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Feasibility of detecting change in backscattered energy of acoustic harmonics in
locally heated tissues

Borna Maraghechia,b , Michael C. Koliosa,c and Jahan Tavakkolia,c

aDepartment of Physics, Ryerson University, Toronto, Ontario, Canada; bDepartment of Radiation Oncology, Washington University School of
Medicine, St. Louis, MO, USA; cInstitute for Biomedical Engineering, Science and Technology (iBEST), Keenan Research Centre for Biomedical
Science, St. Michael’s Hospital, Toronto, Ontario, Canada

ABSTRACT
Purpose: A real-time noninvasive thermometry technique is required to estimate the temperature dis-
tribution during hyperthermia to monitor and control the treatment. The main objective of this study
is to demonstrate the possibility of detecting change in backscatter energy (CBE) of acoustic harmonics
in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues in which the temperature was
locally increased within the hyperthermia regime.
Materials and Methods: A peristaltic pump was used to circulate hot water through a needle inserted
inside the samples to locally increase the temperature from 26 �C to 46 �C. The CBE of acoustic har-
monics were used to identify the location of temperature changes in the samples. A conventional
echo-shift technique was also implemented for comparison. Data collection was performed for two
conditions to investigate the effect of motion on both techniques by: (1) inducing vibration in the
sample through the peristatic pump and, (2) subsequently with no sample vibration while the pump
was off.
Results: Harmonics were able to determine the location of temperature rise in the presence and
absence of vibration. In gel phantom, the mean contrast to noise ratio (CNR) in CBE maps reduced by
a factor of 0.86 due to vibration whereas in gradient maps the CNR reduced by a factor of 8.3.
Conclusions: The findings of this study suggest that the change in backscatter energy of acoustic har-
monics can potentially be used to develop a noninvasive ultrasound-based thermometry technique
with lower susceptibility to motion artifacts compared to the echo-shift method.
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Introduction

Many researchers have been working to develop noninvasive
tissue temperature monitoring methods [1–6]. The main
motivation behind these studies is to monitor the local tem-
perature distribution in the region of interest during hyper-
thermia in order to uniformly heat the target tissue (e.g., a
tumor), while preserving the surrounding healthy tissue.
Hyperthermia is a type of thermal therapy in which the tis-
sue temperature is increased to 40–45 �C [7–12].

Tissue thermometry is being performed in clinics using
thermocouples and fiber-optics sensors [13–15]. However,
these devices are invasive and provide only single-point tem-
perature measurements. Magnetic resonance imaging pro-
vides volumetric temperature measurement with relatively
high spatial and temperature resolutions [3–6]. However, MRI
systems are expensive and the heating modality has to be
compatible with the strong magnetic fields of the imaging
system. Ultrasound is an alternative and potentially attractive
option for thermometry since it is inexpensive, portable,
non-ionizing and has fast data acquisition and image proc-
essing capabilities [1,2]. Several ultrasound-based methods

have been proposed for noninvasive temperature measure-
ment such as b (the coefficient of nonlinearity) imaging, the
backscattered RF echo-shift technique, change in backscat-
tered energy (CBE), and shear wave thermometry [1,2,16–28].

The change in the ultrasound backscattered energy (CBE)
of the ultrasound signal is a parameter that varies as a func-
tion of temperature. This can be measured by the examin-
ation of the change in the amplitude of the RF echo signal
(signal strength). Arthur et al. have stated that in an ex vivo
bovine liver and turkey breast muscle samples and in an in
vivo animal study, the backscattered energy changes mono-
tonically with temperature with either positive or negative
slope whether the tissue is made of aqueous or lipid scatter-
ers, respectively [25–27]. This conclusion was based on
the theoretical model of the backscattered power from
a small tissue volume containing a random distribution of
scatterers [28].

