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RESEARCH PAPER

Loss of KMT2C reprograms the epigenomic landscape in hPSCs resulting in 
NODAL overexpression and a failure of hemogenic endothelium specification
Shailendra Mauryaa, Wei Yangb, Minori Tamaia, Qiang Zhangc, Petra Erdmann-Gilmorec, Amelia Bystrya, 
Fernanda Martins Rodriguesc, Mark C. Valentinea, Wing H Wonga, Reid Townsendc, and Todd E. Druley a

aDepartment of Pediatrics, Division of Pediatric Hematology and Oncology, Washington University in St Louis School of Medicine, St. Louis, 
Missouri, United States; bMcDonnell Genome Institute, Genome Technology Access Center, Washington University in St Louis School of 
Medicine, St. Louis, Missouri, United States; cDepartment of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, 
USA

ABSTRACT
Germline or somatic variation in the family of KMT2 lysine methyltransferases have been asso
ciated with a variety of congenital disorders and cancers. Notably, KMT2A-fusions are prevalent in 
70% of infant leukaemias but fail to phenocopy short latency leukaemogenesis in mammalian 
models, suggesting additional factors are necessary for transformation. Given the lack of addi
tional somatic mutation, the role of epigenetic regulation in cell specification, and our prior results 
of germline KMT2C variation in infant leukaemia patients, we hypothesized that germline dysfunc
tion of KMT2C altered haematopoietic specification. In isogenic KMT2C KO hPSCs, we found 
genome-wide differences in histone modifications at active and poised enhancers, leading to 
gene expression profiles akin to mesendoderm rather than mesoderm highlighted by a significant 
increase in NODAL expression and WNT inhibition, ultimately resulting in a lack of in vitro 
hemogenic endothelium specification. These unbiased multi-omic results provide new evidence 
for germline mechanisms increasing risk of early leukaemogenesis.
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Introduction:

Paediatric cancers typically harbour relatively few 
somatic mutations and frequently demonstrate 
developmentally immature phenotypes, suggesting 
a contribution from germline variation that might 
result in aberrant tissue development [1]. Our 
group previously found an enrichment of hetero
zygous germline missense mutations in KMT2C in 
infants with leukaemia, compared to healthy con
trols [2]. This enrichment was independent of the 
presence of KMT2A fusions, which are the hall
mark somatic mutation in infant leukaemia (>75% 
of cases) and occur in utero [3]. In mammals, 
somatic mutations of KMT2C and KMT2D are 
associated with various malignancies [4], with 
clear evidence for tumour suppressor roles [5,6]. 
Given the enrichment of KMT2C germline muta
tions in infant leukaemia and the genome-wide 
epigenetic changes mediated by KMT2C, we 

hypothesized that germline KMT2C dysfunction 
may adversely impact early developmental stages 
of haematopoiesis, or perhaps mesoderm more 
broadly.

The human COMPASS complexes are com
prised of highly conserved proteins from yeast to 
humans that regulate gene expression through his
tone modifications [7,8]. Six different lysine 
methyltransferases (KMT) anchor COMPASS 
complexes in higher eukaryotes and are categor
ized into three subgroups based on homologies in 
amino acid sequence and subunit composition: 
SET1A (NM_014712), SET1B (NM_015048); 2] 
MLL1/KMT2A (NM_05933), MLL2/KMT2B 
(NM_014727); 3] MLL3/KMT2C, (NM_170606), 
MLL4/KMT2D (NM_003482) [9]. While incom
pletely understood, the literature suggests that 
paralogs exert non-overlapping and highly specia
lized functions by regulating the transcription of 
discrete subsets of genes [9–11].
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However, KMT2C and KMT2D are partially 
redundant in function [7,12], as both proteins 
play an essential role in mediating monomethyla
tion at histone 3, lysine 4 (H3K4me1), primarily at 
enhancers [13]. In contrast, recent studies have 
highlighted other non-redundant and broad- 
ranging functions [14,15], such as a role for 
KMT2C-specific transcriptional regulation that is 
independent of its H3K4me1 activity on enhancers 
[16]. Other reports describe KMT2C-mediated 
histone trimethylation (H3K4me3) at promoters 
[17,18]. With respect to early development, 
KMT2C knockout (KO) mice die around birth 
with no apparent morphological abnormalities, 
while KMT2DKO mice showed early embryonic 
lethality around E9.5 [19]. Loss of KMT2C in 
mice also leads to aberrant myelopoiesis, causing 
myeloid infiltration into lymphoid organs; how
ever, the loss of KMT2C alone was insufficient to 
drive leukaemia [20]. The role of KMT2C has also 
been characterized in nuclear receptor functioning 
[17,21,22], metabolism [23] and circadian rhythms 
[13,21].

While all SET and KMT2 proteins are epige
netic modifiers, each histone modification is asso
ciated with particular regulatory elements and 
mediates specific functions, enabling complex con
trol over gene transcription [24]. KMT2C and 
KMT2D are associated with H3K4me1, which is 
a highly dynamic histone modification and corre
lates with cell type-specific gene expression pro
files, whereas H3K4me3 marks ‘active’ promoters 
and is more invariant across cell types [reviewed 
by 19, 24]. H3K4me1, along with H3K27ac, mark 
‘active’ enhancers, while the combination of 
H3K4me1 with H3K27me3 (mediated via poly
comb proteins) is a repressive mark associated 
with ‘poised’ enhancers [25,26].

Currently, no comparative study exists describ
ing the role of KMT2C and its epigenetic regula
tion in human pluripotent stem cells (hPSC). 
Pluripotent/precursor cells have multilineage 
potential, at the precursor stage, cells have pre- 
marked genomic regions, which cooperate in 
terminal transcriptional programmes for fate 
determination [27–30] and may vary in 
a quantifiable manner upon KMT2C dysfunction. 

We found that KMT2CKO hPSCs have a highly 
variable epigenetic landscape compared to their 
isogenic controls and are unable to complete the 
endothelial to haematopoietic transition in vitro. 
To interrogate this mechanism, we have per
formed a multi-omics analysis revealing that 
KMT2CKO human pluripotent cells have 
a transcriptional profile closer to mesendoderm 
with a significant upregulation of NODAL/TGFβ 
signalling.

Results

KMT2CKO hiPSCs retain pluripotency

Given our observation that infant leukaemia is 
enriched in heterozygous germline missense muta
tions in KMT2C [2], we interrogated the role of 
KMT2C in blood development by creating hPSC 
models (hiPSC and hESC) with isogenic KMT2C 
knockouts (Supp Figure 1a) amenable for directed 
haematopoietic differentiation in vitro. Changes in 
RNA and protein expression were specific to 
KMT2C loss (Supp Figure 1b-d). We next asked 
if the loss of KMT2C altered pluripotency. We 
observed no morphological differences between 
wild type and KMT2CKO cells (Supp Figure 2a) 
as well as comparable immunostaining for pluri
potency markers Oct4, Sox2, and Nanog (Supp 
Figure 2b,c). In addition, teratoma assays were 
performed and the KMT2CKO line generated 
a teratoma demonstrating all three germ layers 
(Supp Figure 3), suggesting that loss of KMT2C 
does not overtly alter the hiPSCs pluripotent state.

