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This supplement contains a description of additional analyses, additional statistical methods9

and all supplemental figures referenced in the main text of the manuscript.10

Detailed sample description and additional analyses11

A complete description of the available covariate information12

Maternal questionnaires, including those on smoking, stress, and depression, were admin-13

istered prenatally and annually after the child’s birth. Postnatal child health questionnaires were14

administered to a parent every three months through age 7 years. Annual visits of child and parent15

to the study center, starting at one year of age, included questionnaires, anthropomorphic measure-16

ments, and phlebotomy. Questionnaires included the Perceived Stress Scale [1], the Edinburgh17

Perinatal/Postnatal Depression Scale [2], and additional questionnaires to assess stress related to18

neighborhood factors, violence, and economic hardship [3]. Parent-reported colds were ascertained19

by telephone questionnaire every three months throughout the first three years of life. Gestational20

age at birth, maternal infections during pregnancy, and obstetric history were obtained from med-21

ical records. Bedroom allergens were measured in vacuumed dust from the child’s bedroom, and22

cotinine levels were measured in cord blood plasma. Pet ownership, number of smokers in the23

household, daycare attendance, number of siblings, and maternal asthma were ascertained by in-24

terview with the mother. Allergic sensitization was determined by prick skin testing for 14 common25

aeroallergens at 3, 5, or 7 years of age. Aeroallergen sensitization was defined as a wheal ≥ 3mm26

larger than the saline control on prick skin testing or specific IgE ≥ 0.35kU/L.27

Differences between the inferred genetic ancestry and reported race analyses are robust to28

differences in power29

We showed in “Inferred genetic ancestry is more correlated with DNA methylation than is

self-reported race” that we identified 8,597 conserved inferred genetic ancestry-associated CpGs

(IGA-CpGs), but only 2,162 conserved self-reported race-associated CpGs (RR-CpGs). To show
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that these results were robust to any differences between the powers of these analyses, we used

Model (1) (see Methods) to determine

δRR = P
{
β(0)

g,RR , 0 or β(7)
g,RR , 0

}
δIGA = P

{
β(0)

g,IGA , 0 or β(7)
g,IGA , 0

}
,

which are the fraction of CpGs with non-zero self-reported race (RR) or inferred genetic ancestry30

(IGA) effects at birth or age 7. Since these quantities do not depend on the observed data, their31

values are invariant of our power to identify RR-CpGs and IGA-CpGs. We estimated that δIGA was32

11% larger than δRR, indicating that IGA-CpGs outnumber RR-CpGs, which is consistent with our33

results in the main text.34

Additional analyses to identify exposure-associated CpG sites35

We performed additional analyses on every measured direct or indirect measures of environ-36

mental exposures to attempt to identify exposures that correlated with DNA methylation (DNAm)37

levels at either birth or age 7. These exposures were maternal asthma, maternal infections dur-38

ing pregnancy, pet ownership, bedroom allergens, number of smokers in the household, number39

of siblings, number of previous live births, daycare attendance, number of colds at age 2 or 3,40

and allergic sensitization or asthma in the child. Unlike maternal cotinine levels measured during41

pregnancy, there were no CpGs associated with DNAm levels at birth or age 7 at a 5% FDR.42

We also tested the association between DNAm at birth and scores derived from the Per-43

ceived Stress Scale (PSS) and the Edinburgh Perinatal/Postnatal Depression Scale (EPDS), which44

are maternal stress-related phenotypes that were measured during the second or third trimester45

of pregnancy. There is ample evidence that suggests children exposed to adverse maternal men-46

tal well-being have compromised hypothalamus–pituitary–adrenal (HPA) axis signaling, possibly47

due to heightened exposure to maternal cortisol levels in utero [4]. Many observational studies48

have therefore tried to understand the relationship between prenatal stress and cord blood DNAm49
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on the promoters of the HPA-related genes NR3C1, HSD11B2, FKBP5, CRH, CRHBP, SLC6A4,50

and OXTR [5]. Despite there being evidence from studies with smaller sample sizes than ours51

that the promoter region DNAm in the cord blood of these genes (especially NR3C1) is related52

to the aforementioned mental-health variables [6–8], we found little to no evidence supporting53

these associations in our study (Figures S6 and S7). These null results are recapitulated in Mansell54

et al. [4], which, as far as we are aware (and stated by the authors of the Mansell et al. study),55

is the largest study which targets the cord blood DNAm on the promoters of HPA-related genes.56