Amongst all ultrasound based thermometry methods, the
backscattered RF echo-shift technique is the most estab-
lished method, which is based on tracking the shift in the
echo signal due to the change in speed of sound and ther-
mal expansion [1,2]. Simon et al. previously showed that

CONTACT Jahan Tavakkoli jtavakkoli@ryerson.ca Department of Physics, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
� 2019 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

INTERNATIONAL JOURNAL OF HYPERTHERMIA
2019, VOL. 36, NO. 1, 963–973
https://doi.org/10.1080/02656736.2019.1660001

http://crossmark.crossref.org/dialog/?doi=10.1080/02656736.2019.1660001&domain=pdf&date_stamp=2019-12-26
https://orcid.org/0000-0002-3743-3956
http://orcid.org/0000-0002-9994-8293
https://orcid.org/0000-0003-1947-4479
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/02656736.2019.1660001
http://www.tandfonline.com


temperature change in a uniform medium could be esti-
mated using [22]:

dT zð Þ ¼ c0
2

1
a� k

� �
d
dz

dt zð Þð Þ, (1)

where c0 is the speed of sound (SOS) at initial temperature,
a ¼ odðTÞ=oTð Þ=dðTÞ is the linear coefficient of thermal
expansion of the medium, k ¼ ocðTÞ=oTð Þ=cðTÞ is the ther-
mal coefficient of the SOS, and dt zð Þ is the cumulative time-
shift at depth z. The first term in Equation (1), c0

2
1

a�k

� �
, is a

material-dependent parameter denoted by k, and the second
term, d

dz dt zð Þð Þ, is the axial gradient of the cumulative shifts
in the RF echo signal [22].

An important limitation of the backscattered RF echo-shift
technique is its high sensitivity to motion (primarily respira-
tory and cardiac motions) present in almost all in vivo situa-
tions. Mechanical shifts due to tissue motion can mask
temporal shifts due to temperature change and appear as
artifacts in temperature maps. Therefore, using this tech-
nique, robust temperature estimation has not been applied
clinically. However, using motion compensation techniques,
promising results have been shown in in vivo studies to
reduce the sensitivity of this technique to motion [23,24].

Previously, a noninvasive thermometry method was pro-
posed based on the ratio of the acoustic harmonics gener-
ated by the nonlinear wave propagation [29]. Simulations
were performed to study the temperature dependence of
the harmonic’s amplitude in a lossless medium in transmit
mode for a plane wave of finite amplitude [29]. Maraghechi
et al. studied the temperature dependence of harmonics’
amplitudes and their ratios in water at several frequencies
and showed that harmonics are monotonically increasing
functions of temperature at 13MHz [30].

Our group previously showed that the pressure amplitude
and the backscattered energy of the fundamental frequency
(p1 and BE1), the second (p2 and BE2) and the third (p3 and
BE3) harmonics in tissue-mimicking gel phantoms and ex vivo
bovine muscle tissues are temperature dependent and that
this temperature dependence could be considered as a basis
for an ultrasound-based method for noninvasive thermom-
etry [31]. It was shown that the average BE1, BE2 and BE3
increased by 163%, 281% and 2257%, respectively in tissue
samples as the temperature was uniformly elevated from 26
to 46 �C. In gel phantoms, the average BE1, BE2 and BE3
increased by 42%, 121% and 470%, respectively in the same
temperature range [31]. The tissue samples and the gel
phantoms were uniformly heated and the ultrasound beam
had a transmit frequency of 13MHz.

In the current study, the feasibility of detecting the loca-
tion of temperature increase was investigated by estimating
the change in backscattered energy of the acoustic harmon-
ics and comparing it with the conventional RF echo-shift
technique in a tissue-mimicking gel phantom and ex vivo
bovine muscle tissues. A simple illustration of the effect of
medium motion is also presented.