KMT2CKO human pluripotent cells fail to 
specify hemogenic endothelium in vitro

To identify potential haematopoietic phenotypes 
due to KMT2CKO, we next differentiated our 
hiPSCs to mesoderm and haematopoietic progeni
tors using published protocols for haematopoietic 
specification by Keller [31], which activates the Wnt 
pathway via exogenous application of the GSK3 
inhibitor, CHIR99021, to specify definitive haema
topoietic progenitors or the Wnt inhibitor, IWP2, to 
enable NODAL/Activin signalling and the 
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specification of primitive haematopoiesis. As shown 
in Figure 1.A1 and 1.A2, both WT and KMT2CKO 
hiPSCs generate comparable numbers of CD34 
+ CD43- progenitors (6.03% and 6.19%, respec
tively). However, progenitors of the arterial, venous, 
and haematopoietic system are all CD34+ CD43-. 

To differentiate these subpopulations, these cells are 
then subsorted with CD73 and CD184. Hemogenic 
endothelium (HE) is CD73-CD184-, while venous 
endothelium is CD73+ CD184- and arterial 
endothelium is CD73midCD184+ [31]. As shown 
Figure 1.A3 and 1.A4, the KMT2CKO hiPSCs failed 
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Figure 1. KMT2CKO pluripotent cells fail to specify hemogenic endothelium. hiPSCs (A panels) and H1 hESCs (B panels) with and 
without KMT2C were directed through haematopoietic differentiation according to the protocol by Sturgeon et al. (Sturgeon CM, Nat 
Biotech 2014). In all four cell lines, comparable amounts of CD34+/CD43- cells were specified (A1, A2, B1, B2). To differentiate 
between arterial, venous and hemogenic endothelium, the CD34+ CD43- cells were further subsorted via CD73 and CD184. HE is 
CD73-CD184- (boxes). In both KMT2CKO pluripotent lines, there is a failure to specify hemogenic endothelium at levels equivalent to 
WT. Chi-square analyses found the decrease in hemogenic endothelium to be significant with p-values ≤0.01 for both human iPSCs 
and ESCs as listed in Experimental Procedures under ‘Directed hematopoietic differentiation.’
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to specify CD73-CD184- HE compared to WT. To 
validate this observation, we established the same 
KMT2CKO in H1 hESCs and took these cells 
through the same directed differentiation 
(Figure 1.B1-B4). H1 WT and KMT2CKO hESCs 
exhibited the same morphology from pluripotency 
through mesoderm (consistent with our hiPSC ter
atoma assay results) and embryoid body formation 
(Supp Figure 4). We observed the same failure of 
hemogenic endothelium specification (Figure 1, B4, 
box). This failure was specific to KMT2C, as H1 
hESCs transduced with a scrambled gDNA vector 
did give rise to HE (Supp Fig 5). Furthermore, 
KMT2CKO H1 ESCs showed a significant lack of 
colony-forming capacity for all primitive 

haematopoietic progenitors (Suppl Fig 6). In con
trast, the subpopulations of venous and arterial 
endothelium were equivalent between WT and 
KMT2CKO hiPSCs and hESCs. Given this clear 
blood-specific phenotype due to KMT2C loss, we 
sought to identify a mechanism.

RNAseq analysis identifies gene expression as 
similar to mesendoderm

We performed transcriptome analysis to identify 
gene expression differences and compare against 
known cell types. Pairwise comparisons identified 
319 differentially expressed genes upon 
KMT2CKO (133 downregulated and 186 

Figure 2. RNA-seq reveals 319 differentially expressed genes in KMT2CKO hiPSCs. (a) Volcano plot for fold change in expression 
(Y-axis) against the log of the fold change (X-axis). (b) Triplicates of RNA-seq from each cell line show consistent differences in gene 
expression across 319 genes. (c) PCA analysis reveals that KMT2CKO cells more closely resemble mesendoderm than any of the three 
germ layers.
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upregulated; Supp Table 1A,B) with a false discov
ery rate (FDR) <0.05 and log of fold change >2 
(Figure 2a,b). Genes up/downregulated >10-fold in 
KMT2CKO compared to WT are listed in Table 1. 

In KMT2CKO, we observed the highest upregu
lated expression of NODAL, its ligands (BMP4, 
WNT3) and its regulators (FST, CER1, MIXL1, 
LEFTY1). Prior studies on human pluripotent 

Figure 3. Epigenome tracks showing histone modifications, ATAC-seq peaks and relative RNA expression for NODAL, its regulator 
CER1 and two of its ligands, BMP4 and WNT3 in WT and KMT2CKO hiPSCs. Each gene demonstrates higher expression in the 
KMT2CKO compared to WT (boxes in the RNA tracks) while NODAL, BMP4 and WNT3 show the expected decrease in H3K4me3 in the 
KMT2CKO (boxes in the H3K4me3 tracks).
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cells have demonstrated that NODAL/TGFb con
tributes to the maintenance of pluripotency 
[32,33] and is regulated via OCT4(POU5F1)/ 
SOX2 TF binding and blocks differentiation [34].

Collectively, these differentially expressed genes 
are part of one or more tightly integrated gene 
regulatory networks (Supp Fig 7). With these tran
scriptome data, RNA-seq read counts from human 

embryonic stem cell lines; HUES64 or H1 were 
obtained from ENCODE (https://www.encodepro 
ject.org/) for each of the cellular phenotypes sur
veyed in the PCA plot shown in Figure 2c. From 
our transcriptome data for the KMT2CKO and 
WT lines, the top 100 differentially expressed 
genes (Supp Table 2) according to adjusted 
p values (not fold change) were compared against 
the ENCODE data. From this analysis, we con
clude that the gene expression profile of 
KMT2CKO cells is closest to that of mesendoderm, 
suggesting that the lack of KMT2C prevents the 

Figure 4. Schematic overview of how the lack of KMT2C-mediated histone modifications in hPSCs alters cell fate specification in vitro.

Table 1. Genes whose expression is increased or decreased 
>10-fold in KMT2C KO.

