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This supplement contains a description of additional analyses, additional statistical methods

and all supplemental figures referenced in the main text of the manuscript.

Detailed sample description and additional analyses

A complete description of the available covariate information

Maternal questionnaires, including those on smoking, stress, and depression, were admin-
istered prenatally and annually after the child’s birth. Postnatal child health questionnaires were
administered to a parent every three months through age 7 years. Annual visits of child and parent
to the study center, starting at one year of age, included questionnaires, anthropomorphic measure-
ments, and phlebotomy. Questionnaires included the Perceived Stress Scale [1], the Edinburgh
Perinatal/Postnatal Depression Scale [2], and additional questionnaires to assess stress related to
neighborhood factors, violence, and economic hardship [3]. Parent-reported colds were ascertained
by telephone questionnaire every three months throughout the first three years of life. Gestational
age at birth, maternal infections during pregnancy, and obstetric history were obtained from med-
ical records. Bedroom allergens were measured in vacuumed dust from the child’s bedroom, and
cotinine levels were measured in cord blood plasma. Pet ownership, number of smokers in the
household, daycare attendance, number of siblings, and maternal asthma were ascertained by in-
terview with the mother. Allergic sensitization was determined by prick skin testing for 14 common
aeroallergens at 3, 5, or 7 years of age. Aeroallergen sensitization was defined as a wheal > 3mm

larger than the saline control on prick skin testing or specific IgE > 0.35kU/L.

Differences between the inferred genetic ancestry and reported race analyses are robust to

differences in power

We showed in “Inferred genetic ancestry is more correlated with DNA methylation than is
self-reported race” that we identified 8,597 conserved inferred genetic ancestry-associated CpGs

(IGA-CpGs), but only 2,162 conserved self-reported race-associated CpGs (RR-CpGs). To show
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that these results were robust to any differences between the powers of these analyses, we used

Model (1) (see Methods) to determine

Orr = P{Bre # 0 0r B3, # 0}

0 7
6IGA = P{ﬁ(g,;GA * O Orﬁ((g}GA * 0} .

which are the fraction of CpGs with non-zero self-reported race (RR) or inferred genetic ancestry
(IGA) effects at birth or age 7. Since these quantities do not depend on the observed data, their
values are invariant of our power to identify RR-CpGs and IGA-CpGs. We estimated that 6,54 was
11% larger than dgg, indicating that IGA-CpGs outnumber RR-CpGs, which is consistent with our

results in the main text.

Additional analyses to identify exposure-associated CpG sites

We performed additional analyses on every measured direct or indirect measures of environ-
mental exposures to attempt to identify exposures that correlated with DNA methylation (DNAm)
levels at either birth or age 7. These exposures were maternal asthma, maternal infections dur-
ing pregnancy, pet ownership, bedroom allergens, number of smokers in the household, number
of siblings, number of previous live births, daycare attendance, number of colds at age 2 or 3,
and allergic sensitization or asthma in the child. Unlike maternal cotinine levels measured during
pregnancy, there were no CpGs associated with DNAm levels at birth or age 7 at a 5% FDR.

We also tested the association between DNAm at birth and scores derived from the Per-
ceived Stress Scale (PSS) and the Edinburgh Perinatal/Postnatal Depression Scale (EPDS), which
are maternal stress-related phenotypes that were measured during the second or third trimester
of pregnancy. There is ample evidence that suggests children exposed to adverse maternal men-
tal well-being have compromised hypothalamus—pituitary—adrenal (HPA) axis signaling, possibly
due to heightened exposure to maternal cortisol levels in utero [4]. Many observational studies

have therefore tried to understand the relationship between prenatal stress and cord blood DNAm
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on the promoters of the HPA-related genes NR3C1, HSD11B2, FKBPS5, CRH, CRHBP, SLC6A4,
and OXTR [5]. Despite there being evidence from studies with smaller sample sizes than ours
that the promoter region DNAm in the cord blood of these genes (especially NR3C1) is related
to the aforementioned mental-health variables [6—8], we found little to no evidence supporting
these associations in our study (Figures S6 and S7). These null results are recapitulated in Mansell
et al. [4], which, as far as we are aware (and stated by the authors of the Mansell et al. study),
is the largest study which targets the cord blood DNAm on the promoters of HPA-related genes.
Interestingly, they show that their ostensibly contradictory results can be attributed to erroneous
statistical techniques used in previous studies [4].