Materials and methods

The experiments were performed on a tissue-mimicking gel
phantom and ex vivo bovine muscle tissues. The gel phan-
tom was composed of distilled and degassed water (90.4%
w/v), gelatin (7.8% w/v), polyethylene oxide (1% w/v) and
formaldehyde (0.8% w/v). Freshly excised ex vivo bovine
muscle tissues bought from a local butcher shop were
immersed in 0.9% degassed saline solution at 5 �C for 12 h
prior to each experiment. Before the experiment, the tissue
samples were degassed in a desiccator connected to a vac-
uum pump (2581, Welch, Monroe, LA) for 30min in order to
remove large air pockets from the tissue.

A high-frequency ultrasound scanner (VevoVR 770, FujiFilm
VisualSonics Inc., Toronto, ON, Canada) with a wide-band sin-
gle-element transducer (RMV-710B, 25-MHz center frequency,
f-number 2.1, 15mm focal length) was used to transmit
pulse trains of 30-cycle length at 13MHz with a focal positive
peak pressure of approximately 3.9MPa. The Vevo 770 is a
commercial ultrasound system used for small animal imag-
ing. The transmit pulse length of 30-cycle and transmit
pulse-frequency of 13MHz were chosen so that the second
(26MHz) and third (39MHz) harmonics could be detected
with a reasonable signal to noise ratio within the bandwidth
of the transducer. Figure 1 shows the bandwidth of the
transducer and the frequency spectrum of a typical RF echo
line. For the bandwidth, a flat reflector was placed at the
focus of the transducer and the reflected signal was meas-
ured when the transducer was excited by a single
cycle pulse.

2-D RF frames were generated by the mechanical sector
sweep of the single-element transducer. The transducer was
placed on top of the phantom and it was coupled to the
phantom using ultrasonic coupling gel (Aquasonic, Parker

Figure 1. (a) Measured bandwidth of the RMV-710B transducer and (b) the fre-
quency spectrum of a typical RF echo line through the gel phantom.
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Labratories, Inc. Fairfield, NJ). A stainless steel needle was
inserted in the gel phantom and hot water, at various tem-
peratures, was circulated in the needle in order to increase
the temperature of the phantom only locally around the nee-
dle. The needle had an outer diameter of 3mm with 0.5mm
wall thickness. Hot water was pumped in the needle from a
temperature-controlled water bath (Haake DC10, Thermo
Electron Corp., Newington, NH) using a peristaltic pump
(MasterflexVR L/SVR , Cole Parmer, Chicago, IL). Temperature was
recorded using a home-made calibrated needle type-K
thermocouple and a digital thermometer (Omegaette HH306,
Omega Eng. Inc., Stamford, CT). The thermocouple was made
from a 125 micron nickel-chromium and a 125 micron nickel-
alumel wire (California Fine Wire, Grover City, CA). The junc-
tion was made using an in-house constructed capacitive dis-
charge welder. The completed thermocouple junction was
fed inside a stainless-steel Precision Glide hypodermic needle
(Becton-Dickinson, Franklin Lakes, NJ) from which the hub
has been removed. The junction was glued inside the needle
at the start of the bevel. The needles used were 23 gauge
with a length of 38mm. The 75-cm long wires were fed
through a small diameter plastic tube (to prevent kinking of
the wires) until the hubless end of the needle can be glued
inside the plastic tube. The other end of the tube and wires
are connected to a Type K miniature thermocouple plug
from Omega Engineering.

The needle was placed laterally 2mm away from the
imaging plane of the transducer in order to minimize the RF
signal distortion and/or saturation from the presence of the
highly reflective metal needle. Figure 2 shows the schematic
of the experimental setup and the needle position. The
thermocouple was inserted in the sample, at the same depth
as the heating needle. The tip of the thermocouple was
placed within the imaging plane (2mm away from the heat-
ing needle). The temperature at the thermocouple location
was gradually increased from 26 �C to 46 �C. The tip of the
thermocouple (which is within the imaging plane), and
therefore the focal region of the transducer experienced the

highest temperature rise from the needle at 2mm due to
the cylindrically symmetric temperature distribution.