Down- or up- 
regulated Rank Gene

Fold change 
(FC) Log(FC)

Down-regulated 1 RPS4Y1 −38.274 −3.920
2 SPTSSB −16.984 −3.355
3 UCMA −15.773 −2.970
4 RHOH −15.440 −3.552
5 AC009078.1 −14.436 −4.149
6 SMIM24 −13.782 −4.218
7 CXCL5 −13.317 −3.577
8 AP000688.2 −11.542 −2.907
9 RAMP3 −10.443 −3.008

10 MAGEH1 −10.297 −10.110
11 ZNF208 −10.253 −2.930
12 ZNF790-AS −10.048

Up-regulated 1 NODAL 22.946 4.010
2 FST 21.084 3.306
3 CER1 15.480 5.027
4 BMP4 15.207 2.998
5 FOS 14.426 2.847
6 GLIPR1L1 12.508 2.164
7 HPGD 12.191 3.240
8 TSPAN18 11.758 2.290
9 GAD1 11.664 5.901

10 MIXL1 11.172 3.566
11 WNT3 10.734 4.397
12 MT2A 10.447 2.590
13 DUSP10 10.062 2.192
14 USP3 10.038 2.050
15 CYP26A1 10.012 2.461

Table 2. Active enhancer transcription factor (TF) binding 
motifs that are significantly enriched in either wild type (WT) 
or KMT2C KO.

Enriched in 
WT or KO Rank

Motif for which TF 
binding site

HOMER 
P-value

TF family 
subtype

Enriched in 
WT

1 OCT4-SOX2-TCF- 
NANOG

1E-34

2 OCT4 1E-34 Homeobox
Enriched in 

KMT2C KO
1 TAL1/SCL 1E-44 bHLH
2 AR-halfsite 1E-21 NR
3 ZFX 1E-21 ZF
4 REST-NRSF 1E-20 ZF
5 ASCL1 1E-20 bHLH
6 ATOH1 1E-18 bHLH
7 TCF12 1E-18 bHLH
8 TCF21 1E-15 bHLH
9 EBF1 1E-14 EBF

10 NF1-halfsite 1E-14 CTF
11 FOX-Ebox 1E-14 Forkhead
12 SMAD4 1E-14 MAD
13 SMAD2 1E-14 MAD
14 FOXA1 (GSE26831) 1E-14 Forkhead
15 FOXA1 (GSE27824) 1E-14 Forkhead
16 MYOG 1E-14 bHLH
17 FOXA2 1E-13 Forkhead
18 REPIN1/AP4 1E-13 bHLH
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cells from gene expression necessary to fully com
mit to either mesoderm or endoderm.

KMT2CKO alters chromatin accessibility

We next performed ATAC-seq and compared 
regions of differential chromatin landscape 
between KMT2CKO and WT hiPSC lines. The 
absence of KMT2C resulted in a substantial 
decrease in ATAC-seq peaks at promoter regions 
(a 19.83% decrease at promoters up to 3 kb of 
a TSS), consistent with closed chromatin and 
inaccessible TF binding sites. Further, this 
decrease was followed by a commensurate 
increase of 23.04% in ATAC-seq peaks at 
introns, downstream sequences, and distal inter
genic regions (Supp Fig 8A,B) in the KMT2CKO 
line, suggesting that KMT2C’s known activity at 
enhancers and distal regulatory elements is 
essential to first open specific promoters for TF 
binding and subsequent gene expression. The 
lack of KMT2C kept enhancers open for TF 
binding rather than allowing promoter binding 
sites to open.

To identify which genes may be regulated via 
this mechanism, we next performed TF motif 
enrichment within these differentially accessible 
ATAC regions. Open chromatin in WT was sig
nificantly enriched for 87 different motifs (Supp 
Table 3). Of these, binding sites for CTCF and 
CTCFL were most significantly enriched followed 
by binding sites for several homeobox (OCT4/ 
POU5F1, OCT6/POU3F1) and high mobility 
group (SOX2, SOX3, SOX6, SOX10, SOX15) 
TFs, which includes two of the Yamanaka factors 
and presumably localized to promoter regions 
lost upon KMT2CKO (Supp Fig 8A). In contrast, 
the absence of KMT2C resulted in rearrangement 
of available TF binding motifs resulting in main
tenance of OCT4/POU5F1 and SOX2 binding 
sites, but a significant increase in binding sites 
for the Zinc finger proteins of the cerebellum 
(ZIC) and their reverse complement (‘Unknown 
ESC element’) along with several ETS TF family 
(ERG, FLI1, ETV1, ETV2, ETS1) binding sites 
(Supp Table 4). Lim et al. previously established 
that Zic proteins maintain pluripotency in mur
ine ESCs under the regulation of Oct4/Pou5f1, 
Nanog and Sox2 [35], consistent with 

KMT2CKO cells retaining a pluripotent 
phenotype.

The histone modification landscape in hPSCs

ATAC-seq or DNA hypersensitivity mapping does 
not distinguish between different types of regula
tory elements (active enhancers, poised enhancers, 
and bivalent promoters), is biased, and provides 
little information on domain level features [36]. 
Therefore, to characterize these regulatory regions, 
we performed ChIPmentation for four histone 
modifications in WT and KMT2CKO hPSCs. The 
histone modifications defining ‘primed,’ ‘active’ 
and ‘poised’ enhancers as well as ‘bivalent’ versus 
‘active’ promoters are listed in Experimental 
Procedures and Supplementary Table 5. ‘Active’ 
enhancers (AE) correlate with tissue-specific gene 
expression, while ‘poised’ enhancers (PE) correlate 
with potential gene expression at subsequent 
developmental stages [25,37,38].

Table 3. Poised enhancer transcription factor (TF) binding 
motifs that are significantly enriched in either wild type (WT) 
or KMT2C KO.

Enriched 
in WT or 
KO Rank

Motif for which TF binding 
site

HOMER 
P-value

TF family 
subtype

Enriched 
in WT

1 OCT4-SOX2-TCF-NANOG 1E-25

Enriched 
in 
KMT2C 
KO

1 TAL1/SCL 1E-59 bHLH
2 ATOH1 1E-37 bHLH
3 FOXL2 1E-32 Forkhead
4 FOXA2 1E-29 Forkhead
5 REST-NRSF 1E-27 ZF
6 TCF12 1E-24 bHLH
7 FOXA1 (GSE26831) 1E-24 Forkhead
8 ASCL1 1E-23 bHLH
9 TCF21 1E-21 bHLH

10 FOX-Ebox 1E-21 Forkhead
11 REPIN1/AP4 1E-21 bHLH
12 MYOG 1E-19 bHLH
13 ‘Unknown ESC element’ 

(ZIC complementary 
sequence

1E-19 ZF

14 FOXA1 (GSE27824) 1E-19 Forkhead
15 FOXP1 1E-18 Forkhead
16 SMAD2 1E-17 MAD
17 ZIC 1E-17 ZF
18 OLIG2 1E-16 bHLH
19 EBF1 1E-16 EBF
20 ZFX 1E-16 ZF
21 AR-halfsite 1E-15 NR
22 NFY 1E-15 NTF
23 LHX1 1E-15 Homeobox
24 NeuroD1 1E-14 bHLH
25 SOX3 1E-13 HMG
26 NF1-halfsite 1E-13 CTF
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As shown in Supp Fig 9A, the proportion of 
each histone modification was similarly distributed 
across the genome of WT and KMT2CKO. 
However, the absence of KMT2C resulted in 
a variable distribution of histone modification 
between cell lines. Given that AE are the primary 
targets of KMT2C, differences were primarily 
observed for H3K4me1 marks (80% difference) 
and H3K27ac marks (87% difference) (Supp 
Fig 9B,C). In contrast, H3K27me3 marks showed 
a lesser difference of 56% while H3K4me3 marks 
at promoters showed the least difference with only 
19% of peaks different between wild type and 
KMT2CKO (Supp Fig 9D,E, respectively).

