiple comparisons (Table S1). Interest-
ingly, most differentiating pathways (64/66=96¢9%),
which included glycolysis, glutamate degradation, fer-
mentation pathways or phospholipid biosynthesis and
KOs (244/276=88¢4%), were under-represented in MS
patients compared to controls. However, after adjusting
for multiple comparisons, no KO or pathway differed
significantly between the two groups (all FDR > 0¢3).

Additionally, we measured concentrations of the short
chain fatty acids (SCFAs) including acetic acid and butyric
acid in stool by gas chromatography/mass spectrometry
(GC-MS) and found a trend of lower level of SCFAs in
stools of MS patients than in those of controls (Figure S4),
but the trend did not attain statistical significance
(P>0¢05, Wilcoxon Rank Sum Test) and the inter-individ-
ual variations of SCFAs in both groups were quite high.

Loss of the microbiome-immune homeostatic
interaction and establishment of an immune-
metabolome association in MS
We next asked if and to what extent the gut microbiome
is associated with peripheral blood immune and metab-
olome profiles. PCA analysis of 42 blood immune cell
populations identified using flow cytometry (Figure S5)
and intracellular cytokines at baseline indicated an over-
all significant difference between MS and controls
(P=0¢01, PERMANOVA, Figure 2a). Specifically,
immune cell subset analysis by Wilcoxon Rank Sum
tests after multiple comparison correction showed that
the percentages of peripheral blood IL-10+ memory B
cells, T-bet+ memory and effector T cells, memory and
effector Th17 cells were significantly greater in MS than
in controls (Figure 2b; Table S2), suggesting an overac-
tive peripheral pro-inflammatory response in untreated
MS patients. We found no significant differences in T
regulatory immune cells between MS and controls.

Untargeted metabolomics analysis of serum from
MS and controls at baseline identified 8857 potential
metabolites, with overall metabolome distinguished
between MS patients from controls (P=0¢001, PERMA-
NOVA, Figure 2c). One hundred and eighteen metabo-
lites were differentially represented in MS and controls
by Welch’s t-test after correcting for multiple compari-
son by FDR (FDR<0¢05, Table S3). Interestingly, the
preponderance of these metabolites was significantly
greater in MS patients than in controls. Not surpris-
ingly, most metabolites were not annotated in reference
databases, but among those that were, we found that
methionine and S-adenosylmethionine (SAM), which
are involved in meat metabolism, mercaptopyruvate,
leukotriene B4,44 dihydrochalcone, 3-mercaptolactate
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guanine 1-naphthaldehyde, riboflavin, 4-hydroxy lauric
acid and chalcone were significantly enriched in the MS
patients. Blood bile acid metabolism has been reported
to be decreased in MS.45 Our study did not find statisti-
cally significant differences in primary and secondary
bile acid metabolism between MS and controls, though

we did identify a trend towards decreased glycocholate,
taurodeoxycholate, glycochenodeoxycholate, and tauro-
hyocholate, and increased deoxycholic acid and other
bile acid metabolites in MS. Pathway analysis showed
that pathways involved in linoleate metabolism, fatty acid
metabolism were altered in MS patients (Figure 2d).

Figure 2. Host-microbiome interaction in MS patients at baseline. (a) PCA analysis of blood immune profiles in MS patients and con-
trols. The two groups show a distinct immune profile, as indicated by separation in first dimension of PCA. The overall blood
immune profile statistically differs between MS patients and controls (P=0¢01, by PERMANOVA). (b) Specific immune cell populations
that significantly differ between MS patients and controls (FDR <0¢05, Wilcoxon Rank Sum Test). (c) PCA analysis of blood metabo-
lome in MS patients and controls. The global metabolome profiles were statistically different between MS patients and control
(P=0¢001, by PERMANOVA). (d) Pathway enrichment analysis. x-axis is the enrichment (impact) factor, which is determined by the
pathway topology analysis (the importance of a metabolite within a pathway). �log (P) in y-axis refers to negative logarithmic value
of the original P value from statistical analysis of pathway difference between MS patients and controls. The colour of each dot is
positively correlated with the P values. The black dashed line indicates the cut off of -log (P) value of 2 as statistical significance. (e)
Multi-omics correlation by Mantel test. Mantel correlations were performed based on distance matrix of any two of omics datasets
including the gut microbiome (Bray-Curtis distance), blood immune profile (Euclidian distance), metabolome (Euclidian distance)
and food servings (Euclidian distance). Correlation matrix generated from paired omics are presented for MS patients (lower trian-
gle) and controls (upper triangle) separately. Rho (r) and P represented correlation co-efficient and statistical significance, respec-
tively, of mantel tests, and their exact values are listed in the correlation matrix. r values were also indicated by colour gradient for
MS or controls.
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Overall dietary patterns did not differ significantly by
PERMANOVA between MS patients and controls. The
MS group had a higher median meat intake compared
to controls before (P=0¢006, Wilcoxon Rank Sum Test)
(Figure S6), but not after FDR adjustment (FDR=0¢10).