In this study, two sets of experiments were performed in
each sample. In the first set, data collection was performed
while the temperature was increasing from 26 to 46 �C by
pumping hot water through the needle. The pump was also
served as a source of motion to vibrate the phantom. Data
collection was performed for the second time while the tem-
perature was cooled down when the water bath and the
peristaltic pump were turned off to eliminate vibrations in
the phantom. The frequency of the induced vibration was
estimated from the ultrasound M-mode data collected using
the same transducer during the experiment. However, the M-
mode data could not provide reliable estimation of displace-
ment values along x and y directions as it is mostly sensitive
to motion only in the ultrasound wave propagation direction
(z direction). A calibrated vibration meter (GM63B,
BENETECH, China) capable of measuring displacements in
three dimensions within a range of 0.001 to 1.999mm, was
used to measure the vibration displacement in the heating
needle entry location into the sample (shown in Figure 1)
along x, y and z directions. The experiments were repeated 5
times in two different samples of the tissue-mimicking gel
phantoms of the same composition and two different sam-
ples of ex vivo bovine muscle tissues for both set of experi-
ments (with and without the presence of vibration in
the sample).

The backscattered energies of the harmonics were
obtained by first filtering the RF signal. Three band pass
equiripple Finite Impulse Response (FIR) filters were designed
to pass frequencies between 9MHz to 16MHz, 23MHz to
29MHz and 36MHz to 42MHz in order to separate the fun-
damental frequency, the second and the third harmonics
content of the RF signal, respectively. The envelope of the
signal was generated using the Hilbert transform. Envelope
values were squared to calculate the backscattered energy at
each data point on the RF signal. More details can be found
in ref [31].

Figure 2. Schematic of the experimental setup. The side view of the setup shows that the hot needle is placed laterally 2mm away from the imaging plane of the
transducer and the tip of the thermocouple is placed within the imaging plane (2mm away from the heating needle). The temperature at the thermocouple loca-
tion changed from 26 �C to 46 �C.

INTERNATIONAL JOURNAL OF HYPERTHERMIA 965



The change in the backscattered energy of each harmonic
(CBEi) at each temperature (T) and each pixel (x, y) was
obtained by:

CBEi x, y, Tð Þ ¼ BEi x, y, Tð Þ�BEi x, y, 26�Cð Þ
BEi x, y, 26�Cð Þ � 100: (2)

The conventional echo shift technique was performed by
taking cross-correlation between two consecutive frames
obtained at each temperature with a window size of 1�s i.e.,
0.077 ls (118lm), and an overlap of 50%. 2D gradient maps
were obtained by differentiating the cumulative echo shifts
along the axial direction [22].

The spatial resolution of ultrasound imaging transducer is
commonly consisted of axial and lateral resolutions. In an
ideal situation, i.e. in the absence of any noise or artifact
that could affect the spatial resolutions, and with the
assumption of a linear wave propagation, the highest theor-
etically attainable axial resolution in our method is equal to
half the length of the transmit pulse, i.e. 30 � k/2¼ 1.8mm
[32]. The highest theoretically attainable lateral resolution in
our method is equal to 1.22 � k � f-number ¼ 0.3mm,
which is derived from the geometry of the focused trans-
ducer used in our study [32]. The spatial resolution of the
CBE technique in our study can therefore be assumed to be
the same as the above-mentioned imaging resolution.

The B-mode images of the gel phantom and ex vivo
bovine muscle tissue were also derived and presented for
four different temperatures. The B-mode images were
obtained using 20 � log10 absðhilbertðRFDatað ÞÞÞ and dis-
played within the range of �80 to 0 dB using MATLAB
(MathWorks, Natick, MA) where log10 is the common loga-
rithm and abs is the absolute value.

Contrast to Noise Ratio (CNR) and Signal to Noise Ratio
(SNR) were calculated as metrics in order to compare the
image qualities of temperature maps between the two tech-
niques and for the results of each technique in the presence
and absence of vibration. CNR and SNR were calculated
using [32]:

CNR ¼ lheated�lunheatedj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
heated þ r2

unheated

q , (3)

SNR ¼ lheated
rheated

, (4)

where lheated and lunheated are the mean pixel values inside
and outside the heated regions, respectively, and rheated and
runheated are the standard deviation of pixel values inside and
outside the heated regions, respectively.