(i) Comparison of the active enhancer land
scape: The active enhancer landscape is mainly 
shaped by the cooperative binding of ubiquitous 
and cell-type-specific TFs [39]. As KMT2C is 
known to mediate the H3K4me1 at enhancers, 
we first compared the active enhancer landscape 
between wild type and KMT2CKO cells. As shown 
in the Venn diagram of Supp Fig 10A, there were 
a total of 29,161 active enhancer peaks called. Of 
these, only 2,231 (7.7%) were independent of 
KMT2CKO and shared between both lines. In 
contrast, 19,311 active enhancer peaks were speci
fic to the KMT2CKO line, while 7,619 were speci
fic to wild type. Supp Fig 10B,C shows the results 
of GO term analyses for the AE specific to WT 
versus KMT2CKO, respectively. In general, these 
results suggest movement away from cellular dif
ferentiation (WT) towards more functions asso
ciated with GTPase, RAS activity along with 
cellular junction organization and function 
(KMT2CKO).

To identify the putative functions of these 
KMT2CKO-specific active enhancer subgroups, 
we performed TF binding motif analysis (Table 
2). In wild type, consistent with the pluripotent 
status of the cells and the available TF binding 
motif analysis from ATAC-seq, the only signifi
cantly enriched active enhancer motifs were for 
the cooperative binding site for OCT4/POU5F1- 
SOX2-TCF-NANOG and OCT4/POU5F1 alone. 
In contrast, the absence of KMT2C demonstrated 
a loss of open OCT4 TF binding sites and 
a significant enrichment of 18 different active 
enhancer TF binding motifs.

(ii) Comparison of poised enhancers: Poised 
enhancers (PE), marked by H3K4me1 and 
H3K27me3, are thought to be incapable of driving 
gene expression when cells are in a pluripotent 
state [26]. However, the loss of H3K27me3, 
coupled with the acquisition of H3K27 acetylation 
(H3K27ac), endows these enhancers with gene 
regulatory functions and converts PE to AE. 
Given this background, we identified overlapping 
H3K4me1 and H3K27me3 peaks to identify and 
compare PE marks between wild type and 
KMT2CKO pluripotent cells. In wild type hiPSCs, 
we identified 4,134 unique overlapping H3K4me1 
and H3K27me3 marks compared to a nearly 
4.5-fold increase of 18,593 unique overlapping 
marks in KMT2CKO hiPSCs. The absence of 
KMT2C demonstrated the expected increase in 
poised enhancers (Supp Fig 11A) with consider
able differences in genomic loci. With respect to 
putative functional differences, GO terms asso
ciated with the PE marks specific to each hiPSC 
line generally changed from developmental func
tions in wild type to ion transport functions in 
KMT2CKO (Supp Fig 11B,C), supporting the 
lack of ion transport function by KMT2C and its 
broader role in guiding development.

On the global level, the substantial increase in 
PE following KMT2C knockout suggested altera
tions in gene regulatory networks involved in dif
ferentiation and cell specification. These genome 
signatures are binding sites for pioneer transcrip
tion factors and lineage determining transcription 
factors [40–43]. To identify TF binding sites 
within these differential regions, we applied motif 
analyses for wild type-specific and KMT2CKO- 
specific PE signature (Table 3).

In wild type, consistent with our results from 
ATAC-seq and AE ChIPmentation, the only sig
nificantly enriched PE motif was the cooperative 
binding site for OCT4/POU5F1-SOX2-TCF- 
NANOG (Table 3). In contrast, the absence of 
KMT2C demonstrated a loss of PE binding sites 
for OCT4 and a significant enrichment of 26 dif
ferent PE TF binding motifs. Specifically, we noted 
that these motifs consisted primarily of binding 
sites for regulators of classic WNT1/b-catenin sig
nalling (TAL1/SCL, ATOH1, TCF12, ASCL1) 
along with multiple forkhead proteins (FOXL2, 
FOXA2, FOXA1, FOX:Ebox, FOXP1). As pioneer 
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TFs at PE are known to unmask chromatin 
domains during development [44], this finding is 
consistent with those of Wang et al., who found 
FOX TFs bound to PE during specification of 
hESC-derived endodermal lineage intermediates 
[45], suggesting that knocking out KMT2C may 
result in human pluripotent cells being primed for 
endodermal fate specification.

(iii) Characterizing bivalent promoters. 
Pluripotent cells are enriched for promoters har
bouring the activating H3K4me3 mark as well as 
the repressive H3K27me3 mark, a state called 
‘bivalency.’ While bivalent promoters are not 
unique to pluripotent cells, they are enriched in 
these cell types, mainly marking developmental 
and lineage-specific genes, which are generally sta
tic but can be rapidly activated or repressed. While 
KMT2C is not known to have a direct role in 
establishing bivalency, a few studies have observed 
that KMT2C maintains H3K4me3 marks [17,18]. 
We identified a total of 5,568 bivalent promoters 
in WT and KMT2CKO cells (Supp Fig 12) without 
significant differences in TF binding motifs, which 
is consistent with KMT2C not having a clear role 
in establishing bivalency but more of an impact at 
distal regulatory elements.

Enhancers’ act synergistically to promote gene 
expression:

We next sought to investigate the relationship 
between enhancer status and gene expression. We 
assigned each identified enhancer to the nearest 
promoter, allowing a maximal distance of 500 kb 
between enhancer and target promoter. As 
expected, genes associated with AE show signifi
cantly higher average expression levels, followed 
by those associated with primed enhancers, then 
poised enhancers, and finally genes not associated 
with a marked enhancer (Supp Fig 13A,B; Supp 
Tables 6,7), regardless of WT or KMT2CKO. 
Additionally, the more AE associated with 
a given gene, that gene demonstrated significantly 
higher expression levels (Supp Fig 13 C,D; Supp 
Tables 8,9). These results support our interpreta
tion that differences in active and poised enhan
cers are correlated with gene expression 
differences and that more active enhancers 

associated with a given gene results in significantly 
higher overall expression.

This is further visualized in Figure 3 showing 
aligned ChIPmentation, ATAC-seq and RNA-seq 
peaks for NODAL, its regulator CER1 and two 
ligands, BMP4 and WNT3 compared between 
WT and knockout. All four genes have significant 
mRNA overexpression in KMT2CKO compared to 
WT along with a decrease in trimethylation of 
H3K4 and, to a lesser extent, H3K27. Supp Fig 7 
shows the interconnected gene regulatory 
network(s) that include these four genes along 
with 30 others. Similar epigenome browser tracks 
for the remaining genes are shown in Supp Fig 14.