Interestingly, they show that their ostensibly contradictory results can be attributed to erroneous57

statistical techniques used in previous studies [4].58

Unfortunately, the existing epigenetic literature devoted to studying the effect of exposure his-59

tories on the blood DNAm in infants, children and adults is replete with studies whose conclusions60

are based on faulty statistics. Some notable examples include:61

(i) Kippler et al. [9] (106 citations): The authors study the effect of maternal exposure to cad-62

mium on the cord blood DNAm of 127 infants using the HumanMethylation450K BeadChip.63

While there were no significant associations after adjusting for multiple testing, the authors64

used the non-uniformity of their CpG P value histograms in males and females to claim65

cadmium affected global DNAm patterns, and had a sex-specific effect. However, since the66

authors failed to adjust for latent confounding factors (including cellular composition) that67

plague high throughput DNAm studies [10], their conclusions can easily be explained away68

by the almost sure systematic correlation between their > 450, 000 P values [11, 12].69

(ii) Koestler et al. [13] (64 citations): The authors used the HumanMethylation450K BeadChip70

to measure the cord blood DNAm of 138 newborns to understand the effect of maternal71

mercury and arsenic exposure on DNAm. The authors failed to account for multiple testing72

in all of their analyses:73

• The authors reported that 9 out of the 348,569 CpGs in their study were significantly74

associated with maternal mercury at a P value threshold of 10−4 (Figure 1 in Koestler75
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et al. [13]). This is 26 fewer than expected by chance.76

• The authors reported that 37 out of the 348,569 CpGs in their study were significantly77

associated with the multiplicative interaction between maternal mercury and arsenic at78

a P value threshold of 10−4 (Figure 2 in Koestler et al. [13]). This is just 2 more than79

expected by chance (binomial P value = 0.38).80

(iii) Hernandez-Vargas et al. [14] (50 citations): The authors determined the concentration of81

aflatoxin B1 (AFB1) in the plasma of 115 pregnant mothers and subsequently measured82

the blood DNAm of their children at age 2-8months. They reported that the blood DNAm83

M-values at 71 CpGs were significantly linearly related to AFB1 concentration (5% FDR).84

However, we have reason to believe that most, if not all, of their reported associations are85

spurious:86

• We downloaded their data from GEO and used their analysis pipeline to replicate their87

results. However, we found that a single outlier was driving most, if not all, of their88

associations (Figure S8).89

• We removed the apparent outlier and re-ran their analysis pipeline. Only 1 CpG was90

associated with AFB1 concentration at a 5% FDR (Figure S9).91

• Given that the long right hand tail of AFB1 concentrations is likely driving spurious as-92

sociations (Figures S8 and S9), we log-transformed AFB1 concentration and repeated93

the original analysis. Unsurprisingly, there were no significant AFB1-associated CpGs94

at 25% FDR (the smallest q-value was 0.99). This is congruent with the author’s ob-95

servations that there were no AFB1-associated CpGs when AFB1 was treated as a96

categorical covariate (low AFB1 vs. high AFB1).97

(iv) Geraghty et al. [15] (5 citations): The authors performed a randomized clinical trial from98

60 neotates to study the global cord blood DNAm response to a low glycaemic index diet99

intervention in mothers. The major flaws include:100
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• Even though cord blood cellular composition differed significantly between cases (moth-101

ers on a low glycaemic index diet) and controls (no intervention) (see Table 4 in Ger-102

aghty et al.), they ignored cell type in all analyses comparing cases and controls. This103

almost certainly explains why the intervention correlated with the DNAm data matrix’s104

second principal component (PC).105

• As the authors note, none of their results replicated in direction or magnitude in in-106

dependent data derived from the same cohort. This is congruent with the results of107

Amarasekera et al. [16], which also found no significant associations between maternal108

PUFA intervention and cord blood DNAm profiles.109

(v) Peters et al. [17] (DMRcate; 203 citations): DMRcate is a method to infer differentially110

methylated regions (DMRs), which utilizes a kernel smoother to smooth marginal test statis-111

tics from neighboring CpGs. Although it is widely used, inference with DMRcate is falla-112

cious:113

• DMRcate’s region-based P values rely on the critical assumption that DNAm from114

neighboring CpGs (CpGs < 1000bp apart) is independent (see the second equation in115