Results

B-mode images of the gel phantom and tissue sample are
presented in Figure 3. Figures 4, 5, 7 and 8 show 2D maps
of change in backscattered energies of the acoustic harmon-
ics (CBE1, CBE2 and CBE3) in the tissue mimicking gel phan-
tom and ex vivo tissue when the temperature was changed
from 26 �C to 46 �C. Figures 6 and 9 show the gradient maps
using the conventional echo-shift technique in the gel phan-
tom and ex vivo tissue. The temperatures measured in the

center of heated region within the imaging plane by the
thermocouple were 31, 38, 42 and 46 �C as denoted in the
figures. The vibration meter measured maximum displace-
ment of 1.455, 0.221 and 1.030mm in x, y and z directions.
However, since the location where the vibration was meas-
ured was outside the sample, the amplitude of the measured
vibration was presumably larger than what it was inside the
sample. The frequency of the vibration was approximately
0.8 Hz. Tables 1 represents the SNR and CNR in CBE and gra-
dient maps of Figures 4 to 9. The regions of interest for cal-
culating the mean and the standard deviation inside and
outside the heated areas were selected as horizontal rectan-
gles as shown in Figures 4, 6, 7 and 9.

Discussion

Figures 4, 5, 7 and 8 show that the change in backscatter
energy of acoustic harmonics are detectable in a sample
where only a localized volume is heated. The results also
show that this technique is nearly unaffected by the vibra-
tion induced in the sample. However, the CBE maps show
that the backscatter energy of the harmonics were not con-
sistently increasing with the temperature only in the heated
region, especially in CBE1. The variability was reduced by
using higher harmonics (CBE2 and CBE3). Figures 4, 5, 7 and
8 also demonstrate that higher harmonics have higher sensi-
tivity to temperature which is in agreement with our previ-
ous findings [31].

Figures 6 and 9 demonstrate that the gradient map
obtained using the conventional echo-shift technique shows
the heated region in the sample only in the case where the
measurement was not affected by vibrations. However, it is
important to note that there has been no motion compensa-
tion technique applied for obtaining these maps. It is antici-
pated that applying a motion compensation technique along
with a very high-frame-rate data acquisition [24,33] will
reduce the effect of motion artifacts in both methods.

The results in Table 1 show that the SNR and the CNR
are higher in the images obtained using the nonlinear
ultrasound technique compared to the ones using the
echo-shift technique. The SNR and CNR values were signifi-
cantly reduced in the image obtained using the echo-shift
technique in the presence of vibration in the sample, com-
pared to the one without vibration. The mean SNR was
reduced by a factor of 5 from 1.71 to 0.34 and the mean
CNR was reduced by a factor of 8.3 from 0.75 to 0.09 in
the presence of phantom vibration. However, the SNR and
CNR values in images obtained using the CBE1, CBE2, and
CBE3 reduced by approximately 0.81, 0.9 and 0.74 times in
the phantom with vibration compared to the one without.
The harmonics-based method is less sensitive to motion,
since this technique does not depend on the correlation
between consecutive RF frames. On the other hand, the
performance of the echo-shift technique strongly depends
on the correlation of the signals, which is directly affected
by motion.

The magnitude of human organ motion depends on ana-
tomical site. The motion induced in the samples is smaller
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than the motion of internal organs such as liver, kidney and
pancreas due to normal breathing conditions [34]. However,
the magnitude of the motion is comparable to that of such
organs in forced breath holding condition and the frequency
of the motion is similar to the heart rate [34].

The average and standard deviation of CBE1, CBE2 and
CBE3 values in the focal region were calculated in five trials
with two tissue-mimicking gel phantoms and two ex vivo
bovine muscle tissues at each temperature and shown in
Figure 10. Tables 2 and 3 shows the standard deviation (SD)

Figure 3. B-mode images of (left) tissue mimicking gel phantom and (right) ex vivo bovine muscle tissue. The temperatures measured by the inserted thermo-
couple were 31, 38, 42 and 46 �C at the center of heated region.