We next sought overall correlations between the gut
microbiome, peripheral blood immune and metabo-
lome profiles, and diet, in MS and controls at baseline.
The gut microbiome and host blood immune profiles
were positively correlated in controls (r=0¢32,
P=0¢0008, Mantel test) (Figure 2e, Figure S7), suggest-
ing a close interaction between the gut microbiome and
peripheral immune profiles in healthy controls. How-
ever, this association was absent in MS patients
(r=0¢09, P=0¢22, Mantel Test), suggesting that MS
might dissociate immune-microbiome homeostatic
interactions. Strikingly, we found a positive correlation
between peripheral immune and metabolome profiles
in MS patients (r=0¢22, P=0¢04, Mantel test), but not in
controls (r=0¢03, P=0¢40). The association between
immune and metabolome profiles signifies potentially
concomitant changes of blood immune cell populations
and metabolism in MS patients. In addition, diet was
positively correlated with the blood metabolome in con-
trols (r=0¢50, P=0¢008, Mantel Test), while this associa-
tion was lacking in MS patients (r=0¢07, P=0¢33, Mantel

Test), suggesting that diet significantly affects the blood
metabolome in health status. We did not find significant
associations between diet and the gut microbiome or
the peripheral immune profile by Mantel correlations in
either MS patients, controls or the two groups com-
bined. Taken together, the multi-omics analysis demon-
strates a disruption of the gut microbiome-immune
homeostatic relationship in MS participants and a posi-
tive interaction between the peripheral immune profile
and blood metabolome in MS.

We next performed large-scale association analyses
to identify specific correlated features within and
between omics datasets by Pearson correlation, using
rigorous multiple comparison adjustment (Table S4).
Within and between group comparisons contained 332
and 185 significant correlations for controls and MS
patients, respectively (Table S4), a nearly two-fold
decrease of molecular correlations in MS patients.
Strong and significant correlations (FDR <0¢05 for the
metabolome and FDR <0¢2 for other omics, r >0¢7 or
r<-0¢7) are presented as complex networks in Figure 3.
Specifically, in controls, OTU_13_ Prevotella (P. copri,
top right in Figure 3b) was strongly and positively corre-
lated with circulating proportions of IL-10+ memory B
cells and one metabolite. Importantly, we identified a
correlation hub with memory Th1 cells being the node

Figure 3. Feature-feature correlations from multiple-omics in MS patients and controls. Three-hundred thirty-two (controls) and 185
(MS patients) statistically significant correlations are illustrated using Cytoscape. Nodes�Red pentagons-Microbiome; yellow
squares-immune profile; blue circles-blood metabolome; green squares- food serving; Edges�Blue- negative correlations between
compared pairs; Red-positive correlations between compared pairs.
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positively connecting to a variety of blood metabolites in
controls. This Th1-metabolite correlation pattern was
not evident in MS patients (Figure 3a). Routine dietary
components have strong and positive correlations with
a large number of blood metabolites, particularly in con-
trols. Fruits and vegetable servings and specific
microbes or immune cell populations also formed a
number of satellite-style connections with various
metabolites. One particularly notable gut microbiota
and blood metabolite hub identified in MS participants
involved OTU_2_Bacteroides (B. uniformis, in the centre
in Figure 3a), a highly abundant and prevalent human
gut bacterium. Interestingly, we also identified a tan-
dem and positive association between sugar-sweetened
soft drinks with effector Th17 cells (middle left) and the
latter was further correlated with a blood metabolite.
This finding is consistent with the exacerbation of EAE
associated with increased Th17 cells following long-
term consumption of high sucrose beverages.46

Together, our data infer distinct, diverse, and cross-sys-
tem interrelationships of key pathways in MS patients
and controls, providing a compendium of potential tar-
gets for future studies of pathogenic mechanisms
underlying MS.

