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Encephalitic Arboviruses of Africa:
Emergence, Clinical Presentation
and Neuropathogenesis
Robyn S. Klein*

Center for Neuroimmunology & Neuroinfectious Diseases, Departments of Medicine, Neuroscience, and Pathology &
Immunology, Washington University School of Medicine, St. Louis, MO, United States

Manymosquito-borne viruses (arboviruses) are endemic in Africa, contributing to systemic
and neurological infections in various geographical locations on the continent. While most
arboviral infections do not lead to neuroinvasive diseases of the central nervous system,
neurologic diseases caused by arboviruses include flaccid paralysis, meningitis,
encephalitis, myelitis, encephalomyelitis, neuritis, and post-infectious autoimmune or
memory disorders. Here we review endemic members of the Flaviviridae and
Togaviridae families that cause neurologic infections, their neuropathogenesis and host
neuroimmunological responses in Africa. We also discuss the potential for neuroimmune
responses to aide in the development of new diagnostics and therapeutics, and current
knowledge gaps to be addressed by arbovirus research.
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INTRODUCTION

Recent studies indicate that climate changes in Africa may lead to a shift in vector-borne diseases
from malaria to arboviruses due to differential effects of warming temperatures on the mosquito
species that transmit these pathogens to humans [summarized in (1)]. Thus, neurotropic
arboviruses that are transmitted by Aedes aegypti, and cycle between wildlife and livestock or
humans in west sub-Saharan Africa, are likely to emerge in other areas of Africa where the current
climates supports Anopheles gambiae transmission of malaria (2, 3). Recent epidemics of yellow
fever (YFV) and Rift Valley fever (RVFV) viruses in Nigeria and Uganda (4, 5), respectively, and
emergence of West Nile virus (WNV) in the Darfur region (6) are consistent with these predictions.
In addition, the United Nations estimates suggest an increase in global population of 37% by 2050
(7), which facilitates transmission of vector-borne diseases through higher population densities and
international travel. While the majority of infections with neurotropic arboviruses are
asymptomatic, many persons develop flu-like symptoms that progress to neuroinvasive diseases
in approximately half of symptomatic patients. In addition, 50-70% of survivors of CNS arboviral
infection go on to develop neurocognitive and neuropsychiatric disorders that worsen over time (8).
In this subsection, we will review the epidemiology, pathophysiology, and value of neuroimmune
changes in diagnostics and therapeutics of medically important, African mosquito-borne
neurotropic arboviruses. We will also provide current knowledge gaps and perspectives regarding
future research in neurotropic arboviruses.
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OVERVIEW OF AFRICAN MOSQUITO-
BORNE ARBOVIRUSES THAT INDUCE
NEUROINVASIVE DISEASES IN HUMANS

The etiologic agents of arboviral neuroinvasive diseases occur
within three virologic genera: Flaviviridae, Togaviridae, and
Bunyaviridae. The Phlebovirus RVFV (Phenuiviridae family)
has been recently and extensively reviewed (9–14).
Categorization of these RNA viruses, their key attributes, types
of neuroinvasive diseases they cause, in addition to geographic
epidemiology, and pathophysiology for medically relevant
Flaviviridae and Togaviridae family members are summarized
below (see Table 1).

Flaviviridae
Members of the Flaviviridae family of viruses are enveloped, with
a positive single-strand RNA genome of 9-13 Kb with that
replicates as a single open reading frame (ORF) with genes for
three structural and seven nonstructural (NS) proteins (15).
Structural proteins, which comprise the virion, consist of the
viral capsid and the envelope glycoproteins. NS proteins are
essential for replication of the viral genome, transcription and
translation of viral genes, viral assembly, and may modulate
immune function to promote infection and dissemination within
humans. Phylogenetic trees indicate that all vector-borne
flavirviruses originated in Africa, likely from non-vectored
mammalian viruses (16). Medically important, neurotropic
flaviviruses that cause CNS disease in Africa are transmitted by
Culex (West Nile encephalitis viruses; WNV), and Aedes (Zika
virus; ZIKV, Dengue virus; DENV) mosquito species (17). WNV
was first isolated from a febrile patient in the West Nile district of
Uganda in 1937, while ZIKV was first identified in a rhesus
monkey from the African regions in Kampala, Uganda, in the
Zika forest in 1947 (18, 19). A DENV epidemic was first reported
in 1823 in the Zanzibar Islands (20). WNV human cases occur in
most African countries throughout the continent with the
exception of the western Sahara desert, Mauritania, Mali,

