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Abstract

Background: Identifying the key factors of Guillain-Barré syndrome (GBS) and predicting its occurrence are vital for improving
the prognosis of patients with GBS. However, there are scarcely any publications on a forewarning model of GBS. A Bayesian
network (BN) model, which is known to be an accurate, interpretable, and interaction-sensitive graph model in many similar
domains, is worth trying in GBS risk prediction.

Objective: The aim of this study is to determine the most significant factors of GBS and further develop and validate a BN
model for predicting GBS risk.

Methods: Large-scale influenza vaccine postmarketing surveillance data, including 79,165 US (obtained from the Vaccine
Adverse Event Reporting System between 1990 and 2017) and 12,495 European (obtained from the EudraVigilance system
between 2003 and 2016) adverse events (AEs) reports, were extracted for model development and validation. GBS, age, gender,
and the top 50 prevalent AEs were included for initial BN construction using the R package bnlearn.

Results: Age, gender, and 10 AEs were identified as the most significant factors of GBS. The posttest probability of GBS
suggested that male vaccinees aged 50-64 years and without erythema should be on the alert or be warned by clinicians about an
increased risk of GBS, especially when they also experience symptoms of asthenia, hypesthesia, muscular weakness, or paresthesia.
The established BN model achieved an area under the receiver operating characteristic curve of 0.866 (95% CI 0.865-0.867),
sensitivity of 0.752 (95% CI 0.749-0.756), specificity of 0.882 (95% CI 0.879-0.885), and accuracy of 0.882 (95% CI 0.879-0.884)
for predicting GBS risk during the internal validation and obtained values of 0.829, 0.673, 0.854, and 0.843 for area under the
receiver operating characteristic curve, sensitivity, specificity, and accuracy, respectively, during the external validation.

Conclusions: The findings of this study illustrated that a BN model can effectively identify the most significant factors of GBS,
improve understanding of the complex interactions among different postvaccination symptoms through its graphical representation,
and accurately predict the risk of GBS. The established BN model could further assist clinical decision-making by providing an
estimated risk of GBS for a specific vaccinee or be developed into an open-access platform for vaccinees’ self-monitoring.

(JMIR Public Health Surveill 2022;8(3):e25658) doi: 10.2196/25658
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Introduction

Background
Influenza vaccine is currently the most effective intervention
to prevent millions of influenza-related visits to the physician
each year [1]. Although the benefits of getting vaccinated far
outweigh its risks, influenza vaccine is occasionally associated
with adverse events (AEs), and as with most of medicine, there
is a very rare chance of an influenza vaccine causing a severe
reaction [1]. Guillain-Barré syndrome (GBS) is the most
common and most severe acute paralytic neuropathy [2] that
develops in susceptible individuals after infection and, in rare
cases, after immunization (including influenza vaccination) [3].
The estimated incidence of GBS among the general population
ranges from 0.8 to 1.9 cases per 100,000 person-years [4].
Although some epidemiological studies suggested that there
may be a very small increased risk of GBS after influenza
vaccination [5,6], causality remains controversial [3,7,8] and is
out of the scope of this study. The identification of GBS is
largely based on clinical patterns [2], and meticulous monitoring,
supportive care, and the early start of specific treatment are
necessary for patients with GBS [9]. Therefore, determining
the key factors of GBS and predicting its occurrence are vital
for improving the prognosis of these patients.

The Vaccine Adverse Event Reporting System (VAERS),
comanaged by the Centers for Disease Control and Prevention
and the US Food and Drug Administration, is a nationwide
passive surveillance program to detect possible safety problems
for US-licensed vaccines [10]. VAERS accepts reports of
postvaccination AEs from 1990 to the present and collects
information such as vaccinees’ age, gender, the experienced
AEs, and the recovery status. A primary objective of VAERS
is to monitor fluctuations in known AEs that might indicate a
potential safety problem with a vaccine [10]. GBS is one such
concern and is the targeted AE of this study. Previous studies
of GBS onset based on VAERS data reported that GBS generally
occurs 2 weeks after influenza vaccination, which is later than
that of most other influenza vaccine–related AEs [11,12].
Besides, some clinical features (eg, muscular weakness, pain,
and autonomic dysfunction) that can be used to identify GBS
[13] are also recorded as separate AEs in VAERS. Thus,
performing a deep data mining of VAERS and identifying the
most informative GBS-related AEs is significant and valuable
work. The identified AEs first help in forming a future study
hypothesis for etiological research of GBS and then can further
be used to develop risk-prediction models that enable early
warning.