Unfortunately, the existing epigenetic literature devoted to studying the effect of exposure his-
tories on the blood DNAm in infants, children and adults is replete with studies whose conclusions

are based on faulty statistics. Some notable examples include:

(1) Kippler et al. [9] (106 citations): The authors study the effect of maternal exposure to cad-
mium on the cord blood DNAm of 127 infants using the HumanMethylation450K BeadChip.
While there were no significant associations after adjusting for multiple testing, the authors
used the non-uniformity of their CpG P value histograms in males and females to claim
cadmium affected global DNAm patterns, and had a sex-specific effect. However, since the
authors failed to adjust for latent confounding factors (including cellular composition) that
plague high throughput DNAm studies [10], their conclusions can easily be explained away

by the almost sure systematic correlation between their > 450, 000 P values [11, 12].

(i1) Koestler et al. [13] (64 citations): The authors used the HumanMethylation450K BeadChip
to measure the cord blood DNAm of 138 newborns to understand the effect of maternal
mercury and arsenic exposure on DNAm. The authors failed to account for multiple testing

in all of their analyses:

e The authors reported that 9 out of the 348,569 CpGs in their study were significantly

associated with maternal mercury at a P value threshold of 10~* (Figure 1 in Koestler
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et al. [13]). This is 26 fewer than expected by chance.

e The authors reported that 37 out of the 348,569 CpGs in their study were significantly
associated with the multiplicative interaction between maternal mercury and arsenic at
a P value threshold of 10~* (Figure 2 in Koestler et al. [13]). This is just 2 more than

expected by chance (binomial P value = 0.38).

(iii)) Hernandez-Vargas et al. [14] (50 citations): The authors determined the concentration of
aflatoxin B1 (AFBI1) in the plasma of 115 pregnant mothers and subsequently measured
the blood DNAm of their children at age 2-8months. They reported that the blood DNAm
M-values at 71 CpGs were significantly linearly related to AFB1 concentration (5% FDR).
However, we have reason to believe that most, if not all, of their reported associations are

spurious:

e We downloaded their data from GEO and used their analysis pipeline to replicate their
results. However, we found that a single outlier was driving most, if not all, of their

associations (Figure S8).

e We removed the apparent outlier and re-ran their analysis pipeline. Only 1 CpG was

associated with AFB1 concentration at a 5% FDR (Figure S9).

¢ Given that the long right hand tail of AFB1 concentrations is likely driving spurious as-
sociations (Figures S8 and S9), we log-transformed AFB1 concentration and repeated
the original analysis. Unsurprisingly, there were no significant AFB1-associated CpGs
at 25% FDR (the smallest gq-value was 0.99). This is congruent with the author’s ob-
servations that there were no AFB1-associated CpGs when AFB1 was treated as a

categorical covariate (low AFB1 vs. high AFB1).

(iv) Geraghty et al. [15] (5 citations): The authors performed a randomized clinical trial from
60 neotates to study the global cord blood DNAm response to a low glycaemic index diet

intervention in mothers. The major flaws include:
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e Even though cord blood cellular composition differed significantly between cases (moth-
ers on a low glycaemic index diet) and controls (no intervention) (see Table 4 in Ger-
aghty et al.), they ignored cell type in all analyses comparing cases and controls. This
almost certainly explains why the intervention correlated with the DNAm data matrix’s

second principal component (PC).

e As the authors note, none of their results replicated in direction or magnitude in in-
dependent data derived from the same cohort. This is congruent with the results of
Amarasekera et al. [16], which also found no significant associations between maternal

PUFA intervention and cord blood DNAm profiles.

(v) Peters et al. [17] (DMRcate; 203 citations): DMRcate is a method to infer differentially
methylated regions (DMRs), which utilizes a kernel smoother to smooth marginal test statis-
tics from neighboring CpGs. Although it is widely used, inference with DMRcate is falla-

cious:

e DMRcate’s region-based P values rely on the critical assumption that DNAm from
neighboring CpGs (CpGs < 1000bp apart) is independent (see the second equation in
“Model for smoothed data” in Peters et al.). However, it is well known that neighboring
CpGs (CpGs < 1000bp apart) are highly dependent [18, 19], which will lead to anti-

conservative inference [20].

e Anti-conservative inference with DMRcate could be driving the results from Hibler et
al. [21], which used blood DNAm measured on the EPIC 850K chip from 68 adults
to infer > 400 genomic regions whose DNAm was associated with a nutritional and
exercise intervention. For example, the correlation coefficients between DNAm from
neighboring CpGs in one of the two regions Hibler et al. discussed in their results

(chr4:185369135-185370076) were as high as 0.86 in our data.