Proteome and phospho-proteome suggest 
heterogeneity between WT and KMT2CKO

Since proteins are the ultimate functional effectors 
of activity in biological systems, we sought to 
correlate our epigenetic and expression results 
with an unbiased survey of global proteomic and 
phospho-proteomic expression. KMT2CKO dis
played consistent changes in the basal proteomic 
and phosphorylation status of proteins (Supp 
Fig 15A-D). Among 678 differentially expressed 
proteins, 331 proteins were upregulated, while 
347 proteins were downregulated (Supp Fig 15B, 
Supp Table 10A,B). Only 299 phospho-proteins 
showed differential expression – 134 phosphopro
teins were upregulated, and 165 proteins were 
down-regulated (Supp Fig 15D, Supp Table 11A, 
B). As expected, KMT2C was one of the most 
underexpressed proteins in both samples, and in 
accordance with RNA-seq downregulation, one of 
the most downregulated proteins was RPS4Y1 
(logFC(−2.02); P-value 7.2 × 10−9) while, cur
iously, the most upregulated proteins were several 
metallothioneins (MT1A/B/E/F/G/H/M/X) along 
with LEFTY1 (logFC(0.93); P-value 5.0 × 10−5), 
another NODAL regulator. To further compare 
to our existing datasets (transcriptome and pro
teome), we correlated the normalized log10- 
transformed transcriptome and proteome expres
sion values to each other. This showed 
a significant (p < 2.2e-16), but relatively weak, 
Pearson-correlation coefficient of 0.18 (Supp 
Fig 15E). This weak correlation between transcript 
and protein levels is consistent with our 
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observation that KMT2CKO does not impact the 
cells’ pluripotent status but impacts their ability to 
differentiate. Overall, the types of over- and under
represented gene set terms were similar between 
transcriptome, proteome and phospho-proteome 
(Supp Figure 9A,B) and overlapped with RNAseq 
GO analysis, suggesting that the transcriptome/ 
proteome co-processing of our samples did not 
induce any significant biases in terms of functional 
complexity. To test for possible large-scale sys
tematic compositional biases caused by KMT2C 
deletion, we performed gene set enrichment ana
lysis via GAGE methodology from our differen
tially expressed proteome data with KEGG and 
gene ontology biological processes pathway data 
for WNT and NODAL pathways (Supp Table 
12). Across three biological processes and the 
WNT pathway as a whole, the p-value for each 
analysis was ≤0.05, suggesting a pathway-specific 
enrichment for a change of function. In sum, these 
results suggest that deletion of KMT2C 
reprogrammes the cis-regulatory elements that 
may change the actual binding position of some 
master regulator (e.g., TAL1) at these cis- 
regulatory elements, thereby impacting terminal 
differentiation.

Discussion

The canonical WNT/β-catenin pathway is essential 
for multiple developmental milestones including 
haematopoietic specification [31,46] and aberrant 
Wnt signalling has been associated with subtypes 
of leukaemogenesis [reviewed in 47]. Physiologic 
Wnt signalling can also be regulated by KMT2A 
[48], but in KMT2A-rearranged leukaemias, which 
comprise more than 70% of infant leukaemia cases 
[49], Wnt signalling is fully dependent upon 
KMT2A [50]. Despite decades of model organism 
research on KMT2A-rearranged leukaemias, these 
fusions alone, when expressed at physiologic levels 
without other mutations, very rarely (if ever) 
induce a neo/perinatal leukaemia in murine mod
els that phenocopies human infant leukaemia [51– 
53], suggesting additional factors were required for 
infant leukaemogenesis. To that end, we previously 
examined germline exomes from infant leukaemia 
patients and found a significant enrichment of 
missense germline variants in multiple 

COMPASS complex members, particularly 
KMT2C [2].

Against this context, we hypothesized that the 
missense germline KMT2C mutations in infant 
leukaemia skews normal blood development from 
the very start of mesoderm differentiation such 
that the resulting haematopoietic progenitors are 
more easily transformed with the addition of 
a somatic driver, such as a KMT2A fusion. To 
explore the role of KMT2C in pluripotent cells, 
we focused on a multi-omic, proteomic and func
tional study in hPSCs and found that the absence 
of KMT2C does not impair the pluripotent phe
notype, but does result in a heavily altered epige
netic landscape leading to altered gene and protein 
expression and ultimately, a failure of hemogenic 
endothelium or primitive haematopoietic specifi
cation in vitro, leaving the resulting cells with 
a transcriptional profile closer to mesendoderm 
than mesoderm (Figures 2,4). Our ATAC-seq 
results for KMT2CKO demonstrated a global 
reduction in open chromatin at promoters that 
bind chromatin topology regulators CTCF and 
CTCFL/BORIS. Enhancer-promoter interactions 
are mediated by architectural proteins, such as 
CTCF, MEDIATOR, and COHESIN, which regu
late the organization of topologically associated 
domains (TADs) in a cell- and gene-specific man
ner during development [54–56]. More specifi
cally, CTCF is required for proper expression of 
Hox gene clusters during differentiation [55]. 
CTCF deletion alters chromatin structure and sub
sequent transcription of myeloid-specific factors 
[57] ultimately driving aberrant HOX gene tran
scription in AML [58].

Without KMT2C, open chromatin shifts to 
accessibility for binding sites associated with the 
zinc finger of the cerebellum (ZIC) family of C2H2 
zinc finger TFs. This is consistent with a prior 
report showing that KMT2C/D loss leads to 
a global reduction of chromatin interactions at 
enhancers in the ES cells [59]. The fact that we 
do not find a commensurate increase of ZIC or 
decrease in CTCF/CTCRL mRNA/protein expres
sion suggests that KMT2C (potentially as part of 
its COMPASS complex) mediates histone modifi
cations that alter the chromatin landscape but does 
not directly regulate transcription or translation of 
either gene family.
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In contrast, murine models of Zic proteins have 
demonstrated that these transcription factors are 
essential for maintaining pluripotency of ES cells 
[60], but can also inhibit canonical Wnt/b-catenin 
signalling in vitro and in vivo [61]. Consistent with 
our results, Zic2 was previously found to be 
enriched at AE and PE in ES cells and is essential 
for chromatin accessibility and regulation of tran
scriptional programmes during development 
[60,62]. Furthermore, ZIC2 was shown to interact 
with SMAD2/SMAD3 and cause early develop
mental NODAL-dependent transcriptional altera
tions at FOXA2 targets [63]. Deregulation of ZIC 
proteins has been associated with at least 20 dif
ferent cancer types [reviewed in 64]. In some 
cases, ZIC family members are overexpressed 
while in others, DNA methylation results in 
a lack of ZIC protein expression. The end result 
is disruption of either the canonical Wnt/β- 
catenin, TGFβ, or sonic hedgehog pathways in 
different cell types at different developmental 
stages, thereby contributing to transformation.