Figure 4. 2 D maps of CBE1 (left), CBE2 (middle), and CBE3 (right) in tissue mimicking gel phantom while the temperature was cooling down from 46 �C to 26 �C
and no vibration was present in the phantom. The temperatures measured by the inserted thermocouple were 31, 38, 42 and 46 �C at the center of heated region.
The color bars represent percentage change in backscattered energy. The horizontal rectangles are the regions of interest for calculating the CNR and SNR.
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Figure 5. 2 D maps of CBE1 (left), CBE2 (middle), and CBE3 (right) in tissue mimicking gel phantom while the temperature was elevated from 26 to 46 �C with the
presence of vibration in the phantom. The temperatures measured by the inserted thermocouple were 31, 38, 42 and 46 �C at the center of heated region. The
color bars represent percentage change in backscattered energy. The heated region is along the arrow in the lower right panel.

Figure 6. 2 D gradient maps in tissue mimicking gel phantom obtained using the conventional echo-shift technique without (left) and with (right) presence of
vibration in the phantom. The temperatures measured by the inserted thermocouple were 31, 38, 42 and 46 �C at the center of heated region. The color bars repre-
sent the axial gradient of the cumulative time shifts in units of s/m. The horizontal rectangles are the regions of interest for calculating the CNR and SNR.
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in the values of CBEi in a randomly selected one trial and all
the trials. This was done in order to show the sensitivity of
the harmonics to temperature change. They also show the
variation and consistency of the CBEs in one and multiple tri-
als and different samples. The results show that the harmonics

monotonically increase with temperature with a higher sensi-
tivity at higher harmonics. CBE values are more consistent in
the gel phantom compared to tissue samples. This could be
due to higher variation in tissue samples compared to gel
phantoms and lower SNR in tissue samples due to their

Figure 7. 2 D maps of CBE1 (left), CBE2 (middle), and CBE3 (right) in ex vivo bovine muscle tissue while the temperature was cooling down from 46 �C to 26 �C and
no vibration was present in the tissue. The temperatures measured by the inserted thermocouple were 31, 38, 42 and 46 �C at the center of heated region. The
color bars represent percentage change in backscattered energy. The horizontal rectangles are the regions of interest for calculating the CNR and SNR.

Figure 8. 2 D maps of CBE1 (left), CBE2 (middle), and CBE3 (right) in ex vivo bovine muscle tissue while the temperature was elevated from 26 to 46 �C with the
presence of vibration in the tissue. The temperatures measured by the inserted thermocouple were 31, 38, 42 and 46 �C at the center of heated region. The color
bars represent percentage change in backscattered energy. The heated region is along the arrow in the lower right panel.

INTERNATIONAL JOURNAL OF HYPERTHERMIA 969



higher attenuation. Higher harmonics in general show higher
variation due to the lower SNR at higher harmonics.

The standard error (SE) and the sensitivity (gradient) of
measured CBEi as a function of temperature (oCBEi/oT) could
represent the accuracy of temperature estimation of this
technique. Lower SE values and higher sensitivity in the
measured CBEi lead to higher accuracy in temperature pre-
diction. In order to estimate the accuracy of temperature
prediction of this technique in ex vivo tissue samples, the
mean and standard error (SE ¼ SD=

ffiffiffi
5

p
) of the measured CBEi

values were calculated and plotted as a function of tempera-
ture. Table 4 shows the lower and upper temperature band
corresponding to the mean minus SE and mean plus SE of
CBEi values, respectively. Figure 11 demonstrates how the
temperature ranges were obtained from the mean and SE of
CBEi. The results of Table 4 show that, in our study, the CBE1

Figure 9. 2 D gradient maps in ex vivo bovine muscle tissue obtained using the conventional echo-shift technique without (left) and with (right) presence of vibra-
tion in the tissue. The temperatures measured by the inserted thermocouple were 31, 38, 42 and 46 �C at the center of heated region. The color bars represent the
axial gradient of the cumulative time shifts in units of s/m. The horizontal rectangles are the regions of interest for calculating the CNR and SNR.