(vi) Jiang et al. [22] (48 citations): The authors performed a double-blind crossover study in 16

young adults to understand the effect of diesel exhaust on the DNAm in PBMCs using the

6
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HumanMethylation450K BeadChip. Some serious flaws include:

e They failed to incorporate cell composition into any of their regression models.

e Their reported 2,827 diesel exhaust-associated CpGs were not actually diesel exhaust-
associated CpGs. Instead, they found that principal component (PC) 22 (out of 95) was
correlated with one of their diesel exhaust phenotypes, and defined a diesel exhaust-
associated CpG to be a CpG whose loading on PC 22 lied in the “tails” of the dis-
tribution of loadings (“tail” was defined as +3 standard deviations around the mean
loading). Besides “tail”” being arbitrary, the reported 2,827 significant CpGs were actu-

ally PC 22-associated CpGs, and not diesel exhaust-associated CpGs.

These observations imply that besides maternal cotinine levels, there are likely few to no
exposures considered in the existing literature that would be expected to be associated with blood
DNAm at birth or age 7 in our data. This sentiment is echoed in Hannon et al. [23], which in
addition to also showing that environmental exposures are responsible for a relatively small fraction

of the variation in blood DNAm levels in young adults, states the following:

“Social-science and health researchers in search of evidence for environmental effects
on the genome should not assume that ‘epigenetic’ equates to ‘environmental’. Im-
portantly, DNA methylation at sites robustly associated with extrinsic factors such as

smoking and BMI can also be under strong genetic control.” [23]

Identifying sample collection site-associated CpG sites

We next attempted to identify CpGs whose DNAm levels at birth or age 7 were associated
with sample collection site, which was used to argue that sample collection site might be con-
founding the relationship between ethnicity and DNAm levels in Galanter et al. [24]. We restricted
the analysis to samples from self-reported black and Hispanic children, and regressed methylation
at birth or age 7 onto sample collection site (a factor variable with four levels), while accounting

for self-reported race (black or Hispanic), sex (male or female), gestational age, inferred genetic
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ancestry, methylation plate number (a factor variable with five levels) and nine latent factors esti-
mated with the method proposed in McKennan et al. [10]. We identified 865 CpGs whose DNAm
levels at birth or age 7 were significantly associated with sample collection site at a 5% FDR. To
test for differences in the effect due to sample collection site at birth and age 7, we regressed the
difference in methylation at birth and age 7 onto sample collection site while accounting for the
aforementioned covariates. There were no CpGs at which the effect due to sample collection site

differed at birth and age 7 at a 5% FDR.

Additional statistical methods

The benefits of our Bayesian model for longitudinal data

The methodology described in “Joint modelling of DNA methylation at birth and age 7 of
Methods is novel, and therefore warrants some discussion. As we do in Model (1), let ,Bfg“) be
the expected difference in DNAm at CpG g = 1,..., p between self-reported Black and Hispanic

children at age a = 0, 7. Recall that our goals were:

(i) Determine the strength of the association between DNAm and self-reported race and birth
and age 7. Mathematically speaking, this amounts to estimating ﬁfgo) and ,82,7) for each CpG

site g.

(i1) Identify CpGs whose self-reported race-associated DNAm is conserved from birth to age 7.

This is equivalent to identifying the CpGs g at which ,Bi,o) and B are similar and non-zero.

8

(iii) Identify CpGs whose self-reported race-associated DNAm changes from birth to age 7. This

is equivalent to identifying the CpGs g at which ,8;0) and B are different.

8

Standard frequentist inference that regresses DNAm onto self-reported race at birth and age 7 sep-
arately can easily be used to solve (i). However, standard statistical techniques are not appropriate

for carrying out (ii) or (iii).
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To see this, consider the usual hypothesis testing framework to solve (i1) and (iii), which
attempts to assess the evidence for or against the hypotheses Hy, : ;O) = ﬁg) for each CpG
g = 1,...,p. Testing these hypotheses is straightforward, and can be done by regressing the
difference in DNAm at birth and age 7 onto self-reported race. However, since accepting H, is
forbidden in standard frequentist inference [25] and (ii) requires us to identify CpGs for which we
accept Hy,, it is impossible to solve (ii) using this framework. Additionally, it is not clear that