Burkina Faso, Niger, northern Chad, Libya, and Angola (17)
(Figure 1). ZIKV outbreaks in humans have occurred in only
nine countries: Senegal, Cote D’Ivoire, Burkina Faso, Nigeria,
Cameroon, Gabon, Central African Republic, Ethiopia, and
Angola (Figure 1). DENV, which exists as four closely related
but distinct serotypes, is endemic in almost all African countries,
with the exception of Morocco, Algeria, Tunesia, Western
Sahara, Niger, Chad, Sudan, Gambia, Guinea-Bissa, Guinea,
Sierra Leone, Liberya, Ivory Coast, Central African Republic,
South Sudan, Congo, Burundi, Botswana, Zimbabwe, Swaziland,
and Lesotho (Figure 1). Both WNV and ZIKV may also be
transmitted via transfusion of human blood products, and ZIKV
can also be transmitted via sexual contact, primarily with males.

WNV and ZIKV are neurotropic viruses that can cause acute
flu-like illnesses with fever, headache, rash, pharyngitis, diarrhea,
arthralgias, conjunctivitis, and myalgias (21). Most humans
infected with WNV or ZIKV are asymptomatic, however 20-
25% of cases become symptomatic, and in those infected with
WNV, approximately half of these patients will develop
neuroinvasive diseases including meningitis, encephalitis,
myelitis, and flaccid paralysis. Vertical transmission leading to
teratogenic effects of ZIKV during pregnancy is also well
documented with approximately 20% of affected fetuses
exhibiting morphological abnormalities by ultrasound (e.g.,
microcephaly or brain calcifications), whereas the vast majority
exhibit no overt clinical manifestations at birth (22–24)
Diagnostic tests include assessment of serum or CSF virus-
specific IgM or PCR detection of viral RNA (21). Reported
neuroinvasive diseases in the setting of ZIKV infection include
cases of meningitis, encephalitis, and encephalomyelitis. Patients
with a concurrent or past history of ZIKV systemic infection may
also present with Guillain-Barré syndrome (GBS) and
myeloradiculitis, which may respond to intravenous IVIG (25,
26). Neurologic and functional disability associated with these
flaviviruses can also continue to cause morbidity in patients after
recovery from acute illness. Studies of WNV survivors report
that in 50-70% of survivors exhibit symptoms that persist and
worsen over time including confusion, muscle weakness,

TABLE 1 | African arboviruses: vectors, geographical distribution, and the illnesses they cause in adults.

Family Virus Vector Geographical distribution Systemic illnesses Neurological diseases

Flaviviridae WNV Mosquito
(Culex)

Africa, Mediterranean region,
Central Asia, India, Europe, North,
Central and South Americas

Flu-like illness Meningitis, flaccid paralysis, encephalitis,
myelitis, memory disorders, Parkinsonism

ZIKV Mosquito
(Aedes),
Sexual
transmission

Africa, India, Southeast Asia,
Carribean islands, Central, North
and South Americas

Flu-like illness with arthralgias, conjunctivitis Meningoencephalitis, ADEM, GBS, memory
disorders

DENV Mosquito
(Aedes),

Africa, the Americas, the Eastern
Mediterranean, South-East Asia
and the Western Pacific

Fever, headache, pain behind the eyes,
muscle pain, fatigue, nausea, vomiting, rash,
bleeding hemorrhagic fever/shock

Encephalopathy, encephalitis, Guillain-Barre
syndrome, transient muscle dysfunctions,
neuro-ophthalmic involvement

Togaviridae CHIKV Mosquito
(Aedes)

Subsaharan Africa Fever, rash, arthralgias, myalgias Rare encephalitis, GBS

SINV Mosquito
(Culex)

Northeastern, Central and
Southern Africa

Fever, rash, arthralgias, myalgias Rare encephalitis

WNV, West Nile virus; ZIKV, Zika virus; DENV, dengue virus; CHIKV, Chikungunya virus; SINV, Sindbis virus.
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concentration difficulties, parkinsonism, and memory
impairments, especially in the realm of visuospatial memory
(27). Severe cases of ZIKV-induced systemic disease may also
lead to neurocognitive deficits, daily headaches, and chronic
inflammatory demyelinating polyneuropathies that may persist
for years (28–32).