Table 1. The mean and the standard deviation of calculated SNR and CNR
values for CBE and gradient maps with and without the presence of vibration
in the gel phantom and tissue samples.

Gel phantom Tissue samples

SNR CNR SNR CNR

CBE1 (no-vib.) 1.91 ± 0.24 1.78 ± 0.24 3.1 ± 0.16 3.1 ± 0.16
CBE2 (no-vib.) 2.1 ± 0.62 2.08 ± 0.62 3.6 ± 0.55 3.6 ± 0.55
CBE3 (no-vib.) 2.68 ± 1.04 2.6 ± 0.99 3 ± 0.34 3 ± 0.34
Echo-shift (no-vib.) 1.71 ± 0.54 0.75 ± 0.12 0.61 ± 0.14 0.91 ± 0.2
CBE1 (vib.) 1.55 ± 0.55 1.48 ± 0.54 2.5 ± 0.15 2.5 ± 0.13
CBE2 (vib.) 2.09 ± 0.67 2.07 ± 0.67 2.3 ± 0.18 2.3 ± 0.18
CBE3 (vib.) 2 ± 0.85 1.98 ± 0.81 2 ± 0.21 2 ± 0.21
Echo-shift (vib.) 0.34 ± 0.3 0.09 ± 0.02 0.05 ± 0.03 0.08 ± 0.05

Figure 10. The mean and standard deviation of CBE1, CBE2 and CBE3 in (a) tis-
sue-mimicking gel phantoms and (b) ex vivo bovine muscle tissues as a func-
tion of temperature. The error bars represent the standard deviation in five
trials with two samples of tissue and gel phantoms.
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has the lowest accuracy that can roughly be estimated as
±3�, whereas the CBE2 and CBE3 have higher accuracies that
can roughly be estimated as ±1�.

The temperature range used in this study was from 26 �C
to 46 �C which was based on our previous work [31].
However in hyperthermia the tissue temperature increases
from 37 to 45 �C. Therefore, in order to show the sensitivity
of harmonics within this more relevant clinical temperature
range, the maps of CBE1, CBE2 and CBE3 in the gel phantom
and tissue sample were plotted in Figures 12 and 13 in
which the base level temperature was set to 38 �C and the
temperature increases to 46 �C.

In this study, the change in harmonics occurred only due
to temperature change at a constant source pressure in a
homogenous gel phantom and tissue sample. The character-
istics of a nonlinear field depend on the source pressure
amplitude and the medium’s acoustic parameters (absorption
coefficient, coefficient of nonlinearity and sound speed).
Varying the source pressure amplitude and the presence of
tissue heterogeneities (especially fat) will lead to some
changes in amount of harmonic generation at different tem-
peratures. An extension of this work will be to investigate
the effect of source pressure amplitude on harmonics gener-
ation with varying temperature in a more heteroge-
neous medium.