Existing efforts focus on the measurement and prediction of
clinical course and outcome of GBS, and good prognostic
models have been developed [14-17]. However, as far as we
know, there is no publication on a forewarning model of GBS,
except for our previous work [18], which constructed a
multivariate logistic regression model using GBS-related AEs
in VAERS to predict risk of GBS. Nevertheless, conventional

linear models (eg, multiple linear regression model and logistic
regression model) may be biased in dealing with collinearity
and complex interactions when analyzing multiple predictors.
In addition, it is difficult to succinctly present or explain the
subtle patterns behind a particular prediction with general
machine learning methods (eg, artificial neural network and
support vector machine).

Bayesian Network Model
A Bayesian network (BN) is an emerging type of probabilistic
graph model for predicting risk of outcomes of interest [19].
As a well-established type of probabilistic classifier, a BN model
has the advantages of identifying interactions among variables
that are often neglected by conventional statistical models and
outputting an intuitive conditional probability table (CPT) for
decision-making. In addition, the Markov blanket (MB) theory
gives BN models the capacity for identifying the most significant
factors contributing to the outcome. BN models have been
applied for predicting risk of AEs in, among many others,
radiotherapy [20] and hemodialysis [21] and have previously
been shown to perform well at predicting the risk of other
diseases using electronic health records [22-24]. However,
whether a BN model can identify the most significant factors
of GBS and integrate them to predict GBS remains to be
determined.

Because of the rarity of many postvaccination AEs, especially
for GBS, many longitudinal studies or cohort studies are
underpowered in identifying risk factors for early detection.
The large amount of data accumulated since 1990 in VAERS
provides an opportunity for such studies: among influenza
vaccine–related VAERS reports, trivalent influenza vaccine
(FLU3)-related VAERS reports compose a major portion. The
purpose of our investigation is to identify the most significant
factors of GBS using FLU3-related VAERS reports, generate
a novel risk prediction model, and estimate the probability of
GBS occurrence. This study was reported following the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis statement [25] (Multimedia
Appendix 1). For a specific vaccinee who has certain AEs, the
estimated risk from the risk prediction models could help to
measure the risk of GBS and allow for timely diagnosis and
treatment. We believe our work is complementary to other
investigations and could ultimately lead to useful insights for
clinical decision-making.

Methods

Data Processing
The VAERS database had received more than 400,000
vaccine-associated AE reports by the end of 2018. Each report
had been manually annotated at the preferred-term level in the
Medical Dictionary for Regulatory Activities by domain experts.
We extracted all the FLU3-related VAERS reports between
1990 and 2017. The reports were excluded if they met either of
the following criteria: (1) missing age values or age <0.5 years
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and (2) unknown gender status. We finally included 79,165
completed reports and 2978 unique AE symptoms, including
GBS.

Ethics Approval and Consent to Participate
Ethics approval and consent to participate are not applicable to
this study because the VAERS database we used is publicly
available [26]. The EudraVigilance vaccine AE data were
requested from the European Medicines Agency.

Learning a BN
A BN B can be defined as a pair [27]:

B(G,Θ), G = (V,E)

Here, G = (V,E) is a directed acyclic graph that encodes the
structure of the BN, in which each node Xi in V corresponds to
a domain variable (discrete or continuous) and E consists of a
set of directed arcs (or edges) that connect pairs of nodes. As
in a genealogical chart, a parent node points to a child node
with a directed arc, and an arc between 2 variables indicates a
relationship of direct dependence. Furthermore, the Markov
property states that any node X is conditionally independent of
any other nodes, given its MB, and the MB of a node includes
its parents, its children, and the children’s other parents
(spouses). Θ is a set of parameters that quantify the graph edges
by specifying the conditional probability distributions; in the
discrete case, they are denoted as CPTs. The joint probability
distribution P factorized as a product of multiple conditional
probability distributions also denotes the dependency or
independency structure of the directed acyclic graph:

Here, Pa(Xi) represents the parent nodes of Xi.