A potential pathway linking meat serving, gut
microbiome, Th17 cells and blood metabolites
To gain in-depth understanding of biological processes
deciphered by multi-omics datasets, we next tested the
hypothesis that an interactive pathway could link diet,

gut microbiome, immune response and metabolome.
The observation that MS patients had significant more
meat servings and correspondingly greater concentra-
tions of circulating Th17 cells prompted us to explore a
correlation network focusing on meat serving, Th17
cells, gut microbiome and blood metabolome. Combin-
ing the data from the MS and control cohorts, we found
that meat servings were negatively correlated with the
relative abundance of B. thetaiotaomicron (r=-0¢42,
p=0¢01) (Figure 4a), a common gut bacterium with
high genetic capacity (18% of its genes) to digest poly-
saccharides.47 B. thetaiotaomicron was strongly nega-
tively correlated with proportions of circulating Th17
cells (r=-0¢40, p=0¢01), while Th17 cells were positively
correlated with meat servings (r=0¢50, p=0¢003). As
diet, the gut microbiome and immune response all
potentially affect blood metabolites, we next correlate
blood metabolites with B. thetaiotaomicron, Th17 cells
and meat servings and found five blood metabolites sig-
nificantly correlated with all three measurements
(Figure 4b, Figure S8). Interestingly, metabolite mz34,
annotated as SAM, was positively correlated to meat
servings (r=0¢42, p=0¢01), Th17 cell proportion (r=0¢75,
p=1¢7e-07), and negatively correlated with relative abun-
dance of B. thetaiotaomicron (r=-0¢40, p=0¢006)
(Figure 4a). Taken together, our multi-omics analysis
suggests a correlation network involving dietary meat
serving, gut microbiome, Th17 cells and blood metabo-
lites. However, our analyses do not indicate the direc-
tionality of regulation between each of the
aforementioned correlative pair. These results highlight

Figure 4. Pathway linking meat servings in the diet with gut microbiome, immune response and blood metabolome. (a) Higher
meat serving is negatively correlated with relative abundances of B. thetaiotaomicron, a fibre digesting bacterium. The latter is nega-
tively correlated with proportions of Th17 cells. Increased Th17 cells are positively correlated with methyl donor S-adenosyl-L-methi-
onine (SAM) that is a metabolic product from methionine, an amino acid enriched in meat. SAM was negatively correlated with B.
thetaiotaomicron. (b) Correlation between blood metabolites and B. thetaiotaomicron, meat serving and Th17 cells. Pearson correla-
tions were performed between B. thetaiotaomicron, meat servings and Th17 cells and all blood metabolites from MS and controls,
with 306 significant correlations between metabolites and B. thetaiotaomicron, 575 between metabolites and meat servings, and
369 between metabolites and Th17 cells. There are 5 metabolites correlated with all three type of measures.
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a discovery process driven by omics analysis and provide
an interesting hypothesis that now warrants further vali-
dation.

Host-microbiome multi-omics capacity to classify MS
patients and controls
To investigate the power of individual and multi-omics
to classify MS patients and controls, we applied random
forest (RF), elastic net regularized linear regression

(ENL) and elastic net regularized support vector
machine (SVM), which are suited for high dimension
data. We applied different regularization approaches to
control model complexity to avoid overfitting. The classi-
fication of MS patients and controls based on either all
or a subset of microbiome features after marginal
screening generated an Area Under the Curve (AUC)
with a wider range (0¢2�0¢8 for RF) (Figure 5a), indicat-
ing unstable classification performance using the gut
microbiome alone. By contrast, the three classifiers

Figure 5. Out-of-sample ROC curves of three classifiers to discriminate MS patients and Controls. The mean ROC curves generated
from 200 iterations of model validation for the microbiome (a), immune profile (b), blood metabolome (c), and a combination of all
the datasets (d). Means and 90% confidence intervals of AUC scores of ROC curves were listed at the bottom right for classification
accuracy. (e) Top 20 important features from random forest (RF) model. Nineteen blood metabolites (indicated by mz) and memory
Th17 cells were ranked as the top 20 features of important from RF model in classification of MS patients and controls.
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constructed based on blood metabolome and immune
profile had the greatest out-of-sample classification per-
formance, with mean AUC close to, or exceeding, 0¢90
(Figs. 5b, c). To determine if integration of data types
improve classification performance, we trained three
classification models with all the features of diet, micro-
biome, blood metabolome and immune profile. The
mean AUC obtained with integrated data was compara-
ble to that obtained from the blood metabolome data
(Figure 5d). The three classifiers trained with blood
metabolome, immune profile or integrated data per-
formed similarly, though RF performed best in classify-
ing MS patients and controls. To identify the top
predictive features, we examined the feature importance
measures from the RF model trained with the inte-
grated data (averaged over 200 random splits). As
expected, the top 20 variable-of-importance consisted of
blood metabolites such as mz4-dihydrochalcone and
immune cell populations, such as CD4+ memory T cells
(Figure 5e). Notably, these highest-ranking features
achieved similar classification accuracy as using all the
omics features (Figure S9).