In this study, 2nd and 3rd harmonics were generated and
detected with a commercial high frequency ultrasound scan-
ner used for small animal imaging. Our goal is to develop a
noninvasive thermometry technique to be used during
hyperthermia treatments on small animals such as mice [35],
and/or in certain clinical applications such skin cancer treat-
ment. In addition to that, higher transmit frequency enhan-
ces the generation of harmonics and increases the
temperature dependence of acoustic harmonics generated
[19, 21]. However, short focal length of the transducer and
the relatively high transmit frequency limits the penetration
depth of the ultrasound beam. The possibility of implement-
ing this technique on transducers with lower transmit fre-
quencies and longer focal lengths needs to be investigated.
This, on the other hand, will reduce the spatial resolution of
the ultrasound image and therefore, the gradient and the
CBE maps. Moreover, harmonic generation will be a chal-
lenge at low frequencies (� 1MHz). Therefore, mid-range fre-
quencies (� 8MHz) can potentially be more suitable for
clinical thermometry. In addition to imaging and thermom-
etry, in this study, locally heating the sample was done by
circulating hot water inside a stainless steel needle. In add-
ition, locally heated temperature maps can potentially be
obtained from the CBE maps using calibration maps that
convert the measured change in harmonics to the tempera-
ture change. Since harmonic generation in a given type of
tissue depends on acoustic properties of the tissue, the char-
acteristics of the transmit signal, heating pattern and the
beam propagating path, the calibration experimental condi-
tions should be as similar as possible to the measurements
of interest. The accuracy and precision of temperature esti-
mation using this technique can then be investigated. Our
future studies will include generating temperature maps
using a focused therapeutic ultrasound transducer as a heat-
ing modality which is more practical for clinical
hyperthermia.

Conclusion

The results obtained in this study indicate that the change in
backscatter energy of acoustic harmonics are detectable in a
tissue-mimicking gel phantom and ex vivo bovine muscle tis-
sues where only localized volumes were heated. In the
absence of vibration in the sample, 2 D CBE and gradient
maps were obtained using the harmonics and the RF echo-

Table 2. The standard deviation of CBE1, CBE2 and CBE3 in (left) one and
(right) five trials with two tissue-mimicking gel phantoms of the same com-
position at three temperatures.

One All

36� 42� 46� 36� 42� 46�

CBE1 ±7 ±10 ±14 ±10 ±15 ±15
CBE2 ±7 ±12 ±18 ±13 ±17 ±22
CBE3 ±19 ±44 ±52 ±12 ±35 ±47

Table 3. The standard deviation of CBE1, CBE2 and CBE3 in (left) one and
(right) five trials with two different ex vivo bovine muscle tissues at three
temperatures.

One All

36� 42� 46� 36� 42� 46�

CBE1 ±18 ±32 ±62 ±20 ±31 ±96
CBE2 ±11 ±14 ±56 ±18 ±27 ±90
CBE3 ±23 ±87 ±148 ±19 ±95 ±215

Table 4. The temperature range corresponding to mean minus SE and mean
plus SE of CBE1, CBE2 and CBE3 in ex vivo bovine muscle tissues at three
measured temperatures.

CBE1 CBE2 CBE3
46� (43.6� , NA) (45.2� , NA) (45.2, NA)
42� (37.7� , 42.8�) (41.3� , 42.3) (40.85, 42.3)
36� (33.3� , 38.7�) (34.9� , 36.5�) (35.4, 36.2)

Figure 11. The mean and standard error of CBE1, CBE2 and CBE3 in ex vivo
bovine muscle tissues as a function of temperature. The error bars represent
the standard error in five trials. The red and blue lines represent the lower and
upper temperature band, respectively.
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shift technique. In the presence of the vibration that is
mechanically induced in the sample and without applying
any motion compensation technique, identifying the heated
region was feasible only by using the proposed method

based on backscattered energies of the harmonics. It is
anticipated that by incorporating an appropriate motion
compensation technique, the performances of both methods
will be improved.

Figure 12. 2 D maps of CBE1 (left), CBE2 (middle), and CBE3 (right) in tissue mimicking gel phantom while the temperature was elevated from 38 to 46 �C. The tem-
peratures measured by the inserted thermocouple were 40, 42, 44 and 46 �C at the center of heated region. The color bars represent percentage change in back-
scattered energy (with a 38 �C baseline).

Figure 13. 2 D maps of CBE1 (left), CBE2 (middle), and CBE3 (right) in ex vivo bovine muscle tissue while the temperature was elevated from 38 to 46 �C. The tem-
peratures measured by the inserted thermocouple were 40, 42, 44 and 46 �C at the center of heated region. The color bars represent percentage change in back-
scattered energy (with a 38 �C baseline).
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