Science Advances

Supplementary Materials for

Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential

Tetsushi Nakao, Alexander G. Bick, Margaret A. Taub, Seyedeh M. Zekavat, Md M. Uddin, Abhishek Niroula, Cara L. Carty, John Lane, Michael C. Honigberg, Joshua S. Weinstock, Akhil Pampana, Christopher J. Gibson, Gabriel K. Griffin, Shoa L. Clarke, Romit Bhattacharya, Themistocles L. Assimes, Leslie S. Emery, Adrienne M. Stilp, Quenna Wong, Jai Broome, Cecelia A. Laurie, Alyna T. Khan, Albert V. Smith, Thomas W. Blackwell, Veryan Codd, Christopher P. Nelson, Zachary T. Yoneda, Juan M. Peralta, Donald W. Bowden, Marguerite R. Irvin, Meher Boorgula, Wei Zhao, Lisa R. Yanek, Kerri L. Wiggins, James E. Hixson, C. Charles Gu, Gina M. Peloso, Dan M. Roden, Muagututi'a S. Reupena, Chii-Min Hwu, Dawn L. DeMeo, Kari E. North, Shannon Kelly, Solomon K. Musani, Joshua C. Bis, Donald M. Lloyd-Jones, Jill M. Johnsen, Michael Preuss, Russell P. Tracy, Patricia A. Peyser, Dandi Qiao, Pinkal Desai, Joanne E. Curran, Barry I. Freedman, Hemant K. Tiwari, Sameer Chavan, Jennifer A. Smith, Nicholas L. Smith, Tanika N. Kelly, Bertha Hidalgo, L. Adrienne Cupples, Daniel E. Weeks, Nicola L. Hawley, Ryan L. Minster, The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group, Ranjan Deka, Take T. Naseri, Lisa de las Fuentes, Laura M. Raffield, Alanna C. Morrison, Paul S. Vries, Christie M. Ballantyne, Eimear E. Kenny, Stephen S. Rich, Eric A. Whitsel, Michael H. Cho, M. Benjamin Shoemaker, Betty S. Pace, John Blangero, Nicholette D. Palmer, Braxton D. Mitchell, Alan R. Shuldiner, Kathleen C. Barnes, Susan Redline, Sharon L.R. Kardia, Gonçalo R. Abecasis, Lewis C. Becker, Susan R. Heckbert, Jiang He, Wendy Post, Donna K. Arnett, Ramachandran S. Vasan, Dawood Darbar, Scott T. Weiss, Stephen T. McGarvey, Mariza de Andrade, Yii-Der Ida Chen, Robert C. Kaplan, Deborah A. Meyers, Brian S. Custer, Adolfo Correa, Bruce M. Psaty, Myriam Fornage, JoAnn E. Manson, Eric Boerwinkle, Barbara A. Konkle, Ruth J.F. Loos, Jerome I. Rotter, Edwin K. Silverman, Charles Kooperberg, John Danesh, Nilesh J. Samani, Siddhartha Jaiswal, Peter Libby, Patrick T. Ellinor, Nathan Pankratz, Benjamin L. Ebert, Alexander P. Reiner, Rasika A. Mathias, Ron Do, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Pradeep Natarajan*

*Corresponding author. Email: pnatarajan@mgh.harvard.edu

Published 6 April 2022, *Sci. Adv.* **8**, eabl6579 (2022) DOI: 10.1126/sciadv.abl6579

The PDF file includes:

Supplementary Text Figs. S1 to S16 Tables S1 to S3, S7 to S9 Legends for tables S4 to S6

Other Supplementary Material for this manuscript includes the following:

Tables S4 to S6

Supplementary Text

NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium Namiko Abe¹⁰², Francois Aguet¹, Christine Albert¹⁰³, Laura Almasy¹⁰⁴, Alvaro Alonso¹⁰⁵, Seth Ament¹⁰⁶, Peter Anderson¹⁰⁷, Pramod Anugu¹⁰⁸, Deborah Applebaum-Bowden¹⁰⁹, Kristin Ardlie¹, Dan Arking¹¹⁰, Allison Ashley-Koch¹¹¹, Stella Aslibekyan¹¹², Paul Auer¹¹³, Dimitrios Avramopoulos¹¹⁰, Najib Ayas¹¹⁴, John Barnard¹¹⁵, R. Graham Barr¹¹⁶, Emily Barron-Casella¹¹⁰, Lucas Barwick¹¹⁷, Terri Beaty¹¹⁰, Gerald Beck¹¹⁸, Diane Becker²⁶, Rebecca Beer¹⁰⁹, Amber Beitelshees¹⁰⁶, Emelia Benjamin¹¹⁹, Takis Benos¹²⁰, Marcos Bezerra¹²¹, Larry Bielak²⁵, Russell Bowler¹²², Jennifer Brody¹⁰⁷, Ulrich Broeckel¹²³, Deborah Brown¹²⁴, Karen Bunting¹⁰², Esteban Burchard¹²⁵, Carlos Bustamante¹²⁶, Erin Buth¹⁷, Brian Cade⁷⁵, Jonathan Cardwell¹²⁷, Vincent Carey¹²⁸, Julie Carrier¹²⁹, Richard Casaburi¹³⁰, Juan P Casas Romero¹²⁸, James Casella¹¹⁰, Peter Castaldi⁹¹, Mark Chaffin¹, Christy Chang¹⁰⁶, Yi-Cheng Chang¹³¹, Daniel Chasman⁹¹, Bo-Juen Chen¹⁰², Wei-Min Chen¹³², Seung Hoan Choi¹, Lee-Ming Chuang¹³¹, Mina Chung¹¹⁵, Ren-Hua Chung¹³³, Clary Clish¹, Suzy Comhair¹¹⁵, Matthew Conomos¹⁷, Elaine Cornell¹³⁴, Carolyn Crandall¹³⁰, James Crapo¹²², Jeffrey Curtis¹³⁵, Coleen Damcott¹⁰⁶, Sayantan Das¹³⁵, Sean David¹³⁶, Colleen Davis¹⁰⁷, Michelle Daya¹²⁷, Michael DeBaun¹³⁷, Scott Devine¹⁰⁶, Qing Duan¹³⁸, Ravi Duggirala¹³⁹, Jon Peter Durda¹³⁴, Susan Dutcher¹⁴⁰, Charles Eaton¹⁴¹, Lynette Ekunwe¹⁰⁸, Adel El Boueiz³⁵, Serpil Erzurum¹¹⁵, Charles Farber¹³², Tasha Fingerlin¹⁴², Matthew Flickinger¹³⁵, Nora Franceschini³⁶, Chris Frazar¹⁰⁷, Mao Fu¹⁰⁶, Stephanie M. Fullerton¹⁰⁷, Lucinda Fulton¹⁴⁰, Stacey Gabriel¹, Weiniu Gan¹⁰⁹, Shanshan Gao¹²⁷, Yan Gao¹⁰⁸, Margery Gass⁹⁴, Bruce Gelb¹⁴³, Xiaoqi (Priscilla) Geng¹³⁵, Mark Geraci¹²⁰, Soren Germer¹⁰², Robert Gerszten⁷⁶, Auyon Ghosh¹²⁸, Richard Gibbs¹⁴⁴, Chris Gignoux¹⁴⁵, Mark Gladwin¹²⁰, David Glahn¹⁴⁶, Stephanie Gogarten¹⁰⁷, Da-Wei Gong¹⁰⁶, Harald Goring²¹, Sharon Graw¹⁴⁷, Kathryn J. Gray¹⁴⁸, Daniel Grine¹²⁷, Yue Guan¹⁰⁶, Xiuging Guo¹⁴⁹, Namrata Gupta¹, David Haas¹⁵⁰, Jeff Haessler⁹⁴, Michael Hall¹⁰⁸, Daniel Harris¹⁰⁶, Ben Heavner¹⁷, Ryan Hernandez¹²⁵, David Herrington¹⁵¹, Craig Hersh³⁵, Bertha Hidalgo¹¹², Brian Hobbs¹²⁸, John Hokanson¹²⁷, Elliott Hong¹⁰⁶, Karin Hoth¹⁵², Chao (Agnes) Hsiung¹³³, Yi-Jen Hung¹⁵³, Haley Huston⁹³, Rebecca Jackson¹⁵⁴, Deepti Jain¹⁰⁷, Cashell Jaquish¹⁰⁹, Min A Jhun¹³⁵, Andrew Johnson¹⁰⁹, Craig Johnson¹⁰⁷, Rich Johnston¹⁰⁵, Kimberly Jones¹¹⁰, Hyun Min Kang¹⁵⁵, Sekar Kathiresan¹, Michael Kessler¹⁰⁶, Wonji Kim¹⁵⁶, Gregory L. Kinney¹⁴⁷, Holly Kramer¹⁵⁷, Christoph Lange¹⁵⁸, Ethan Lange¹²⁷, Leslie Lange¹²⁷, Cathy Laurie¹⁰⁷, Meryl LeBoff¹²⁸, Jiwon Lee¹²⁸, Seunggeun Shawn Lee¹³⁵, Wen-Jane Lee¹⁵⁹, Jonathon LeFaive¹³⁵, David Levine¹⁰⁷, Dan Levy¹⁰⁹, Joshua Lewis¹⁰⁶, Xiaohui Li¹⁴⁹, Yun Li¹³⁸, Henry Lin¹⁴⁹, Honghuang Lin¹⁶⁰, Keng Han Lin¹³⁵, Xihong Lin¹⁵⁸, Simin Liu¹⁶¹, Yongmei Liu¹⁶², Yu Liu¹⁶³, Steven Lubitz⁹⁹, Kathryn Lunetta¹⁶⁰, James Luo¹⁰⁹, Ulysses Magalang¹⁶⁴, Michael Mahaney²¹, Barry Make¹¹⁰, Ani Manichaikul¹³², Lauren Margolin¹, Lisa Martin¹⁶⁵, Susan Mathai¹²⁷, Susanne May¹⁷, Patrick McArdle¹⁰⁶, Merry-Lynn McDonald¹¹², Sean McFarland¹⁵⁶, Daniel McGoldrick¹⁰⁷, Caitlin McHugh¹⁷, Becky McNeil¹⁶⁶, Hao Mei¹⁰⁸, Luisa Mestroni¹⁴⁷, Emmanuel Mignot¹⁶⁷, Julie Mikulla¹⁰⁹, Nancy Min¹⁰⁸, Mollie Minear¹⁰⁹, Matt Moll⁹¹, May E. Montasser¹⁰⁶, Courtney Montgomery¹⁶⁸, Arden Moscati¹⁴³, Stanford Mwasongwe¹⁰⁸, Josyf C Mychaleckyj¹³², Girish Nadkarni¹⁴³, Rakhi Naik¹¹⁰, Sergei Nekhai¹⁶⁹, Sarah C. Nelson¹⁷, Bonnie Neltner¹²⁷, Deborah Nickerson¹⁰⁷, Jeff O'Connell¹⁰⁶, Tim O'Connor¹⁰⁶, Heather Ochs-Balcom¹⁷⁰, Allan Pack¹⁷¹, David T. Paik¹⁶³, James Pankow¹⁷², George Papanicolaou¹⁰⁹, Cora Parker¹⁷³, Afshin Parsa¹⁰⁶, Marco Perez¹⁴⁵, James Perry¹⁰⁶, Ulrike Peters⁹⁴, Lawrence S Phillips¹⁰⁵, Toni Pollin¹⁰⁶, Julia Powers Becker¹²⁷, Pankaj Qasba¹⁰⁹,

Zhaohui Qin¹⁰⁵, Nicholas Rafaels¹²⁷, D.C. Rao¹⁴⁰, Laura Rasmussen-Torvik¹⁷⁴, Aakrosh Ratan¹³², Robert Reed¹⁰⁶, Elizabeth Regan¹²², Ken Rice¹⁰⁷, Carolina Roselli¹, Ingo Ruczinski¹¹⁰, Pamela Russell¹²⁷, Sarah Ruuska⁹³, Kathleen Ryan¹⁰⁶, Ester Cerdeira Sabino¹⁷⁵, Danish Saleheen¹¹⁶, Shabnam Salimi¹⁰⁶, Steven Salzberg¹¹⁰, Kevin Sandow¹⁴⁹, Vijay G. Sankaran¹⁷⁶, Christopher Scheller¹³⁵, Ellen Schmidt¹³⁵, Karen Schwander¹⁴⁰, David Schwartz¹²⁷, Frank Sciurba¹²⁰, Christine Seidman¹⁷⁷, Jonathan Seidman¹⁷⁷, Vivien Sheehan¹⁷⁸, Stephanie L. Sherman¹⁷⁹, Amol Shetty¹⁰⁶, Aniket Shetty¹²⁷, Wayne Hui-Heng Sheu¹⁵⁹, Brian Silver¹⁸⁰, Josh Smith¹⁰⁷, Tanja Smith¹⁰², Sylvia Smoller⁸⁵, Beverly Snively¹⁸¹, Michael Snyder¹⁴⁵, Tamar Sofer¹²⁸, Nona Sotoodehnia¹⁰⁷, Garrett Storm¹²⁷, Elizabeth Streeten¹⁰⁶, Jessica Lasky Su¹²⁸, Yun Ju Sung¹⁴⁰, Jody Sylvia¹²⁸, Adam Szpiro¹⁰⁷, Carole Sztalryd¹⁰⁶, Daniel Taliun¹³⁵, Hua Tang¹⁴⁵, Kent D. Taylor⁸⁴, Matthew Taylor¹⁴⁷, Simeon Taylor¹⁰⁶, Marilyn Telen¹¹¹, Timothy A. Thornton¹⁰⁷, Machiko Threlkeld¹⁸², Lesley Tinker⁹⁴, David Tirschwell¹⁰⁷, Sarah Tishkoff¹⁸³, Catherine Tong¹⁷, Michael Tsai¹⁷², Dhananjay Vaidya¹¹⁰, David Van Den Berg¹⁸⁴, Peter VandeHaar¹³⁵, Scott Vrieze¹⁷², Tarik Walker¹²⁷, Robert Wallace¹⁵², Avram Walts¹²⁷, Fei Fei Wang¹⁰⁷, Heming Wang¹²⁸, Karol Watson¹³⁰, Bruce Weir¹⁰⁷, Lu-Chen Weng², Jennifer Wessel¹⁸⁵, Cristen Willer¹⁸⁶, Kayleen Williams¹⁷, L. Keoki Williams¹⁸⁷, Carla Wilson¹²⁸, James Wilson¹⁸⁸, Joseph Wu¹⁶³, Huichun Xu¹⁰⁶, Ivana Yang¹²⁷, Rongze Yang¹⁰⁶, Norann Zaghloul¹⁰⁶, Yingze Zhang¹⁸⁹, Snow Xueyan Zhao¹²², Degui Zhi¹⁹⁰, Xiang Zhou¹³⁵, Xiaofeng Zhu¹⁹¹, Michael Zody¹⁰², Sebastian Zoellner¹¹