“Model for smoothed data” in Peters et al.). However, it is well known that neighboring116

CpGs (CpGs < 1000bp apart) are highly dependent [18, 19], which will lead to anti-117

conservative inference [20].118

• Anti-conservative inference with DMRcate could be driving the results from Hibler et119

al. [21], which used blood DNAm measured on the EPIC 850K chip from 68 adults120

to infer > 400 genomic regions whose DNAm was associated with a nutritional and121

exercise intervention. For example, the correlation coefficients between DNAm from122

neighboring CpGs in one of the two regions Hibler et al. discussed in their results123

(chr4:185369135–185370076) were as high as 0.86 in our data.124

(vi) Jiang et al. [22] (48 citations): The authors performed a double-blind crossover study in 16125

young adults to understand the effect of diesel exhaust on the DNAm in PBMCs using the126
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HumanMethylation450K BeadChip. Some serious flaws include:127

• They failed to incorporate cell composition into any of their regression models.128

• Their reported 2,827 diesel exhaust-associated CpGs were not actually diesel exhaust-129

associated CpGs. Instead, they found that principal component (PC) 22 (out of 95) was130

correlated with one of their diesel exhaust phenotypes, and defined a diesel exhaust-131

associated CpG to be a CpG whose loading on PC 22 lied in the “tails” of the dis-132

tribution of loadings (“tail” was defined as ±3 standard deviations around the mean133

loading). Besides “tail” being arbitrary, the reported 2,827 significant CpGs were actu-134

ally PC 22-associated CpGs, and not diesel exhaust-associated CpGs.135

These observations imply that besides maternal cotinine levels, there are likely few to no136

exposures considered in the existing literature that would be expected to be associated with blood137

DNAm at birth or age 7 in our data. This sentiment is echoed in Hannon et al. [23], which in138

addition to also showing that environmental exposures are responsible for a relatively small fraction139

of the variation in blood DNAm levels in young adults, states the following:140

“Social-science and health researchers in search of evidence for environmental effects141

on the genome should not assume that ‘epigenetic’ equates to ‘environmental’. Im-142

portantly, DNA methylation at sites robustly associated with extrinsic factors such as143

smoking and BMI can also be under strong genetic control.” [23]144

Identifying sample collection site-associated CpG sites145

We next attempted to identify CpGs whose DNAm levels at birth or age 7 were associated146

with sample collection site, which was used to argue that sample collection site might be con-147

founding the relationship between ethnicity and DNAm levels in Galanter et al. [24]. We restricted148

the analysis to samples from self-reported black and Hispanic children, and regressed methylation149

at birth or age 7 onto sample collection site (a factor variable with four levels), while accounting150

for self-reported race (black or Hispanic), sex (male or female), gestational age, inferred genetic151
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ancestry, methylation plate number (a factor variable with five levels) and nine latent factors esti-152

mated with the method proposed in McKennan et al. [10]. We identified 865 CpGs whose DNAm153

levels at birth or age 7 were significantly associated with sample collection site at a 5% FDR. To154

test for differences in the effect due to sample collection site at birth and age 7, we regressed the155

difference in methylation at birth and age 7 onto sample collection site while accounting for the156

aforementioned covariates. There were no CpGs at which the effect due to sample collection site157

differed at birth and age 7 at a 5% FDR.158

Additional statistical methods159

The benefits of our Bayesian model for longitudinal data160

The methodology described in “Joint modelling of DNA methylation at birth and age 7” of161

Methods is novel, and therefore warrants some discussion. As we do in Model (1), let β(a)
g be162

the expected difference in DNAm at CpG g = 1, . . . , p between self-reported Black and Hispanic163

children at age a = 0, 7. Recall that our goals were:164

(i) Determine the strength of the association between DNAm and self-reported race and birth165

and age 7. Mathematically speaking, this amounts to estimating β(0)
g and β(7)

g for each CpG166

site g.167

(ii) Identify CpGs whose self-reported race-associated DNAm is conserved from birth to age 7.168