H,, is the hypothesis that best matches our inferential goals. Consider, for example, a situation in

which differences in CBMC and PBMC cellular composition cause ,6’;7) = 2,0) + € for some small,

but non-zero, € [26]. While studies with a large enough sample size will almost always reject H ,

in this case, the difference between ,82,0) and B

. 1s of little biological consequence. This simple

example shows that rejecting Hy, does not imply (iii) is true.
Our Bayesian estimator circumvents the abovementioned issues by allowing us to infer the

and ﬁg). We therefore define “similar” in (ii) to mean ,8(0) and

relationship between the signs of ,8(0) o

8

;,7) have the same non-zero sign, and “different” in (iii) if at least one of B;O) and ,8;7) is non-zero

and the other is zero or in the opposite direction. The latter also provides a notion of a biologically
relevant difference.
Model (1) in Methods also allows us to estimate the fraction of CpGs whose self-reported race

effects are present at one age and not present at another (35, 712’{)0) and Y% | JTE]S)I)), the fraction that

(k,s)

are independent of one another (3} ,Ile T

such that p; = 0), the fraction that are moderately similar

(Zf: | 77211‘;)) such that p; = 1/3), the fraction that are very similar (Zf: q JTE]](;)) such that p, = 2/3),

(k,s)

and the fraction that are identical (3}, o

such that p; = 1). Such quantities are impossible to

estimate using standard methodology.

A lower bound on fraction of reported race-associated CpGs mediated through local geno-

type

Here we describe how we conservatively estimated the fraction of reported race-associated

CpGs (RR-CpGs) with a SNP in a 10kB window that were mediated by a neighboring SNP. Fix
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some network composed of a CpG with methylation M and the SNP whose genotype G was
most correlated with M according to the meQTL discovery procedure described in Methods. Let
{RR — M} be the event the CpG is an RR-CpG, {RR — G} the event RR affects genotype, and

{G — M} the event G affects M independently of RR. We would like to estimate

PRR - G,G - M,RR - M)

P(RR - M)
B PRR—>M|RR - G,G—- MPRR -G G—->M)
B P(RR — M)

P(RR - G,G—>M|RR - M) =

(S

Define Hy = {RR><G}. For each SNP we computed a P value for the null hypothesis H, using
the logistic regression model G ~ RR, where RR was either Black or Hispanic (we assumed a
Hardy-Weinberg equilibrium model for the genotypes of all SNPs considered). Let ¢ be the test
statistic from the regression and ¢, > 0 be some threshold with significance level . Then because

G and RR are independent under H, (regardless of whether or not {G — M} or {RR — M} hold),

Pt =7 | H,G - M,RR - M)P(H; | G - M,RR - M)

qg=P(Holltl =1

a’

G — M,RR — M) =
- - M) P(1=7.1G — M,RR — M)
_P(fl > £ | Ho)P(Hy | G — M,RR — M)

- o

P(f| > | G - M,RR - M)

a
<
“P(l>r.]G > MRR - M)

where the equality in the second line comes from the fact that under the null hypothesis and given
the rest of the graph, the behavior of G and RR are independent. We therefore upper-bounded g by
estimating P (|¢| > 75 | G > M, RR — M) using the RR-meQTL logistic regression test statistics
(this is just the Benjamini-Hochberg procedure interpreted in a Bayesian framework). We finally

established an estimated lower bound for (S1) by using the following:

10
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# networks withRR - G,G - M,RR - M

# networks with RR - M
#networksw1thRR—>G G —->MRR - Mandg <0.2

# of networks with RR - M
# of networks with ¢ < 0.2 among RR-meQTLs

#RR-CpGs

P(RR - G,G—>M|RR > M) =

>(1-0.2)

= 0.26.

Calculating the P value for the overlap between gestational age- and chronological age-

associated CpGs with the same effect sign

Define y(“) to be the DNAm for CpG g = 1,...,784,484 at age a = 0,7. We estimated the

effect of gestational age X € R” on y(O) in the model
Y = XB 4 Zgy + Col + €0, 9 ~ N, (0,(2 +6) 1) (g=1,....p)
and the effect of age, ﬂ(o_ﬂ) in the model
v -y = 1,807 + Zggy, + Canly + €57, e, ~N,(0.00L,) (g=1.....p)

using ordinary least squares, where the nuisance covariates in Z,, Zgg are given in Methods and
Cy, Cyg were estimated using McKennan et al. [10]. Define the estimated gestational age and
age effects to be BGA and /3(0 =7 , respectively. We use the output of these two regressions to get
an approximate upper bound for the expected number of pairs ( ((go_ﬂ)) out of all 16,172 age-
related CpG sites that had the same sign, under the null hypothesis that the effects due to gestational
age and chronological age were generated independently (see the Results section).