¹⁰²New York Genome Center, New York, NY, USA. ¹⁰³Cedars Sinai, Boston, MA, USA. ¹⁰⁴Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA. ¹⁰⁵Emory University, Atlanta, GA, USA. ¹⁰⁶University of Maryland, Baltimore, MD, USA. ¹⁰⁷University of Washington, Seattle, WA, USA. ¹⁰⁸University of Mississippi, Jackson, MS, USA. ¹⁰⁹National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA. ¹¹⁰Johns Hopkins University, Baltimore, MD, USA. ¹¹¹Duke University, Durham, NC, USA. ¹¹²University of Alabama, Birmingham, AL, USA. ¹¹³University of Wisconsin Milwaukee, Milwaukee, WI, USA. ¹¹⁴Department of Medicine, Providence Health Care, Vancouver, BC, Canada. ¹¹⁵Cleveland Clinic, Cleveland, OH, USA. ¹¹⁶Columbia University, New York, NY, USA. ¹¹⁷LTRC, The Emmes Corporation, Rockville, MD, USA. ¹¹⁸Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA. ¹¹⁹Departments of Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA. ¹²⁰University of Pittsburgh, Pittsburgh, PA, USA.¹²¹Fundação de Hematologia e Hemoterapia de Pernambuco (Hemope), Recife, Brazil. ¹²²National Jewish Health, Denver, CO, USA. ¹²³Medical College of Wisconsin, Milwaukee, WI, USA. ¹²⁴Department of Pediatrics, University of Texas Health at Houston, Houston, TX, USA. ¹²⁵University of California, San Francisco, San Francisco, CA, USA. ¹²⁶Department of Biomedical Data Science, Stanford University, Stanford, CA, USA. ¹²⁷University of Colorado at Denver, Denver, CO, USA. ¹²⁸Brigham and Women's Hospital, Boston, MA, USA. ¹²⁹University of Montreal, Montreal, QC, Canada. ¹³⁰University of California, Los Angeles, Los Angeles, CA, USA. ¹³¹National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan. ¹³²University of Virginia, Charlottesville, VA, USA. ¹³³National Health Research Institute Taiwan, Miaoli County, Taiwan. ¹³⁴University of Vermont, Burlington, VT, USA. ¹³⁵University of Michigan, Ann Arbor, MI, USA. ¹³⁶University of Chicago, Chicago, IL, USA. ¹³⁷Vanderbilt University, Nashville, TN, USA. ¹³⁸University of North Carolina, Chapel Hill, NC, USA. ¹³⁹University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA.¹⁴⁰Washington University in St Louis, St Louis, MO, USA.

¹⁴¹Brown University, Providence, RI, USA. ¹⁴²Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA. ¹⁴³Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁴⁴Baylor College of Medicine Human Genome Sequencing Center, Houston, TX, USA. ¹⁴⁵Stanford University, Stanford, CA, USA. ¹⁴⁶Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. ¹⁴⁷University of Colorado Anschutz Medical Campus, Aurora, CO, USA.¹⁴⁸Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA.¹⁴⁹Lundquist Institute, Torrance, CA, USA. ¹⁵⁰Department of Obstetrics & Gynecology, Indiana University, Indianapolis, IN, USA, ¹⁵¹Wake Forest Baptist Health, Winston-Salem, NC, USA. ¹⁵²University of Iowa, Iowa City, IA, USA. ¹⁵³Tri-Service General Hospital National Defense Medical Center, Taipei, Taiwan. ¹⁵⁴Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Oklahoma State University Medical Center, Columbus, OH, USA. 155 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA. ¹⁵⁶Harvard University, Cambridge, MA, USA. ¹⁵⁷Department of Public Health Sciences, Loyola University, Maywood, IL, USA. ¹⁵⁸Harvard T.H. Chan School of Public Health, Boston, MA, USA. ¹⁵⁹Taichung Veterans General Hospital Taiwan, Taichung City, Taiwan, ¹⁶⁰Boston University, Boston, MA, USA, ¹⁶¹Department of Epidemiology and Medicine, Brown University, Providence, RI, USA. ¹⁶²Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA. ¹⁶³Cardiovascular Institute, Stanford University, Stanford, CA, USA. ¹⁶⁴Division of Pulmonary, Critical Care and Sleep Medicine, Oklahoma State University Medical Center, Columbus, OH, USA. ¹⁶⁵George Washington University, Washington, USA. ¹⁶⁶RTI International, NC, USA. ¹⁶⁷Center For Sleep Sciences and Medicine, Stanford University, Palo Alto, CA, USA. ¹⁶⁸Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA. ¹⁶⁹Howard University, Washington, USA. ¹⁷⁰University at Buffalo, Buffalo, NY, USA. ¹⁷¹Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA. ¹⁷²University of Minnesota, Minneapolis, MN, USA. ¹⁷³Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA. ¹⁷⁴Northwestern University, Chicago, IL, USA. ¹⁷⁵Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil. ¹⁷⁶Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. ¹⁷⁷Harvard Medical School, Boston, MA, USA. ¹⁷⁸Department of Pediatrics, Baylor College of Medicine, Atlanta, GA, USA. ¹⁷⁹Department of Human Genetics, Emory University, Atlanta, GA, USA. ¹⁸⁰UMass Memorial Medical Center, Worcester, MA, USA.¹⁸¹Department of Biostatistics and Data Science, Wake Forest Baptist Health, Winston-Salem, NC, USA. ¹⁸²Department of Genome Sciences, University of Washington, Seattle, WA, USA. ¹⁸³Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA. ¹⁸⁴USC Methylation Characterization Center, University of Southern California, Los Angeles, CA, USA. ¹⁸⁵Department of Epidemiology, Indiana University, Indianapolis, IN, USA. ¹⁸⁶Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA. ¹⁸⁷Henry Ford Health System, Detroit, MI, USA. ¹⁸⁸Department of Cardiology, Beth Israel Deaconess Medical Center, Cambridge, MA, USA. ¹⁸⁹Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. ¹⁹⁰University of Texas Health at Houston, Houston, TX, USA.¹⁹¹Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.