Accordingly, the process of learning a BN can be separated into
two steps: BN structure learning and BN parameter learning.
Many state-of-the-art BN structure learning algorithms have
been proposed to determine the topology of a BN from data,
and maximum likelihood estimation (MLE) and Bayesian
parameter estimation are two popular methods for parameter
learning. In addition, prior knowledge of the structure or
parameters can also be integrated into the BN learning process.

Statistical Analysis
Age was discretized into four groups: 0.5-17, 18-49, 50-64, and
≥65 years. All AEs were binary variables, with status true or
false indicating whether the AE occurred or did not occur,
respectively. We sorted all the AEs by their prevalence in the
US data and selected the top 50 for further analysis (we also
performed the analysis with the top 100 AEs to compare
different networks). The prevalence of the top 50 AEs was
compared between the GBS group and the non-GBS group using
the Pearson chi-square test. To avoid inflating type I error caused

by multiple comparisons, a 2-sided P value <.001 (Bonferroni
correction) was used to indicate a statistically significant
difference.

GBS was set as the deterministic node, and all 53 variables
(GBS, age, gender, and the top 50 AEs) were included in
construction of the initial network. The flow diagram of BN
learning is shown in Figure 1. Tabu search is a higher-level
heuristic procedure that maintains the advantage of score-based
structure learning algorithms and escapes the trap of local
optimality [28]. For the first step, we obtained an initial network
structure using the tabu search algorithm, with setting as a
blacklist of arcs (no other variable can point to age or gender)
and a whitelist of arcs (both age and gender point to GBS) based
on prior knowledge [2]. Generally, we should consult domain
experts to adjust those illogical arcs in the initial network to
obtain a more reasonable structure. However, many variables
were included in the initial network; therefore, we chose to
extract the MB of GBS as the ultimate network from the
perspective of model complexity and the Markov property. The
strength of the conditional-dependence relationships among
nodes was measured by Bayesian information criterion score
gain or loss that would be caused by each arc’s removal. For
the second step, we performed 5-fold cross-validation 100 times,
learned parameters using MLE based on 4 folds (ie, training
folds), and obtained CPTs quantifying the probability of each
state of a node based on all possible combinations of its parent
nodes’ values. In a discrete BN such as the one used in this
study, parameters learned by MLE are approximately equal to
the frequency of specific value of a node in the training data
when fixing its parent nodes’ values. Finally, we predicted the
probability of GBS for the remaining fold (ie, validation fold)
based on parameters estimated from training folds and calculated
the probability threshold for the validation fold by maximizing
the Youden index in the receiver operating characteristic curve
analysis. Vaccinees in the validation fold were classified into
the GBS group when the probability estimates of the state GBS
surpassed the threshold; otherwise, they were classified into the
non-GBS group.

Area under the receiver operating characteristic curve (AUC),
sensitivity, specificity, and predictive accuracy were used to
assess the performance of the established BN. Here, sensitivity
implies the ability of a model to identify a patient as a positive
result, specificity implies the ability of a model to identify a
nonpatient as a negative result, AUC is a comprehensive index
that integrates a model’s sensitivity and specificity, and accuracy
implies the ability of a model to correctly identify both patient
and nonpatient. The results of internal validation folds were
averaged to obtain the ultimate indices, and their 95% CIs were
calculated using the approximate normal distribution method.
R (version 4.0.0; The R Foundation for Statistical Computing)
packages, including bnlearn, pROC, gmodels, and caret, were
used for the statistical analyses.
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Figure 1. Flow diagram of Bayesian network learning. GBS: Guillain-Barré syndrome; ROC: receiver operating characteristic curve.