Assume the variance model for the data at birth and age seven is given by (lc) and let r, =

11
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2

5 . . . . .
m. Then using the estimates for C, Cys, along with the observed nuisance covariates Z, Z i,

Corr (B4, B077) = 0.66 (1 - 7).

. T
We then have that conditional on the true effects ( SA, i,o 7)) ,

1 0.66 (1 — 7,)

(BSA’ ﬁ;o—ﬂ))T ~ N, (ﬁgA, 18;0—>7))T ,diag (cg, dg) diag (cg, dg)

0.66 (1 — 7,) 1
(52)

for each g € [p], where c,, d, are positive constants. Let A, be the event that CpG g is an age-CpG
at a 5% FDR. We assume that A, = {Izlg > t}, where z, = 32_)7 /d, 1s the z-score corresponding

to ﬁg_ﬁ and 7 can be estimated as the smallest z-score with a g-value less than 0.05. The empiri-
A(0—>7)} {"GA}
8 ge{S% FDR age Cst} and 'Bg ge{S% FDR gestational age Cst}

;0—>7)}g€[p] and { IBgA}

cal distributions of { were approximately

symmetric around 0, which we took to imply { were symmetric around 0.

g€lpl

For simplicity, we assume for density functions

R J
07 07
hga() = Z 7T£GA)N1 ('§ 0, ¢£GA)) ho-7() = Z 7T§~ )Nl (‘; 0, ¢5' )) .
r=1 j=1
ﬁgA % hea () and ﬁfgo_ﬁ) 4 ho-7) (-). Such mixture normal densities can approximate a large
class of parametric and non-parametric distributions [27]. Define X,, Y, € R to be such that
1 0.66 (1 - 7)

(X, ¥,) ~ N2 {0,
0.66(1 - 7, ) 1

Then under the null hypothesis that ,8;0_’7) and ﬁgA are independent and assuming (S2) is correct,

P({X,%, > 0} n{|¥,| > })
P(|Y,| > 1)

P{BOABYT > 0] A, <

We can easily estimate the above upper bound. Therefore, conditional on knowing whether or not

12



224

225

226

227

228

229

230

231

232

233

234

235

each CpG is an age-associated CpG,

p=BC DL HEMETT0)= DL BRI 004

ge{S% FDR age Cst} ge{S% FDR age Cst}

< 14,236

under the null hypothesis. Since the maximum variance for a Bernoulli random variable is 1/4, an

approximate lower bound for the test-statistic is

0.97 x 16,172 — 14,236

=23.3,
V16,172/4

119

which has a corresponding P value < 107" under the normal approximation.

Determining the fraction of the variance in DNA methylation levels explained by maternal

cotinine levels during pregnancy

Here we discuss our method for determining the fraction of the variance explained by ma-
ternal cotinine levels during pregnancy, which accounts for potential differences in the standard
errors (i.e. sample sizes) of the maternal cotinine and genotype analyses.

The phenotype for maternal smoking was taken to be a factor variable with two levels, where
the levels were smoker (cord blood plasma cotinine levels > 10ng/mL) and non-smoker (cord
blood plasma cotinine levels < 10ng/mL). The 10ng/mL threshold was chosen because it was the
same cutoff used to define sustained maternal smoking in Joubert et al. [28]. We remark that 98%
of the non-smoking mothers had cotinine levels below 2ng/mL, the limit of detection of the assay.
We report results for DNAm levels at birth, although the results at age 7 are identical.

Let ¢; € {0,1} and s,; € {0, 1,2} be maternal smoking status and the genotype for the SNP

closest to CpG g for individual i, respectively. We assume that DNAm levels at birth at CpG g in

13
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individual i (y,;) could be modeled as
Vei = Mg +,8§f)sg,- +ﬁ((g")c,- + 'ygTz,- + €, €gi ~ N(0,0';), g=1,....,p;i=1,...,n, (S3)

where z; contain the nuisance covariates inferred genetic ancestry, sex, gestational age and methy-
lation plate number. Using this model, we defined the fraction of the variance in DNAm levels at
CpG g explainable by maternal smoking and genotype to be

_ { (C)} Var (¢;) 0 { (s)} Var(sg,)’ s

Var (yg,») ’ ¢ Var (yg,-)