The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group

Ranjan Deka, Dept. of Environmental Health, University of Cincinnati; Nicola L. Hawley, Dept. of Chronic Disease Epidemiology, Yale University; Stephen T McGarvey, Dept. of Epidemiology and International Health Institute, and Dept. of Anthropology, Brown University; Ryan L Minster, Dept. of Human Genetics, University of Pittsburgh; Take Naseri, Ministry of Health, Government of Samoa; Muagututi'a Sefuiva Reupena, Lutia I Puava Ae Mapu I Fagalele; Daniel E. Weeks, Depts. of Human Genetics and Biostatistics, University of Pittsburgh.

The flow chart for generating the study population used for observational and Mendelian randomization studies in TOPMed and UK Biobank. CAD: coronary artery disease, CHIP: Clonal hematopoiesis of indeterminate potential, LTL: Leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, WES: Whole-exome sequencing.

Fig. S2. Comparison of the measurements for leukocyte telomere length.

A Telomere length estimated by TelSeq (31) using whole-genome sequence (WGS) data in TOPMed (n = 63,302) and UK Biobank (n = 48,658) using whole-exome sequencing (WES), and T/S ratio in UK Biobank (n = 472,594). B Estimated LTL by TelSeq using WGS is shorter than the measurement by southern blot when directly compared in the same individuals in a subset of WHI cohort (n = 686). kb: kilo base, LTL: Leukocyte telomere length, SB: Southern blot, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, WHI: Women's Health Initiative.

Fig. S3. SNPs' effect sizes for associations with mLTL strongly correlated with the previous report across estimation methods.

Correlation of estimates in the effect of variants for mLTL between our data from TOPMed and UK Biobank, and previous report (11). Effect sizes for minor alleles were calculated in subsets of European ancestry population in both TOPMed (n = 27,402) and UK Biobank (n = 43,906) with adjustment by age, sex, first 11 genetic principal components, sequencing center or batch, and study in TOPMed. Red dotted lines represent equality between both data (x=y). AJHG: The American Journal of Human Genetics, mLTL: Measured leukocyte telomere length, SNP: Single nucleotide polymorphism, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank.

Fig. S4. Longer mLTL is associated with reduced CHIP prevalence.

A,B For the outcomes **A** any CHIP (VAF > 5%) and **B** CHIP with VAF > 10%, the associations with LTL were assessed by linear regression model both in TOPMed and UK Biobank, then meta-analyzed. Both models were adjusted with age, sex, ever smoking, body mass index, first 11 principal components, sequencing center or batch, and study in TOPMed. CHIP: Clonal hematopoiesis of indeterminate potential, CI: Confidence interval, mLTL: Measured leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, VAF: Variant allele frequency.

•	o	CHIP		•	050/ 01	-	Р.,
Gene	Study	(VAF>10%)	Effect of CHIP on mLTL	β	95% CI	Р	(Heterogeneity)
DNMT3A	TOPMed	1,496	I ◆ I	-0.019	[-0.08:0.042]	0.54	
	UKBB	555	F ◆ -I	-0.016	[-0.098 : 0.067]	0.71	
	Fixed effect model	2,051	•	-0.018	[-0.067 : 0.031]	0.48	0.95
TET2	TOPMed	510	F.◆ -I	-0.28	[-0.39 : -0.18]	4.3 × 10 ⁻⁸	
	UKBB	208	F= ◆==1	-0.19	[-0.32 : -0.053]	0.0065	
	Fixed effect model	718	◆	-0.25	[-0.33 : -0.17]	1.8 × 10 ⁻⁹	0.26
ASXL1	TOPMed	233	E- I	-0.43	[-0.57 : -0.28]	1.2 × 10 ⁻⁸	
	UKBB	81	F	-0.41	[-0.63:-0.2]	0.00017	
	Fixed effect model	314	◆	-0.42	[-0.54:-0.3]	8.2 × 10 ⁻¹²	² 0.93
PPM1D	TOPMed	104	F	-0.61	[-0.85:-0.37]	5.5 × 10 ⁻⁷	
	UKBB	19	FI	-0.63	[-1.1:-0.19]	0.0046	
	Fixed effect model	123	-	-0.62	[-0.83 : -0.41]	8.8 × 10 ⁻⁹	0.94
JAK2	TOPMed	92		-0.8	[-1.1:-0.54]	8.9 × 10 ⁻¹⁰	
	UKBB	9	F	-0.83	[-1.5:-0.2]	0.01	
	Fixed effect model	101	•	-0.8	[-1 : -0.57]	3.0 × 10 ⁻¹¹	0.92
SF3B1	TOPMed	72		0.0037	[-0.26:0.27]	0.98	
	UKBB	14	FI	-0.36	[-0.87 : 0.15]	0.16	
	Fixed effect model	86	-	-0.074	[-0.31 : 0.16]	0.54	0.21
TP53	TOPMed	54		-0.66	[-1 : -0.33]	0.00012	
	UKBB	20		-0.39	[-0.83 : 0.047]	0.08	
	Fixed effect model	74	-	-0.56	[-0.83 : -0.29]	3.9 × 10⁵	0.33
SRSF2	TOPMed	50		-0.035	[-0.36:0.29]	0.83	
	UKBB	8	ŀ∳I	0.063	[-0.61:0.74]	0.85	
	Fixed effect model	58	-	-0.016	[-0.31 : 0.28]	0.91	0.8
GNB1	TOPMed	26		-0.28	[-0.76:0.2]	0.25	
	UKBB	11	+ + I	-0.013	[-0.59:0.56]	0.96	
	Fixed effect model	37		-0.17	[-0.54:0.2]	0.36	0.48
GNAS	TOPMed	22	++	0.076	[-0.47:0.62]	0.79	
	UKBB	6	F	0.018	[-0.76:0.8]	0.96	
	Fixed effect model	28		0.057	[-0.39:0.5]	0.8	0.91
			-1.5 -1 -0.5 0 0.5				

Fig. S5. Effect of CHIP (VAF>10%) on mLTL per CHIP gene (most frequently mutated 10 genes).

Effect estimate of large clone size CHIP (VAF > 10 %) on mLTL was assessed in each CHIP gene. Linear regression model was adjusted with age, sex, smoking, body mass index, first 11 genetic principal components, sequencing center or batch, and study in TOPMed and metaanalyzed using fixed effect model. The 10 most frequently mutated genes are displayed. Data for the other CHIP genes is reported in Table S2. CHIP: Clonal hematopoiesis of indeterminate potential, CI: Confidence interval, mLTL: Measured leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, VAF: Variant allele frequency.

Fig. S6. Association of CHIP with mLTL per number of genes affected by CHIP mutations.

A The effect of CHIP on LTL was assessed by the number of CHIP related mutations. Linear regression model was adjusted with age, sex, smoking, body mass index, first 11 genetic principal components, sequencing center or batch, and study in TOPMed in both cohorts and meta-analyzed using fixed effect model. **B** The effect of the number of CHIP related mutations on LTL. CHIP: Clonal hematopoiesis of indeterminate potential, CI: Confidence interval, mLTL: Measured leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, VAF: Variant allele frequency.