We next annotated cis-regulatory elements 
modified via KMT2C by using histone modifica
tion patterns for AE and PE, which endow cells 
with the ability to interpret environmental cues 
correctly [37,65]. Transcription factor binding at 
active enhancers is a key determinant of tissue- 
specific gene expression [66–68] an essential step 
to execute developmental decisions for proper 
temporal and spatial control which is critical for 
embryonic development and correct fate decisions. 
We reasoned that uncovering the functionally rele
vant TFs associated with developmentally dynamic 
enhancers would identify lineage-specific regula
tors in controlling haematopoietic specification. 
Motif analysis of the KMT2C-dependent changes 
in AE and PE further complemented the shift 
towards open chromatin at ZIC binding sites, as 
we noted a shift away from OCT4/POU5F1 
enhancers towards enhancers associated with 
NODAL and TGFβ signalling. Of the KMT2CKO- 
specific enriched AE and PE (Tables 3B, 4B), 
nearly all are associated with NODAL/TGFβ, but 
specifically ATOH1, ASCL1, TCF12, TAL1/SCL, 
SMAD2, multiple FOX genes, along with the 
same ZIC and its complementary TF binding 

motif observed in our ATAC-seq results. This 
strongly implies that the lack of KMT2C has 
resulted in these pluripotent cells turning off 
WNT/β-catenin in favour of NODAL/TGFβ 
signalling.

This interpretation was further supported by tran
scriptome sequencing where the loss of KMT2C 
resulted in the largest fold expression increase in 
NODAL, itself, along with additional effectors: FST, 
BMP4, CER1, GAD1, MIXL1, and ligands WNT3 
and BMP4. NODAL has been shown to be necessary 
for maintaining pluripotency in hESCs [69] as well 
as inhibiting mesoderm differentiation [70] and pro
moting endoderm differentiation [71]. Indeed, the 
KMT2CKO cells demonstrated a pluripotent pheno
type, behaved identically to their isogenic WT coun
terparts in vitro from day 0 to day 3, and then failed 
to specify not only definitive hemogenic endothe
lium, all consistent with the increased NODAL 
expression, but also primitive haematopoietic pro
genitors which require NODAL/Activin signalling, 
suggesting that additional effectors remain inactive 
in the KMT2CKO cells.

In summary, somatic mutations in KMT2C have 
been implicated in various cancers and germline, 
missense mutations have been associated with infant 
leukaemia, which trace transformation to in utero 
development [3]. Given the relationship between 
paediatric cancers and aberrant developmental 
mechanisms, we sought to interrogate the role of 
KMT2C starting at pluripotency rather than focus
ing on transformation of terminally differentiated 
haematopoietic cells. While this multi-omic and 
functional assessment of KMT2C in human pluri
potent cells is unique and expansive, translational 
interpretation to human cancer phenotypes should 
be cautiously interpreted as germline or somatic 
KMT2C mutations are heterozygous and almost 
always missense, suggesting a hypomorphic, rather 
than null, impact on protein function that likely 
alters cellular behaviours in more subtle ways. 
With respect to germline variability, we postulate 
that such variation does not drive transformation, 
but merely creates a more easily transformed cell 
type such that when a stochastic driver mutation 
(e.g., KMT2A-fusion) is present at a critical devel
opmental stage, transformation occurs. This model 
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is consistent with other studies of aberrant develop
ment and early oncogenesis [1]. Future work will 
further explore this hypothesis with additional func
tional studies in vitro and in vivo.

Experimental procedures

Wild type and isogenic KMT2CKO hPSCs

Reprogrammed human inducible pluripotent stem 
cells (hiPSC) were generated from white blood 
cells collected from a healthy human male by the 
Washington University Genome Engineering and 
iPSC Core (GEiC). From this control line, the 
GEiC generated an isogenic, bi-allelic KMT2CKO 
line via CRISPR-guided non-homologous end- 
joining using a guide RNA targeting exon 3, 
resulting in truncation of the remaining 56 exons 
(Supp Figure 1a). The same process was also used 
for human embryonic stem cells (H1) (Wisconsin 
Stem Cell Bank). Supp Figure 1b-d demonstrates 
that the knockout of KMT2C was specific, com
pared to its paralogs, in hPSCs.

Teratoma assays

Teratoma assays were performed by the 
Washington University Mouse Genetics Core in 
the Division of Comparative Medicine (DCM) 
using the protocol published by Nelakanti [72]. 
Briefly, 1 × 106 cells diluted in 50 mL of 
Matrigel™ was injected bilaterally into the gastro
cnemius of two NOD-SCID IL2Rgammanull (NSG) 
mice. After eight weeks, the mice were sacrificed, 
and the muscles harvested for tumours. Tumours 
only grew in one of the two mice, which were 
evaluated independently by veterinary pathologists 
at the DCM.

Directed haematopoietic differentiation

Directed haematopoietic differentiation of human 
pluripotent stem cells was performed as published 
by Sturgeon and colleagues [31]. Statistical ana
lyses of the flow sorted cells shown in Figure 1 
were performed by Chi-Square analysis as docu
mented in the table below.

RNA sequencing

Cells were cultured to 70% confluency and then 
washed once with PBS, trypsinized and pelleted by 
centrifugation at 500 g for 10 min at 4°C. Cell 
pellets were transferred to the Genome 
Technology Access Center (GTAC) at 
Washington University for mRNA selection, 
sequencing library preparation, and sequencing 
on the Illumina NextSeq500 platform.

RNA-seq analysis

RNA-seq reads were aligned to the Ensembl 
release 72 primary assemblies with STAR version 
2.5.1a [73]. Gene counts were derived from the 
number of uniquely aligned unambiguous reads 
by Subread: feature count version 1.4.6-p5 [74]. 
All gene counts were then imported into the R/ 
Bioconductor package EdgeR [75], and TMM nor
malization size factors were calculated to adjust for 
samples for differences in library size. Ribosomal 
genes and genes not expressed in the smallest 
group size minus one sample greater than one 
count-per-million were excluded from further 
analysis. The TMM size factors and the matrix of 
counts were then imported into the R/ 
Bioconductor package Limma [76]. Weighted like
lihoods based on the observed mean-variance rela
tionship of every gene and sample were then 
calculated for all samples with the 
voomWithQualityWeights [77]. The performance 
of all genes was assessed with plots of the residual 
standard deviation of every gene to their average 
log-count with a robustly fitted trend line of the 
residuals. Differential expression analysis was then 
performed to analyse for differences between con
ditions, and the results were filtered for only those 
genes with Benjamini-Hochberg FDR adjusted 
p-values ≤0.05.