Neurological diseases associated with DENV infection were
first reported in 1976 as atypical symptoms of dengue infection,
and their incidence rates have varied from 0.5% to 20% (33).
Neurological symptoms associated with DENV infection have
increasingly been reported in both children and adults, and
include encephalopathy due to hepatic failure or metabolic
disorders, encephalitis due to direct viral invasion, Guillain-
Barre syndrome or transient muscle dysfunctions, and neuro-
ophthalmic involvement (34).

Dengue serotypes 2 and 3 are most commonly associated with
neurological symptoms (35, 36). Although DENV is not
primarily neurotropic, a recent study utilizing genome analysis
and characterization of DENV type 2 (DENV-2) strains isolated
from cerebrospinal fluid (CSF) and/or serum of patients with
dengue encephalitis revealed that the DENV-2 isolates belonged
to a new clade of cosmopolitan genotype that are genetically
close to strains identified in China, South Korea, Singapore,
Malaysia, Thailand, and the Philippines (37). As DENV does not
invade the CNS when inoculated peripherally in mice, few
studies have determined its route of neuroinvasion or CNS
immune responses that exert virologic control.

The pathogenesis of WNV and ZIKV CNS infections in
humans is incompletely defined, although excellent mouse
models have illuminated mechanisms of immune control in

FIGURE 1 | Distribution of flaviviruses and alphaviruses in Africa. The distribution of Culex- and Aedes-transmitted flaviviruses WNV, ZIKV, and DENV, and Aedes-
and Culex-transmitted alphaviruses CHIKV and SINV, respectively, throughout Africa are shown (17).
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the periphery and central nervous system (CNS) (38), routes of
viral neuroinvasion (39–45), features of virus-induced
encephalitis (46, 47), and processes that induce post-infectious
neurocognitive sequelae (48–52). Neuroinvasion can occur
hematogenously as free virions or within CNS infiltrating
immune cells, and via retrograde transport along sensory
axons from sites of mosquito inoculation in the periphery (53)
(Figure 2). The brain vasculature exhibits specializations that
prevent paracellular and transcellular entry of cells, pathogens,
and metabolites. These occur at the post-venular and capillary
levels and include tight and adherens junctions (TJ and AJ), low
levels of leukocyte adhesion molecules, and low rates of
transcellular vesicle trafficking (transcytosis). Rho GTPase
signaling pathways that control the assembly and disassembly
of endothelial cytoskeletal proteins regulate TJ integrity, which
affects BBB permeability. During acute infection with
flaviviruses, local expression of BBB destabilizing cytokines
activate the RhoA/ROCK/pMLC signaling pathway, which
induces stress fiber formation that disrupts TJ and increases
paracellular permeability. Increased blood-brain barrier (BBB)
permeability during acute infection has also been linked to rising
levels of NS1 within the blood, which correlate with severity of
disease. NS1 is secreted from virally infected cells and may

up-regulate the expression of cathepsin L and endoglycosidase
heparanase in brain endothelial cells, leading to the degradation
of glycocalyx-like layer (EGL) components with consequent
damage to BBB integrity (54, 55). Flavivirus traversal across
the BBB is believed to occur via paracellular and transcellular
routes, the latter of which includes delivery by leukocytes (56).
Neuroimaging during the acute setting may be normal or reveal
BBB disruption, which is associated with more severe
outcome (57).

Once WNV or ZIKV enter the CNS, they infect and injure
neurons (or neuroprogenitor cells in the case of ZIKV) through
direct (virus infection-induced) and indirect (immune-mediated)
mechanisms (58, 59). Microscopic examination of the post-
mortem CNS specimens may reveal neuronal cell death,
microglial activation, infiltrating macrophages, and accumulation
of CD4+ and CD8+ T cells (60, 61). Depending on the flavivirus,
these lesions can occur in the brainstem, cerebral cortex,
hippocampus, thalamus, cerebellum or spinal cord. While it is
well established that both humoral and cell-mediated immune
responses critically control viral replication in peripheral tissues,
virologic control within the CNS predominantly requires
the infiltration of antiviral mononuclear cells (62–64). Viral
replication within neurons is detected by the cytoplasmic RNA