The association of VAF of CHIP with LTL was assessed by linear regression model both in **A** TOPMed and **B** UK Biobank, then **C** meta-analyzed. Linear regression models were adjusted with age, sex, ever smoking, body mass index, first 11 principal components, sequencing center or batch, and study in TOPMed. CHIP with VAF > 5% was included in the meta-analysis (**C**). CHIP: Clonal hematopoiesis of indeterminate potential, CI: Confidence interval, mLTL: Measured leukocyte telomere length, PC: principal component, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, VAF: Variant allele frequency.

Fig. S8. Effect of shorter mLTL on CAD.

The effect of shorter mLTL on CAD incidence was assessed in Cox Proportional Hazard model in both cohorts for all participants (**A**) and for those without CHIP (**B**). The model was adjusted by age, sex, ever smoking, hypercholesterolemia, body mass index, sequencing center or batch, and first 11 genetic principal components, and study in TOPMed. Effects were combined using fixed effects meta-analysis. CAD: Coronary artery disease, CI: Confidence interval, HR: Hazard ratio, mLTL: Measured leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank.

Fig. S9. Effect of overall and each CHIP gene on CAD.

Effect of each CHIP gene on CAD. Cox proportional hazard model was fitted with adjustment for age, age squared, sex, ever smoking, total cholesterol, body mass index, principal components 1 to 11, sequencing center or batch, and TOPMed study (if applicable) in TOPMed and UK Biobank, and meta analyzed. **: *P*<0.01, ***: *P*<0.001. CAD: coronary artery disease, CHIP: clonal hematopoiesis of indeterminate potential.

Method			Estimate	95% CI	Р
IVW		F	1.06	[0.39;1.7]	0.0019
Weighted median		FF	1.03	[0.37;1.7]	0.0023
Weighted mode		F	1.14	[0.17;2.1]	0.0220
MR-Egger		⊦ ♦ ⇒	2.73	[1.00;4.5]	0.0020
MR-PRESSO		F ♦ 1	0.79	[0.24;1.3]	0.0150
	-1 -0.5	0 0.5 1 1.5 2 2.5 3			

Fig. S10. Two-sample Mendelian randomization studies for LTL on CHIP.

Two-sample Mendelian randomization study for LTL on CHIP was performed to infer the causal effect of LTL on CHIP. IVs were derived from previous report (11) in all analyses for LTL on CHIP and clumped as 10 Mb apart and in linkage disequilibrium ($R^2 > 0.001$ calculated in European ancestry from 1000 Genome project) resulting in 16 IVs. We used previous GWAS summary statistics for LTL (11) for the exposure and white British subset of UK Biobank for the outcome. In addition to the conventional inverse-variance weighted (IVW) method, weighted median, weighted mode, MR-Egger, and MR-PRESSO were performed as sensitivity analyses. MR-PRESSO excluded *TERT* and *ATM* loci variants as outliers. Used IVs are reported in Tables S7. CHIP: Clonal hematopoiesis of indeterminate potential, CI: Confidence interval, IV: Instrumental variable, LTL: Leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank.

Excluded Variant	Locus		Estimate	95% CI	Р
All Included			1.06	[0.393:1.74]	0.0019
rs4691895	NAF1	-	1.19	[0.545:1.83]	0.00029
rs228595	ATM	⊢ -	1.12	[0.516:1.71]	0.00027
rs59294613	POT1	F • +	1.09	[0.41:1.76]	0.0016
rs3785074	TERF2	F •	1.06	[0.384:1.74]	0.0021
rs2302588	DCAF4	F + +	1.06	[0.383:1.73]	0.0021
rs62053580	RFWD3	F •	1.04	[0.356:1.73]	0.0029
rs10936600	TERC	F	1.03	[0.27:1.79]	0.0079
rs9419958	STN1(OBFC1)	⊢ ◆	1.03	[0.324:1.73]	0.0042
rs55749605	SENP7	⊢ •	1.01	[0.317:1.71]	0.0043
rs8105767	ZNF208	F •	0.99	[0.296:1.68]	0.0052
rs2736176	PRRC2A	F •	0.988	[0.298:1.68]	0.005
rs7194734	MPHOSPH6	F •	0.984	[0.296:1.67]	0.0051
rs13137667	MOB1B	F • +	0.982	[0.305:1.66]	0.0045
rs3219104	PARP1	⊢ - I	0.951	[0.285:1.62]	0.0051
rs75691080	RTEL1/STMN3	⊢ • +	0.948	[0.271:1.62]	0.0061
rs7705526	TERT	⊢ - +	0.638	[0.0224:1.25]	0.042
		0 0.5 1 1.5 2			

Fig. S11. Leave-one-out analysis in two-sample MR of LTL on CHIP.

Leave-one-out analysis was performed by simple inverse variance weighted method. CHIP: Clonal hematopoiesis of indeterminate potential, LTL: Leukocyte telomere length, MR: Mendelian randomization.

Fig. S12. Two-sample MR using 14 IVs excluding TERT and ATM loci.

Two-sample MR was performed using 14 IVs excluding outliers detected by MR-PRESSO. **A** Estimates from various methods using distinct assumptions. **B** Scatter plot and **C** Funnel plot for each IVs are displayed. IV: Instrumental variables, IVW: Inverse variance weighted, MR: Mendelian randomization

Fig. S13. Effect of mLTL and gLTL for COSMIC mutational signatures.

Effect estimates of A mLTL and B gLTL on COSMIC mutational signature version 2 (https://cancer.sanger. ac.uk/cosmic/signatures_v2) in TOPMed. *MutationalPattern* package in R was used to calculate the absolute contribution of each signature in each sample. The association with mLTL and gLTL were assessed by linear models with adjustment by age, age squared, sex, sequencing center or batch, and TOPMed study. Effect estimate of gLTL was calculated by one-sample MR using two-stage least-square method with outlier-excluded 14 IVs. The same adjustment was implemented with observational model. Effect estimates with P < 0.05 are colored. * denotes FDR < 0.05. mLTL: Measured leukocyte telomere length, gLTL: Genetically imputed leukocyte telomere length, MR: Mendelian randomization, TOPMed: Trans-Omics for Precision Medicine.

Fig. S14. Effect of *TERT* locus for mutational occurrence and signature.

Effect estimates of *TERT* variant (rs7705526) on singleton mutation occurrence. The vcf files were generated by Mutect2 from 56,266 CRAM files in TOPMed with appropriate filters and single base substitutions were extracted, stratified by trinucleotide context. IVs were selected as one-sample Mendelian randomization for LTL (Figure 3) with outlier exclusion. Effect estimates with P < 0.05 are colored. * denotes surviving from Bonferroni's correction. LTL: Leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine.

Fig. S15. Single instrumental variable tests of one-sample Mendelian randomization for CHIP on LTL in TOPMed.

Locus		Estimate	95% CI	Р
KPNA4/TRIM59		-0.7	[-1.3:-0.057]	0.033
TET2		-0.91	[-1.6:-0.23]	0.0084
All		-0.81	[-1.4:-0.23]	0.0063
	-1.5 -1 -0.5 0	0.5		

One-sample Mendelian randomization for CHIP on LTL using each variant separately in TOPMed. CHIP: Clonal hematopoiesis of indeterminate potential, CI: Confidence interval, LTL: Leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine.