ChIPmentation

ChIPmentation was carried out as previously 
described [78] with minor modifications. Briefly, 
cells were washed once with PBS followed by fixa
tion using 1% formaldehyde in up to 1 ml PBS for 
10 min at room temperature. Glycine was used to 
stop the reaction. Cells were collected at 500 g for 
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10 min at 4°C (subsequent work was performed in 
a 4°C cold room and used ice-cold buffers unless 
otherwise specified) and washed once with 150 µl 
ice-cold PBS supplemented with protease inhibi
tors (Thermo Scientific #A32955). After that, fixed 
cells were either stored at −80°C for future experi
ments or lysed in sonication buffer supplemented 
with a protease inhibitor, as described, and then 
sonicated in a Covaris microtube (AFA fibre 
crimp-cap) with a Covaris E220 sonicator using 
the following settings: Peak incident power: 200; 
Duty factor: 10%; Cycles per burst: 200; Treatment 
time: 150 seconds (or until the DNA fragments’ 
size is in the range of 250–700 bp). Following 
sonication, equilibration buffer was added into 
the lysate. Lysates were centrifuged at 14,000 
RPM at 4°C for 10 minutes. Supernatant contain
ing the sonicated chromatin was transferred into 
a 1.5 ml DNA LoBind Eppendorf tube for immu
noprecipitation. For each immunoprecipitation, 
20 µl magnetic DynabeadTM Protein A (Life 
Technologies) were washed twice and re- 
suspended in 2X PBS supplemented with 0.1% 
BSA. For each immunoprecipitation, 1 µg of the 
appropriate antibody (described below) was added 
and bound to beads by rotating at least 6 hours at 
4°C. Blocked antibody and conjugated beads were 
then placed on a DYNAL Invitrogen magnetic 
bead separator, supernatant was aspirated, and 
the sonicated lysate was added to the beads fol
lowed by overnight incubation at 4°C on a rotator. 
Beads were washed as described in original proto
col at 4°C (in a cold room) with various buffers as 
provided in the protocol. Beads were then re- 
suspended in 25 µl tagmentation mix (19 µl tag
mentation buffer + 1 µl Tagment DNA enzyme 
supplemented with 5 µl nuclease free water) from 
the Nextera DNA Sample Prep kit (Illumina) and 
incubated at 37°C for 10 minutes in a thermocy
cler. The beads were washed with appropriate buf
fer (150 µl) per the protocol and then transferred 
into a 1.5 mL microfuge tube. Supernatant was 
immediately aspirated, leaving beads attached to 
the wall of the tube while in place on the magnetic 
separator. Bead pellets were then resuspended with 
45 µl elution buffer supplemented with proteinase 
K (NEB) and incubated for 1 hour at 55°C and 
then 8–10 hours at 65°C to revert formaldehyde 
cross-linking. After placing on the DYNAL 

Invitrogen magnetic bead separator, the superna
tant was transferred to a clean microfuge tube, and 
the beads were discarded. Finally, DNA was pur
ified via MinElute kit (Qiagen). From this purified 
DNA, qPCR was performed as described in the 
protocol to estimate the optimum number of 
enrichment cycles. The final enrichment of the 
libraries was then performed according to protocol 
and subsequently purified using AMPure XP beads 
followed by a size selection to recover libraries 
with a fragment length of 250–400 bp prior to 
sequencing.

Antibodies used in ChIPmentation

ChIP antibodies were purchased from Diagenode: 
H3K4me3 (#C15410003), H3K4me1 
(#C15410037), H3K27ac (#C15410174), 
H3K27me3 (#C15410069), Rabbit IgG 
(#C15410206).

ChIPmentation analysis

Biological replicates were prepared for each his
tone modification – H3K4me1, H3K4me3, 
H3K27ac, and H3K27me3 – in both WT and 
KMT2CKO hiPSC along with two replicates of 
rabbit IgG as a negative control. Raw sequence 
reads were processed using the ENCODE 
Transcription factor and Histone ChIP-Seq pro
cessing pipeline (http://github.com/ENCODE- 
DCC/chip-seq-pipeline2), accessed 
27 February 2019). The pipeline filtered and 
mapped the reads to hg19, validated the quality 
of the data, and generated fold change signal 
tracks over the control samples using MACS2. 
Peaks were further called using epic2 [79] using 
a false discovery rate (FDR) of 0.05, enabling both 
broad and narrow histone mark peaks to be effi
ciently identified. Motif search around enhancer 
signal and bivalent promoters signal were con
ducted using homer v4.8.3 (http://homer.ucsd. 
edu/homer/index.html). Identifying an enrichment 
of differential peak-associated genes as called by 
Gene Ontology (http://geneontology.org) was per
formed using Bioconductor R package 
clusterProfiler v3.12.0 [80].
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ATAC-seq library preparation, sequencing, and 
analysis

To map chromatin accessibility, we used the Assay 
for Transposase Accessible Chromatin (ATAC- 
seq) protocol optimized by Semenkovich [81]. 
Sequence reads were demultiplexed and mapped 
using bowtie (http://bowtie-bio.sourceforge.net/ 
index.shtml) to hg19. Peaks were identified, and 
signal tracks were generated with MACS2 using 
the ENCODE ATAC-seq pipeline (http://github. 
com/ENCODE-DCC/atac-seq-pipeline), assessed 
on 13 May 2019. Consistency among replicates 
was assessed based on Irreproducible Discovery 
Rates (IDR). Differential binding peaks between 
KMT2CKO and wild type were identified with 
the R package DiffBind using an FDR <0.05. 
Signal tracks of fold enrichment were visualized 
with the WashU Epigenome browser (https://epi 
genomegateway.wustl.edu).

Definition of enhancers and promoters

As listed in Supp Table 5, promoters were defined 
as non-overlapping −1kb and +1kb intervals 
around transcription start sites (TSS). Enhancers 
were defined by H3K4me1 peaks and were 
assigned to their closest promoter, allowing for 
a maximum distance of 500 kb. Active enhancers 
were those overlapped with H3K27ac peaks. 
Poised and primed enhancers were assigned to 
promoters after excluding those associated with 
any active enhancers. Poised enhancers overlapped 
with H3K27me3, whereas primed enhancers did 
not. Promoters were defined by H3K4me3 peaks 
within 1kb of TSS. Bivalent promoters were 
defined by the overlapping peak of H3K4me3 
and H3K27me3.