FIGURE 2 | Mechanisms of arbovirus entry into the CNS. Arboviruses enter the CNS via three routes: (A, B) Retrograde transport of virus along axon microtubules
(MT) of peripheral neurons allows entry into the spinal cord. (C) Infection of olfactory sensory neurons (OSNs) in the olfactory neuroepithelium (ONE) following
infection from fenestrated capillaries (FC) allows viral intra-axonal migration through the cribiform plate (CP), followed by transynaptic infection of mitral cells (MC) at
the glomeruli (G) of the olfactory bulb (OB). (D) Virus entry through the blood brain barrier (BBB) occurs via transcellular transport of virions, paracellular migration of
virions following disruption of tight junctions (TJs), or via transmigration of infected leukocytes.
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helicases RIG-I and MDA5, which signal through the adaptor
protein mitochondrial antiviral signaling protein (MAVS) to
promote antiviral gene expression and proinflammatory proteins,
including T cell chemoattractants in both neurons and activated
astrocytes and microglia (38). Antiviral, CD8 T cells recruited to
the acutely infected CNS can eliminate virus from neurons via
non-cytolytic effects of interferon(IFN)g (65). Subpopulations of
effector CD8 T cells persist as resident memory T cells (Trm) that
continue to express IFNg, which maintains microglia activation
(49). During acute infection, infected neurons and activated
microglia exhibit upregulation of complement proteins (52),
which have been implicated in the maintenance or disruption of
neural networks (66). Studies in WNV- and ZIKV-infected mice
show complement- and microglia-mediated elimination of
synapses within the trisynaptic circuit of the hippocampus (52)
is associated with defects in spatial and other forms of learning and
memory. Studies in humans that succumbed toWNV show similar
loss of synapses. Macrophage delivery of interleukin(IL)-1 has been
shown to maintain a proinflammatory state via direct effects on
neural stem cells within the neurogenic niche of the hippocampus,
promoting decreased neurogenesis in favor of production of
neurotoxic, reactive astrocytes that prevent synapse repair, and
persist long-term (67). Future studies are needed to determine
whether these processes occur and may be targeted in humans to
prevent or treat neurocognitive sequelae after recovery from
neurotropic flavivirus infection.

Togaviridae
Members of the Togaviridae family of viruses are small,
enveloped viruses with single-stranded positive-sense RNA
genomes of 10–12 kb that encode five structural and four NS
proteins (68). Two thirds of the genome of alphaviruses encodes
the non-structural polyprotein(s) in a single ORF immediately
after a 5′-non-coding region. Overlapping with the 3′-end of the
non-structural ORF, there is a promoter for transcription of a
subgenomic mRNA from which the structural polyprotein is
translated (69). The genus Alphavirus comprises a large group of
medically important mosquito-borne viruses that are
transmitted by Aedes (Chikungunya virus; CHIKV), and Culex
(Sindbis virus; SINV) (17). Phylogenetic tree analyses suggest
that alphaviruses likely originated from an aquatic habitat, from
ancestral strains such as the Southern elephant seal virus and
other fish viruses, followed by spread to New and Old World
(70). The first reported CHIKV and SINV outbreaks occurred in
Tanzania and Egypt, respectively, in 1952 (71). Seroprevalence
for CHIKV is found throughout sub-Saharan Africa (Figure 1),
while SINV occurs in a geographical area that spans from South
Africa to Egypt and from Cameroon to Kenya (16) (Figure 1).

CHIKV and SINV generally cause febrile syndromes with
rashes and joint pain, and are only occasionally associated with
neurologic diseases. CHIV infection is asymptomatic in up to
25% of human infections, with symptomatic cases presenting
with fever, headache, myalgia, arthritis, conjunctivitis, nausea/
vomiting, maculopapular rash and incapacitating bilateral and
symmetric polyarthralgia, which may relapse or persist for
months to years (72). Rare neurologic complications include
seizures, acute flaccid paralysis, Guillain-Barré syndrome, cranial

nerve palsies, myelitis, encephalopathy, and meningoencephalitis
(73). Persons at risk for CNS disease include neonates exposed
intrapartum, older adults (e.g., > 65 years), and persons undergoing
immunosuppression for solid organ transplant (74). Case fatality
rate for CHIKV encephalitis ranges from 4-28%, with higher rates
mostly in older adults. Electroencephalogram in patients with
neurologic signs may exhibit slow background activity and
generalized epileptiform discharges, while brain MRI may show
bilateral white matter hyperintensities and/or focal encephalitis.
Postmortem brain examination of a patient who succumbed to
CHIKV encephalitis revealed lymphocytic infiltrates with focal
necrosis in the hippocampus, frontal lobes and medulla oblongata
(75).While many SINV infections are asymptomatic, cases usually
present with a maculopapular, pruritic exanthema over the trunk
and limbs, mild fever, and arthralgia, particularly in wrists, hips,
knees, and ankles, sometimes accompanied by nausea, general
malaise, headache, and myalgia (76). Patients can experience
persistent joint manifestations that continue for months or years,
and in rare cases as a chronic arthritis. SINV is known to cause
neurologic disease in horses (77), but human cases are
extremely rare.