Exposure (CHIP)	<i>n</i> (Exposure)	Outcome (LTL)	<i>n</i> (Outcome)	MR Effect of CHIP on LTL	β	95% CI	Ρ	P (heterogeneity)
TOPMed UK Biobank	27,402 43,906	UK Biobank TOPMed	412,308 27,402	+	- 0.13 - 0.15	[-0.17; -0.10] [-0.32 ; 0.02]	8.6 × 10 ⁻¹⁵ 9.1 × 10 ⁻²	
Overall	71,308		439,710		- 0.13	[- 0.17; - 0.10]	2.0 × 10 ⁻¹⁵	0.89
			-	0.3 -0.2 -0.1 0 0.1 0.2 0).3			

Fig. S16. Two-sample Mendelian randomization for CHIP on LTL.

Two-sample Mendelian randomization with rs58322641 for European subsets of TOPMed and UK Biobank indicated an inverse causal effect of CHIP on LTL. CHIP: Clonal hematopoiesis of indeterminate potential, LTL: Leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine.

	ſ		TOPMed $(n =$	63,302)		UK Biobank $(n = 47,080)$			
		No CHIP $(n = 60,018)$	CHIP VAF<0.1 (<i>n</i> = 422)	$CHIP VAF \ge 0.1$ $(n = 2,862)$	Р	No CHIP (<i>n</i> = 44,874)	CHIP VAF<0.1 (<i>n</i> = 1,198)	$CHIP VAF \ge 0.1$ $(n = 1,008)$	Р
Age at blood draw (mean (SD))		53.65 (18.12)	66.50 (11.03)	67.68 (10.64)	< 0.001	56.35 (8.01)	60.33 (6.65)	60.83 (6.58)	< 0.001
Sex (Male, %)		25,581 (42.6)	141 (33.4)	1,073 (37.5)	< 0.001	20,412 (45.5)	532 (44.4)	488 (48.4)	0.134
Race (%)	European	29,171 (64.6)	269 (73.7)	1,854 (75.6)	< 0.001	41,806 (93.2)	1,133 (94.6)	968 (96.0)	0.004
	African	12,006 (26.6)	76 (20.8)	490 (20.0)		927 (2.1)	19 (1.6)	15 (1.5)	
	Asian	2,665 (5.9)	14 (3.8)	69 (2.8)		990 (2.2)	16 (1.3)	10 (1.0)	
	Other	1,347 (3.0)	6 (1.6)	40 (1.6)		1,151 (2.6)	30 (2.5)	15 (1.5)	
Smoking (%)	Never	11,745 (19.6)	113 (26.8)	749 (26.2)	< 0.001	24,988 (55.9)	604 (50.8)	470 (46.8)	< 0.001
	Previous	40,089 (66.8)	257 (60.9)	1,738 (60.7)		15,724 (35.2)	467 (39.2)	425 (42.3)	
	Current	8,184 (13.6)	52 (12.3)	375 (13.1)		4,019 (9.0)	119 (10.0)	110 (10.9)	
BMI, kg/m2 (mean (SD))		28.55 (6.01)	28.18 (5.74)	28.24 (5.75)	0.04	27.41 (4.80)	27.54 (4.71)	27.73 (4.79)	0.077
mLTL (TelSeq), kb (mean (SD))	Unadjusted	3.28 (1.01)	3.24 (0.98)	3.14 (0.98)	< 0.001	0.83 (0.13)	0.82 (0.13)	0.80 (0.12)	< 0.001
	Adjusted	0.02 (1.00)	-0.18 (0.98)	-0.33 (0.97)	< 0.001	0.01 (1.00)	-0.06 (1.00)	-0.23 (1.00)	< 0.001
Type 2 Diabetes (%)		1,946 (12.7)	22 (18.2)	111 (13.6)	0.154	3,327 (7.4)	112 (9.3)	89 (8.8)	0.011
Hypercholesterolemia (%)		6,062 (10.1)	74 (17.5)	372 (13.0)	<0.001	10,502 (23.4)	323 (27.0)	306 (30.4)	< 0.001

Table S1. Baseline characteristics

BMI: Body mass index, CHIP: Clonal hematopoiesis of indeterminate potential, mLTL: Mesured leukocyte telomere length, SD: Standard deviation, TOPMed: Trans-Omics for Precision Medicine, VAF: Variant allele frequecy. Continuous variables were compared using ANOVA, and categorical variable associations were estimated using the chi-square test. Samples missing each information were excluded.