External Validation
The performance of the BN established from the US data was
validated using the European EudraVigilance data. The
European data were obtained from the European Medicines
Agency in 2016 and included AE reports following influenza
vaccines from 2003 to 2016. We filtered out records with
missing age values or unknown gender status, as well as those
reported outside the European Union area, and finally a total of
12,495 completed records were extracted. It is worth mentioning
that the European data covered not only FLU3 but also other
influenza vaccines such as quadrivalent influenza vaccine and
monovalent influenza vaccine (H1N1 influenza vaccine) because
of data access limitation and the formulation of FLU3 in Europe
is different from that in the United States.

The same set of variables as in the US data (GBS, age, gender,
and the top 50 AEs) were extracted from the European data,
and age was also discretized into 4 groups as stated in the
Statistical Analysis section. During the external validation
procedure in the European data, we applied the BN structure

and its parameters learned from all the US data to predict the
probability of GBS in European vaccinees and categorized them
into two classes (GBS and non-GBS) as we did in the internal
validation folds. The same performance metrics were applied.

Results

Descriptive Analysis
On the basis of the VAERS and EudraVigilance data, the
cumulative probability of GBS was 1.26% within 28 years
following the US FLU3 vaccine and 1.71% within 14 years
following all the European flu vaccines (Table 1). For the US
population, the median age of the GBS group was higher than
that of the non-GBS group (median 57, IQR 42-68 years vs
median 50, IQR 29-66 years), and this trend was similar and
more obvious in the European population (median 60, IQR
49.25-72.00 years vs median 46, IQR 22.00-64.00 years). For
the GBS reporters in both the United States and Europe, the
percentage of 4 age groups increased gradually and this disease
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was slightly more frequent in men than in women, both of which
were consistent with previous studies [2].

Among the top 50 AEs, 33 (66%) presented significant
association with GBS in the US data, whereas only 9 (18%)
presented significant association with GBS in the European data
(Table 2). Of the AEs significantly associated with GBS, only
15% (5/33; asthenia, fatigue, paresthesia, hypesthesia, and

muscular weakness) showed a positive association in the US
data, whereas 100% (9/9) of the significant AEs (pain, pain in
extremity, asthenia, fatigue, paresthesia, hypesthesia, tremor,
musculoskeletal pain, and muscular weakness) showed positive
association in the European data, with these 9 AEs including
the aforementioned 5 AEs. As for the total prevalence of the
top 50 AEs, only 12 (24%) had no significant difference between
the United States and Europe.

Table 1. Demographic characteristics of 79,165 US (Vaccine Adverse Event Reporting System, trivalent influenza vaccine [FLU3], 1990-2017) reports
and 12,495 European reports (EudraVigilance, all flu vaccines, 2003-2016).

TotalNon-GBSGBSaCharacteristics

US FLU3 vaccine reports, 1990-2017 (N=79,165)

79,165 (100)78,169 (98.74)996 (1.26)Number of reports, n (%)

50 (29-66)50 (29-66)57 (42-68)Age (years), median (IQR)

13,256 (16.74)13,199 (16.89)57 (5.72)0.5-17

25,422 (32.11)25,146 (32.17)276 (27.71)18-49

17,473 (22.07)17,147 (21.94)326 (32.73)50-64

23,014 (29.07)22,677 (29.01)337 (33.84)≥65

23,832 (30.10)23,327 (29.84)505 (50.70)Men, n (%)

European flu vaccine reports, 2003-2016 (N=12,495)

12,495 (100)12,281 (98.29)214 (1.71)Number of reports, n (%)

46 (22-65)46 (22-64)60 (49.25-72)Age (years), median (IQR)

2697 (21.58)2691 (21.91)6 (2.80)0.5-17

4035 (32.29)3987 (32.46)48 (22.43)18-49

2622 (20.98)2548 (20.75)74 (34.58)50-64

3141 (25.14)3055 (24.88)86 (40.19)≥65

5074 (40.61)4949 (40.30)125 (58.41)Men, n (%)

aGBS: Guillain-Barré syndrome.
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Table 2. Top 50 prevalent adverse events screened from the US data, and comparisons between the US and European data.