The mechanisms of CHIKV and SINV neuroinvasion in
humans are unknown; however, animal models suggest entry
may occur via invasion of brain endothelial cells and retrograde
axonal transport, respectively (78) (Figure 2). Studies examining
CHIKV and SINV infection of the CNS in murine models report
multiple sites of neuronal and astrocyte infection progressing to
cell death via caspase-mediated pathways, with microgliosis and
perivascular cuffs (75, 79–82). Similar to reports in human cases
of CHIKV encephalitis (75), neuronal degeneration in the
hippocampus and lymphocytic meningitis is also observed in
animals. As with flavivirus encephalitis, CHIKV RNA is detected
in the brain by pattern recognition receptors, such as toll-like
receptor(TLR)-3, that upregulate innate immune antiviral
molecules that can reduce viral replication (83). While
increased expression of the T cell cytokine IFNg has been
observed in animal models, mechanisms of T cell trafficking
and virologic control within the brain have not been investigated.
Likewise, there have been no reports of long-term follow-up in
survivors of CHIKV neurologic diseases.

CAN NEUROIMMUNE RESPONSES AIDE
IN DIAGNOSTICS AND/OR THERAPEUTICS?

The diagnosis of arboviral neuroinvasive diseases requires virus-
specific assays so that novel therapies, such as antibody-based
therapeutics, and patient prognoses can be accurately
administered. Studies attempting to identify virus-specific
innate or adaptive immune pathways via genomic approaches
in animal models have been instrumental in identifying the
critical antiviral pathways that control and clear virus (84, 85),
but have failed to support the use of pathway analysis for
diagnostic purposes. Knowledge regarding the status of BBB
permeability may also be critical for treating acute neuroinvasive
diseases. For example, animal studies examining patterns of BBB
function throughout the course of flavivirus encephalitis indicate
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that induction of interferon responses may promote BBB closure
via Rac1-mediated effects on TJ integrity (40, 45). Thus, use of
anti-viral antibodies for CNS infection may have a limited
window of penetration. While there are currently no
treatments that limit the replication of specific arboviruses in
the CNS, ant i - inflammatory treatments , inc luding
corticosteroids, have been used in patients with chorioretintis,
encephalitis or myelitis (86–88). New anti-inflammatory
compounds are also under development (89).

KNOWLEDGE GAPS FOR FUTURE
RESEARCH

One of the challenges for limiting arboviral neuroinvasion and
dissemination within the CNS is the incomplete knowledge
regarding virus-specific entry receptors expressed at the BBB
and by neural cells, including those involved in trans-synaptic
spread between CNS regions. Entry receptors postulated to be
involved in flavivirus entry include avb3 integrins, C-type lectin
receptors (CLR), phosphatidylserine receptors TIM (T-cell
immunoglobulin and mucin domain) and TYRO3, AXL and
MER (TAM) family of receptor tyrosine kinases (90, 91).
Attachment and entry receptors for CHIKV include
glycosaminoglycans (GAGs), T-cell immunoglobulin and
mucin 1 (TIM-1), and the cell adhesion molecule Mxra8 (92).
While many of these receptors are expressed at CNS barriers and
within the parenchyma, the demonstration these receptors are
required for brain endothelial and neural cell entry is currently
lacking. There is also a dire need to identify biomarkers that

identify survivors of arboviral neuroinvasive diseases at risk for
neurological sequelae, including neurocognitive impairments.
Post-infectious neurocognitive sequelae modeled in murine
models show benefit from administration of anakinra, a
USFDA approved medication that targets the IL-1R for the
treatment of rheumatoid arthritis, during acute encephalitis
(93). Given the essential role of the IL-1R, in CNS virologic
control, it is unclear whether the risk-benefit ratio supports use
of this drug in humans with arboviral encephalitis. Future studies
are needed to better identify and define safe therapeutic targets to
limit the entry and dissemination of neurotropic arboviruses,
and to prevent the development of neuroimmune processes that
contribute long-term sequelae.
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