This is equivalent to identifying the CpGs g at which β(0)
g and β(7)

g are similar and non-zero.169

(iii) Identify CpGs whose self-reported race-associated DNAm changes from birth to age 7. This170

is equivalent to identifying the CpGs g at which β(0)
g and β(7)

g are different.171

Standard frequentist inference that regresses DNAm onto self-reported race at birth and age 7 sep-172

arately can easily be used to solve (i). However, standard statistical techniques are not appropriate173

for carrying out (ii) or (iii).174
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To see this, consider the usual hypothesis testing framework to solve (ii) and (iii), which175

attempts to assess the evidence for or against the hypotheses H0,g : β(0)
g = β(7)

g for each CpG176

g = 1, . . . , p. Testing these hypotheses is straightforward, and can be done by regressing the177

difference in DNAm at birth and age 7 onto self-reported race. However, since accepting H0,g is178

forbidden in standard frequentist inference [25] and (ii) requires us to identify CpGs for which we179

accept H0,g, it is impossible to solve (ii) using this framework. Additionally, it is not clear that180

H0,g is the hypothesis that best matches our inferential goals. Consider, for example, a situation in181

which differences in CBMC and PBMC cellular composition cause β(7)
g = β(0)

g + ε for some small,182

but non-zero, ε [26]. While studies with a large enough sample size will almost always reject H0,g183

in this case, the difference between β(0)
g and β(7)

g is of little biological consequence. This simple184

example shows that rejecting H0,g does not imply (iii) is true.185

Our Bayesian estimator circumvents the abovementioned issues by allowing us to infer the186

relationship between the signs of β(0)
g and β(7)

g . We therefore define “similar” in (ii) to mean β(0)
g and187

β(7)
g have the same non-zero sign, and “different” in (iii) if at least one of β(0)

g and β(7)
g is non-zero188

and the other is zero or in the opposite direction. The latter also provides a notion of a biologically189

relevant difference.190

Model (1) in Methods also allows us to estimate the fraction of CpGs whose self-reported race191

effects are present at one age and not present at another (
∑K

k=1 π
(k)
(1,0) and

∑K
k=1 π

(k)
(0,1)), the fraction that192

are independent of one another (
∑K

k=1 π
(k,s)
(1,1) such that ρs = 0), the fraction that are moderately similar193

(
∑K

k=1 π
(k,s)
(1,1) such that ρs = 1/3), the fraction that are very similar (

∑K
k=1 π

(k,s)
(1,1) such that ρs = 2/3),194

and the fraction that are identical (
∑K

k=1 π
(k,s)
(1,1) such that ρs = 1). Such quantities are impossible to195

estimate using standard methodology.196

A lower bound on fraction of reported race-associated CpGs mediated through local geno-197

type198

Here we describe how we conservatively estimated the fraction of reported race-associated199

CpGs (RR-CpGs) with a SNP in a 10kB window that were mediated by a neighboring SNP. Fix200
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some network composed of a CpG with methylation M and the SNP whose genotype G was201

most correlated with M according to the meQTL discovery procedure described in Methods. Let202

{RR→ M} be the event the CpG is an RR-CpG, {RR→ G} the event RR affects genotype, and203

{G→ M} the event G affects M independently of RR. We would like to estimate204

P (RR→ G,G→ M | RR→ M) =
P (RR→ G,G→ M,RR→ M)

P (RR→ M)

=
P (RR→ M | RR→ G,G→ M)P (RR→ G,G→ M)

P (RR→ M)
(S1)

Define H0 = {RR��HH→ G}. For each SNP we computed a P value for the null hypothesis H0 using205

the logistic regression model G ∼ RR, where RR was either Black or Hispanic (we assumed a206

Hardy-Weinberg equilibrium model for the genotypes of all SNPs considered). Let t be the test207

statistic from the regression and t∗α > 0 be some threshold with significance level α. Then because208

G and RR are independent under H0 (regardless of whether or not {G→ M} or {RR→ M} hold),209

q = P
(
H0 | |t| ≥ t∗α,G→ M,RR→ M

)
=
P
(
|t| ≥ t∗α | H0,G→ M,RR→ M

)
P (H0 | G→ M,RR→ M)

P
(
|t| ≥ t∗α | G→ M,RR→ M

)
=
P
(
|t| ≥ t∗α | H0

)
P (H0 | G→ M,RR→ M)