US vs Eu-
rope, P val-
ue, total

European flu vaccine reports, 2003-2016US FLU3a reports, 1990-2017Adverse events

P value
Non-GBS
(‰)GBS (‰)Total (‰)P value

Non-GBS
(‰)GBSb (‰)Total (‰)

.55.01141.9379.44140.86<.001139.8858.23138.85Pyrexia

<.001.0615.80015.53<.001127.942.01126.36Injection-site erythema

<.001<.00128.34112.1529.77.25125.55113.45125.40Pain

<.001.0331.434.6730.97<.001120.587.03119.16Injection-site pain

<.001.0723.704.6723.37<.00190.793.0189.69Erythema

<.001<.00144.46177.5746.74.1386.9773.2986.79Pain in extremity

<.001.1012.70012.48<.00187.133.0186.07Injection-site swelling

<.001.49103.4188.79103.16.0577.7361.2477.52Headache

<.001.6423.6118.6923.53<.00172.222.0171.33Pruritus

<.001.7337.2932.7137.21<.00169.0622.0968.46Chills

.14.7459.9365.4260.02<.00163.8532.1363.45Dizziness

.001.0455.7023.3655.14<.00163.1825.1062.70Nausea

<.001.0128.34027.85<.00161.492.0160.75Urticaria

<.001.1126.879.3526.57<.00160.1310.0459.50Rash

<.001.344.1504.08<.00156.62< 0.0155.91Injection-site warmth

.19.1347.5570.0947.94.3450.5857.2350.67Dyspnea

<.001.5466.6156.0766.43.9649.5249.2049.52Myalgia

.09.7242.3437.3842.26.00345.8526.1045.60Vomiting

.01<.00138.19121.5039.62<.00141.58296.1844.78Asthenia

<.001<.00171.82135.5172.91<.00137.6959.2437.96Fatigue

.003<.00137.78345.7943.06<.00133.81332.3337.57Paresthesia

.64.2638.2723.3638.02.4037.2332.1337.16Cough

<.001.875.544.675.52<.00135.549.0435.20Edema, peripheral

<.001.9855.6156.0755.62.3632.2927.1132.22Malaise

<.001.521.9501.92<.00131.731.0031.34Skin, warm

.005<.00122.15285.0526.65<.00128.03289.1631.31Hypesthesia

<.001.285.3705.28<.00131.113.0130.76Swelling

<.001.9039.0837.3839.06.0728.7119.0828.59Arthralgia

<.001.472.4402.40<.00128.441.0028.09Injection-site edema

<.001.820.2400.24<.00126.692.0126.38Injection-site hypersensitivity

.05.1827.0342.0627.29.9724.3124.1024.30Diarrhea

.002.3118.819.3518.65<.00123.287.0323.08Hyperhidrosis

<.001<.0019.2832.719.68.0921.9114.0621.82Tremor

<.001.383.6603.60<.00121.53< 0.0121.26Injection-site pruritus

<.001.423.0102.96<.00121.022.0120.78Injected-limb mobility decreased

<.001.8810.429.3510.40<.00120.14< 0.0119.88Feeling hot

<.001.178.6308.48<.00119.621.0019.39Injection-site reaction

<.001<.00110.5946.7311.20.1119.0012.0518.91Musculoskeletal pain

<.001.344.2304.16<.00119.10< 0.0118.86Injection-site induration
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US vs Eu-
rope, P val-
ue, total

European flu vaccine reports, 2003-2016US FLU3a reports, 1990-2017Adverse events

P value
Non-GBS
(‰)GBS (‰)Total (‰)P value

Non-GBS
(‰)GBSb (‰)Total (‰)