Longitudinal changes of the gut microbiome and host
peripheral immune and metabolome profiles in MS
patients and controls
To measure the temporal stability of each omics over
time (6 months), we computed pair-wised dissimilarity
between and within the controls and MS patients who
did and did not receive DMTs. Within- and between-par-
ticipant dissimilarity refers to the dissimilarity of base-
line and six month timepoints for the same individuals,
and dissimilarity between different individuals at each
time point, respectively (Figure S10). Without challenge
or intervention, within-participant variations are signifi-
cantly smaller than between participant variations,48,49

indicating temporal stability. Compared to between-par-
ticipant variation, within-participant variations of the
microbiome and metabolome were significantly lower
for all MS patients and controls (Figs. 6a, c), and the
within-participant variations of the immune profile
were also significantly lower than between-participant
variations in controls (Figure 6b). This suggests a rela-
tively stable overall microbiome and metabolome for
MS patients and controls as well as the immune profile

Figure 6. Temporal stability of the gut microbiome, blood immune profile and blood metabolome within six months in MS patients
and controls. The stability of multi-omics was evaluated by measuring the between-participant dissimilarity and within-participant
dissimilarity (samples collected at both baseline and after six months) of the gut microbiome (Bray-Curtis dissimilarity) (a), immune
profile (Euclidian distance) (b), blood metabolome (Euclidian distance) (c) in controls (n=22), MS patients who initiated DMTs (Trea-
t_Yes, n=6), and MS patients who did not initiate DMTs (Treat_No, n=14). Difference of between- and within-participant dissimilarity
was tested by Wilcox Rank Sum test.
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in controls during the study period. In contrast,
between- and within-participant variations of the
immune profile in MS patients who received treatment
with DMTs were not statistically different (P=0¢28, Wil-
coxon-rank test, Figure 6b). To determine if DMTs
altered the immune profile and subsequently affect the
within-participant dissimilarity, we performed Wilcoxon
Rank Sum test for MS patients before and after these
interventions. We found that proportions of memory
Th17 cells and GM-CSF+ memory T Cells were sig-
nificantly reduced at six months compared to base-
line in MS patients who initiated DMTs (FDR=0¢05,
Figure S11).

We further performed a Mantel correlation to test if
between-participant similarities were maintained over
the study interval based on distance measures of gut
microbiome, blood immune cell and metabolome pro-
files. We found significant correlations of the gut micro-
biome (r=0¢69, P=0¢001 for MS; r=0¢4, P=0¢005 for
controls) and blood metabolome (r=0¢39, p=0¢001 for
MS; r=0¢27, p=0¢005 for controls) between baseline and
six-month samples. In contrast, the blood immune pro-
file showed no correlation between baseline and six-
month for MS patients (r=0¢05, P=0¢32), while controls
demonstrated significant correlation (r=0¢33, p=0¢01).
These findings suggest that between-participant rela-
tionships were maintained over the course of the study
in gut microbiome and metabolome profiles for both
MS and controls, and in the immune profiles for con-
trols, but not for MS participants.

We did not identify specific gut microbiome, metab-
olome or food servings that significantly changed
between the beginning of the study and six-month fol-
low-up in the MS patients. We also did not identify
microbiota that differed between treated and untreated
MS patients at six months. Strikingly, 41¢9% of the
blood metabolites that were significantly different
between MS patients and controls at baseline still main-
tained similar differences at six months follow-up.
Therefore, the analysis of the data obtained at six
months follow-up validated our baseline findings.
Accordingly, machine learning models constructed
using six-months follow-up data consistently showed
the best classification accuracy in differentiating MS
patients from controls based on metabolome features,
compared to those based on immune and microbiome
profiles. In summary, host peripheral immune profile,
blood metabolites and the gut microbiome of MS partic-
ipants remain relatively stable over six months in those
patients who remained untreated, while initiation of
treatment with DMTs affected specific immune cell
populations.