P
(
|t| ≥ t∗α | G→ M,RR→ M

)
≤

α

P
(
|t| ≥ t∗α | G→ M,RR→ M

)
where the equality in the second line comes from the fact that under the null hypothesis and given210

the rest of the graph, the behavior of G and RR are independent. We therefore upper-bounded q by211

estimating P
(
|t| ≥ t∗α | G→ M,RR→ M

)
using the RR-meQTL logistic regression test statistics212

(this is just the Benjamini-Hochberg procedure interpreted in a Bayesian framework). We finally213

established an estimated lower bound for (S1) by using the following:214
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P (RR→ G,G→ M | RR→ M) =
# networks with RR→ G,G→ M,RR→ M

# networks with RR→ M

≥
# networks with RR→ G,G→ M,RR→ M and q ≤ 0.2

# of networks with RR→ M

& (1 − 0.2)
# of networks with q ≤ 0.2 among RR-meQTLs

# RR-CpGs

= 0.26.

Calculating the P value for the overlap between gestational age- and chronological age-215

associated CpGs with the same effect sign216

Define y(a)
g to be the DNAm for CpG g = 1, . . . , 784, 484 at age a = 0, 7. We estimated the

effect of gestational ageX ∈ Rn on y(0)
g in the model

y(0)
g = XβGA

g +Z0γg +C0`g + e(0)
g , e(0)

g ∼ Nn

(
0,

(
σ2

g + δ2
g

)
In

)
(g = 1, . . . , p)

and the effect of age, β(0→7)
g , in the model

y(7)
g − y

(0)
g = 1nβ

(0→7)
g +Zdiffγg +Cdiff`g + e(diff)

g , eg ∼ Nn

(
0, σ2

gIn

)
(g = 1, . . . , p)

using ordinary least squares, where the nuisance covariates in Z0,Zdiff are given in Methods and217

C0,Cdiff were estimated using McKennan et al. [10]. Define the estimated gestational age and218

age effects to be β̂GA
g and β̂(0→7)

g , respectively. We use the output of these two regressions to get219

an approximate upper bound for the expected number of pairs
(
βGA

g , β(0→7)
g

)
out of all 16,172 age-220

related CpG sites that had the same sign, under the null hypothesis that the effects due to gestational221

age and chronological age were generated independently (see the Results section).222

Assume the variance model for the data at birth and age seven is given by (1c) and let rg =
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δ2
g

δ2
g+σ2

g
. Then using the estimates forC0,Cdiff, along with the observed nuisance covariatesZ0,Zdiff,

ˆCorr
(
β̂GA

g , β̂(0→7)
g

)
= 0.66

(
1 − r̂g

)
.

We then have that conditional on the true effects
(
βGA

g , β(0→7)
g

)T
,223

(
β̂GA

g , β̂(0→7)
g

)T
≈ N2


(
βGA

g , β(0→7)
g

)T
, diag

(
cg, dg

)  1 0.66
(
1 − r̂g

)
0.66

(
1 − r̂g

)
1

 diag
(
cg, dg

)
(S2)

for each g ∈ [p], where cg, dg are positive constants. Let Ag be the event that CpG g is an age-CpG

at a 5% FDR. We assume that Ag =
{
|z|g ≥ t

}
, where zg = β̂0→7

g /dg is the z-score corresponding

to β̂0→7
g and t can be estimated as the smallest z-score with a q-value less than 0.05. The empiri-

cal distributions of
{
β̂(0→7)

g

}
g∈{5% FDR age CpGs}

and
{
β̂GA

g

}
g∈{5% FDR gestational age CpGs}

were approximately

symmetric around 0, which we took to imply
{
β(0→7)

g

}
g∈[p]

and
{
βGA

g

}
g∈[p]

were symmetric around 0.

For simplicity, we assume for density functions

hGA(·) =

R∑
r=1

π(GA)
r N1

(
·; 0, φ(GA)

r

)
h(0→7)(·) =

J∑
j=1

π(0→7)
j N1

(
·; 0, φ(0→7)

j

)
,

βGA
g

i.i.d
∼ hGA (·) and β(0→7)

g
i.i.d
∼ h(0→7) (·). Such mixture normal densities can approximate a large

class of parametric and non-parametric distributions [27]. Define Xg,Yg ∈ R to be such that

(
Xg,Yg

)T
∼ N2

0,

 1 0.66
(
1 − r̂g

)
0.66

(
1 − r̂g

)
1


 .