<.001.492.2002.16<.00118.861.0018.63Cellulitis

<.001<.00120.93266.3625.13<.00115.03230.9217.75Muscular weakness

<.001.790.3300.32<.00117.812.0117.61Vasodilatation

<.001.667.254.677.20.7317.5316.0617.51Neck pain

<.001.023.7514.023.92.0516.2224.1016.32Mobility decreased

——c000<.00116.453.0116.28Immediate postinjection reaction

.06.9913.9214.0213.93.6416.1818.0716.21Chest pain

<.001.304.9704.88<.00115.792.0115.61Rash, erythematous

<.001.591.3801.36<.00115.631.0015.45Injection-site rash

<.001.0329.644.6729.21.0615.528.0315.42Syncope

<.001.141.144.671.20.00115.563.0115.40Tenderness

aFLU3: trivalent influenza vaccine.
bGBS: Guillain-Barré syndrome.
cNot available.

The Established BN
The MB of the GBS, that is, the ultimate network structure
(Figure 2), contained three parent nodes (age, gender, and
erythema), four child nodes (asthenia, hypesthesia, muscular
weakness, and paresthesia), and five spouse nodes (chills,
dizziness, myalgia, nausea, and pain in extremity), and they
were the most significant factors of GBS. Among these, age
also played a spouse node role when it coacted with GBS in
influencing the occurrence of paresthesia and hypesthesia.
Besides, paresthesia was also a spouse node that interacted with
GBS to influence hypesthesia and muscular weakness, and
hypesthesia also acted as a spouse of GBS in influencing
muscular weakness. As an arc pointing from a parent node to
a child node indicates a chronological order, we may learn from
the MB that age, gender, and erythema acted on the occurrence
of GBS; subsequently, GBS interacted with the spouse nodes

and further evolved into symptoms of asthenia, hypesthesia,
muscular weakness, and paresthesia. The remaining AEs (40/50,
80%) were conditionally independent of GBS through the nodes
in the MB and were pruned to retain a more compact network.

The arc thickness in Figure 2 is proportional to the strength of
the conditional-dependence relationship; it serves to show that
the conditional-dependence relationship between paresthesia
and hypesthesia was the strongest, followed by that between
GBS and paresthesia, between age and paresthesia, and between
GBS and asthenia (detailed strength values can be found in
Table S1 in Multimedia Appendix 2). Furthermore, we found
that most of the parent nodes had a positive correlation with
their child nodes in our network, except for the negative
correlation between erythema and GBS, and the risk of GBS,
paresthesia, and hypesthesia first increased and then decreased
with increasing age.
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Figure 2. Structure of the established Bayesian network. Labeled ovals represent nodes; arrows (arcs) represent conditional-dependence relationships.
The oval in yellow represents the deterministic node, ovals in blue represent the deterministic node’s parent nodes, ovals in green represent the child
nodes, and ovals in gray represent the spouse nodes. Arc thickness is proportional to the strength of the conditional-dependence relationship. Minus (–)
or plus (+) sign indicates either negative or positive association, respectively, between the nodes; arcs in dashed lines indicate a U-shaped association
between 2 nodes. GBS: Guillain-Barré syndrome.

Posttest Probability of the Deterministic Node
The posttest probability of GBS based on the status of its 3
parent nodes is shown in Figure 3. It suggested that male
vaccinees aged 50-64 years and without erythema had the
highest probability of acquiring GBS, followed by vaccinees
aged ≥65 years or those aged 18-49 years, with the other 2
features remaining unchanged. Female vaccinees aged 50-64

years and without erythema also tended to experience GBS, but
male vaccinees in the same situation had almost triple the risk.
In contrast, vaccinees with different other combinations of the
aforementioned 3 parent nodes showed a reduced probability
of acquiring GBS. Vaccinees who experienced the AE of
erythema were estimated to have almost no chance of acquiring
GBS.
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Figure 3. Posttest probability of the deterministic node based on its parent nodes’ combinations. F: false; T: true.