Discussion
We present the first integrated characterization of gut
microbiome alterations and host-microbiome

interactions in MS patients compared to healthy control
individuals using advanced multi-omics technologies
and a longitudinal study design that offers insight into
the stability of these factors over time. We have con-
firmed prior findings that the gut microbiome commu-
nity structure in MS patients largely resembles that of
controls.9,10,37 We also extended the microbiome analy-
ses by seeking factors that might drive microbiome var-
iations between MS patients and controls, and validated
the small impact from the disease itself. Interestingly,
BMI contributed significantly to microbiome variation
among all tested variables, and positively correlated
with EDSS in MS patients. Hence, BMI should be con-
sidered in future inter-group microbiome comparisons
in MS studies.

The under-representation of Faecalibacteria, Prevo-
tella, Lachnospiraceae and Anaerostipes species in MS
patients compared to controls aligns with previous find-
ings,10 and is biologically plausible. Faecalibacteria,
Lachnospiraceae, and Anaerostipes produce butyrate,
which acts via G-protein coupled receptors activation
and histone deacetylase inhibition to suppress CNS
demyelination,50 the main pathological feature in MS.
Indeed, concentrations of fecal SCFAs (i.e., acetate,
butyrate and propionate) were decreased in RRMS
patients, compared to healthy controls.51�53 Blood
SCFAs were significantly decreased in long-term active
progressive MS patients.54 Propionic acid, but not buty-
rate and acetate, was significantly reduced in blood and
stool in MS patients with all disease subtypes, particular
after relapse. Supplementation of propionic acid pro-
moted Treg cell function, and in long-term administra-
tion reduced relapse rate, disability and brain atrophy.55

In our study, we found a trend toward decreased con-
centrations of butyrate in the stools of MS patients, con-
sistent with decreased SCFA-producing bacteria in MS.
Notably, SCFA levels can also be affected by diet, and
higher meat servings in MS patients may also contrib-
ute to the observed reduction of SCFAs.

Prevotella histicola reduces EAE severity by inducing
FoxP3+ regulatory T cells and decreasing pro-inflamma-
tory Th1 and Th17 cells in the CNS.15,56 We found
reduced abundance of a different Prevotella species, P.
copri, in stools of MS patients. P. copri is a dominant Pre-
votella species in healthy American adults,57 and is more
prevalent in non-western populations.58 Moreover, P.
copri was highly correlated with IL10+ memory B cells
in our control group, providing a potential novel micro-
biome-driven immune pathway to test in future.

In this study, the MS group was compared to unre-
lated healthy controls, matched for age, gender and
other important variables. An alternative approach
would have been to obtain same household controls, to
account for environmental influences.59 However, it is
possible that the same household controls may decrease
the sensitivity to detect MS associated microbes,
because individuals from the same household tend to
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share gut microbes, and a shared microbe may still
influence MS development in genetically predisposed
individuals. Changes in gut microbiota observed in MS
participants in our study resembled previous studies
conducted in different geographical locations, offering
credence to our findings. MS-associated microbes are
also over-represented in other autoimmune and meta-
bolic diseases as well as cancer that are associated with
inflammation.8,60,61 This finding argues against a
unique microbiome signature for MS patients but sup-
ports a common microbiome dysbiosis indicator for
extra-intestinal pathophysiology associated with inflam-
mation.

Much work has shown that the immune system con-
fines the gut microbiome within its physical niche and
shapes microbial compositions in animal models,62 and
our findings now link gut microbiome and systemic cel-
lular immune profiles in healthy human adults. Our
data recapitulate in a human cohort the inter-related-
ness of the gut microbiome, diet, immune system and
host metabolome, a relation that has been reported
mostly in germ-free mice.62 Specifically, we now dem-
onstrate an association between the gut microbiome
and peripheral immune phenotype in healthy partici-
pants, implying that healthy people with similar gut
microbiome tend to have similar immune phenotype.
In contrast, gut microbiome-immune haemostatic inter-
actions were disrupted in the MS cohort we studied.
Immune cell phenotypes of MS patients significantly
differed from healthy controls in our dataset. However,
we wish to note that the degree of dysbiosis of gut
microbes in MS was modest. The discordance of the
changes in immune phenotypes and microbiome may
explain the lack of correlation between the microbiome
and peripheral blood immune profiles in MS. It will be
of great interest to elucidate the directionality and time-
to-response of microbiome-immune regulation in MS.
Future work might also be directed towards microbiota
and immune response at the gut mucosa,63 as the site
of the systemic changes that ultimately affect the CNS.