Cone	Study	Control	CHIP	R	SF	P	(Heterogeneity)
DNMT3A	TOPMed	60.018	1 496	-0.019	0.031	0 544	(neterogenetty)
	UKBB	44,874	555	-0.016	0.042	0.706	
	Overall	104,892	2,051	-0.018	0.025	0.477	0.95
TET2	TOPMed	60,018	510	-0.285	0.052	4.33E-08	
	Overall	44,874	208	-0.188	0.069	6.4/E-03	0.26
ASXL1	TOPMed	60.018	233	-0.426	0.075	1.15E-08	0.20
	UKBB	44,874	81	-0.415	0.110	1.69E-04	
	Overall	104,892	314	-0.422	0.062	8.18E-12	0.93
PPM1D	TOPMed	60,018	104	-0.613	0.122	5.53E-07	
	Overall	44,874	19	-0.632	0.223	4.65E-03	0.94
JAK2	TOPMed	60.018	92	-0.798	0.107	8.93E-10	0.74
	UKBB	44,874	9	-0.834	0.324	0.010	
	Overall	104,892	101	-0.803	0.121	2.99E-11	0.92
SF3B1	TOPMed	60,018	72	0.004	0.135	0.978	
	UKBB	44,874	14	-0.361	0.260	0.165	0.21
TP53	TOPMed	104,892	54	-0.0/4	0.120	0.538 1.21E-04	0.21
	UKBB	44.874	20	-0.391	0.223	0.080	
	Overall	104,892	74	-0.562	0.137	3.93E-05	0.33
SRSF2	TOPMed	60,018	50	-0.035	0.166	0.833	
	UKBB	44,874	8	0.063	0.344	0.854	0.90
CNP1	TOPMed	104,892	58	-0.016	0.149	0.913	0.80
UNDI	UKBB	44 874	20	-0.281	0.244	0.230	
	Overall	104,892	37	-0.171	0.188	0.361	0.48
GNAS	TOPMed	60,018	22	0.076	0.279	0.787	
	UKBB	44,874	6	0.018	0.397	0.963	
CRI	Overall	104,892	28	0.057	0.228	0.804	0.91
CBL	UKBB	60,018	1/	0.248	0.279	0.375	
	Overall	104 892	27	0.222	0.307	0 253	0.95
BRCC3	TOPMed	60,018	16	-0.128	0.260	0.621	
	UKBB	44,874	4	-1.223	0.562	0.029	
	Overall	104,892	20	-0.322	0.236	0.173	0.08
NFI	TOPMed	60,018	13	-0.807	0.411	0.050	
	Overall	44,874	20	-0.285	0.367	0.720	0.09
PRPF8	TOPMed	60,018	15	0.046	0.381	0.905	0.09
	UKBB	44,874	2	0.079	0.687	0.909	
	Overall	104,892	17	0.053	0.333	0.873	0.97
KRAS	TOPMed	60,018	11	0.238	0.381	0.532	
	Overall	44,874	4	-0.615	0.486	0.206	0.17
ASXL2	TOPMed	60 018	8	-0.585	0.300	0.194	0.17
	UKBB	44,874	4	0.721	0.486	0.138	
	Overall	104,892	12	0.018	0.330	0.957	0.05
CUX1	TOPMed	60,018	6	-0.281	0.712	0.693	
	Overall	44,874	3	-0.166	0.561	0.768	0.90
IDH2	TOPMed	60.018	6	-0.159	0.441	0.034	0.70
	UKBB	44,874	3	0.455	0.561	0.417	
	Overall	104,892	9	0.082	0.351	0.816	0.39
SETD2	TOPMed	60,018	5	-0.341	1.007	0.735	
	UKBB	44,874	4	0.207	0.486	0.670	0.62
BCORL1	TOPMed	60.018	9 7	-0.521	0.438	0.813	0.62
Deoner	UKBB	44.874	1	-0.190	0.972	0.845	
	Overall	104,892	8	-0.477	0.354	0.179	0.75
BCOR	TOPMed	60,018	6	0.095	0.581	0.870	
	UKBB	44,874	1	-0.182	0.972	0.851	0.81
ETNK1	TOPMed	60.018	5	0.022	0.499	0.964	0.81
	UKBB	44,874	2	-0.253	0.687	0.713	
	Overall	104,892	7	0.000	0.406	0.999	0.65
ETV6	TOPMed	60,018	5	0.234	0.581	0.687	
	UKBB	44,874	2	0.764	0.687	0.266	0.56
RAD21	TOPMed	60.018	5	0.455	0.712	0.303	0.50
	UKBB	44.874	2	-2.218	0.972	0.023	
	Overall	104,892	7	-0.709	0.574	0.217	0.05
KDM6A	TOPMed	60,018	4	-1.204	0.581	0.038	
	UKBB Overall	44,874	1	-1.837	0.972	0.059	0.59
NRAS	TOPMed	60 018	3	-1.5/1	0.499	0.006	0.38
	UKBB	44,874	2	-0.627	0.687	0.362	
	Overall	104,892	5	-0.133	0.494	0.788	0.30
SMC3	TOPMed	60,018	2	-0.946	0.712	0.184	
	UKBB Overall	44,874	3	1.493	0.561	0.008	0.01
MPI.	TOPMed	104,892	2	-2 680	0.441	0.206	0.01
	UKBB	44 874	2	-0.356	0.687	0.605	
	Overall	104,892	4	-1.094	0.568	0.054	0.06
EP300	TOPMed	60,018	2	-2.572	1.007	0.011	
	UKBB	44,874	1	-0.587	0.972	0.546	0.15
511712	Overall TOPMad	104,892	3	-1.545	0.699	0.027	0.16
SUZ12	UKBB	60,018 11 971	2	-0.058	0.712	0.935	
	Overall	104 892	3	-0.772	0.574	0 179	0.09
BRAF	TOPMed	60,018	1	1.660	1.007	0.099	
1	UKBB	44,874	1	1.071	0.972	0.270	
	Overall	104 892	2	1 355	0.699	0.053	0.67

CHIP: Clonal hematopoiesis of indeterminate potential, mLTL: Measured leukocyte telomere length, SE: Standard error, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, VAF: Variant allele frequecy.

Dianosis	Disease	Data Field	Code
Self reported	Heart attack/Myocardial infarction	20002	1075
	Coronary angioplasty/bypass grafting	20004	1070, 1095, 1523
Diagnosed by doctor	Heart attack	6150	1
ICD9	Myocardial infarction	41203, 41205	410, 412, 4129
	Other ischemic heart disease	41203, 41205	411, 4119, 4140, 4148, 4149
ICD10	Myocardial infarction	40001, 40002, 41202, 41204	121, 121.0, 121.1, 121.2, 121.3, 121.4, 121.9, 122, 122.0, 122.1, 122.8, 122.9, 123,
			123.0, 123.1, 123.2, 123.3, 123.4, 123.5, 123.6, 123.8, 124.0, 124.1, 125.2
	Other ischemic heart disease	40001, 40002, 41202, 41204	124, 124.8, 124.9, 125.1, 125.5, 125.6, 125.8, 125.9
OPCS	Coronary angioplasty/bypass grafting	41200, 41210	K40, K40.1, K40.2, K40.3, K40.4, K40.8, K40.9, K41, K41.1, K41.2, K41.3,
			K41.4, K41.8, K41.9, K42, K42.1, K42.2, K42.3, K42.4, K42.8, K42.9, K43,
			K43.1, K43.2, K43.3, K43.4, K43.8, K43.9, K44, K44.1, K44.2, K44.8, K44.9,
			K45.1, K45.2, K45.3, K45.4, K45.5, K45.6, K45.8, K45.9, K46, K46.1, K46.2,
			K46.3, K46.4, K46.5, K46.8, K46.9, K49.1, K49.2, K49.3, K49.4, K49.8,
			K49.9, K50.1, K50.2, K50.4, K75.1, K75.2, K75.3, K75.4, K75.8, K75.9

Table S3. Coronary artery disease definition in UK Biobank.

Fable S7. Effect estimates of each CHIF	gene with VAF > 10 % on mLTL	conditioned with previous CAD
--	------------------------------	-------------------------------