Performance of the BN
The constructed BN model performed desirably at predicting
GBS, with an AUC of 0.866 (95% CI 0.865-0.867), sensitivity
of 0.752 (95% CI 0.749-0.756), specificity of 0.882 (95% CI
0.879-0.885), and accuracy of 0.882 (95% CI 0.879-0.884) at
a probability threshold of 0.014 (95% CI 0.0136-0.0143) for
the internal validation. The best performance of the BN during
cross-validation reached an AUC of 0.906. As for the external
validation in the European data, the established BN obtained
values of 0.829, 0.673, 0.854, and 0.843 for AUC, sensitivity,
specificity, and accuracy, respectively.

BN Development and Validation With the Top 100
AEs
The BN structure learned from the top 100 AEs (Figure 4)
contained the structure learned from the top 50 AEs. Compared

with the BN structure learned from the top 50 AEs, there were
5 more child nodes (back pain, dysphagia, fall, gait disturbance,
and hypokinesia) and 10 more spouse nodes (headache, neck
pain, arthralgia, injection-site pain, pain, dyspnea, pharyngeal
edema, throat tightness, loss of consciousness, and syncope) in
the new structure.

The new BN model had a slightly improved performance
compared with the previous one, obtaining an AUC of 0.883
(95% CI 0.881-0.884), sensitivity of 0.787 (95% CI
0.784-0.790), specificity of 0.891 (95% CI 0.889-0.893), and
accuracy of 0.890 (95% CI 0.888-0.892) at a probability
threshold of 0.012 (95% CI 0.0115-0.0122) for the internal
validation and achieving values of 0.832, 0.664, 0.915, and
0.911 for AUC, sensitivity, specificity, and accuracy,
respectively, in the external validation.
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Figure 4. The Bayesian network structure established from the top 100 adverse events. Labeled ovals represent nodes; arrows (arcs) represent
conditional-dependence relationships. The oval in yellow represents the deterministic node, ovals in blue represent the deterministic node’s parent
nodes, ovals in green represent the child nodes, and ovals in gray represent the spouse nodes. Arcs in red indicate the added arcs in the new structure
compared with the Bayesian network structure learned from the top 50 adverse events. GBS: Guillain-Barré syndrome.

Discussion

Principal Findings
BN models are highly attractive because of their ability to
describe complex probabilistic interactions among variables
and to determine a unique joint probability distribution over
multiple variables for probabilistic inference. In this study, we
identified the 10 most informative GBS-related AEs from the
MB of GBS; constructed the joint probability distribution based
on age, gender, and these 10 AEs to predict the likelihood of
GBS; and achieved a desirable performance.

In accordance with previous studies [2,13], the established BN
structure also suggested sensory signs of asthenia, hypesthesia,
muscular weakness, and paresthesia as clinical features of GBS.
Besides, it recommended that age, gender, and erythema should
also be taken into account for identifying GBS in clinical
practice. Although many epidemiological studies have reported
increased age and male gender as risk factors for GBS [29-32],
none took these two demographic characteristics as a basis for
identification of GBS occurrence. Our efforts may promote the
advancement of precision medicine in GBS identification.
Furthermore, the symptom of erythema, which is an observable
and not easily overlooked body sign, provides more explicit
information than sensory signs for vaccinees or clinicians to
evaluate GBS risk. Moreover, additional symptoms of chills,
dizziness, myalgia, nausea, and pain in extremity should also
raise doubt about an increased risk of GBS; these symptoms
have been presented in many case reports [33-35] but have not
been used for GBS identification. In addition, our BN structure
presented complex interactions among variables visually, which
helped in understanding trigger mechanisms of occurrence of

different postvaccination symptoms, although their causality
still warrant further verification.

Although all the variables contained in the network structure
were used to predict GBS, we also calculated a simplified
posttest probability of GBS using only information regarding
three GBS parent nodes (age, gender, and erythema) and
obtained some interesting results. A highly cited meta-analysis
integrated 16 original GBS-related studies and obtained a
generalized estimate of incidence; the age-specific estimates
showed that GBS incidence increased by 20% for every 10-year
increase in age [4]. However, we found that the risk of GBS
first increased and then decreased with increasing age, based
on VAERS data, peaking in the age group of 50-64 years and
declining in the age group of ≥65 years. In fact, several articles
reported a similar U-shaped relationship between age and GBS
[29-32,36,37], whereas the random-effects negative binomial
regression model the researchers used did not detect this
fluctuation [4]. In line with previous studies [29-32], our study
also found that men had a higher risk of GBS than women. As
for the negative correlation we found between erythema and
GBS, we searched medical archives extensively and a study
pointed out that intermittent erythema in GBS was quite rare
and should be recognized as a rare manifestation of GBS [33].
To sum up, our findings suggested that male vaccinees aged
50-64 years and without erythema should be on the alert or be
warned by clinicians about an increased risk of GBS, especially
when they also experience symptoms of asthenia, hypesthesia,
muscular weakness, or paresthesia.