Interestingly, blood metabolites best differentiate
MS patients from controls in our models. Indeed, MS
patients experience metabolic alteration in different
tissues,64,65 and dysfunctional lipid metabolism.66 The
observed enrichment of circulating novel metabolites
and multiple pathways in MS patients requires future
validation to address their role in MS. We found that
methionine was significantly enriched in MS patients,
which is consistent with higher meat consumption in
the patients we studied. Methionine drives T cell prolif-
eration and differentiation.67 Our data are also in accord
with recent findings that methionine activates Th17
cells through epigenetic modification.68 Methionine is
an essential metabolite for methyl donor SAM synthe-
sis, and SAM promotes Th17 cell activation through
methylation.68 Reduction of dietary methionine amelio-
rated EAE through reprogramming pathogenic Th17

cells. Our data, together with Roy et al., prompt the
hypotheses that meat or methionine restriction might
beneficially decrease the number of circulating inflamma-
tory Th17 cells in MS patients. Future studies of metabo-
lites in MS should consider specific dietary nutrients and
gut microbiome derived metabolites, as these factors play
large roles in ordaining human metabolism.

Global correlation among multi-omics provides a
powerful tool to understand systemic interactions across
organs. However, among hundreds or thousands of cor-
relations, in the context of under-annotated features
such as blood metabolites, mining biology from global
correlations is challenging. Consequently, multi-omics
has often been criticized for generating massive amount
of data but providing little biology. We highlighted the
significant discovery power of multi-omics by deeply
delving into a pathway linking meat serving, B. thetaio-
taomicron, Th17 cell, and SAM. We not only confirmed
the relationship between meat consumption, SAM, and
Th17 cells,68 we identified their connections with a com-
mon gut commensal bacterium, B. thetaiotaomicron.
This opens new research directions to elucidate regula-
tory pathways among diet, metabolites, microbiome,
and immune response, and may identify therapeutic
targets for MS.

Interestingly, routine dietary intake had small overall
impact on gut microbiome variation, as is also reported
in inflammatory bowel disease.69 However, differential
microbiome responses to dietary intake in different
individuals might explain the lack of strong correlation
between diet and gut microbiome in human studies.70

We also found that food composition did not correlate
with circulating immune phenotypes. Nonetheless, lack
of systemic associations does not exclude the possibility
of specific feature-feature correlations, as we have iden-
tified associations between food compositions and the
microbiome, as well as food compositions and immune
cell populations. Feature-feature correlations were
reported conservatively, and only significant associa-
tions after multiple comparison corrections were
included in this final report, thereby strengthening con-
fidence in the correlations.

Our longitudinal study design provided a unique
opportunity to evaluate the stability of multi-omics data
in MS patients over a period of six months, during
which most DMTs take effect. Baseline and six-month
follow-up measures for microbiome, metabolome com-
ponents, immune-phenotypes and diet were similar,
except for MS patients who began DMTs, which showed
a decrease in memory Th17 cells and GM-CSF+ T cells
at the six-month time point. These findings suggest an
overall stability of the different systems in this defined
interval in humans without strong exogenous influen-
ces. In addition, the consistent results between baseline
and six-months strengthen our findings related to dif-
ferential features between MS and controls, suggesting
that these differences are not likely spurious.
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While our longitudinal study offers a highly textured
view of microbial-host interactions in MS, we acknowl-
edge several limitations. First, the relatively small sam-
ple size increases the risk of type II error. To avert this,
we carefully chose analytical tools and statistical tests
suitable for high dimension data analysis. Second, food
diary in our study was self-recorded, which potentially
pose selection bias since it is less likely that all food con-
sumptions are completed by all participants. Third, the
majority of study participants are female because MS is
more prevalent in women. It would be interesting to
research next whether these findings still hold true in
male MS patients. Lastly, we could not determine the
causal connection or directionality of feature-feature
interactions. Nonetheless, we provide data on multiple
novel molecules that could be plausibly implicated in
MS pathogenesis that obligate a more in-depth analysis
in the future. A larger study with multiple sampling
points that capture both relapse and remitting stages of
MS will demonstrate a more complete dynamic picture
of multiple-omics interactions in MS.

Conclusions
Multi-omics integration provides a holistic view of the
pathophysiology of MS, laying a foundation for preci-
sion medicine that combines advanced technologies
with clinical practice to improve our understanding of
MS aetiology and patient care.
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