Then under the null hypothesis that β(0→7)
g and βGA

g are independent and assuming (S2) is correct,

P
{
β̂GA

g β̂(0→7)
g > 0 | Ag

}
≤
P
({

XgYg > 0
}
∩

{∣∣∣Yg

∣∣∣ ≥ t
})

P
(∣∣∣Yg

∣∣∣ ≥ t
) .

We can easily estimate the above upper bound. Therefore, conditional on knowing whether or not
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each CpG is an age-associated CpG,

µ = E


∑

g∈{5% FDR age CpGs}

1
(
β̂GA

g β̂(0→7)
g > 0

) =
∑

g∈{5% FDR age CpGs}

P
{
β̂GA

g β̂(0→7)
g > 0 | Ag

}
≤ 14, 236

under the null hypothesis. Since the maximum variance for a Bernoulli random variable is 1/4, an

approximate lower bound for the test-statistic is

0.97 × 16, 172 − 14, 236
√

16, 172/4
= 23.3,

which has a corresponding P value ≤ 10−119 under the normal approximation.224

Determining the fraction of the variance in DNA methylation levels explained by maternal225

cotinine levels during pregnancy226

Here we discuss our method for determining the fraction of the variance explained by ma-227

ternal cotinine levels during pregnancy, which accounts for potential differences in the standard228

errors (i.e. sample sizes) of the maternal cotinine and genotype analyses.229

The phenotype for maternal smoking was taken to be a factor variable with two levels, where230

the levels were smoker (cord blood plasma cotinine levels ≥ 10ng/mL) and non-smoker (cord231

blood plasma cotinine levels < 10ng/mL). The 10ng/mL threshold was chosen because it was the232

same cutoff used to define sustained maternal smoking in Joubert et al. [28]. We remark that 98%233

of the non-smoking mothers had cotinine levels below 2ng/mL, the limit of detection of the assay.234

We report results for DNAm levels at birth, although the results at age 7 are identical.235

Let ci ∈ {0, 1} and sgi ∈ {0, 1, 2} be maternal smoking status and the genotype for the SNP

closest to CpG g for individual i, respectively. We assume that DNAm levels at birth at CpG g in
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individual i (ygi) could be modeled as

ygi = µg + β(s)
g sgi + β(c)

g ci + γT
g zi + εgi, εgi ∼ N

(
0, σ2

g

)
, g = 1, . . . , p; i = 1, . . . , n, (S3)

where zi contain the nuisance covariates inferred genetic ancestry, sex, gestational age and methy-

lation plate number. Using this model, we defined the fraction of the variance in DNAm levels at

CpG g explainable by maternal smoking and genotype to be

π(c)
g =

{
β(c)

g

}2
Var (ci)

Var
(
ygi

) , π(s)
g =

{
β(s)

g

}2
Var

(
sgi

)
Var

(
ygi

) , (S4)

respectively. We set Var (ci) = p(c)
{
1 − p(c)

}
and Var

(
sgi

)
= 2p(s)

g

{
1 − p(s)

g

}
, where p(c) is the frac-236

tion of maternal smokers in our dataset and p(s)
g is the minor allele frequency for the SNP adjacent237

to CpG g. We remark that p(c) = 0.17 was 2.8 times the national smoking during pregnancy (SDP)238

rate for non-Hispanic black mothers, 1.7 times the national SDP rate for non-Hispanic white moth-239

ers and 10.0 times the national SDP rate for Hispanic mothers [29], indicating π(g)
c , depending on240

the exact population of interest, is likely an overestimate for the fraction of variance explained241

by maternal smoking. Since our goal was to determine the relative proportion of the variance242

explained by maternal smoking and genotype, i.e. π(c)
g /

{
π(c)

g + π(s)
g

}
and π(s)

g /
{
π(c)

g + π(s)
g

}
, we need243

only estimate
{
β(c)

g

}2
and

{
β(s)

g

}2
.244

Since there was little detectable correlation between maternal smoking and the genotypes of245