To our knowledge, this BN model is the second attempt to use
VAERS data for GBS risk prediction after our previous logistic
regression model [18]. This model performed well at predicting
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GBS both in internal cross-validation and external validation,
with AUC reaching 0.866 and 0.829, respectively, which was
superior to the performance of the logistic regression model
(0.775 and 0.769, respectively). This superiority originated from
the different GBS-related AEs we screened through MB and
the complex interactions considered in the BN model. In the
external validation, although the established BN model had a
barely satisfactory performance with a sensitivity of 0.673, it
performed well in specificity (0.854), which is an important
index because a higher value is an indication of a model with
fewer misdiagnoses. The accuracy in the external validation
(0.843) also corroborated that the established BN model is worth
trying in medical practice. In addition, the minor differences in
performance between the top 50 AEs–based networks and top
100 AEs–based networks illustrated that the BN structure
learned from the top 50 AEs had already included the most
informative GBS-related AEs. As clinical practice prefers a
more compact model, albeit with slightly less predictive power,
we primarily reported the BN model learned from the top 50
AEs.

The established BN model not only provides a promising tool
for clinicians to assist in decision-making, but it can also be
incorporated into a web platform, making it convenient for
people who want to monitor their own risk of GBS based on
mild symptoms. Furthermore, few input symptoms are needed
by the BN model, making it more easily acceptable to the
general population, which may facilitate this monitoring
behavior. Given the natural progression of GBS, it may evolve
to respiratory arrest and death, but the prognosis improves
considerably with accurate diagnosis and prompt treatment.

However, there are several limitations to consider. First, both
VAERS and the EudraVigilance system are spontaneous
reporting systems and accept reports submitted without
validation; therefore, reporting biases are inevitable. For
example, Medical Dictionary for Regulatory Activities preferred

terms annotated by domain experts in VAERS may overlap and
reporting may be stimulated by possible publicity. Second,
because many AEs are sparse in the annual data, we chose to
use data across all years in constructing the BN model. This
approach neglected the influence of different formulations of
influenza vaccines in different years possibly related to GBS
risk. Third, the cohort we analyzed was restricted to the VAERS
FLU3 and EudraVigilance influenza vaccines; thus, the BN
model should be interpreted and applied with caution and this
novel risk prediction model needs to be further studied,
validated, and evaluated by prospective studies. Fourth, there
may be potential overfitting problems driven by the MLE
method; nonetheless, the good performance during the external
validation indicated that overfitting issues were controlled well
in this study. Finally, BN modelling requires the assumption of
the Markov property; thus, some dependence relationships may
not be revealed yet in the ultimate network. An interesting future
direction is to quantify the marginal dependency between the
occurrence of GBS and each of the 10 identified AEs that are
deemed to be predictive of GBS, using bivariate generalized
linear mixed effects models or the transformation-free Sarmanov
family [38,39].

Conclusions
In conclusion, this study developed and externally validated a
BN model for GBS risk prediction based on large-scale US and
European influenza vaccine postmarketing cohort data. The
findings illustrated that a BN model can effectively identify the
most significant factors of GBS, improve understanding of the
complex interactions among different postvaccination symptoms
through its graphical representation, and accurately predict the
risk of GBS both in internal and external validation. The
established BN model could further assist clinical
decision-making by providing an estimated risk of GBS for a
specific vaccinee or be developed into an open-access platform
for vaccinees’ self-monitoring.
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