Peptide preparation, isobaric labelling, and 
off-line fractionation for LC-MS

The frozen cell pellets (~10 million cells) were 
solubilized [82] in 0.5 mL of 8 M urea buffer 
(8 M urea, 75 mM NaCl, 50 mM Tris (pH 8.0), 
1 mM EDTA, 2 µg/mL aprotinin, 10 µg/mL leu
peptin, 1 mM PMSF, 1:100 vol/vol Phosphatase 
Inhibitor Cocktail 2, 1:100 vol/vol Phosphatase 
Inhibitor Cocktail 3, 10 mM NaF) with 

ultrasonication using a Covaris S220X sonicator 
(Peak Incident Power: 150 W, Duty Factor: 10%, 
cycles/burst: 500, time: 8 min, temp: 4°C). The 
protein content was determined by the bicincho
ninic acid (BCA) method as shown in Supp Table 
13. For the reference pool, 60 µg from each sample 
was combined and 2 × 250 µg was processed with 
the samples. A protein aliquot (250 µg) was 
digested with trypsin after reduction and alkyla
tion of disulphide bonds. Peptides were prepared 
and labelled with tandem mass tag reagents prior 
to off-line fractionation using high-pH reversed 
phase chromatography [82]. Aliquots of the 
twenty-five fractions (~0.5 μg) were analysed 
using LC-MS. The 25 fractions were further com
bined to 13 fractions for phosphopeptide enrich
ment as previously described [82] and analysed by 
LC-MS.

Nano-LC-MS

The samples in 1% (vol/vol) aqueous FA were 
loaded (2.5 µL) onto a 75 µm i.d. × 50 cm 
Acclaim® PepMap 100 C18 RSLC column 
(Thermo-Fisher Scientific) on an EASY nano-LC 
(Thermo Fisher Scientific). The column was equi
librated using constant pressure (700 bar) with 
11 μL of solvent A (1% (vol/vol) aqueous FA). 
The peptides were eluted using the following gra
dient programme with a flow rate of 300nL/min 
and using solvents A and B (1% (vol/vol) FA/ 
MeCN): solvent A containing 5% B for 5 min, i
ncreased to 23% B over 105 min, to 35% B over 
20 min, to 95% B over 1 min and constant 95% 
B for 19 min. The data were acquired in data- 
dependent acquisition (DDA) mode. The MS1 
scans were acquired with the Orbitrap™ mass ana
lyser over m/z = 350 to 1500 and resolution set to 
70,000. Twelve data-dependent high-energy colli
sional dissociation spectra (MS2) were acquired 
from each MS1 scan with a mass resolving power 
set to 35,000, a range of m/z = 100–2000, an 
isolation width of 1.2 m/z, and a normalized colli
sion energy setting of 32%. The maximum injec
tion time was 60 ms for parent-ion analysis and 
120 ms for product-ion analysis. The ions that 
were selected for MS2 were dynamically excluded 
for 40 sec. The automatic gain control (AGC) was 
set at a target value of 3e6 ions for MS1 scans and 
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1e5 ions for MS2. Peptide ions with charge states 
of one or ≥7 were excluded for HCD acquisitions.

Protein identification

The unprocessed MS data from the mass spectro
meter were converted to peak lists using Proteome 
Discoverer (version 2.1.0.81, Thermo-Fisher 
Scientific) with the integration of reporter-ion 
intensities of TMT 10-plex at a mass tolerance of 
±3.15 mDa. The MS2 spectra with charges +2, +3 
and +4 were analysed using Mascot software [83] 
(Matrix Science, London, UK; version 2.5.1). 
Mascot was set up to search against a SwissProt 
database of human (version June 2016, 20,237 
entries) and common contaminant proteins 
(cRAP, version 1.0 Jan. 1st, 2012, 116 entries), 
assuming the digestion enzyme was trypsin/P 
with a maximum of 4 missed cleavages allowed. 
The searches were performed with a fragment ion 
mass tolerance of 0.02 Da and a parent ion toler
ance of 20 ppm. Carbamidomethylation of 
cysteine was specified in Mascot as a fixed mod
ification. Deamidation of asparagine, formation of 
pyro-glutamic acid from N-terminal glutamine, 
acetylation of protein N-terminus, oxidation of 
methionine, and pyro-carbamidomethylation of 
N-terminal cysteine were specified as variable 
modifications. Peptide spectrum matches (PSM) 
were filtered at 1% false-discovery rate (FDR) by 
searching against a reversed database and the 
ascribed peptide identities were accepted. The 
uniqueness of peptide sequences among the data
base entries was determined using the principal of 
parsimony. Protein identities were inferred using 
a greedy set cover algorithm and the identities 
containing ≥2 Occam’s razor peptides were 
accepted [84].

Protein relative quantification

The processing, quality assurance, and analysis of 
TMT data were performed with proteoQ (version 
1.0.0.0, https://github.com/qzhang503/proteoQ), 
a tool developed with the tidyverse approach 
[85,86] under the free software environment for 
statistical computing and graphics, R (R Core 
Team (2019). R: A language and environment 
for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/) and RStudio 
(RStudio Team (2016). RStudio: Integrated 
Development for R. RStudio, Inc., Boston, MA 
URL http://www.rstudio.com/). Briefly, reporter- 
ion intensities under 10-plex TMT channels were 
first obtained from Mascot, followed by the 
removal of PSM entries from shared peptides or 
with intensity values lower than 1E3. Intensity of 
PSMs was converted to logarithmic ratios at base 
two, in relative to the average intensity of refer
ence samples within a 10-plex TMT. Under each 
TMT channel, Dixon’s outlier removals were car
ried out recursively for peptides with greater 
than two identifying PSMs. The median of the 
ratios of PSM that can be assigned to the same 
peptide was first taken to represent the ratios of 
the incumbent peptide. The median of the ratios 
of peptides was then taken to represent the ratios 
of the incumbent protein.

To align protein ratios under different TMT 
channels, likelihood functions were first estimated 
for the log-ratios of proteins using finite mixture 
modelling, assuming two-component Gaussian mix
tures (R package: mixtools: normalmixEM) [87]. 
The ratio distributions were then aligned in that 
the maximum likelihood of the log-ratios is centred 
at zero for each sample. Scaling normalization was 
performed to standardize the log-ratios of proteins 
across samples. To discount the influence of outliers 
from either log-ratios or reporter-ion intensities, the 
values between the 5th and 95th percentile of log- 
ratios and 5th and 95th percentile of intensity were 
used in the calculations of the standard deviations.

Informatic and statistical analysis

Metric multidimensional scaling (MDS) and 
Principal component analysis (PCA) of protein 
log2-ratios were performed with the base 
R function stats:cmdscale and stats:prcomp, 
respectively. Heat-map visualization of protein 
log2-ratios was performed with pheatmap 
(https://rdrr.io/cran/pheatmap/). Linear modelling 
was performed using the contrast fit approach in 
Limma [76], to assess the statistical significance in 
protein abundance differences between indicated 
groups of contrasts. Adjustments of p-values for 
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multiple comparisons were performed with 
Benjamini-Hochberg (BH) correction.

Highlights

● KMT2C KO in hPSCs causes epigenetic dif
ferences at active and poised enhancers.

● These differences result in increased NODAL 
and decreased WNT signaling.

● KMT2C KO hPSCs expression profiling 
resembles mesendoderm rather than 
mesoderm.

● KMT2C KO hPSCs fail to specify hemogenic 
endothelium in vitro.
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