SNPs adjacent to maternal smoking CpGs identified in Joubert et al. [28] (ms-CpGs), we ignored246

genotype when estimating β(c)
g and used McKennan et al. [10] to determine β̂(c)

g , an estimate for β(c)
g ,247

and subsequently used the method proposed in Stephens et al. [30] with only ms-CpGs as input to248

determine E
[{
β(c)

g

}2
| β̂(c)

g

]
, our estimate for

{
β(c)

g

}2
. To estimate

{
β(s)

g

}2
, we first computed β̂(s)

g , the249

ordinary least squares estimate for β(s)
g in Model (S3), using a random subset of 56% of the self-250

reported black children, and subsequently used Stephens et al. [30] with only ms-CpGs as input to251

determine E
[{
β(s)

g

}2
| β̂(s)

g

]
, our estimate for

{
β(s)

g

}2
. We used self-reported black children to avoid252

14



heterogeneous genetic effect sizes (due to population stratification), and only used 56% of those253

samples to determine β̂(s)
g to ensure that the standard errors of β̂(c)

g and β̂(s)
g were approximately254

the same (Figure S5). This sub-sampling helped guarantee that the precision of the estimates255

E
[{
β(c)

g

}2
| β̂(c)

g

]
and E

[{
β(s)

g

}2
| β̂(s)

g

]
was the same, meaning that any difference in those estimates256

could not be attributed to the relatively small number of smokers in our study. We lastly plugged-in257

E
[{
β(c)

g

}2
| β̂(c)

g

]
and E

[{
β(s)

g

}2
| β̂(s)

g

]
for

{
β(c)

g

}2
and

{
β(s)

g

}2
into (S4) to estimate π(c)

g /
{
π(c)

g + π(s)
g

}
and258

π(s)
g /

{
π(c)

g + π(s)
g

}
.259

The relationship between inferred genetic ancestry and meQTLs260

Since inferred genetic ancestry (IGA) is derived from genoytpe data, it could be the case261

that the SNPs used to estimate IGA would a priori be expected to be cis-meQTL, which might262

inflate the correlated between IGA and DNAm. However, we found that the genotype at only 3%263

of the 39,670 identified mSNPs (SNPs that are cis-meQTLs for at least 1 CpG at a 5% FDR) was264

significantly correlated with IGA at a 20% FDR, which was 17% fewer than what was expected by265

chance.266
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Figure S2: Probability mass of the components of π̂(1,1), where ρ is the correlation between the
reported race effect at birth and age 7 and τ is proportional to the expected magnitude of the effect
sizes (see Model (1)). This trend was echoed in the inferred genetic ancestry analysis.

268

269
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(a) (b)

(c) (d)

(e) (f)

Figure S3: Distribution of P values for age (birth to age 7) (panels (a), (c) and (e)) and gestational
age (GA) (panels (b), (d) and (f)). The red, violet and dark green dots in the upper, middle and
lower panels are the 353 CpGs used to build the linear predictor of age in Horvath [31], the 148
CpGs used to build the linear predictor of gestational age in Knight et al. [32] and the 109,597 age
(birth to age 5) CpGs discovered in Pérez et al. [33]. The blue dots are all of the other CpGs and
the 10 enlarged circles are for visual aid.
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(a) (b)

Figure S4: Probability mass of components of π̂(1,0) (β(0)
g , 0, β(7)

g = 0) and π̂(0,1) (β(0)
g = 0, β(7)

g , 0)
in the inferred genetic ancestry (a) and reported race (b) analyses.
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Figure S5: Histograms of standard errors for β̂(c)
g (blue) and β̂(s)

g (red) for all CpGs g =

1, . . . , 784, 484 that are also maternal smoking-associated CpGs identified in Joubert et al. [28].
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Figure S6: P values for CpGs on the promoter region of NR3C1 whose cord blood DNAm was
measured in our study. Consistent with existing work, PSS was treated as a continuous variable
and EPDS was treated as categorical variables in our regressions, where mothers with an EPDS
score ≥ 10 (< 10) were classified as depressed (not-depressed) [4, 6]. The dashed blue error lines
are drawn ±2 standard deviations around the solid red 45◦ line.
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Figure S7: The same as Figure S6, except for all HPA-related genes considered in Sosnowski et al.
[5] (NR3C1, HSD11B2, FKBP5, CRH, CRHBP, SLC6A4, and OXTR).
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Figure S8: M-values of the two most significant aflatoxin B1- (AFB1-) associated CpGs identified
in Hernandez-Vargas et al. [14] as a function of maternal plasma AFB1 concentration.
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Figure S9: M-values of the only significant AFB1-associated CpG (5% FDR) after removing the
outlier in Figure S8.
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