(c)
g

n
respectively. We set Var (¢;) = p© {1 (C)} and Var (sg,) =2pY {1 péf)} where p'© is the frac-
tion of maternal smokers in our dataset and pg“' is the minor allele frequency for the SNP adjacent
to CpG g. We remark that p'© = 0.17 was 2.8 times the national smoking during pregnancy (SDP)
rate for non-Hispanic black mothers, 1.7 times the national SDP rate for non-Hispanic white moth-

ers and 10.0 times the national SDP rate for Hispanic mothers [29], indicating 7,

depending on
the exact population of interest, is likely an overestimate for the fraction of variance explained
by maternal smoking. Since our goal was to determine the relative proportion of the variance
explained by maternal smoking and genotype, i.e. 7%’/ {ng) + ﬂés)} and 71/ {Jrif) + ﬂi,s)} we need
only estunate{ (C)} and{ é,s)} .

Since there was little detectable correlation between maternal smoking and the genotypes of

SNPs adjacent to maternal smoking CpGs identified in Joubert et al. [28] (ms-CpGs), we ignored

genotype when estimating ,8(‘) and used McKennan et al. [10] to determine 8, an estimate for ﬂ(‘)

and subsequently used the method proposed in Stephens et al. [30] with only ms-CpGs as input to

determine E

{ (C)} | ,B(C)] our estimate for { (C)} To estimate { (S)} we first computed ,B(S) the
ordinary least squares estimate for ﬁg) in Model (S3), using a random subset of 56% of the self-
reported black children, and subsequently used Stephens et al. [30] with only ms-CpGs as input to

determine E [{ (S)} | ,B(Y)] our estimate for { (S)} We used self-reported black children to avoid

14
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heterogeneous genetic effect sizes (due to population stratification), and only used 56% of those
samples to determine ,Bg) to ensure that the standard errors of ,B(C) and ,Bfgf) were approximately
the same (Figure S5). This sub-sampling helped guarantee that the precision of the estimates
2|{p) 150 ana B|{50F 18
could not be attributed to the relatively small number of smokers in our study. We lastly plugged-in
a|{g) 130 |and B[} 18

n(f;) / {772,‘) + nif)}.

was the same, meaning that any difference in those estimates

for { (C)} and { ;S)}z into (S4) to estimate nfgc) / {ng) + ngf)} and

The relationship between inferred genetic ancestry and meQTLs

Since inferred genetic ancestry (IGA) is derived from genoytpe data, it could be the case
that the SNPs used to estimate IGA would a priori be expected to be cis-meQTL, which might
inflate the correlated between IGA and DNAm. However, we found that the genotype at only 3%
of the 39,670 identified mSNPs (SNPs that are cis-meQTLs for at least 1 CpG at a 5% FDR) was
significantly correlated with IGA at a 20% FDR, which was 17% fewer than what was expected by

chance.
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Figure S2: Probability mass of the components of 7, ;), where p is the correlation between the
reported race effect at birth and age 7 and 7 is proportional to the expected magnitude of the effect
sizes (see Model (1)). This trend was echoed in the inferred genetic ancestry analysis.
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Figure S3: Distribution of P values for age (birth to age 7) (panels (a), (¢) and (e)) and gestational
age (GA) (panels (b), (d) and (f)). The red, violet and dark green dots in the upper, middle and
lower panels are the 353 CpGs used to build the linear predictor of age in Horvath [31], the 148
CpGs used to build the linear predictor of gestational age in Knight et al. [32] and the 109,597 age
(birth to age 5) CpGs discovered in Pérez et al. [33]. The blue dots are all of the other CpGs and
the 10 enlarged circles are for visual aid.
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Figure S6: P values for CpGs on the promoter region of NR3C1 whose cord blood DNAm was
measured in our study. Consistent with existing work, PSS was treated as a continuous variable
and EPDS was treated as categorical variables in our regressions, where mothers with an EPDS
score > 10 (< 10) were classified as depressed (not-depressed) [4, 6]. The dashed blue error lines
are drawn +2 standard deviations around the solid red 45° line.
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Figure S7: The same as Figure S6, except for all HPA-related genes considered in Sosnowski et al.
[5] (NR3C1, HSD11B2, FKBP5, CRH, CRHBP, SLC6A4, and OXTR).
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Figure S8: M-values of the two most significant aflatoxin B1- (AFB1-) associated CpGs identified
in Hernandez-Vargas et al. [14] as a function of maternal plasma AFB1 concentration.
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Figure S9: M-values of the only significant AFB1-associated CpG (5% FDR) after removing the

outlier in Figure S8.
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