G	Gi l						
Gene	Study	Control	СПР	<u>β</u>	<u>SE</u>	<u>P</u>	P (Heterogeneity)
DNM13A	IOPMed	19,504	669	0.005	0.037	0.888	
	UKBB	44,341	536	-0.025	0.042	0.548	0.50
	Overall	63,845	1,205	-0.008	0.028	0.769	0.59
TET2	TOPMed	19,504	244	-0.263	0.061	1.80E-05	
	UKBB	44,341	199	-0.197	0.069	0.004	
	Overall	63,845	443	-0.234	0.046	3.20E-07	0.48
ASXL1	TOPMed	19,504	104	-0.359	0.093	1.19E-04	
	UKBB	44,341	76	-0.421	0.111	1.50E-04	
	Overall	63,845	180	-0.385	0.071	7.24E-08	0.67
PPM1D	TOPMed	19,504	41	-0.479	0.148	1.24E-03	
	UKBB	44,341	19	-0.639	0.222	0.004	
	Overall	63,845	60	-0.529	0.123	1.83E-05	0.55
SF3B1	TOPMed	19,504	35	0.060	0.161	0.707	
	UKBB	44,341	14	-0.317	0.259	0.221	
	Overall	63,845	49	-0.045	0.136	0.744	0.22
JAK2	TOPMed	19,504	36	-0.658	0.158	3.25E-05	
	UKBB	44.341	9	-0.896	0.322	0.005	
	Overall	63 845	45	-0 704	0.142	7 23E-07	0.51
TP53	TOPMed	19 504	19	-0.152	0.218	0.486	
	UKBB	44 341	18	-0.418	0.228	0.067	
	Overall	63.845	37	-0.279	0.157	0.077	0.40
SRSF2	TOPMed	19 504	20	0.169	0.212	0.426	0.10
51151 2	UKBB	17,304	8	0.039	0.342	0.420	
	Overall	62 8/15	28	0.133	0.180	0.202	0.75
GNR1	TOPMed	10 504	∠0 7	_0.133	0.100	0.402	0.75
GIVDI	UVDD	19,304	11	-0.331	0.339	0.125	
	Overall	44,341	11	-0.042	0.292	0.880	0.27
CPI	TOPMed	63,845	18	-0.244	0.226	0.280	0.27
CBL	UKDD	19,504	4	0.969	0.474	0.041	
	UKBB	44,341	10	0.141	0.306	0.645	0.1.4
<u> </u>	TOPM	63,845	14	0.384	0.257	0.135	0.14
63	TOPMed	19,504	1	0.271	0.358	0.449	
	UKBB	44,341	6	0.052	0.395	0.896	0.40
	Overall	63,845	13	0.172	0.265	0.516	0.68
NFI	TOPMed	19,504	4	-0.662	0.474	0.163	
	UKBB	44,341	7	0.144	0.366	0.693	
	Overall	63,845	11	-0.156	0.290	0.590	0.18
BRCC3	TOPMed	19,504	7	0.097	0.359	0.788	
	UKBB	44,341	3	-1.215	0.560	0.030	
	Overall	63,845	10	-0.285	0.302	0.345	0.05
ASXL2	TOPMed	19,504	4	-0.739	0.474	0.119	
	UKBB	44,341	4	0.622	0.485	0.199	
	Overall	63,845	8	-0.074	0.339	0.828	0.04
KRAS	TOPMed	19,504	3	0.271	0.547	0.620	
	UKBB	44,341	4	-0.705	0.484	0.145	
	Overall	63,845	7	-0.277	0.362	0.445	0.18
IDH2	TOPMed	19,504	3	-0.313	0.547	0.568	
	UKBB	44.341	3	0.453	0.558	0.417	
	Overall	63,845	6	0.063	0.391	0.872	0.33
PRPF8	TOPMed	19 504	4	-0.103	0 474	0.827	
-	UKBB	44 341	2	0.138	0.684	0.841	
	Overall	63 845	6	-0.025	0.390	0.948	0.77
ETNK1	TOPMed	19 504	3	0.076	0.570	0.940	0.77
LINI	UKBB	17,304	2	-0.018	0.684	0.070	
	Overall	63 845	5	0.030	0.427	0.978	0.91
RCORI 1	TOPMed	10 504	2	0.059	0.427	0.927	0.71
DCORLI	UVDD	19,304	5	0.034	0.347	0.921	
	Overall	44,541	1	-0.005	0.908	0.947	0.01
CUVI	TOPMed	03,843	4	0.025	0.470	0.958	0.91
CUAI	UVDD	19,504	1	0.042	0.948	0.965	
	UKBB	44,341	3	-0.262	0.558	0.638	0.70
ND 46	Overall	63,845	4	-0.184	0.481	0.702	0.78
NKAS	TOPMed	19,504	2	0.385	0.670	0.565	
	UKBB	44,341	2	-0.673	0.684	0.325	ô 8 5
	Overall	63,845	4	-0.133	0.479	0.780	0.27
SMC3	TOPMed	19,504	1	-0.335	0.948	0.724	
	UKBB	44,341	3	1.532	0.558	0.006	
	Overall	63,845	4	1.051	0.481	0.029	0.09
KDM6A	TOPMed	19,504	2	-0.993	0.670	0.139	
	UKBB	44,341	1	-2.092	0.967	0.031	
	Overall	63,845	3	-1.350	0.551	0.014	0.35
MPL	TOPMed	19,504	1	-2.729	0.948	0.004	
	UKBB	44,341	2	-0.460	0.684	0.502	
	Overall	63.845	3	-1.236	0.555	0.026	0.05
BRAF	TOPMed	19 504	1	1 542	0.948	0 104	
	UKBB	44 341	1	1 146	0.967	0.236	
	Overall	47,341 62.045	1 2	1.140	0.707	0.230	0.77

CAD: Coronry artery disease, CHIP: Clonal hematopoiesis of indeterminate potential, mLTL: Measured leukocyte telomere length, SE: Standard error, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank, VAF: Variant allele frequecy.

rsid	Gene	Chromosome	Position (GRCh38)	RSSobs	Р
rs3219104	PARP1	1	226374920	1.40E-05	0.29
rs55749605	SENP7	3	101513249	2.47E-07	1
rs10936600	TERC	3	169796797	8.29E-07	1
rs13137667	MOB1B	4	70908630	1.75E-05	1
rs4691895	NAF1	4	163127047	2.22E-05	0.13
rs7705526	TERT	5	1285859	4.90E-05	0.0016
rs2736176	PRRC2A	6	31619784	2.22E-06	1
rs59294613	POT1	7	124914213	1.12E-05	0.528
rs9419958	STN1 (OBFC1)	10	103916188	8.97E-07	1
rs228595	ATM	11	108234866	2.45E-05	0.0048
rs2302588	DCAF4	14	72938044	5.82E-06	1
rs3785074	TERF2	16	69373083	4.78E-06	1
rs62053580	RFWD3	16	74646176	8.79E-06	1
rs7194734	MPHOSPH6	16	82166375	6.10E-07	1
rs8105767	ZNF208	19	22032639	2.43E-07	1
rs75691080	RTEL1/STMN3	20	63638397	7.38E-06	1

Table S8. Instrumental variable used in Mendelian randomization studies for LTL on CHIP.

CHIP: Clonal hematopoiesis of indeterminate potential, LTL: Leukocyte telomere length,

P: Heterogeneity test assessed by MR-PRESSO, RSSobs: Observed residdual sum of squares calculated by MR-PRESSO.

Table S9. Instrumental variables used in one-sample Mendelian randomization of CHIP on LTL

SNP ID	Chromosome	Desition	Cono	F value for CHIP R square for CHIP R	B square for I TI	Steiger test			
SINF ID		1 USILIOII	Gene	r value for Chir	K square for CHIF	K square for LTL	Steiger test Direction	t	Р
rs58322641	3	160497760	KPNA4/TRIM59	38.681	9.50E-04	7.06E-05	TRUE	4.68	2.90E-06
rs114420266	4	104838707	TET2	36.303	1.62E-04	8.23E-06	TRUE	2.06	0.0399
rs7705526	5	1285859	TERT		0.00124	0.00225	FALSE	-2.56	0.0105

CHIP: Clonal hematopoiesis of indeterminate potential, LTL: Leukocyte telomere length, SNP: Single nucleotide polymorphism.

Legends for Tables S4 to S6

Table S4: TOPMed cohorts included in this study.

Table S5: Sensitivity analysis for observational association of CHIP and mLTL with CAD incidence in Cox proportional hazard model.

Table S6: Sensitivity analysis for observational association of CHIP and previous CAD with mLTL in linear regression model.